Transport variability of the ACC and teleconnection with the Southern Annular Mode (SAM) south of Africa

Madlen Gebler1, Olaf Boebel1, Jens Schröter1, Andreas Macrander1, Jörg-Olaf Wolff2

1) Alfred Wegener Institute for Polar and Marine Sciences, Bremerhaven
2) Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg

1 Introduction and data

Since December 2002 the AWI operates numerous Pressure Inverted Echo Sounder (PIES) along the Good Hope line South of Africa (Fig. 1). They had been deployed to investigate the variability of the Antarctic Circumpolar Current (ACC). Meredith et al. (2004) found a teleconnection of the ACC transport and the Southern Annular Mode (SAM) in Drake Passage. This work investigates the possibility of a similar teleconnection south of Africa.

2 Method: Gravest Empirical Mode

The Gravest Empirical Mode (GEM, Meinen and Watts, 2000) method projects hydrographic profiles onto a vertical integrated property like the acoustic travel time. The method makes no assumption about the vertical structure, in fact it simply fits hydrographic data (lookup table). Because of the depth limitation of the ARGO floats a reference level of 2000m was chosen for the lookup table. The travel times measured by the PIES had to be corrected for this reference level.

3.1 Results: ACC Transport

The potential temperature and salinity time series derived with the GEM method are used to calculate a geostrophic velocity (Eq. 2). The vertical integral of \(v \) times the distance \(dz \) between the stations results in the transport \(T \) (Eq. 3).

\[
\tau = 2 \int_0^\infty \frac{dp}{\rho \cdot g \cdot c(T, S, p)}
\]

The geostrophic ACC transport is derived between 41.2°S (ANT 5) and 53.5°S (ANT 13).

3.3 Results: Cross correlation of ACC transport and SAM index

Figure 6 shows the cross correlations of the two ACC transport time series with the weekly SAM index.

4 Conclusion and Discussion

Different mean transport might be due to the somewhat different position of the PIES ANT 13 during the first and second deployment period.

Correlation between SAM index and ACC transport is maximal 0.4-0.44 with different time lags. Highest correlation between the ACC transport and the SAM index are not at similar time lags. Meredith et al. (2004) found evidence in their study that the SAM forces interannual changes of the ACC transport through Drake Passage. The recent study can not support these findings. One reason might be that the ACC is located further north of the Antarctic continent at the Good Hope line compared to Drake Passage. Another reason is that Meredith et al. (2004) analyzed interannual variability using time series of ten years which barely can be resolved by a one or two year time series. New PIES data will increase the time series in the upcoming years and help to overcome this problem. Further studies will look at the role of the barotropic part of the ACC transport.

References

This work was conducted within the project JIGOG (Surface mass redistribution from Joint Inversion of GPS site displacements, Ocean bottom pressure [DBP] model, and GRACE global Gravity model) funded by the German Research Foundation.

Acknowledgments

Contact: Madlen.Gebler@awi.de