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“Given a phenomenon, A, whose antecedent we seek. First we ransack the memory for some 

different phenomenon, B, which has one or more features in common with A, and whose 

antecedent we know. Then we pass by analogy from the ancedent of B, to the hypothetical 

antecedent of A, solving the analogic proportion – as B is to A, so is the ancedent of B to the 

ancedent of A.” 

Grove Karl Gilbert, 1886.  

The inculcation of scientific method by example.  

Am. Jour. Sci. 3d(31), 284-299. 

 

 

"There is a theory which states that if ever anyone discovers exactly what the Universe is for and 

why it is here, it will instantly disappear and be replaced by something even more bizarre and 

inexplicable. - There is another theory which states that this has already happened." 

Douglas Adams, 1980.  

The Restaurant at the End of the Universe.  

Pan Book Ltd., London. 
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Abstract 

Periglacial landforms on Earth reflect cold-climate conditions in connection with permafrost 

(i.e. ground-ice-related) dynamics. Many geomorphological features, which are interpreted to be 

periglacial landforms, are in particular distributed in Martian mid-latitudes.  

The aim of this thesis was to model geological and geomorphological evolution of Martian 

periglacial landscapes using the Earth analogous environments as reference, and to reconstruct 

processes and environmental conditions responsible for their formation. Therefore, spatial analyses 

of periglacial key regions on Earth and Mars using high-resolution remote-sensing data were 

supported by detailed terrestrial field investigations in NE Siberia (Russia) and on Svalbard 

(Norway). Morphometric analyses, modeling of process-controlling factors, and multivariate 

statistics were conducted with focus on specific periglacial relief features, i.e. depressions formed 

by permafrost degradation and polygonal patterned ground. Based on these findings the potential of 

permafrost environments on Mars to be habitable to life are discussed in particular for Utopia 

Planitia on the Martian northern hemisphere. In this context, the influence of liquid water in 

periglacial landscape evolution on Mars during its recent geological history is of special 

importance as liquid water is the major requirement for the existence, evolution, and preservation 

of any kind of life. 

Permafrost degradation features (i.e. thermokarst) were investigated in ice-rich deposits in the 

Siberian Arctic as terrestrial analogues for asymmetric scalloped depressions in Martian volatile- 

(water-ice-) rich mantle deposits. Based on field studies, comparative insolation (i.e. thermal) 

modeling, and geomorphometric analyses an asymmetrical shape and a lateral retrogressive growth 

of permafrost-related depressions on Mars and Earth were recognized. The main controls are 

insolation and surface temperatures. In the case of the scalloped depression formation in Utopia 

Planitia on Mars, thermal modeling confirms that relatively short events of increasing sublimation 

or even thawing of ground ice during periods of high obliquity (i.e. tilt of the rotational axis) within 

the last 10 million years led to fast slumping processes on the steep pole-facing scalloped 

depression slopes. Meanwhile, the equator-facing slopes were flattened by continuous, though 

slow, ground ice sublimation and depression surface subsidence under lower obliquity conditions. 

Generally, the landscape morphology points to a dry origin of scalloped depressions on Mars. 

Surface features implying the former existence of flowing or standing water, which are clearly 

associated with thermokarst landscapes on Earth, do not exist in the investigated Martian region. 

The volume and the dimensions of the scalloped depressions on Mars, however, must be related to 

higher ground ice contents than the amounts proposed for Utopia Planitia. This conclusion became 

obvious as depth and size of terrestrial thermokarst depressions are clearly related to the ground-ice 

content of the sediments in which they are formed. 
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Geomorphometric analyses on Svalbard focused on polygonally patterned ground to draw a 

terrestrial analogue to small-scale polygonal structures in Utopia Planitia on Mars. Comparative 

quantitative terrain analyses based on high-resolution remote-sensing and topographic data were 

combined with terrestrial field data and multivariate statistics to determine the relationship of 

polygon geomorphometry to environmental conditions. The results reveal a similar polygon 

geomorphometry on Earth and Mars, which suggests a comparable genesis by thermal contraction 

cracking. Polygon morphology, however, is strongly related to local and regional landscape 

dynamics. This is reflected by differences in size and morphology of the polygons on Earth and 

Mars. Therefore, the effects of past and present environmental conditions on polygon formation 

had to be considered. The larger polygons on Svalbard and in Utopia Planitia are currently 

degrading and have probably been formed in past times when general climate conditions and in 

particular strong temperature gradients allow deep thermal contraction cracking. Smaller polygons 

represent young and recently-active low-centered polygons that were formed in fine-grained ice-

rich material. In the case of the small low-centered polygons on Mars, the formation of ice wedge-

like structures by the influence of transient liquid water could have occurred in micro-climatic 

niches in response to past orbital configurations. These patterns show the closest analogy to ice-

wedge polygons on Svalbard. Regionally, the present appearance of polygons in Utopia Planitia is 

primarily the result of contemporary dry degradation processes (i.e. sublimation). In contrast, the 

thawing of ice wedges degrades high-centered polygons in Arctic permafrost regions (i.e. 

Svalbard). Furthermore, many of Svalbard’s periglacial landforms, such as gullies, debris flow 

fans, polygonal terrain, fractured mounds, and rock glacier-like features are observed in similar 

proximity in mid-latitude landscapes on Mars suggesting the geologically recent action of glacial 

and periglacial processes. The landscape evolution would be controlled by obliquity and other 

orbital parameters such as eccentricity or the position of perihelion and is therefore assumed to be 

cyclic.  

Finally, the insights gleaned from terrestrial analogue studies were summarized to discuss past 

and present subsurface and climate conditions in relation to periglacial landscape evolution on 

Mars. Specific climate periods were identified for the most recent Martian history (<10 million 

years), which meet the requirements of distinct orbital configurations (high obliquity (>35°), high 

eccentricity (>0.1), and northern summer at perihelion) during which thaw processes and liquid 

water could have had an influence on periglacial landscape evolution in Martian mid-latitudes. 

Liquid water involved in the evolution of permafrost landforms in Utopia Planitia might have 

allowed the development of habitable micro-climatic niches, which are strongly related to specific 

permafrost landform morphology.  
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Kurzfassung 

Periglaziale Landschaftsstrukturen auf der Erde stehen in engem Zusammenhang mit kalt-

klimatischen Umweltbedingungen. Die Geomorphologie solcher Landschaften wird durch die 

Dynamik von Grundeis im dauerhaft gefrorenen Untergrund (Permafrost) bestimmt. Viele 

geomorphologische Phänomene auf dem Mars, die insbesondere in dessen mittleren Breiten 

verbreitet sind, wurden ebenfalls als periglaziale Strukturen interpretiert.  

Ziel dieser Arbeit war die Modellierung geologischer sowie geomorphologischer Entwicklung 

von periglazialen Landschaften auf dem Mars basierend auf der Studie terrestrischer Analoga. 

Darüber hinaus lag ein besonderer Schwerpunkt in der Rekonstruktion von Prozessen und 

Umweltbedingungen, welche die Entwicklung solcher Landschaften auf dem Mars beeinflussen. 

Unter Nutzung hoch aufgelöster Fernerkundungsdaten wurden periglaziale Schlüsselregionen auf 

der Erde und auf dem Mars anhand von morphometrischen Analysen, multivariater Statistik sowie 

der Modellierung prozess-kontrollierender Parameter räumlich analysiert. Ergänzend wurden 

Geländeuntersuchungen an periglazialen Indikatorstrukturen (Frostmuster-Polygonböden und 

Thermokarststrukturen) in Nordostsibirien und auf Spitzbergen durchgeführt, um diese als 

mögliche Mars-Analoga besser charakterisieren zu können. Ziel dieser Untersuchungen war die 

Eingrenzung möglicher habitabler (lebensfreundlicher) Zonen auf dem Mars anhand geologischer 

und geomorphologischer Bedingungen. Am Beispiel der auf der nördlichen Marshemisphäre 

gelegenen Region Utopia Planitia wurde die Habitabilität von Permafrostlandschaften abgeschätzt 

und diskutiert. Dabei ist der Einfluss von flüssigem Wasser in der geologisch jüngsten periglazialen 

Landschaftsentwicklung des Mars von besonderem Interesse, da flüssiges Wasser unerlässlich für 

die Existenz, Entwicklung und Erhaltung jeglicher Art von Leben ist. 

Permafrostdegradationsstrukturen (Thermokarstsenken) wurden in sibirischen eisreichen 

Feinsedimenten als terrestrische Analoga für asymmetrisch geformte Senken auf dem Mars 

untersucht. Diese charakteristischen Marssenken (genannt scalloped depressions) bilden sich in 

Feinsedimenten, die als eisreiches Mantelmaterial interpretiert wurden. Auf der Basis von 

Feldstudien in Sibirien, vergleichenden Einstrahlungsmodellierungen sowie geomorphometrischen 

Analysen konnten eine typisch asymmetrische Form der Senken sowie ein lateral rückschreitendes 

Wachstum der Senken auf Erde und Mars nachgewiesen werden. Wesentliche Einflussfaktoren 

sind dabei direkte Sonnenbestrahlung und damit lokal steigende Oberflächentemperaturen. Im Falle 

der Marssenken in Utopia Planitia bestätigten die thermischen Modellierungen, dass 

verhältnismäßig kurze Ereignisse von zunehmender Sublimation oder des Auftauens des 

Grundeises zu kurzfristigen intensiven Rutschungen auf den steilen polwärts orientierten 

Senkenhängen geführt haben könnten. Dies geschah aller Wahrscheinlichkeit nach während 

Perioden hoher Obliquität (Neigung der Planetenachse) innerhalb der letzten 10 Millionen Jahre. 

Unterdessen wurden die äquatorwärts orientierten Hänge während Perioden geringerer Obliquität 
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durch eine sehr langsame Sublimation des Grundeises und der damit zusammenhängenden 

kontinuierlichen Absenkung der Oberfläche zunehmend verflacht. Im Allgemeinen deutet die 

Landschaftsmorphologie in Utopia Planitia aber auf einen trockenen Ursprung der Marssenken. 

Oberflächenstrukturen, die auf das ehemalige Vorhandensein von Fließgewässern oder stehenden 

Wassers hindeuten, die aber auf der Erde offenbar mit Thermokarstlandschaften verbunden sind, 

existieren in der untersuchten Marsregion nicht. Die Volumina und Ausmaße der Marssenken 

müssen allerdings im Zusammenhang mit weitaus höheren Grundeisgehalten entstanden sein, als 

sie heute in den obersten Bodenschichten in Utopia Planitia detektiert werden. Die Größe und Tiefe 

terrestrischer Thermokarstsenken steht in direktem Zusammenhang mit dem Grundeisgehalt der 

Sedimente, in denen sie gebildet werden. 

Geomorphometrische Analysen auf Spitzbergen konzentrierten sich auf polygonale 

Frostmusterstrukturen, um einen Vergleich zu kleinskaligen polygonalen Strukturen auf dem Mars 

ziehen zu können. Quantitative Geländeanalysen, die auf hochauflösenden Fernerkundungsdaten 

basieren, wurden mit terrestrischen Felddaten und statistischen Verfahren zur Analyse multivariater 

Daten verknüpft, um das Verhältnis der polygonalen Geomorphometrie zu beeinflussenden 

Umweltbedingungen zu ermitteln. Die Ergebnisse offenbarten eine ähnliche Geomorphometrie der 

Polygone auf Erde und Mars. Daraus wurde eine vergleichbare Genese beider polygonaler Muster 

durch thermale Kontraktion des gefrorenen Bodens geschlossen. Jedoch hängt die Morphologie der 

Polygone stark mit der lokalen und regionalen Landschaftsdynamik zusammen. Dieses wird durch 

die Unterschiede von Größe und Morphologie der Polygone auf Erde und Mars deutlich. Folglich 

mussten die Effekte vergangener und gegenwärtiger Umweltbedingungen auf die Entstehung der 

polygonalen Strukturen betrachtet werden. Die größeren Polygone auf Spitzbergen und in Utopia 

Planitia unterliegen derzeit Degradationsprozessen und sind in vergangenen Zeiten unter anderen 

Klimazuständen gebildet worden als insbesondere stärkere Temperaturvariationen ein tieferes 

Eindringen von Frostspalten in den Permafrostboden ermöglichten. Kleinere Polygone mit im 

Vergleich zum umgebenden Rand tiefer liegenden Zentren (low-centered polygons), stellen junge 

und kürzlich aktive Strukturen dar, die in feinkörnigem eisreichen Material gebildet wurden. Im 

Falle der kleinen low-centered Polygone auf dem Mars könnten kurzfristige Tauprozesse und das 

Eindringen von vorübergehend flüssigem Wasser in Frostspalten während vergangener orbitaler 

Konfigurationen zur Bildung von eiskeil-ähnlichen Strukturen in bestimmten mikroklimatischen 

Nischen geführt haben. Diese polygonalen Muster zeigen die größte Analogie zu Eiskeilpolygonen 

auf Spitzbergen. Die gegenwärtige Erscheinung der Polygone in Utopia Planitia ist hingegen 

regional gesehen hauptsächlich das Resultat von aktuell vorherrschenden trockenen 

Grundeisdegradationsprozessen (d. h. Sublimation). Demgegenüber steht in arktischen 

Permafrostgebieten wie Spitzbergen die Entstehung von high-centered Polygonen (d. h. Polygone 

mit im Vergleich zum umgebenden Rand höher liegenden Zentren) durch das Auftauen von 

Grundeiskörpern (Eiskeilen). Viele der periglazialen Oberflächenstrukturen auf Spitzbergen wie 
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Erosionsrinnen, alluviale Fächer, polygonale Frostmuster, pingo-ähnliche und blockgletscher-

ähnliche Strukturen wurden in vergleichbaren räumlichen Zusammenhängen in den mittleren 

Breiten des Mars beobachtet. Daraus lässt sich die geologisch junge Aktivität von periglazialen 

Prozessen auf dem Mars schließen. Die Landschaftsentwicklung wird vermutlich sehr stark durch 

die Obliquität und anderer orbitaler Parameter wie Exzentrizität und die Position des Perihelions 

beeinflusst und kann folglich als zyklisch angenommen werden. 

Schließlich wurden die Erkenntnisse aus den terrestrischen Analogstudien zusammengefasst, 

um die gegenwärtigen und vergangenen Grundeis- und Klimabedingungen im Zusammenhang mit 

der periglazialen Landschaftsentwicklung auf dem Mars zu diskutieren. Spezifische 

Klimazeiträume konnten für die jüngere geologische Geschichte des Mars (<10 Millionen Jahre) 

identifiziert werden, in denen bestimmte orbitale Konfigurationen (hohe Obliquität (>35°), hohe 

Exzentrizität (>0,1) und Nordsommer im Perihelion) den Einfluss von Tauprozessen und flüssigem 

Wassers auf die periglaziale Landschaftsentwicklung innerhalb der mittleren Breitengrade des 

Mars ermöglicht haben könnten. Flüssiges Wasser, das in die Entwicklungsgeschichte der 

Permafrostlandschaften auf dem Mars einbezogen wurde, könnte zur Entwicklung habitabler 

mikroklimatischer Nischen im Permafrostboden geführt haben, die sehr stark mit der spezifischen 

Morphologie der periglazialen Strukturen in Utopia Planitia verbunden sind. 
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1. Introduction 

Preface 

This presented PhD thesis was realized within the framework of the research alliance 

“Planetary Evolution and Life”, which is supported by the Helmholtz Association. The alliance 

focuses on the questions: Was there once, or is there still life on Mars or other extraterrestrial 

planets? What could be the linkage between the potential evolution of life and planetary geology 

and geomorphology? This question inspires the search for habitable zones outside the Earth and 

aims to identify the potential of different planetary environments to sustain life. Besides energy 

gained from inorganic/organic nutrients or from sunlight, the major requirement for the existence, 

evolution, and preservation of biological systems is access to liquid water. The identification of 

possible habitable zones depends, therefore, on knowing whether liquid water was available during 

the geological and geomorphological history of a certain planetary landscape. The most promising 

planet in our solar system to search for past and/or present liquid water activity is Mars. Several 

geomorphic features characteristic of water activity on Earth, e.g., outflow channels, deltas, and 

gullies, have been detected and investigated on Mars; therefore, it is nowadays widely accepted that 

water was active in the past on the Martian surface. Furthermore, we are now aware that Mars is a 

permafrost planet and that a large quantity of water on Mars exists in the subsurface today as 

ground ice. The surface of Mars shows many landforms that resemble terrestrial periglacial 

features. On Earth, such features reflect specific, continuous cold-climate conditions, and they are 

formed in connection with permafrost dynamics, commonly under the influence of freezing and 

thawing of water ice. Therefore, the investigations of potential Martian periglacial landforms, 

analogous to landforms found on Earth, contribute to understanding the history of water on Mars 

and to defining geological boundary conditions for possible habitable zones.  

 

1.1 Scientific background 

1.1.1 Permafrost, ground ice, and periglacial features on Earth and Mars 

Permafrost is defined as any ground that remains at or below 0°C (~273 K) for at least two or 

more consecutive years, regardless of ice occurrence. Since the presence of mineral salts or higher 

pressure can depress the freezing point of water below 0°C, permafrost is not necessarily frozen 

[Everdingen, 2005; French, 2007]. Permafrost underlies more than 20% of the continental Earth’s 

surface [Bockheim, 1995; Zhang et al., 2005]. The dynamics of permafrost results in special frost-

related structures, land-surface features, and processes summarized by the term “periglacial” 

[Everdingen, 2005]. Most of the frost-related processes, like frost cracking, cryoturbation, or 

solifluction, occur in the seasonally-changing uppermost part of the permafrost zone. One of the 



Introduction Chapter 1 
 
_______________________________________________________________________________ 
 

 2

most important attributes in periglacial landscape dynamics is the occurrence of ground ice. With 

respect to the geomorphology and topography of periglacial landscapes, four main types of ground 

ice can be distinguished; segregated ice, wedge ice, intrusive ice, and pore or interstitial ice 

[Williams and Smith, 1989; Yershov, 2004; French, 2007]. Segregated ice is the general term for 

ice accumulation in fine-grained soils with high ground-ice contents; it is formed by pressurized 

migration of water to the freezing front through the adjacent soil pores. It can be distinguished by 

its ice content and its structures from pore or interstitial ice, which cements the soil [French, 2007]. 

Large bodies of ground ice mainly occur in the upper part of frozen ground. Pingos (i.e. ice-cored 

mounds) contain intrusive ice cores that result from highly-pressurized water intrusion [e.g., 

Gurney 1998]. Ice-wedge bodies are developed when melt water fills frost cracks, a process that 

occurs almost every summer. These cracks are caused by thermal contraction of frozen ground, a 

process that results in polygonal patterned networks of frost cracks at the surface. Other types of 

massive ice bodies can also originate from, e.g., buried glacier ice. The thawing and degradation of 

permafrost that contains ground ice results in surface subsidence and the formation of characteristic 

depressions in the landscape (i.e. thermokarst).  

According to the above definition of permafrost, Mars may be considered to be a permafrost 

planet that exhibits a wide variety of periglacial landscapes. As suggested by, e.g., Shuster and 

Weiss [2005], subsurface temperatures probably persisted below 0°C for most of Martian 

geological history. The presence of extensive near-surface ground ice on Mars was demonstrated 

conclusively using the measurements of the Gamma Ray Spectrometer (GRS), which detected a 

pole-ward increasing abundance of water-equivalent hydrogen concentration within the first meter 

of the subsurface [Boynton et al., 2002; Mitrofanov et al., 2002; Feldman et al., 2004]. This was 

recently confirmed by in-situ detection of relatively pure water ice in the shallow subsurface at the 

Phoenix Lander site near the north pole [e.g., Mellon et al., 2009; Smith et al., 2009] and also by 

spectral analyses of water ice excavated from impact craters in a mid-latitude region [Byrne et al., 

2009]. These findings correspond to ice-stability models that suggest stable ground ice can exist 

near the surface only at higher latitudes (>50-60°N/S) under the current Martian climate, but ice 

could generally be stable at depths below 1 m at latitudes down to ~40-45°N/S [e.g., Mellon and 

Jakosky, 1995; Mellon et al., 2004]. Therefore, the depth of the ground-ice (i.e. permafrost) table 

varies in relation to the geographic distribution. The models also suggest that the stability of near-

surface ground ice on Mars depends on the variations of Martian orbital parameters. If Mars’ 

obliquity (i.e. tilt of the rotational axis) exceeds 32° (today ~25°) ground-ice becomes globally 

stable [Mellon and Jakosky, 1995]. Since the orbital parameters change chaotically and the value of 

the mean obliquity in the Martian past was probably higher than today [Laskar et al., 2004], ground 

ice is believed to have exerted a significant influence on Martian landscape evolution.  

The release of low-resolution Mariner 9 and Viking data allowed a morphological analogy to 

be drawn between several periglacial Martian landforms and terrestrial permafrost features as early 
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as the 1970’s [e.g., Sharp, 1973; Carr and Schaber, 1977; Lucchitta, 1981; Rossbacher and 

Judson, 1981]. With the advent of high-resolution data (i.e. from the Mars Orbiter Camera, MOC, 

and the High Resolution Imaging Science Experiment, HiRISE), these early notions were 

confirmed and new geomorphological evidence was found to support the hypothesis that periglacial 

processes might have played an important role in shaping the younger Martian landscapes [e.g., 

Baker, 2001; Malin and Edgett, 2000; Mangold et al., 2004; Levy et al., 2009a]. However, the 

origin of Martian ground ice is still under debate. Most of the studies concerning ground-ice-related 

landforms have focused on their formation in young geological units (Late Amazonian-aged; 

Figure 1.1) of the mid- and high-latitudes. These observations are in agreement with hypotheses of 

obliquity-driven subaerial deposition of ice-rich material during recent geological times [e.g., Head 

et al., 2003; Levrard et al., 2004; Madeleine et al., 2009]. Other authors have discussed climatic 

and latitude-dependent water exchange by vapor diffusion into and out of the subsurface regolith 

[e.g., Mellon et al., 2004; Schorghofer and Aharonson, 2005; Schorghofer, 2007].  

 

 

Figure 1.1: Mars stratigraphy based on cratering chronology [modified after Hartmann and 
Neukum, 2001]. The major time periods (Noachian, Hesperian, and Amazonian) are separated by 
solid lines. Grey areas mark time uncertainties in period transitions. 
 

1.1.2 The Martian mid-latitude landscapes and Utopia Planitia 

An exciting aspect with regard to the distribution of Martian permafrost landforms is the fact 

that features which are interpreted to be formed in relation to ground ice (e.g., thermal-contraction-

cracking polygons, small rimless depressions, gullies, viscous flow features, and pingo-like 

features) are clustered in a latitudinal belt between ~30° and 60° (Figure 1.2) and often formed in 
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areas which appear smooth on a kilometer scale where they are not degraded. Deposits covering 

these areas are identified on the basis of Mars Orbiter Laser Altimeter (MOLA) and MOC data and 

interpreted as a tens-of-meters–thick, fine-grained, ice-rich mantle layer, which drapes over older, 

rougher terrain [Kreslavsky and Head, 2000, 2002; Mustard et al., 2001; Head et al., 2003].  

This study focused on the western part of Utopia Planitia situated within the northern Martian 

lowlands (30°N-60°N and 80°E-120°E; Figure 1.2). The area is part of the Utopia basin, which was 

possibly formed by a giant impact during the (pre-) Noachian period (~4.5 to ~3.7 Ga) [McGill, 

1989; Thomson and Head, 2001; Tanaka et al., 2005]. During the Hesperian (~3.7 to ~3.0 Ga; 

Figure 1.1) the region was influenced by tectonic and volcanic activities, and in the transition to the 

Amazonian (<3.0 Ga) the basin was filled by outflow channel deposits and/or sediments deposited 

in large standing water bodies [Head et al., 2001]. In particular, the late Amazonian (<300-600 Ma; 

Figure 1.1) was characterized by air-fall deposition of ice-rich materials, which were subsequently 

reworked by periglacial processes [e.g., Tanaka et al., 2005]. The area was chosen for analogue 

studies because it has been well known since the Viking 2 mission landed in 1976 at 47.7°N and 

134.1°E. More importantly, the region is unique, because many landforms interpreted to have 

formed in relation to ground ice are clustered there, in particular in western Utopia Planitia 

(Figure 1.2).  

For instance, small rimless depressions, recently described as scalloped depressions 

(Figure 1.2B), were interpreted by Sharp [1973] as ground-ice degradation features. Many varieties 

of small-scale polygonal structures are widely distributed (Figure 1.2E) [e.g., Seibert and Kargel, 

2001], and small fractured mounds are suggested to be analogues to terrestrial pingos (Figure 1.2D) 

[e.g., Soare et al., 2005; de Pablo and Komatsu, 2009]. Furthermore, the occurrence of gullies 

(Figure 1.2C) in the comparatively few impact craters of Utopia Planitia point to the recent activity 

of liquid water [Soare et al., 2007; see e.g., Malin and Edgett, 2000, and Dickson and Head, 2009 

for discussions of Mars-wide gully origin]. Climatically, Utopia Planitia is situated right at the 

border of currently stable ground ice. The mean surface temperatures range between ~180 K (~-

90°C) in winter and ~240 K (~-30°C) in summer [Morgenstern et al., 2007] and the quantity of ice 

in the upper ground (<1 m) in the region detected by the GRS is estimated to be about 7 wt% (see 

also Figure 1.2A) [Feldman et al., 2004]. However, the role of liquid water and thaw processes in 

the landscape evolution of Utopia Planitia is still under debate. For instance, Levy et al. [2009b] 

favor prolonged “dry” desert periglacial conditions in which sublimation is the dominant 

permafrost degrading factor and liquid water is excluded, while e.g., Soare et al. [2007, 2008] and 

Soare and Osinski [2009] proposed a “wet” periglacial landscape evolution in which standing 

water bodies existed and thawing was the dominant degrading factor. 
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Figure 1.2: Distribution of water and selected periglacial features on Mars. Maps are compiled and 
modified from the literature. The investigated region is marked by the red rectangle (see text). Note 
some symbols are not mentioned; they refer to data presented in the individual papers and are not 
covered by this work. (A) water-equivalent hydrogen content determined by GRS [Feldman et al., 
2004]. (B) Distribution of different types of degraded terrain. Black dots represent mantled and 
scalloped terrain [Zanetti et al., 2010]. (C) Global distribution of gullies (white dots) and viscous 
flow features (orange dots) [Dickson and Head, 2009]. (D) Distribution of fractured mounds (black 
dots) partly interpreted as pingo-like features [Dundas and McEwen, 2010]. (E) White dots 
indicating satellite images in which features were interpreted to be thermal-contraction-crack 
polygons [Levy et al., 2009a].  



Introduction Chapter 1 
 
_______________________________________________________________________________ 
 

 6

1.1.3 Terrestrial periglacial landscapes as Martian environmental analogues: 

Introduction to the study sites in Siberia and on Svalbard 

During the long tradition of terrestrial analogue studies in planetary science [see e.g., Sharp, 

1988], cold-climate polar landscapes have often been considered to be the most useful terrestrial 

analogues to Martian climate. With respect to the prolonged cold and dry conditions on present-day 

Mars, in particular, the cold deserts of the Antarctic Dry Valleys are suggested to be the closest 

environmental analogues to Mars (Figure 1.3) [e.g., Anderson et al., 1972; Marchant and Head, 

2007].  

 

Figure 1.3: Left: Location of the terrestrial study sites marked with red squares. Map of permafrost 
distribution after Brown et al. [1998] (a) The Lena Delta in NE Siberia. (b) The Svalbard 
Archipelago. Right: Morphogenetic regions for climate-related landforms on Earth; modified from 
Baker [2001] and Marchant and Head [2007]. The transparent red area represents Mars at different 
latitudes and surface pressures (present and inferred past).  
 

Many authors have studied Antarctic permafrost geomorphology and ecology to obtain insights 

into climate and subsurface conditions, landforms, and possible microbial activity on Mars [e.g., 

Gilichinsky et al., 2007; Marchant and Head, 2007; Levy et al., 2009c, 2010a]. However, besides 

the necessary costly and complicated logistics required to access the Antarctic Dry Valleys, the  

valleys lack some periglacial features whose analogues can probably be seen on Mars (e.g., pingos 

and thermokarst features). Arctic regions are often more easily accessible, and provide numerous 

periglacial landforms in close spatial proximity that have already been compared to similar 

landforms on Mars. For instance, polygonal structures on the Arctic coastal plains of North 
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America and in the Canadian high Arctic regions have been compared by e.g. Seibert and Kargel 

[2001] and Mangold [2005], and quantitatively analyzed by e.g. Haltigin et al. [2010]. The 

distribution of possible pingos on Mars was assessed by Burr et al. [2009] after a comprehensive 

literature review of and morphological comparisons with Arctic pingos. Balme and Gallagher 

[2009] used retrogressive thaw slumps on Herschel and Ellesmere islands, Canadian Arctic, as 

terrestrial analogues for morphologically similar landforms in a Martian equatorial region. From 

the same region, certain polygonal patterns were inferred to be analogues to sorted stone circles on, 

e.g., Ellesmere Island in Canada [Balme et al., 2009]. Morgenstern et al. [2007] suggested the 

periglacial landscapes in Siberian ice-rich deposits are terrestrial analogues to the polygonally-

fractured mantling material and its thermokarst-like depressions in Martian mid-latitudes. 

For this study Kurungnakh Island in the south-central Lena Delta (NE Siberia, Russia) and the 

Adventdalen in Central Spitsbergen (Svalbard, Norway) were chosen, as both areas are located in 

the zone of continuous permafrost (Figure 1.3) and offer a diverse inventory of periglacial 

landforms in close spatial proximity. Kurungnakh Island represents a typical thermokarst-

influenced lowland permafrost landscape with a widespread distribution of large thermokarst 

depressions, ice-wedge polygons, and pingos. The climate of the Lena Delta is true arctic. The 

mean annual air temperature is about -13.5°C and the mean annual precipitation reaches ~300 mm 

[ROSHYDROMET, 2009]. Kurungnakh Island consists of fine-grained sediments with very high ice 

contents of up to 90% by volume. The U-shaped valley named Adventdalen represents a 

mountainous arctic permafrost landscape and is located in the dry central regions of Spitsbergen, 

the largest island of Svalbard. The annual precipitation reaches only ~180 mm and the mean annual 

air temperature is around -6°C [Hanssen-Bauer and Førland, 1998] (Figure 1.3). The bedrock 

massifs bordering the valley are characterized by Jurassic and Cretaceous sandstones, siltstones, 

and shales, but fine-grained loess-like deposits are widely distributed on the valley bottom [Bryant, 

1982; Dallmann et al., 2001]. Typical periglacial features which can be found in the Adventdalen 

include different kinds of patterned ground, pingos, and rock glaciers. Both study sites are easily 

accessible for field work. The periglacial inventory of both terrestrial study sites and their 

comparative morphological and geological similarities to Martian mid-latitude mantle deposits 

make them very useful morphological analogues. 

1.1.4 Climatic and astrobiological relevance of potential Martian periglacial 

landscapes 

Pure liquid water is generally unstable everywhere on the present Martian surface because of 

very low pressure and low temperature (Figure 1.4) and the question of whether transient liquid 

water currently exists, for instance as salty solutions or thin films, is still under debate [e.g., 

Haberle et al., 2001; Möhlmann, 2005; Tosca et al., 2011]. Despite the instability of liquid water, 

many probably-young landforms, in particular gullies and periglacial features, have been 
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interpreted as the results of processes involving liquid water [e.g., Costard and Kargel, 1995; 

Malin and Edgett, 2000; Seibert and Kargel, 2001; Reiss et al., 2010]. Therefore, they must have 

formed either under current short-time and small-scale special environmental conditions or as a 

result of past processes that occurred when Martian environments were more favorable to the 

thawing of ice and to the existence of stable liquid water.  

 

 

Figure 1.4: Left: Current mean environmental conditions on the entire Martian surface, modified 
after Horneck [2000]. Right: Water-phase diagram shows the stable phase of water (gas, liquid, or 
solid) over a range of pressure and temperature [modified after Haberle et al., 2001]. Transitions 
between the phases are represented by the blue line. All three phases can co-exist at the triple point 
(~273 K, 6.1mb). The range of pressure and temperature that would currently permit the presence 
of pure liquid water on Mars is shown by the blue area: Pressure above 6.1mb, temperature 
between 273 K (below 273 K water sublimates or freezes) and 284 K (above 284 K water boils). 

 

Significant and chaotic changes of past Martian climate were precisely modeled for the last 

20 Ma by Laskar et al. [2004]. Insolation increased, in particular on the mid- and high-latitudes, 

and temperatures probably rose above 273 K, especially if obliquity reached higher values [e.g., 

Costard et al., 2002]. Furthermore, during obliquity changes the Martian climate is also sensitive to 

variations of eccentricity (i.e. orbit deviation from a perfect circle) and climatic precession (i.e. 

orientation of the rotation axis at summer solstice) [Laskar et al., 2002; Paige, 2002]. Therefore, 

investigating periglacial landforms and estimating the degree of influence exerted by liquid water 

on their formation allows us to obtain insights into past and present environmental and climate 

conditions. With regard to the potential depth of the Martian water-ice cryosphere [i.e. several 

kilometers; Clifford et al., 2010], permafrost on Mars represents a large water reservoir outside the 

polar caps. Beyond its role as a geomorphological agent, its exploration is also important for 
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astrobiological studies because it possibly provides protective niches where life may have survived 

or evolved [e.g., McKay, 1997; Horneck, 2000]. 

 

1.2 Aims and approaches 

The comparison of Martian and terrestrial permafrost features is the general objective of this 

thesis. To obtain reference values and the information needed to interpret remote-sensing data, the 

consideration and understanding of terrestrial analogues is essential. Knowing the processes that 

formed a terrestrial analogue might allow us to infer the processes that formed a similar feature on 

a different planet under study [see discussion by Baker, 2008]. Up to now, many analogue studies 

have been based primarily on descriptive (qualitative) comparisons. Therefore, the overarching 

approach of this thesis is the morphometric analysis of periglacial structure in key regions on Mars 

and Earth using high-resolution remote-sensing data and the analysis of local environmental 

conditions that control terrestrial periglacial morphology. For this purpose, quantitative terrain 

analyses are combined with geomorphological and sedimentological field data (Figure 1.5). The 

first main goal of this thesis is to model the geological and geomorphological evolution of certain 

periglacial landscape features with respect to past and present Martian environmental conditions. 

 

 

Figure 1.5: Flowchart of methodical approach used in this thesis (ETM+, Enhanced Thematic 
Mapper Plus; HRSC, High Resolution Stereo Camera; PRISM, Panchromatic Remote-sensing 
Instrument for Stereo Mapping; CTX, Context Camera; THEMIS, Thermal Emission Imaging 
System; PCA, Principal Component Analysis; RDA, Redundancy Analysis). 
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The following questions shall be answered to reach the first goal: 

 Which environmental parameters are directly or indirectly related to the formation and 

appearance of specific periglacial features on Earth? 

 What can be inferred from the known controlling environmental parameters of 

terrestrial permafrost landforms for analogous landforms on Mars? 

 What are the similarities of and differences between diverse morphological analogues? 

 How does the morphometry and geomorphology of Martian landforms reflect past and 

present subsurface and environmental conditions? 

 

The second goal is to estimate the potential for permafrost landscapes on Mars to be habitable 

environments. In order to reach this goal the following questions are to be answered: 

 How is the influence of liquid water connected with the influence of thawing ground 

ice on Martian permafrost landforms during current and past climate periods? 

 Can we define periods with favorable climate conditions that allow thaw processes and 

the presence of liquid water, and what is the duration of those periods? 

 What can be inferred from past and/or present environmental conditions on Mars with 

regard to the allowed environmental range for the existence of any biological system? 

 

1.3 Thesis organization 

1.3.1 Overview of chapters 

This cumulative dissertation consist of an introductory chapter (Chapter 1) providing scientific 

background and the aims and objectives of this thesis, followed by three main chapters (Chapters 2-

4), and a synthesis (Chapter 5). The three main chapters and the appendix contain original research 

papers, which have been designed for publication in international peer-reviewed journals 

(Table 1.1). These papers are published in the Journal of Geophysical Research – Planets 

(Chapter 2), accepted for publication in Geomorphology (Chapter 3), submitted to Icarus 

(Chapter 4), and accepted for publication in an issue of the Geological Society London, Special 

Publications (Appendix).  

Chapter 2 deals with the investigations of thermokarst landforms in Siberian ice-rich deposits 

as analogues to asymmetrically-shaped Martian scalloped depressions. On the basis of field studies 

within a large thermokarst depression in the Lena Delta (NE Siberia) and comparative 

geomorphometric analyses and insolation (i.e. thermal) modeling using high-resolution and 

thermal-infrared satellite data, the geomorphology and the factors influencing both types of 

depressions are examined and compared [Ulrich et al., 2010].  

In Chapter 3, the results of an analogue study of terrestrial polygonally-patterned ground are 

demonstrated and compared to small-scale polygonal structures on Mars. The relationship of 
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polygon geomorphometry to local environmental conditions in the Adventdalen (Central 

Spitsbergen) and western Utopia Planitia (Mars) are analyzed by a combination of terrestrial field 

data, quantitative terrain analyses, and multivariate statistics [Ulrich et al., in press]. 

Chapter 4 summarizes the insights gleaned from terrestrial analogue studies into permafrost 

landforms on Mars and is focused on the potential habitability of Martian mid-latitude periglacial 

landscapes. Specific periods in the Martian past are identified when thaw processes and liquid 

water were probably important in periglacial landscape evolution. Implications of past and present 

environmental conditions are discussed with respect to the potential survival of microorganisms. 

Finally, possible habitable niches that might exist in Martian permafrost landforms are described 

[Ulrich et al., submitted]. 

The appendix contains a discussion of diverse periglacial landforms on Mars and Earth and 

proposes different landscape evolution scenarios for Martian mid-latitude craters, which are 

inferred from studies of analogous periglacial landforms on Svalbard [Hauber et al., 2011].  

In Chapter 5, results and implications of the individual thesis papers are synthesized and 

discussed, as well as critically viewed from a the methodological side. Furthermore, Chapter 5 

provides a look forward to further analogue studies and permafrost investigations on Mars.  

 

Table 1.1: Overview of publications presented within this thesis 

Chapters Publications 

Chapter 2 

Ulrich, M., Morgenstern, A., Günther, F., Reiss, D., Bauch, K.E., Hauber, E., 
Rössler, S., Schirrmeister, L., 2010. Thermokarst in Siberian ice-rich permafrost: 
Comparison to asymmetric scalloped depressions on Mars. Journal of Geophysical 
Research 115, E10009. doi:10.1029/2010JE003640.  

Chapter 3 
Ulrich, M., Hauber, E., Herzschuh, U., Härtel, S., Schirrmeister, L., in press. 
Polygon pattern geomorphometry on Svalbard (Norway) and western Utopia 
Planitia (Mars) using high-resolution stereo remote-sensing data. Geomorphology. 

Chapter 4 
Ulrich, M., Wagner, D., Hauber, E., de Vera, J.-P., Schirrmeister, L., submitted. 
Habitable periglacial landscapes in Martian mid-latitudes. Icarus. 

Appendix 

Hauber, E., Reiss, D., Ulrich, M., Preusker, F., Trauthan, F., Zanetti, M., 
Hiesinger, H., Jaumann, R., Johansson, L., Johnsson, A., Van Gasselt, S., Olvmo, 
M., 2011. Landscape evolution in Martian mid-latitude regions: insights from 
analogues periglacial landforms in Svalbard. In: Balme, M.R., Bargery, A.S., 
Gallagher, C.J., Gupta, S. (Eds.), Martian Geomorphology. Geological Society, 
London, Special Publications 356, 111-131. doi:10.1144/SP356.7. 

 

1.3.2  Authors´ contribution 

As first author, I reviewed the relevant literature, analyzed and interpreted the data, and 

initiated, wrote, and coordinated the manuscripts. The co-authors participated in field work, 

contributed data, and/or critically reviewed and discussed early manuscript drafts. Lutz 

Schirrmeister and Ernst Hauber contributed to the organization of the three manuscripts and 
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advised me throughout the whole process. Dennis Reiss provided valuable help dealing with 

Martian remote-sensing data and Karin Elke Bauch performed the thermal modeling for the 

Martian study site in Ulrich et al. [2010]. Ulrike Herzschuh and I jointly developed and conducted 

the statistical analyses of morphometric datasets in Ulrich et al. [in press]. Dirk Wagner made 

decisive contributions to Ulrich et al. [submitted] based upon his expertise in permafrost 

microbiology. The paper by Hauber et al. [2011] was coordinated and drafted by Ernst Hauber. I 

organized and contributed to the field work and I was involved as a co-author in internal reviews 

and writing of the final manuscript. 
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Abstract 

On Earth, the thawing of permafrost deposits with high ground ice content results in massive 

surface subsidence and the formation of characteristic large thermokarst depressions. Slope 

asymmetries within thermokarst depressions suggest lateral growth, which occurs due to 

thermoerosion and gravimetric mass wasting along these slopes. It has been proposed that rimless, 

asymmetrically-shaped depressions (called scalloped depressions) on Mars were formed by 

insolation-driven ground ice sublimation. We investigated a large thermokarst depression in Ice 

Complex deposits in the Siberian Arctic as a terrestrial analogue for scalloped depressions in 

Martian volatile-rich mantle deposits. Our results from field studies, insolation modeling, and 

geomorphometric analyses suggest lateral thermokarst development in a northern direction. This 

conclusion is obvious due to steeper slope angles of the south-facing slopes. Insolation and surface 

temperatures are crucial factors directly influencing thermokarst slope stability and steepness. 

Comparative analyses of Martian scalloped depressions in Utopia Planitia were conducted using 

high resolution (HIRISE, CTX) and thermal infrared (THEMIS) satellite data. By direct analogy, 

we propose that the lateral scalloped depression development on Mars was primarily forced on the 

steep pole-facing slopes in the equator-ward direction. Insolation modeling confirms that this must 

have happened in the last 10 Ma during an orbital configuration of higher obliquity than today. 

Development would have been maximized if the orbit was both highly oblique and highly 

eccentric, and/or the Martian summer coincided with perihelion. Relatively short events of 

increasing sublimation or even thawing of ground ice led to fast slumping processes on the steep 

pole-facing slopes. 
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2.1 Introduction and background 

The visual similarity of terrestrial thermokarst depressions and Martian scalloped depressions 

implies comparable periglacial origins linked to extensive degradation of ground ice. Assumed 

thermokarst development cannot be transferred one-to-one to scalloped depressions, but the study 

of analogous terrestrial thermokarst properties within a well-known environment contributes to an 

improved understanding of periglacial landscape evolution on Mars considering prevailing Martian 

hydrological and climatic conditions. Following Morgenstern et al. [2007], the Siberian Ice 

Complex landscape is suggested as a terrestrial analogue for Martian degraded volatile-rich mantle 

deposits [Kreslavsky and Head, 2000; Mustard et al., 2001]. Thermokarst-affected landscapes are 

widely distributed in Northeast Siberian ice-rich permafrost deposits called Ice Complexes. 

Thermokarst as a process of permafrost degradation is caused by disturbances of the thermal 

equilibrium in the upper permafrost zone and results in surface subsidence and characteristic 

landforms in Arctic lowlands [Czudek and Demek, 1970; Soloviev, 1973; French, 2007]. Such 

disturbances can have long-term regional causes (e.g., climate changes) but may also result from 

temporally and spatially limited non-climatic reasons (e.g., destruction of the vegetation cover, 

local erosion). Large thermokarst depressions of several square kilometers (i.e. alasses), often filled 

with lakes and separated by flattened hills, are the most striking landscape elements (referred to as 

Yedoma) in parts of the Siberian Arctic lowlands [Grosse et al., 2006, 2007; Schirrmeister et al., 

2008]. Particularly, the high ground ice content (up to 90% by volume) of Ice Complex deposits 

formed during the late Pleistocene by various periglacial processes [Schirrmeister et al., 2008] is a 

crucial factor for the development of large thermokarst depressions because surface subsidence is 

related to ice volume loss [e.g., Romanovskii et al., 2000]. Generally, the development took place 

in several stages [Czudek and Demek, 1970; Soloviev, 1973; Romanovskii et al., 2000] and was 

probably initiated by the warmer and moister climate conditions during the Late Glacial to Early 

Holocene transition (10 – 12 ka) [Grosse et al., 2007]. Increasing insolation in the northern 

hemisphere due to Earth’s orbital parameter variations [Berger and Loutre, 1991] was probably an 

important factor for the major landscape changes during this time [Grosse et al., 2007]. Initially, 

rapid enlargement of water bodies corresponds to massive thawing of ice-rich deposits under 

deepening thermokarst lakes. After lake drainage, surface subsidence results in large thermokarst 

depressions with steep slopes [Czudek and Demek, 1970; Soloviev, 1973; Everdingen, 2005]. 

Further deepening might be prevented if ground-ice-depleted material forms an insulating layer at a 

later stage. Lateral growth of thermokarst basins occurs due to thermoerosion along the slopes (i.e. 

thermoabrasion) and gravimetric mass wasting. Preliminary studies indicate a specific asymmetric 

morphometry of these permafrost degradation features in Siberian ice-rich deposits suggesting 

spatially-directed thermokarst processes [Morgenstern et al., 2008a] but the potential driving 

processes are still unclear.  
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Comparably shaped depressions and permafrost degradation features on Mars were first 

interpreted as thermokarst in origin by Sharp [1973]. These ‘scallops’ or scalloped depressions are 

rimless depressions (a few hundred meters to several kilometers in diameter), which can coalesce 

to form large areas of scalloped terrain that exhibit a north-south asymmetrical shape, opposed on 

both hemispheres with the steeper slopes pointing polewards [Morgenstern et al., 2007; Lefort et 

al., 2009, 2010; Zanetti et al., 2010]. They are present in Mars’ mid-latitude regions in close 

proximity to a volatile-rich (i.e. water-ice-rich) mantle layer tens of meters thick, which was 

deposited during variations in Mars’ orbital parameters (i.e. obliquity and eccentricity) [Kreslavsky 

and Head, 2000, 2002; Mustard et al., 2001; Head et al., 2003]. Various authors have studied the 

surface morphology of scalloped depressions on Mars and suggested formation processes 

controlled by solar insolation, which resulted in an asymmetric sublimation of ground ice with 

respect to the aspect (i.e. North – South) [Morgenstern et al., 2007; Lefort et al., 2009, 2010; 

Zanetti et al., 2010] or an origin by ponding water comparable to terrestrial drained-thermokarst 

lake depressions [Costard and Kargel, 1995; Soare et al., 2007, 2008].  

In this work, techniques for comparatively analyzing scalloped and thermokarst depression 

properties are combined with terrestrial field studies to emphasize similarities in and differences 

between these morphological analogues. In the next section (section 2.2) overviews of the 

investigated terrestrial and Martian areas are given separately to highlight the similarity of these 

sites, including the geomorphological and geological characteristics. Section 2.3 reviews data 

acquisition during field work and the methods used to determine geomorphometry and thermal 

properties, first of the terrestrial thermokarst depression, and then of the Martian scalloped 

depressions. Next we present results of geomorphometric analyses of the investigated thermokarst 

depression including observations made during field work and new results from insolation 

modeling (section 2.4.1). Comparable results of geomorphometric analyses and insolation 

modeling of Martian scalloped depressions are presented later in the same section (section 2.4.3). 

Finally, we discuss properties of terrestrial thermokarst depression asymmetry and the implications 

for spatially-directed development of Martian scalloped depressions (section 2.5). The main 

questions of this study are: (i) Which parameters control thermokarst morphology on Earth, and 

what can be inferred for scalloped depressions on Mars from terrestrial thermokarst topography, 

morphometry, and volume? (ii) What is the influence of solar insolation on terrestrial thermokarst 

development (a factor that has been suggested as a main driving process for scallop formation on 

Mars)? and (iii) Which conclusions can be drawn from the development of scalloped depressions 

for the climate history and ground ice (i.e. permafrost) conditions on Mars? 
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Figure 2.1: (a) Circum-Arctic permafrost distribution and location of the Lena Delta (rectangle) in 
NE Siberia (Russia) within the zone of continuous permafrost. Map based on Brown et al. [1998]. 
(b) Location of Utopia Planitia on the northern hemisphere of Mars (MOLA shaded relief). 

 

 

2.2 Regional setting 

2.2.1 Earth 

Kurungnakh Island located in the southcentral Lena Delta was chosen as the terrestrial study 

area because it is representative of thermokarst in Ice Complex sediments (i.e. Yedoma) and is 

easily accessible for field work. The Lena Delta is situated in northeastern Siberia within the zone 

of continuous permafrost (Figure 2.1a), which at this location is several hundred meters thick and 

hundreds of thousands of years old. The climate is true arctic, characterized by very low mean 

annual air temperatures of about -13.5°C and low mean annual precipitation of around 300 mm. 

[ROSHYDROMET, 2009]. Kurungnahk Island is part of the third Lena Delta terrace [Grigoriev, 

1993] which mainly consists of erosional fragments of a broad accumulation plain composed of 

late Pleistocene permafrost deposits [Schirrmeister et al., 2003] situated north of mountain ridges 

bordering the delta to the south (Figure 2.2a). The island covers an area of about 350 km² and 

reaches a maximum elevation of 55 m a.s.l. (Figure 2.2b).  

The sediments are composed of two stratigraphically different units. The lower unit consists of 

sandy sediments with gravimetric ice contents of about 25 wt% related to the dry sediment weight. 

The deposits are 15 to 20 m thick and were accumulated between 100 and 50 ka [Krbetschek et al., 

2002; Wetterich et al., 2008]. The upper unit overlies the sandy deposits discordantly and is 

composed of Ice Complex deposits. The Ice Complex section is about 15 to 20 m thick and consists 

of fine-grained deposits with ice supersaturation due to the very high gravimetric ice contents (up 

to 150 wt%) [Wetterich et al., 2008]. The ice occurs in the form of huge ice-wedges and 

segregation ice. Thus, the total amount of ice contained in the Ice Complex can reach 90 % by 
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volume. The syngenetically-formed ice wedges are 5-7 m wide and about 20 m deep, indicating 

long-term stable landscape conditions. The Kurungnakh Ice Complex deposits accumulated 

between 50 and 17 ka [Schirrmeister et al., 2003; Wetterich et al., 2008].  

 

 

Figure 2.2: Regional setting of the terrestrial study site. (a) Lena Delta. Brighter colours indicate 
Ice Complex remnants in the south of the Delta (GeoCover 2000 NASA). (b) Thermokarst 
landscape on Kurungnakh Island in the southcentral Lena Delta; the grey line marks the 
distribution of Ice Complex deposits that have built the island (ALOS PRISM image, Date: 21 
September 2006, over DEM shaded relief) (c) The Kurungnakh Island thermokarst depression on 
which this work is focused (ALOS PRISM subset). 
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Today the formerly consistent Ice Complex mantle is interrupted by thermokarst depressions 

filled by limnic and boggy deposits indicating Ice Complex degradation during the Late Glacial to 

Early Holocene period (ca. 12 to 8 ka). The surface of Kurungnakh Island is characterized by a 

highly dissected thermokarst landscape (Figure 2.2b) dominated by large thermokarst depressions 

(i.e. alasses) with diameters of up to ~3 km and depths of up to ~30 m, which often coalesce to 

form large thermokarst valleys. The border of the island is frequently cut by thermoerosional 

gullies. More than 50 % of the island area is occupied by thermokarst features, with about 38 % 

covered by alasses. The depressions show steep, often asymmetrical slopes in the N-S direction and 

flat bottoms. About 8 % of the island’s area is covered by thermokarst lakes. Within the 

depressions they are mostly situated at the margins. At higher elevations, the surface of the 

Yedoma hills is drier, better drained, and contains only small lakes and polygonal ponds. The 

occurrence of polygonal structures of ice wedge systems depends on the individual drainage 

situation. Generally, the bottoms of thermokarst depressions are dominated by low-center 

polygons, while high-center polygons are common on slopes or on the better-drained hill positions. 

The terrestrial studies described here are particularly focused on a characteristic, ca. 7.5 km² large 

thermokarst depression in the southeast of Kurungnakh Island (Figure 2.2c). 

2.2.2 Mars 

For comparison with our terrestrial study area, we selected an area in the northern Martian 

hemisphere in western Utopia Planitia (UP) (Figure 2.1b). This area is part of the Utopia Basin 

(Figure 2.3a) and was possibly formed by a giant impact during the pre-Noachian period (4.5 - 

4.1 Ga) [McGill, 1989; Tanaka et al., 2005; Carr and Head, 2009]. The area is covered by the 

Vastitas Borealis interior unit (ABvi) which underlies the Astapus Colles unit (ABa) nearby 

[Tanaka et al., 2005]. The ABa unit is relatively young on the Martian time scale (Late Amazonian, 

2 – 0.4 Ma), and is interpreted as an ice-rich mantle deposit tens of meters in thickness [Kreslavsky 

and Head, 2000, 2002; Mustard et al., 2001; Head et al. 2003; Carr and Head, 2009]. The ABvi 

unit is of Early Amazonian age (< 3.0 Ga) and consists of outflow channel sediments and 

subsequently reworked ice-rich deposits [Tanaka et al., 2005]. The region is characterized by 

various landforms of periglacial origin, e.g., polygonal structures, scalloped depressions, and small 

mounds [e.g., Soare et al., 2005, 2007, 2008; Morgenstern et al., 2007; de Pablo and Komatsu, 

2009; Burr et al., 2009; Lefort et al., 2009; Levy et al., 2009a]. There are strong morphological 

similarities between the western UP landforms and terrestrial periglacial landforms. Although the 

Gamma Ray Spectrometer (GRS) on Mars Odyssey shows that this area is relatively free of water 

ice in the upper surface layer (about 1 m) [Boynton et al., 2002; Feldman et al., 2004], the presence 

of possible periglacial features suggests the existence of volatile-rich (i.e. ice-rich) mantle deposits 

[e.g., Morgenstern et al., 2007; Lefort et al., 2009].  
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Figure 2.3: Regional setting of the Martian study site. (a) The studied location in western Utopia 
Planitia (MOLA DEM in sinusoidal projection). (b) Mapped scalloped terrain within the self-
defined study site (white borders) (HiRISE image: PSP_001938_2265 on CTX image: 
P02_001938_2263_XI_46N267W). (c) Example of a larger single asymmetrically-shaped 
scalloped depression (HiRISE subset). 

 

For direct comparison with the terrestrial study site an area of about 350 km² in western UP 

was defined (Figure 2.3b) that is representative of scalloped and periglacial terrain on the northern 

plains of Mars. According to Morgenstern et al. [2007], 24% of the area between 40 – 50°N and 80 

– 85° E is degraded by scalloped depressions with an increasing coverage from North to South. Our 

area of focus is centered at 46°N and 92°E and is located around the footprint of the HiRISE image 

PSP_001938_2265. It represents an area similar to the central section of the area described by 
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Morgenstern et al. [2007], which is located between an almost non-degraded, smooth, and flat 

surface in the north, and an area in the south where the mantling material has been completely 

removed. The elevation of our study area ranges between -4600 m in the north and -4500 m in the 

south as indicated by topographic information from Mars Orbiter Laser Altimeter (MOLA) data 

[Smith et al., 2001]. The area is characterized by a generally smooth and flat surface with 

polygonal structures and isolated scalloped depressions beside larger coalesced and nested regions 

of completely removed mantle material (Figure 2.3b). 

 

2.3 Data and methods 

2.3.1 Terrestrial data 

2.3.1.1 Field data 

Field work was conducted during a field campaign on Kurungnakh Island (Lena Delta) in 

summer 2008 to investigate terrestrial thermokarst depression morphometry and surface 

characteristics and their controlling factors. For quantitative land surface analyses and detailed 

description of the thermokarst depression morphology a high resolution digital elevation model 

(DEM) was necessary. Therefore, a tacheometric field survey was carried out using a ZEISS ELTA 

C30 tacheometer with an electro-optical distance measurement device. Altogether, 2663 points 

representing the thermokarst depression were measured and stored in a coordinate-point database 

which allows interpolation to a raster dataset. 

Another important aim of the fieldwork was to characterize and map different relief units and 

geomorphological features by their distinct surface properties. Relief features (micro- and meso-

relief, slope characteristics), vegetation properties (coverage, height, vitality), hydrological 

conditions (soil/surface moisture, drainage situation, water bodies), and active-layer depth 

measured by a steel rod were recorded at more than 280 sites covering the total area of the 

investigated thermokarst depression and the adjacent undisturbed uplands This ground-truth dataset 

was derived as a training and reference set for further remote-sensing analyses. 

Downwelling shortwave solar radiation was measured on differently-exposed thermokarst 

depression slopes and surfaces. Measurements were conducted between 9 and 22 August 2008 at 

19 locations using a Pyranometer CS300 from Campbell Scientific, Inc. Basic cloud cover 

corrections were done using an algorithm developed by Laevastu [1960] and visual cloud cover 

observations. Several evaluations of the cloud correction algorithm at different sites [e.g., Reed, 

1977; Frouin et al., 1988; Kumar et al., 1991] showed good results for the formula used, as well as 

for the lower sun elevations [Reed, 1977] that occur in Arctic environments. Finally, only 

measurements between noon and 4 pm were used and averaged for each location. 
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2.3.1.2 GIS and remote-sensing analyses 

For calculating a hydrologically-correct DEM within ArcGISTM (ESRI) the TOPOGRID 

algorithm by Hutchinson [1989] was used. A grid cell size of 3 m was chosen for the output DEM 

to reflect small-scale morphological characteristics. Vertical accuracy of the DEM was tested by 

comparing height values from the calculated DEM to the original point database. The root mean 

square error (RMSE) averaged 0.28 cm, indicating high accuracy of the model. The DEM was used 

to extract morphometric parameters (slope angle, aspect, elevation, curvature) within ArcGISTM for 

a quantitative terrain analyses. Each parameter was calculated on a cell-by-cell basis, fitting a plane 

composed of a 3x3 cell neighborhood. Furthermore, the GIS-calculated volume of the alas being 

investigated was used for estimating relationships between ground ice contents, surface subsidence, 

and thermokarst deposit sedimentation. 

Solar radiation influencing the thermokarst morphology is of special interest in this work. We 

used the solar radiation analysis tool provide by ArcGISTM to calculate insolation for the area of the 

thermokarst depression on Kurungnakh Island and specific point-locations therein. The toolset is 

based on an algorithm developed by Rich et al. [1994]. Total global radiation was calculated for an 

arbitrary time as the sum of direct and diffuse radiation after generating upward-looking viewsheds 

based on each grid cell in the DEM. The solar radiation toolset performs sunmap calculations to 

determine direct solar radiation originating from each sky direction. Diffuse radiation was 

calculated using a skymap, which represents a hemispherical view of the entire sky defined by 

zenith and azimuth angle. The sunmap, the skymap, and the viewshed are then combined to 

calculate total solar radiation. The theory of the solar radiation tool is described in detail by Fu and 

Rich [1999]. 

Model parameters were adjusted according to atmospheric and meteorological conditions in the 

central Lena Delta region [e.g., Boike et al., 2008]. Thus, a standard overcast diffuse model was 

used in which the radiation flux varies with the zenith angle. Transmittivity and diffuse proportion 

parameters were set to account for average sky conditions and cloud cover in the study area during 

summer. The tacheometer DEM was used as topographic input, and insolation was calculated for 

an estimated snow-free time span of 90 days between 1 June and 30 August 2008. The radiation in 

the investigated artic region is usually highest during this time and low before and after, when the 

sun’s angle is lower. Furthermore, snow is usually melting by the end of May and starts to 

accumulate in September [e.g., Williams and Smith, 1989; Boike et al., 2008]. 

Thermal infrared (IR) data acquired by Landsat ETM+ (Band 6, 10.4 – 12.5 µm, 60 x 60 m) 

were used to analyze spatial patterns of thermal emittance within the thermokarst depression and to 

extract at-sensor brightness temperatures for relative estimations of seasonal surface temperature 

differences within the thermokarst depression. An algorithm presented by Chander et al. [2009] 

was used to convert at-sensor spectral radiance to temperature. Averaged at-satellite temperatures 

were extracted for thermokarst depression slopes from 250 random points on 5 images acquired 
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from June to September during the 2000 to 2002 period. One image acquired in June 2001 features 

cloud cover in the northeast of the thermokarst depression. Therefore, points covering this area 

were not included. 

2.3.2 Martian data 

Comparative analyses of the Martian scalloped depression were done using High Resolution 

Imaging Science Experiment (HiRISE) data [McEwen et al., 2007] and Context Camera (CTX) 

data [Malin et al., 2007] from the Mars Reconnaissance Orbiter (MRO). HiRISE provides data 

with a very high spatial resolution of 30 cm/pxl and the possibility of 3D views by stereo pairs. 

About 30 surveyed HiRISE images of UP contained possible Martian ground ice degradation 

features; the stereo pair PSP_001938_2265 and PSP_002439_2265 was selected for detailed 

analyses because these images contain large scalloped depressions representative of the UP region. 

Further topographic information was derived from a DEM of 1 m/pixel based on this stereo pair 

[Kirk et al., 2008] and MOLA tracks [Smith et al., 2001]. The CTX image P02_001938_2263, with 

a spatial resolution of about 6 m/pxl, was used for albedo estimations of the study site. Brightness 

temperatures for the selected region were derived from Thermal Emission Imaging System 

(THEMIS) infrared data [Christensen et al., 2004]. All data were stored in a geographical 

information system (GIS), processed in sinusoidal projection with a center longitude of 90.0°E, and 

used for manual mapping of scalloped terrain. 

In order to investigate the insolation and resulting temperatures on the scalloped terrain, 

especially on the depression slopes, in the region under investigation, a 1D thermal model was 

employed, which includes the effect of surface slopes, as described by Bauch et al. [2009]. The 

model was originally used to determine temperatures on the lunar surface and has been modified to 

fit Martian conditions with boundary conditions similar to the model by Kieffer et al. [2000]. 

Absorption and scattering in the atmosphere depend on the optical depth (τ = 0.5), single-scattering 

albedo (ω = 0.9), and an asymmetry dust factor (G = 0.7), for which we used parameters based on 

Viking and Pathfinder observations. Based on our CTX data an albedo of A = 0.16 was chosen. 

According to Mellon et al. [2000] and Putzig et al. [2005], a thermal inertia of I = 300 J m-2 s-1/2 K-1 

was assumed for the western UP region. The thermal conductivity was set to 1.6 W m-1 K-1, which 

corresponds to a fine-grained permafrost soil with a porosity of 40 % [Williams and Smith, 1989]. 

Insolation strongly depends on the planet’s orbit; therefore, we used results from Laskar et al. 

[2004] as input parameters for obliquity, eccentricity, and longitude of perihelion at different times 

in Martian history. Three scenarios were used to distinguish daily surface temperatures during 

summer (solar longitudes Ls = 90°) on the gentle equator-facing scalloped depression slope, on the 

steep pole-facing scarp, and on a flat surface in the investigated region. In addition to the present 

insolation conditions, modeling was conducted for the most recent period of 35.0° obliquity around 

0.865 Ma with an eccentricity of 0.059 and a solar longitude of perihelion of 309.5°, and the most 
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recent period of 46.8° obliquity around 5.641 Ma with an eccentricity of 0.03 and a solar longitude 

of perihelion of 141.2°. 

 

2.4 Results 

2.4.1 Terrestrial thermokarst depression morphometry, geomorphology, and 

surface features 

The DEM of the studied alas on Kurungnakh Island covers an area of 7.5 km² and shows the 

meso-scale morphology of the investigated thermokarst depression in detail (Figure 2.4a). Several 

asymmetries are obvious from analyses of geomorphometric parameters, confirming observations 

made during the field work (Figure 2.5). Elevation, slope angle, aspect, and plan and profile 

curvature are used to identify and describe specific thermokarst depression properties.  

The depression is generally elongated in the N-S direction with a longitudinal axis of 3.3 km 

and a diagonal axis of 2.5 km. About 28 % of the depression area consist of slopes >2°, with the 

west-facing slopes occupying the largest area (Figure 2.4c). The thermokarst depression slopes 

clearly differ in their morphology and surface characteristics (Figure 2.5). The slope map (Figure 

2.4b) indicates an asymmetrical shape in the NNW – SSE direction. While the steepest slope 

sections (7° to 20°) are prevalent on south- and east-facing slopes, the north- and west-facing 

slopes mostly show gentler slopes (2° to 7°) (Figure 2.4d). The south- and southeast-facing slopes 

in the north and northwest of the thermokarst depression (Figure 2.4b) and in the north of the small 

eastern lake (Lake 2 in Figure 2.4a) show the steepest slopes. These steepest slope sections are also 

represented by highly divergent (very convex) profiles on the upper slopes and highly convergent 

(very concave) profiles on the lower slope (Figure 2.6a and 2.7a). The slopes end sharply on the 

basin floor (Figure 2.5a).  

Concerning the relationship of slope steepness to instability, the high relief energy is further 

represented by high profile curvature values of the south- and southeast-facing slopes (Figure 2.6a 

and 2.7b). These observations suggest a laterally-directed thermokarst basin development. The 

west- and north-facing slopes and minor parts of the south- and the east-facing slopes are flat and 

more rectilinear (Figure 2.6a and 2.7b) and are characterized by less convexity in the upper slopes 

and less concavity in the lower slopes (Figure 2.7a). The comparatively low relief energy suggests 

higher slope and surface stability of the west- and north-facing slopes. The lack of denudation (i.e. 

areal erosion and slope retreat) is confirmed by the area-wide distribution of well-developed 

hummocks (about 40 cm high) and terrace-like solifluction lobes (Figure 2.5b, c). These slopes are 

also distinguishable by a higher frequency of deep thermoerosional gullies, clearly visible in the 

planiform curvature map of the depression (Figure 2.6b). Despite minor parts of the south-facing 

slope north of Lake 1, the other slopes are smoother in planiform curvature (Figure 2.6b).  
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Figure 2.4: (a) DEM derived from tacheometric measurements (ground resolution 3m). (b) Slope 
map of the thermokarst depression. The asymmetrical shape resulting from the south/southeast 
exposure of the steepest slopes is obvious. Note that the lake terraces within the basin floor are 
subparallel, and are elongated at the largest lake. (c) Aspect of the thermokarst depression slopes 
>2° and located >30 m a.s.l. This mask was used for further calculations of slope properties. (d) 
Area of different slope exposure versus slope degree (color code same as that used in 4c). The 
diagram shows that north- and west-facing slopes tend to be shallower. Steeper slopes are prevalent 
on south- and southeast-facing slopes, though east-facing slopes differ in their profiles from the 
northern part (steeper) to the southern part (shallower) (see also Figure 2.5d). 

 

Slopes clearly differ in their vegetation cover and surface moisture (Figure 2.5). The generally 

drier south-facing slopes are dominated by dwarf shrubs, lichens, and dry mosses. Hummocks are 

less pronounced here. In contrast, the southeast-facing part of the western depression margin is 

covered by fresh green vegetation consisting of dwarf shrubs, grasses, and herbs. Tussocks of 

cotton grass beside mosses are abundant on the north- and west-facing slopes. The lower sections 

of these slopes are particularly affected by high surface moisture. 

The Ice Complex uplands surrounding the depression decrease in elevation from 55 m a.s.l. 

above the west-facing slope to 37 m a.s.l. above the east-facing slope. Different basin floor levels 

in the DEM are clearly obvious, indicating different stages of surface subsidence (Figure 2.4a). The 
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basin floor is slightly inclined, from 28 m a.s.l. in the east to 21 m a.s.l. in the northwest, over three 

terraces, which are concentrically arranged around the largest lake (Lake 1), probably tracing 

former lake levels. The total thermokarst subsidence ranges from 27 to 16 m (mean 21.5 m). The 

three large lakes within the thermokarst depression are located on different terrace levels. Lake 1 is 

located on the lowest level in the northwest of the depression, while Lake 2 is situated on the 

highest terrace level and Lake 3 on a middle level (Figure 2.4a). The former, probably N-S 

elongated elliptical shape of the alas is now interrupted by the basins of Lake 1 and Lake 2.  

 

 

Figure 2.5: Surface characteristics of the differently-exposed thermokarst depression slopes and 
examples of ice-wedge polygons within the alas. (a) The steep south-facing slope ends abruptly at 
the basin floor. View to the northeast. (b) Hummocky micro-relief on the slightly inclined 
rectilinear west-facing slope. View to the south. (c) View over Lake 3 to the east over the north-
facing slope which is characterized by hummocks and solifluction lobes caused by the poor 
drainage. (d) View to the south over the flattened southern part of the east-facing slope. (e) 
Orthogonal low-centered polygons oriented on the south-facing slope in the north of Lake 1. The 
polygonal micro-relief is flatter towards the lake. View to the south. (f) Ice-wedge degradation on 
the shore of Lake 2. 
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Figure 2.6: Curvature maps of the thermokarst depression slopes are calculated as the second 
derivative of the surface. The basin floor is not considered and is illustrated by the DEM shaded 
relief. (a) Profile curvature indicates the rate of potential slope gradient change. (b) Planiform 
curvature indicates the rate of aspect change along a contour. 

 

According to field observations, the different terraces are clearly distinguishable in relief 

features, drainage situation, and vegetation. This is particularly obvious for the development of ice-

wedge polygonal structures. Oriented polygons on the shore of Lake 1 and on the slopes suggest 

renewed ice wedge growth after the alas was formed (Figure 2.5e). Distinct orthogonal low-center 

polygons with diameters of about 20 m are randomly distributed over large parts of the highest 

basin floor level. Well-drained polygon rims, often covered by dwarf shrubs, are raised 50 cm 

above the centers. The centers are covered by moss and cotton grass and often contain polygonal 

ponds. Ice wedge degradation results in high-center polygons with deep troughs on the western 

shore of Lake 2 (Figure 2.5f) and at the mouth of larger thermoerosional valleys, which terminate 

in the thermokarst basin. Generally, the drainage degrades towards Lake 3 and Lake 1. The reduced 

micro-relief of the polygons results in indistinct patterns with larger and commonly orthogonal (but 

sometimes pentagonal or hexagonal) polygons at some locations. While the very moist centers are 

covered by sedges, the hardly elevated rims are only distinguishable because the vegetation 

changes from sedges to peat mosses.  

Average active-layer depths within the basin floor range between 36 and 82 cm, with the 

deepest values occurring on the lowest basin floor level around Lake 1. Only small differences in 

active-layer depth were measured between the different exposed slopes, where average depths are 

38-49 cm on south- and east-facing slopes, and 37-42 cm on west- and north-facing slopes. 

Differences in active-layer depths seem to be caused by micro-morphological conditions rather 

than by the aspect. Generally, smaller active-layer depths occur in organic soils under insulating 

non-vascular vegetation (i.e. mosses and lichens) because the heat flux is reduced in summer, 

especially if these soils are dry [e.g., Williams and Smith, 1989; Anisimov and Reneva, 2006; 

French 2007]. For instance, active-layer depth within the moist center of low-center polygons 

located on the basin floor could be twice the depth on the rims. Drier and mostly flat high-center 
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polygons show little differences in active-layer depth between the center and the trough. On the 

slopes, differences occur especially in hummocky terrain. Average active-layer thickness on the 

hummocks ranges from 46 cm on south-facing slopes to 55 cm on east-facing slopes. Between 

hummocks, depths range from 27 cm on west-facing slopes to 35 cm on east-facing slopes. 

 

 

Figure 2.7: (a) A plot of the percent area of different slope degrees versus profile curvature shows 
that the steepest slopes (10 – 20°) consistently exhibit higher convexity and concavity values. (b) a 
plot of the area of different slope exposures versus profile curvature indicate comparatively higher 
curvature values for south- and east-facing slopes and lower relief energy on north- and west-facing 
slopes. 
 

Thermokarst depression development is related to massive surface subsidence. The depths of 

thermokarst depressions, and therefore the amount of subsidence, are strongly related to the ground 

ice content. The sediment material in a thawing Ice Complex below a deepening thermokarst lake 

remains at the lake bottom as a taberal deposit (i.e. taberite) [e.g., Grosse et al., 2007] and could be 

exposed today, refrozen on the basin floor after the lake drained. Thus, the thickness of sediment 

remaining after an Ice Complex has thawed decreases if the ground ice content of the Ice Complex 

increases. Using the dimensions of the depression as extracted from the DEM and simple 

geometrical calculations of the base, top, height, and volume of an upside-down truncated cone, the 

thickness of taberal deposits can be estimated. An appropriate truncated cone for the investigated 

depression has a bottom radius of 1304 m and a top radius of 1518 m (Figure 2.8). Using the 

Cut/Fill tool of ArcGISTM, a lost volume of about 130.4 x 106 m³ was calculated, representing the 

volume of thawed ground ice. A corresponding cone height of 20.8 m was calculated (H1 in Figure 

2.8), which accurately represents the mean depth of the thermokarst depression (see above) and, 

therefore, the current total thermokarst subsidence. The volume and thickness of the Ice Complex 

deposits previously existing at the site of the thermokarst depression can be calculated using 

different possible total Ice Complex ground ice contents (70, 80, and 90 vol.%) arising from 

measured gravimetric ground ice contents of frozen sediments [Schirrmeister et al., 2003; 

Wetterich et al., 2008] and estimated contents of ice wedge and segregation ice. Calculated Ice 
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Complex thicknesses which would have existed to build the present depression are shown in Figure 

2.8. These are 23.1 m at 90 vol.% (H2), 26.6 m at 80 vol.% (H3), and 29.7 m at 70 vol.% (H4). 

This would imply present taberite thicknesses of 2.3 m for 90 vol.% (h2), 5.2 m for 80 vol.% (h3), 

or 8.9 m for 70 vol.% (h4). The most realistic calculations suggest 90 vol% ground ice content, 

close to taberite thicknesses observed by Grosse et al. [2007]. However, accumulation of lake 

sediments, possible erosion of material, as well as the subaerial accumulation of sediments on the 

basin floor after lake drainage and/or peat formation after surface stabilization [Romanovskii et al., 

2000; Grosse et al., 2007; Ulrich et al., 2009] cannot be ruled out. 

 

Figure 2.8: Geometrical representation of an upside-down truncated cone used for modeling 
subsided deposits (i.e. taberite), which is based on DEM data. Possible thicknesses of taberal 
deposits depending on ground ice contents are h2 for 90 vol%, h3 for 80 vol%, and h4 for 70 vol%. 
Calculated cone height representing the current mean depth of the depression is given by H1. Ice 
Complex thicknesses with different ground ice contents, which would have formerly existed to 
build the present thermokarst depression, are H2 with 90 vol%, H3 with 80 vol%, and H4 with 
70 vol%. Explanations: see text. 

2.4.2 Insolation and thermal properties of terrestrial thermokarst depression 

Areas of high incoming radiation are clearly distinct from areas of low radiation in the solar 

insolation map of the thermokarst depression (Figure 2.9). Influences of the basin morphology are 

obvious. The south-facing slopes are exposed to much higher radiation rates than the north-facing 

slopes. West-facing slopes show higher total rates than east-facing slopes. Calculated radiation 

values over the modeled period range from ~259 kWh/m² (daily mean of ~120 W/m²) on south-

facing slopes to ~193 kWh/m² (daily mean of ~89 W/m²) on north-facing slopes for the modeled 

time period between June and August (Figure 2.9). Furthermore, Figure 2.10 suggests the highest 

calculated radiation values occur at slope angles between 10 and 20° on the south-facing slopes, 

while lower and medium values were generally calculated for lower degrees of slope (2° to 7°). In 

particular, the highest radiation values correspond to the steepest south-facing slopes north of both 

Lake 2 and Lake 1. Generally, these findings were confirmed by the field measurements (Figure 



Terrestrial thermokarst as Mars analogue Chapter 2 
Journal of Geophysical Research 115, E10009 
_______________________________________________________________________________ 
 

 29

2.9). The highest downwelling shortwave radiation (averaging from 503 to 530 W/m²) was 

measured on south-facing slopes (Figure 2.9). Lower measurements were acquired on the east- and 

north-facing slopes (from 297 to 471 W/m²). However, inaccuracies caused by varying 

measurement conditions and cloud-cover correction potentially exist in the recorded data and must 

be considered. 

 

Figure 2.9: The relationship of calculated solar insolation to thermokarst depression topography is 
shown as the amount of radiation between 1 June and 30 August 2008. At each location, 
downwelling shortwave radiation field measurements are shown as instantaneous values. 
 

 

Figure 2.10: Relationship between degree of slope and modeled solar radiation. Highest insolation 
values are clearly related to steepest slopes. Amounts of insolation (kWh/m²) are equal to those 
found in Figure 2.9. 
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Additionally, the modeled insolation could be validated using Landsat ETM+ thermal data 

(Figure 2.11). Soil surface temperatures are related to environmental conditions such as solar 

radiation, snow cover, and/or prevailing wind. Furthermore, they are important in determining 

morphological conditions on Arctic slopes [e.g., French 1970]. The seasonal temperature variations 

clearly differ on different slopes of the thermokarst depression (Figure 2.11a-e). Temperatures are 

always highest on south-facing slopes and lowest on north-facing slopes. In addition, higher values 

were derived on the west- than on the east-facing slopes between July and August (Figure 2.11f). In 

absolute terms, the highest temperatures were reached at the beginning of August. A strong 

temperature increase could be observed from June to July, and a comparable decrease from August 

to September. This correlates with the general regional temperature pattern [Boike et al. 2008]. The 

derived relative temperatures decrease to near 0°C in September on parts of the north-facing slopes 

(Figure 2.11e). Only the south-southeast-facing slope shows higher temperatures at this time. Thus, 

the temperature distribution on the thermokarst depression slopes is consistent with the modeled 

solar insolation.  

 

 

Figure 2.11: Changes over time in Landsat ETM+ thermal data (Band 6, 10.4 – 12.5 μm, 60 x 60 
m) for the investigated thermokarst depression. Temperatures in °C (see legends on the bottom 
right of each panel) are only relative, derived after Chander et al. [2009], and should not be seen as 
absolute values. Black outlines mark the area of basin slopes. Acquisition dates and times: (a)  21 
June 2001, 3:17 UTC; (b) 27 July 2000, 3:25 UTC; (c) 05 August 2000, 3:18 UTC; (d) 24 August 
2001, 3:16 UTC; (e) 12 September 2002, 3:15 UTC. (f) Temperature trend for the different slope 
exposure extracted and averaged from randomly-distributed points. 

 

 



Terrestrial thermokarst as Mars analogue Chapter 2 
Journal of Geophysical Research 115, E10009 
_______________________________________________________________________________ 
 

 31

The scatter plots in Figure 2.12 show Landsat-derived temperatures for 250 random points 

versus modeled solar insolation. Insolation data were modeled on each point for an hour around the 

acquisition time and date of the satellite imagery. The correlation coefficients shown for each plot 

indicate moderate to good correlations, particularly for August and September. The best fit was 

derived for 24 August 2001 (Figure 2.12). Temperature differences within the thermokarst 

depression are probably most connected to varying insolation in late summer. However, the 

influence of DEM-measured topography during insolation modeling must be considered, because 

the complex surface conditions are only partly reflected in the comparatively low-resolution 

Landsat at-satellite temperatures. This is particularly obvious in the scatter plots where the modeled 

insolation varies for points with equal temperatures. The highest variations and therefore the lowest 

correlation coefficients are observed for 21 June 2001 (Figure 2.12). Insolation is typically highest 

during June, but soil-surface temperatures are comparatively low in early summer [Boike et al., 

2008]. Finally, the control of temperature by geomorphology and seasonal differences between the 

slopes become obvious in the Landsat satellite data. 

 

 

Figure 2.12: Landsat ETM+ extracted temperatures versus modeled solar insolation. The 
correlation coefficient (r) and the satellite acquisition date are shown for each plot. The solid line 
indicates the 1:1 line. Note the different axis scales corresponding to the seasonal temperature 
conditions. 

2.4.3 Morphological properties of scalloped depressions on Mars 

The morphology of scalloped depressions has been described by numerous authors for the 

northern [e.g., Morgenstern et al., 2007; Soare et al., 2007, 2008; Lefort et al., 2009] and southern 

[e.g., Lefort et al., 2010; Zanetti et al., 2010] hemispheres of Mars. Thus, the studied area in 
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western UP (Figure 2.3) is representative and was primarily selected for comparison to the 

terrestrial investigation area (Figure 2.2). About 38 % of the UP area is characterized by the 

formation of scalloped terrain (Figure 2.3b) and consists of typical rimless, irregularly-shaped 

depressions (Figure 2.3c). The size of single isolated depressions ranges from an area ~0.004 km², 

80 to 100 m in diameter, to an area of ~2 km², 1 to 2 km in diameter. The mapped area of the 

largest complex of coalesced scalloped depressions covers 68 km², though further expanding 

outside the mapped area. Smaller isolated depressions are generally bowl-shaped and completely 

surrounded by more-or-less steep slopes (Figure 2.13a). Depths extracted from HiRISE DEM data 

[Kirk et al., 2008] (Figure 2.13) are on average ~5 m. Larger single depressions in the study area 

are 20 to 25 m deep and show the typical north-south asymmetrical shape with steep and always 

concave-upward north (pole)-facing slopes, and gentle convex-to-concave south (equator)-facing 

slopes (Figure 2.13b and c).  

 

 

Figure 2.13: HiRISE DEM (1 m/pixel, stereo pair: PSP_001938_2265_PSP_002439_2265) 
showing the location of typical single-scalloped depressions in the investigated Martian area that 
reflect different stages of scallop development. (a) Small, fairly symmetrically-shaped depression 
shows one or two ridges. (b) Medium-sized scalloped depression with very steep concave north-
facing slope and slightly inclined convex south-facing slope. Three distinct ridges are visible. (c) 
Large depression with a flattened profile. The slope asymmetry is visible. Four curvilinear ridges 
exhibit a step-like profile. 

 

DEM-derived slope angles are 10 to 30° for the steep pole-facing scarps and typically 2 to 4° 

for the opposite, gentle slopes. The floors of larger isolated depressions and complexes of 

coalesced depressions are characterized by curvilinear step-like ridges, which are elongated 

subparallel to the steep scarps; these ridges exhibit asymmetrical profiles, with the steeper side 

facing the scarp. The number of ridges increases with the size of the depression (Figure 2.13), 
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which was interpreted by Lefort et al. [2009] to reflect different stages of scarp retreat. The 

coalescence of the depressions to scalloped terrain is influencing large areas in UP (Figure 2.14). 

Coalescing scallops extend over different elevation levels (Figure 2.14a). Convex slope breaks are 

typical of the interfaces between coalesced scallops (Figure 2.14b). Inter-depression areas are 

characterized by a multiphase lowering without any incision [Balme and Gallagher, 2009]. No 

channels have been observed that would connect separate scalloped depressions. On Mars, they 

have only been found in association with much older, Hesperian-aged thermokarst depressions 

[Warner et al., 2010]. 

 

 

Figure 2.14: (a) Scalloped terrain in the investigated area in Utopia Planitia resulting from the 
coalescences of scalloped depressions by areal expansion. Smaller isolated depressions in different 
stages of development are visible nearby (part of the HiRISE DEM on CTX image subset 
P02_001938_2263_XI_46N267W). (b) An example of small coalesced scalloped depressions and 
the DEM derived topographic profile highlight a multiphase lowering without connecting channels. 

 

The region is characterized by distinct polygonal patterned ground [e.g., Lefort et al., 2009; 

Levy et al., 2009a]. The scalloped terrain is well-defined from the adjacent non-degraded uplands 

by the type of polygonal structures. The uplands show comparatively large irregular random 
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orthogonal polygons. HiRISE data indicate mean diameters of 40 to 60 m (Figure 2.15). The flat to 

slightly-elevated centers are surrounded by well-pronounced and partly deep-appearing troughs. 

These polygonal structures seem to be truncated by scallop development. Troughs are often 

traceable over the scarps but disappear towards the deeper parts of the depression. In contrast, 

inside the scalloped depressions there are orthogonal high- to low-center polygons, which are 

almost 10 m in mean diameter (Figure 2.15). The strong orientation of polygons parallel to steep 

north-facing slopes is noteworthy; this might be caused by primary cracking perpendicular to the 

scarp front. The distinct character of the polygonal structures inside and outside of scalloped 

depressions suggests remarkable differences in ground and atmospheric conditions during polygon 

formation, as has been explained for terrestrial regions by e.g., Lachenbruch [1962, 1966], Yershov 

[2004], and French [2007]. 

 

 

 

 

 

 

 

 

 

Figure 2.15: Example of polygonal 
patterned ground inside the 
scalloped depressions and on the 
adjacent uplands (HiRISE image 
subset: PSP_001938_2265). 

2.4.4 Insolation and thermal properties of scalloped depressions within the Martian 

mantle terrain 

Lefort et al. [2009] and Zanetti et al. [2010] have suggested that temperature differences 

between the north- and south-facing slopes of the Martian scallops result in enhanced heating of the 

equator-facing slopes. Therefore, previous interpretations were focused on enhanced scallop 

development at these slopes [Morgenstern et al., 2007; Lefort et al., 2009, 2010; Zanetti et al., 

2010]. Three THEMIS-IR images from the Mars Odyssey orbiter [Christensen et al., 2004] 

covering a time period from early spring to middle summer show seasonal temperature variations 

in the study area (Figure 2.16a-c). The temperature changes over time demonstrated in the 

THEMIS-IR show that the uplands warm at a remarkably faster rate than does the scalloped terrain, 

allowing the scalloped depressions to be distinguished from the uplands by their lower 

temperatures (Figure 2.16a-c, e). Temperature differences within the scallops on the depression 
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slopes are relatively low though all images are acquired at local solar times (LST) in the afternoon. 

In early spring (Ls = 21.95°, LST = 17.07), temperatures range from ~203 K within the depressions 

to ~227 K on exposed upper slopes and the adjacent uplands (Figure 2.16a). In late spring (Ls = 

75.58°, LST = 17.83), temperatures have already reached ~239 K on the adjacent uplands (Figure 

2.16b); these temperatures are not exceeded in middle summer (Figure 2.16c). During summer (Ls 

= 130.27°, LST = 17.82), only the steeper upper parts of the exposed slopes, passing into the 

uplands, are warmer (by about 2 K) than the opposite slope and the areas within the scallops 

(Figure 2.16c). However, the temperature range is greater in spring (~215 to ~239 K) than in 

summer (~224 to ~237 K).  

 

Figure 2.16: (a – c) Daytime temperature variations for the investigated Utopia Planitia area from 
early spring to middle summer. The changes over time show that the undegraded uplands warm 
faster than the scalloped terrain (black outlines). Temperatures are given in Kelvin. (a) Early spring 
(THEMIS-IR image I27105029, LS: 21.95 LST: 17.07). (b) Late spring (THEMIS-IR image 
I28565002, LS: 75.58 LST: 17.83). (c) Summer (THEMIS-IR image I21689005, LS: 130.27 LST: 
17.82). (d) CTX-derived albedo (Lambert albedo) indicates a distinct contrast between the 
scalloped terrain (white outlines) and the adjacent uplands (CTX image 
P02_001938_2263_XI_46N267W). (e) The higher nighttime temperatures of the undegraded 
uplands are clearly visible (THEMIS-IR image I03386003, LS: 70.28 LST: 4.24). 
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CTX-derived albedo further indicates a distinct contrast between the depressed scalloped 

terrain and the non-degraded uplands. The higher albedo within the scalloped terrain (Figure 2.16d) 

suggests different thermal properties of the material inside the depressions and on the adjacent 

uplands. Nighttime THEMIS-IR data showing the higher temperatures of the non-degraded uplands 

during night (Figure 2.16e) confirms this assumption. The more compact and (judging by the 

albedo [Figure 2.16d]) darker material of the uplands would possess higher thermal inertia (i.e. the 

ability of material to store and conduct heat) than the more unconsolidated fine-grained material 

within the depressions [e.g., Mellon et al. 2000; Putzig et al. 2005]. Accelerated warming of the 

non-degraded uplands caused by the general exposure of the area can be ruled out because the area 

gently rises towards the south. 

Generally, the results from insolation modeling (Figure 2.17) suggest that the typical 

asymmetric morphology of the scalloped depressions and their formation can be explained by 

variations in Mars´ orbital parameters. During present orbital configurations, maximum daily 

surface temperatures on the gentle, equator-facing slopes of the scallops are permanently higher 

than on the steep pole-facing scarps, due to the higher insolation (Figure 2.17a). In the case of 

increasing obliquity (i.e. 35° and more), temperature differences between the slopes remain 

relatively constant but absolute temperatures increase and exceed the melting point of water with 

certainty only on the equator-facing slopes and flat surfaces (Figure 2.17b). Over periods of high 

obliquity (>45°) the results show that the pole-facing slopes receive higher insolation than the 

equator-facing slopes, and temperatures are higher in the morning and evening hours 

(Figure 2.17c). During the day, temperatures on the pole-facing scarps and the equator-facing 

slopes are equal and range from well above to right at the melting point of water. The modeling 

was tested for varying orbital configurations as well. Temperatures on all surfaces can be 

noticeably higher if high obliquity coincides with high eccentricity, especially if the Martian 

northern hemisphere summer coincided with perihelion at the same time. The results are similar to 

results mentioned by Paige [2002]. For instance, for a period around 4.816 Ma with an obliquity of 

34.8° and a high eccentricity of 0.10 the temperature differences between the slopes are similar to 

the scenario presented in Figure 2.17b, but absolute temperatures are 10 K higher on all slopes and 

exceed the melting point of water on the pole-facing slopes as well as on the equator-facing slopes. 

Otherwise, for a period around 9.112 Ma with a high obliquity of 46.3 and higher eccentricity of 

0.08, comparable to the scenario presented in Figure 2.17c, temperatures were around 10 K lower 

because the solar longitude of perihelion was far from the summertime at this time. However, these 

specific orbital configurations have rarely occurred during the last 20 Ma [Laskar et al., 2004]. 
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Figure 2.17: Modeled maximum daily surface temperatures during summer (LS: 90°) in the 
investigated region in western Utopia Planitia for a 20° pole-facing scarp,  a 3° equator-facing 
slope of a scalloped depression, and a flat surface. Temperatures are calculated for three  orbital 
configurations (obliquity, eccentricity, and longitude of perihelion) according to Laskar et al. 
[2004]. (a) Present insolation conditions; obliquity: 25.2°, eccentricity: 0.09, longitude of 
perihelion: 251.0. (b) Insolation conditions at 0.865 Ma. (c) Insolation conditions at 5.641 Ma. 

 

2.5 Discussion 

2.5.1 Terrestrial characteristics of slope asymmetry and spatially directed 

thermokarst development 

The morphometric analyses on Kurungnakh Island confirm a spatially-directed thermokarst 

development process in ice-rich deposits, as already postulated using remote-sensing analysis 

[Morgenstern et al. 2008a]. Based on the general basin form, the slope asymmetry, and the lake 

configuration as well as the lake terrace arrangement (Figure 2.4a), a lateral thermokarst 

development in a northern direction is hypothesized. The results suggest solar insolation 

(Figure 2.9) and surface temperatures (Figure 2.11) as crucial factors controlling thermokarst slope 

instability and steepness. The highest amounts of solar insolation and the highest temperatures on 

south-facing slopes force lake migration in a northern direction and, therefore, the lateral 

orientation of thermokarst development. In the case of the investigated thermokarst depression, 

Lake 1 interrupts the former contour of the thermokarst basin, which probably was regularly 

elliptical. Furthermore, Lake 2 is propagating into the slope, probably in a northern direction as 

well.  

The steepness of the south- and southeast-facing thermokarst depression slopes indicates the 

geomorphological activity. Denudative processes (i.e. solifluction) have not yet resulted in a 

flattening of these slopes, as has happened on the west- and north-facing slopes where the 

widespread distribution of hummocks suggests slope stability. The slope instability of steep south- 

and southeast-facing slopes is also indicated by the high relief energy represented by the high 

profile curvature of these slope sections (Figures 2.6a and 2.7). Slope retreat and subsidence 

probably dominates thermoerosional gully formation here, as seen in the planiform curvature map 

(Figure 2.6b). The field observation of an area (several square meters in size) on the south-facing 

slope north of Lake 2 with disturbed vegetation and slope movement, comparable to retrogressive 



Terrestrial thermokarst as Mars analogue Chapter 2 
Journal of Geophysical Research 115, E10009 
_______________________________________________________________________________ 
 

 38

thaw slumps, supports these assumptions, and clearly reflects the present slope instability (Figure 

2.18). Furthermore, spatial and temporal analyses of remote-sensing data show a retreat rate of the 

south- and southeast-facing slopes of a few centimeters per year north of Lake 1 during the last 

forty years [Günther, 2009] and a measurable shift (by a few meters) of Lake 1 and Lake 2 to the 

north.  

Differently-exposed slopes receive varying amounts of radiation. Only small differences in 

active-layer depth (<7 cm) as a function of aspect were observed. If the heat transfer to the ground 

varies as a function of slope and aspect, then these variations result in thawing of Ice Complex 

deposits at the base of the active layer and in subsidence of the ground surface, rather than in 

variable thaw depths [Overduin and Kane, 2006]. 

Generally similar observations supporting our work were made by Czudek and Demek [1970] 

for large thermokarst depressions in Central Yakutia (Siberia), where south-facing slopes are 

commonly steeper because erosion is more effective there and the slopes are thawed to greater 

depths. In contrast, as was observed in our study as well, north-facing slopes are moister and more 

gently inclined. A possible control of spatial thermokarst development by insolation has been 

mentioned by several Russian authors, although no quantitative validations were presented. 

Soloviev [1962] explains the elongation of thermokarst basins in northern and eastern directions by 

more intense warming and erosion of slopes exposed to the south and west. Boytsov [1965] also 

points out the influence of direct solar radiation on the pace of thermoabrasion of differently-

exposed slopes. In general, south-southwest facing slopes receive the highest energy as air and 

water temperatures are highest during times when the afternoon sun is directed at these slopes. 

Thermoabrasion is more pronounced here and accounts for an elongation of a thermokarst lake 

basin in north-northeastern directions. This pattern can be altered by the severe morning fog or 

afternoon cloud cover typical for some regions, which will have a weakening effect on slope 

warming and lateral basin growth.  

Steep head-wall retreat and retrogressive thaw-slump activity mainly forced by solar radiation 

and sensible heat flux were identified by Lewkovicz [1986], and recently confirmed by Grom and 

Pollard [2008] using microclimatic investigations on a southerly-oriented active thaw slump in the 

Canadian high Arctic. Insolation as primary agent of slope asymmetry in artic asymmetrical valleys 

was already suggested by Crampton [1977], who described steeper south-facing slopes in 

numerous asymmetrical valleys in the Mackenzie River region of Canada. Similar observations 

were made by French [1970]. The steepness of southwest-facing slopes was explained by higher 

loss of latent heat due to the exposure of these slopes to prevailing winds, and thus warmer and 

moister conditions on the opposite slopes. These conditions result in a higher extent of mass-

wasting (solifluidal) processes on northeast-facing slopes, where material is preferentially 

transported into the river and the streams are therefore pushed to the southwest-facing slopes. In 

response, the slope is undercut and steepened. It must be noted that theories of asymmetrical valley 
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development are difficult to apply to thermokarst slope asymmetry, because erosion and 

accumulation processes of a flowing river are of prime importance. However, the influence of 

ponding water on thermokarst depression development must be considered [e.g., Czudek and 

Demek, 1970; Romanovskii et al., 2000]. The most effective process is the lateral bank erosion of a 

standing water body. Wind has been suggested as the driving agent of oriented thaw lake expansion 

due to wind-driven currents and wave activities [e.g., Carson, 2001; Côté and Burn, 2002; Hinkel 

et al., 2005; French, 2007]. However, great differences exist in wind data from several 

meteorological stations within the Lena Delta area, and there is little knowledge about the detailed 

conditions and factors that might be involved in lake-orientation processes in the Delta 

[Morgenstern et al. 2008b].  

 

 

Figure 2.18: Slope movement and instability indicated by an area of disturbed vegetation on the 
steep south-facing thermokarst depression slope north of Lake 2 (white rectangle). (a) Subset of the 
DEM (see Figure 2.4a). (b) Photograph of the lake and the described area. View to the north-
northwest. 

 

According to Soloviev [1973] and Romanovskii et al. [2000] the following scenario of 

landscape evolution at our thermokarst study site can be proposed: An approximately north-south 

elongated depression was filled and formed by a large thermokarst lake in an early stage during the 

late Glacial to early Holocene period. The fast-growing thermokarst lake thawed and deepened into 

the ice-rich deposits beneath, resulting in strong thermokarst subsidence [Grosse et al., 2007]. 

Taberal deposits remaining at the lake bottom probably range in thickness from 2.3 to 8.9 m today. 

The current volume and dimension of the thermokarst depression accurately reflects the high 

ground ice content, as was shown above. Further deepening of the thermokarst depression is 

probably restricted by the lower boundary of Ice Complex deposits and the underlying ice-depleted 

sandy sequence at 20 m a.s.l. [Schirrmeister et al., 2003; Wetterich et al., 2008], an elevation level 

which has already been reached by the largest lake. Large and deep thermokarst depressions are 

also common in the northern Lena Delta in sandy deposits with lower ice contents [Grigoriev, 

1993; Schwamborn et al., 2002; Ulrich et al., 2009]. Therefore, further thermokarst subsidence 
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cannot be excluded. After the primary lake was drained, two secondary lakes (Lake 1 and Lake 3) 

remained within the incidental thermokarst depression. Lake 1 migrated over the basin floor in 

several stages in a north-northwest direction, deepening into the basin floor and undercutting the 

slope as indicated by different terrace levels within the depressions (Figure 2.4a). This process was 

strongly influenced by high insolation and higher temperatures on south-southeast-facing slopes. 

Lake 2 drained into the thermokarst depression later from an adjacent small depression. Currently, 

this lake is migrating to the north-northeast. The steepest slope angles and disturbed vegetation 

cover caused by the highest insolation values and comparatively higher temperatures (Figure 2.9 

and 2.11) on the slope north of the lake confirm ongoing lateral thermokarst development (Figure 

2.18). As the soil thermal energy balance is disturbed, slope instability, steepness, and therefore 

lateral thermokarst development are forced by solar insolation. 

2.5.2 Implications for scalloped depression development on Mars 

On Earth, steeper south-facing thermokarst depression slopes are geomorphologically more 

active. This activity is forced directly by solar insolation and, therefore, higher temperatures in the 

investigated thermokarst depression on the Ice Complex remnants of Kurungnakh Island. Less 

erosional activity of north-facing slopes is indicated by areal flattening due to solifluction and 

cryoturbation processes in the terrestrial permafrost region [e.g., Williams and Smith, 1989; 

French, 2007]. By direct analogy, this implies that lateral scallop development on Mars is primarily 

forced on the steep pole-facing scarps in an equator-ward direction. This would have happened 

primarily during periods of high obliquity (35- 45° and more) (Figure 2.17).  

The relationship of obliquity changes to increasing erosion on mid-latitude pole-facing crater 

slopes due to gully formation has already been suggested by various authors, predominantly for the 

Martian southern hemisphere [e.g., Costard et al., 2002; Dickson et al., 2007; Head et al., 2008; 

Morgan et al., 2010]. In the northern hemisphere there is a shift of gully orientation at 40°N from 

pole-facing slopes to equator-facing slopes, suggesting that obliquity-driven insolation is not the 

only factor controlling gully formation [Kneissl et al., 2009]. However, a genetic linkage between 

obliquity-driven volatile-rich mantle formation on pole-facing slopes and gully erosion in the 

northern hemisphere is proposed by e.g., Bridges and Lackner [2006]. The morphometrical 

characteristics of the equator-facing scalloped depression slopes in UP (convex curvature, slightly 

inclined, flat) imply the absence of strong erosional processes as suggested by Lefort et al. [2009], 

but instead suggest areal flattening and likely current surface stabilization (Figure 2.13).  

Slow-to-absent morphological processes in the current stage of scalloped depression formation 

are also suggested by the thermal properties and albedo data, which always show lower 

temperatures and higher albedo of the scalloped terrain compared to the adjacent uplands within the 

investigated area (Figure 2.16). Nevertheless, our results support the general insolation model 
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suggested by Morgenstern et al. [2007] and Lefort et al. [2009], which suggests the formation of 

scalloped depressions by insolation-driven ground ice sublimation.  

Different interpretations of scalloped depressions as residues of thermokarst lakes or alas 

depressions [e.g., Costard and Kargel, 1995; Soare et al., 2007, 2008] are not consistent with the 

definition of alas development on Earth [e.g., Everdingen, 2005] despite visual similarities. 

Evidence for thermokarst lake or alas formation due to ponding water cannot be identified in 

scalloped depressions on Mars [e.g., Lefort et al., 2009; Zanetti et al., 2010]. The ridges within the 

depressions were interpreted by Soare et al. [2007, 2008] as stages of alas growth; “the shallowest 

step represents the most recently formed part of the alas, whereas the deepest step indicates an 

older presence” [Soare et al., 2007]. If a lake is migrating on a thermokarst depression bottom and 

deepens due to thawing of ground ice and combined subsidence, then the highest lake terrace 

represents the oldest stage and the lowest the youngest. The ridges within the scallops which are 

trending subparallel to the proposed scarp retreat must have an opposite form if a lake is migrating 

and eroding the scarp as was described above for the terrestrial thermokarst depression (see also 

Figure 2.4). Furthermore, terrestrial thermokarst depressions and thermokarst lakes are usually 

connected by channels and narrow valleys (see also Figure 2.2). The drainage of thermokarst lakes, 

which results in the formation of thermokarst depressions (i.e. alasses), occurs via thermoerosional 

valleys [e.g., Hill and Solomon, 1999; Grosse et al., 2007]. Such features implying the former 

existences of flowing water between or the drainage of standing water bodies do not exists in 

Martian scalloped terrain (Figure 2.14). The landscape geomorphology in UP points to a dry origin 

of the scalloped depressions. The coalescence to scalloped terrain took place by areal expansion 

and multiphase lowering without channel incision. Warner et al. [2010] show evidence for wet 

thermokarst, i.e. thermokarst-like depressions connected by narrow channels. However, these 

features are much older and are, therefore, not further discussed here. In contrast, wet thermokarst 

degradation analogous to terrestrial retrogressive thaw slumps and thaw lakes is proposed by Balme 

and Gallagher [2009] for a study site in Athabasca Vallis near the Martian equator. The region is 

characterized by shallow basins, which are linked by fluvial-like channels. Retrogressive erosional 

scarps occur along the margins of the basins. With many of these scarps dendritic channels are 

associated. Balme and Gallagher [2009] suggest an origin during warmer conditions in the recent 

past including the thawing of ground ice by standing water bodies followed by surface subsidence 

and the lateral erosion by thaw slumps. 

With respect to former studies [Morgenstern et al., 2007; Lefort et al., 2009; Zanetti et al., 

2010], the formation theory of scalloped depressions is modified here in particular for the volatile 

(ice)-rich UP deposits (Stage 0 in Figure 2.19). Scallop formation started at weak points like large 

thermal contraction cracks [Zanetti et al., 2010] or the small-relief surface depressions proposed by 

Lefort et al. [2009]. During low to moderate Martian obliquity a small depression, symmetric in 

cross section, was formed by homogeneous ground ice sublimation and subsequent subsidence of 
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the ice-depleted surface material (Stage 1 in Figure 2.19). If temperatures were very low and ice 

thawing was unlikely [e.g., Costard et al., 2002; Hecht, 2002], the comparatively slow process of 

ground ice sublimation would have led to a consistent and homogeneous subsidence. Within the 

investigated area, small isolated depressions (around 100 m in diameter) that are not asymmetric 

but rather bowl-shaped represent an initial scallop stage. At this time, during which the orbital 

configuration was comparable to that of the present day, insolation and temperatures were 

permanently higher on the equator-facing depression slopes than on the pole-facing slopes (Figure 

2.17a). The continuous ice sublimation led to an areal flattening of the equator-facing slopes and 

further deepening of pre-existing depressions, while the pole-facing slopes steepened because they 

were permanently shaded and stabilized by ice-cementation (Stage 2 in Figure 2.19). When Mars` 

obliquity was changed to higher values and insolation increased (Figure 2.17b), scallop 

development moved in an equator-ward lateral direction (Stage 3 in Figure 2.19). Increasing 

insolation on the pole-facing slopes would have forced slope instability and erosion by enhanced 

ground ice sublimation or even thawing. This suggestion has already been proposed as a possible 

stage of scalloped depression development by Lefort et al. [2009]. When the ice was lost as the 

major cementing material, the upper material layer of the pole-facing slope was interrupted (further 

destabilized) in weak areas such as in the cracks of the large polygons on the adjacent uplands, and 

slumped into the depression (Stage 3 in Figure 2.19). In this process the sediment mass slid on the 

still-frozen material beneath. Simultaneously, the sediment mass block-rotated around a horizontal 

axis in such a way as to tilt the former surface backward. Furthermore, this process led to a concave 

scarp profile and subparallel ridges with steeper sides facing the scarp, and the lateral movement 

and growth of the scallops in an equator-ward direction (Stage 4 in Figure 2.19).  

Modeling results show that this process must have been maximized by ground ice thawing 

when Mars obliquity reached >45° (Figure 2.17c and 2.19). Maximum temperature events 

especially occurred if orbital eccentricity was high and/or the Martian northern summer coincided 

with perihelion (see above). The equator-facing slope was probably stabilized at a specific stage if 

the ice-depleted material formed an insulating layer which prevented further sublimation. However, 

the slumping processes were likely fast, brief events of increasing sublimation or even thawing on 

pole-facing scarps because these slopes were not flattened like the opposite slopes. The scarp was 

stabilized again because ice cement still existed inside after the uppermost material layer had 

slumped. The retrogressive growth stopped when Mars´ obliquity tilted back to low degrees. The 

material was stabilized at the basin floor; strong thermal contraction cracking occurred at lower 

temperatures, while primary cracking developed perpendicular to the weak areas formed by the 

scarp front (Figure 2.15) as is known from similar processes in terrestrial permafrost regions [e.g., 

Lachenbruch, 1962, 1966; Yershov, 2004]. Such events happen periodically, as evidenced by 

increasing numbers of ridges with increasing scalloped depression sizes (Figure 2.13). The notion 

that each ridge may represent a single period of high obliquity [Lefort et al., 2009] is difficult to 
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confirm, since such strong and comparatively fast slumping processes should happen more often 

during times of high obliquity and the favorable orbital configurations are rare [Laskar el al., 

2004].  

 

Figure 2.19: Schematic model for scalloped depression formation in Utopia Planitia including 
changes of Mars´orbital parameters. Stage 0: Surface of volatile (ice)-rich mantling deposits 
[Kreslavsky and Head, 2000; Mustard et al., 2001]. Stage 1: Homogenous ground ice sublimation 
resulted in an initial scallop stage. Stage 2: An asymmetrical depression was built by areal 
flattening of the equator (south)-facing slope and due to ice-cementation of the steepened pole 
(north)-facing slope. Stage 3: Initiation of scalloped depression retrogressive growth in equator-
ward direction by destabilization of the pole-facing slope due to obliquity-driven temperature 
increase. Stage 4: Maximization of equator-ward lateral scalloped depression formation during high 
obliquity periods. 
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The depths of scalloped depressions originated primarily by subsidence and suggest high 

ground ice contents of the volatile (ice)-rich mantle material, although this material could be partly 

removed by eolian processes [e.g., Lefort et al., 2009, 2010; Zanetti et al., 2010]. However, the 

asymmetrical shape of the scallops in UP does not correspond to the prevailing wind direction in 

summer (from S to SSW) [Morgenstern et al., 2007], when scallop formation activity is likely to be 

most intense. Additionally, eolian dunes and dust devil tracks suggesting eolian erosion were not 

observed in the investigated area. The volume and the dimensions of the scalloped depression must 

be related to ground ice contents, which were presumably higher than the amounts proposed in the 

literature [e.g., Boynton et al., 2002; Feldman et al., 2004].  

Age determinations of the scalloped depression development are difficult to make. The 

occurrence of suitable orbital configurations in the last 10 Ma suggests that the largest single 

scalloped depression and the coalesced part of the scalloped terrain could have formed within this 

time period, but younger stages of higher obliquity as well the additional coincidence with 

favorable orbital configurations (high eccentricity and/or summer coinciding with perihelion) 

suggest scallop formation at least in the last 5 Ma as well. The model results propose that, at the 

most recent stages of high obliquity around 5.641 and 9.112 Ma, ground ice thawing may have 

forced scallop development and scallops could have developed in a few hundred thousand years. 

However, because the slumping process at the pole-facing slope must be a fast and abrupt event, 

the subsidence of the depression surfaces by sublimation must occur at a very slow rate [Lefort et 

al., 2009]. Furthermore, we think that scalloped depression formations probably remain dormant, 

preserved by the atmospheric conditions at low obliquity periods like the present, because the 

scalloped depressions appear unweathered and young. 

 

2.6 Conclusions 

Thermokarst formation on Earth is strongly influenced and driven by standing water bodies. 

Direct comparison to Martian scalloped depressions is therefore problematic. However, studies of 

analogous thermokarst depressions in Ice Complex deposits in the Siberian Arctic and 

investigations of the influence of solar insolation on terrestrial thermokarst morphology have 

improved our understanding of insolation-driven scallop development on Mars. The asymmetry of 

terrestrial thermokarst depression slopes with steeper slopes facing south (i.e. the equator) is 

confirmed by geomorphometric analyses. Both the results of insolation modeling and thermal 

Landsat satellite data imply a strong influence of incoming radiation on slope morphology. We 

propose a lateral development of thermokarst depressions and lake migration in a northern 

direction in the Ice Complex remnants in the Lena Delta.  

For the development of Martian asymmetric scalloped depressions, retrogressive growth in an 

equator-ward direction is postulated. The schematic model of the formation of scalloped 
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depressions in UP shows a climatically-controlled evolution. Our insolation modeling of scalloped 

depressions in UP supports the hypothesis that fast and abrupt slumping processes at the steep pole-

facing scarps have occurred during periods of increasing obliquity within the last 10 Ma. The 

lateral scallop formation was maximized by possible ground ice thawing during periods of high 

obliquity, and when certain orbital configurations coincided. The equator-facing slopes were 

flattened by continuous, though slow, ground ice sublimation and depression surface subsidence. 

When Mars´ orbit tilted back to low degrees of obliquity sublimation of ground ice was minimized 

and lateral scalloped depression formation stopped. The material was stabilized at the basin floor 

and strong thermal contraction cracking occurred. 
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Abstract 

Polygonal systems formed by thermal contraction cracking are complex landscape features 

widespread in terrestrial periglacial regions. The manner in which cracking occurs is controlled by 

various environmental factors and determines dimension, shape, and orientation of polygons. 

Analogous small-scale features are ubiquitous in Martian mid- and high-latitudes, and they are also 

inferred to originate from thermal contraction cracking. We studied the geomorphometry of 

polygonally-patterned ground on Svalbard to draw a terrestrial analogy to small-scale polygonal 

structures in scalloped terrain in Martian mid-latitudes. We performed a comparative quantitative 

terrain analysis based on high-resolution stereo remote-sensing data (HRSC-AX and HiRISE) in 

combination with terrestrial field data and multivariate statistics to determine the relationship of 

polygon geomorphometry to local environmental conditions. Results show that polygonal 

structures on Svalbard and in Utopia Planitia on Mars are similar with respect to their size and 

shape. A comparable thermal contraction cracking genesis is likely. Polygon evolution, however, is 

strongly related to regional and local landscape dynamics. Individual polygon dimensions and 

orthogonality vary according to age, thermal contraction cracking activity, and local subsurface 

conditions. Based on these findings, the effects of specific past and current environmental 

conditions on polygon formation on Mars must be considered. On both Earth and Mars, the 

smallest polygons represent young, recently-active low-centered polygons that formed in fine-

grained ice-rich material. Small, low-centered Martian polygons show the closest analogy to 

terrestrial low-centered ice-wedge polygons. The formation of composite wedges could have 

occurred as a result of local geomorphological conditions during past Martian orbital 

configurations. Larger polygons reflect past climate conditions on both Earth and Mars. The 

present degradation of these polygons depends on relief and topographical situation. On Svalbard 
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the thawing of ice wedges degrades high-centered polygons; in contrast, the present appearance of 

polygons in Utopia Planitia is primarily the result of contemporary dry degradation processes. 

 

3.1 Introduction and background 

Many landforms on Mars show similarities with periglacial features on Earth. On Earth these 

landforms reflect the effects of cold-climate conditions often in connection with permafrost 

dynamics. However, some of the periglacial features on Mars seem inconsistent with the prevailing 

Martian hydrological and climatic conditions because, like on Earth, water must have played an 

important role during their formation. The study of their characteristics, distribution, and spatial 

associations would therefore allow conclusions to be drawn about the climate history of Mars; thus, 

such study can be used to indicate past and present environmental conditions. For instance, 

polygonal surface structures are a widespread phenomenon in periglacial landscapes on both Earth 

and Mars. This allows several conclusions to be drawn by analogy, but leaves open an important 

question: Are these structures morphological analogues only, or is there a genetic relationship 

between them?  

Patterned ground with polygon diameters ranging from meters to tens of kilometers has been 

described for many years on Mars [e.g., Luchitta, 1981; Mellon, 1997; Seibert and Kargel, 2001; 

Mangold, 2005; van Gasselt et al., 2005; Levy et al., 2009a, 2010a]. While medium-sized (diameter 

>100 m) and giant polygons (several kilometers in diameter) are suggested to originate by tectonic 

processes [e.g., Hiesinger and Head, 2000; Yoshikawa, 2003] or by desiccation in the case of 

medium-sized polygons [El Maarry et al., 2010], many authors have inferred that small-scale 

patterns (<100 m in diameter) are formed as thermal contraction polygons, analogous to terrestrial 

ice- and sand-wedge polygons [e.g., Seibert and Kargel, 2001; Mangold, 2005; Mellon et al., 2008; 

Levy et al., 2009a, 2010a]. Recently, it could be shown by mechanical modeling that the maximum 

size of polygons formed by thermal contraction is limited to a few decameters [El Maarry et al., 

2010].  

Generally, the average diameters of thermal contraction polygons on Earth range between a 

few meters and a few decameters. Low-centered polygons can be distinguished from high-centered 

polygons. Low-centered polygons are commonly characterized by outlining furrows, which are 

delineated by raised rims. Upturning rims form as a result of thermal expansion and lateral 

displacement of the active-layer (i.e. the upper soil layer which thaws seasonally) material above a 

growing ice or sand wedge [Mackay, 1980]. High-centered polygons are the result of ice-wedge 

degradation followed by the enlargement and deepening of the polygon-outlining troughs [e.g., 

Washburn, 1979]. Ice-wedge polygons are the most common type of thermal contraction polygons 

in more humid arctic regions. In hyper-arid polar deserts (e.g., the Antarctic ice-free areas, 

Canadian high Arctic), liquid water is lacking and cracks are commonly filled by eolian material or 
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sand, building sand-wedge polygons [e.g., Péwé, 1959; Sletten et al., 2003; Bockheim et al., 2009] 

(Table 3.1). If local conditions favor the occasional support of moisture, composite wedges can 

develop [Murton, 1996]. Special types of sand-wedge polygons described from the Antarctic Dry 

Valleys are high-centered sublimation polygons [Marchant et al., 2002; Marchant and Head, 

2007]. However, sand-wedge polygons can hardly be distinguished from ice-wedge polygons in the 

plan view [Black, 1976]. 

 

Table 3.1: Literature-based compilation of climate and subsurface conditions in relation to various 
thermal contraction polygon properties.  

Indicator Control factors Effects Reference 

polygon 
formation 

air and soil 
temperature, grain 
size 

in silt, clay, and peat: < -3°C 
in sand and gravel: -8 to – 10 °C 

Washburn [1979]; 
Romanovskii [1985]; 
Yershov [2004] 

 insulation limiting the continuous frost cracking Washburn [1979]; 
French [2007] 

polygon 
diameter 

temperature 
gradient 

large gradient  harsher climate  
smaller polygons 

Yershov [2004]; 
French [2007] 

 rheology of frozen 
ground 

heat conductivity (grain size, ice 
content)  fine-grained, high ice 
content  smaller polygons 

Lachenbruch [1962, 
1966] 

polygon form stress free zones orthogonal  near the cooling 
surface 
hexagonal   in larger distance 

Romanovskii [1977] 

 ground 
homogeneity 

hexagonal patterns – stress balance  Lachenbruch [1962]; 
French [2007] 

 stage of 
development 

secondary cracking  polygon 
subdivision  more regular and 
orthogonal 

Lachenbruch [1966] 
French [2007] 

polygon 
orientation 

stress relief oriented if stress-free vertical surfaces 
exist (i.e. anisotropy of strength) 

Lachenbruch [1962] 

polygon nets drainage small nets   < 27° slope 
large nets  to 31° slope 

Washburn [1979] 

ice or sand 
wedge 
formation 

atmospheric and 
ground humidity 

high aridity  sand wedge polygons Péwé [1959]; 
Black [1976]; 
French [2007] 

ice-wedge 
polygon 
formation 

soil temperature, 
grain size 

in clay  < -2 °C, 
in gravels   < -6°C 

Romanovskii [1985] 

 

The term polygon is here used in sensu Washburn [1979], Yershov [2004], and French [2007] 

as a form of patterned ground indicative of continuous cold climates and the presence of 

permafrost. These polygonal networks are formed by thermal contraction fissures [Lachenbruch, 

1962, 1966] after an initial crack is reactivated recurrently [Mackay, 1974, 1992] and widened 

through subsequent filling by water, sand, or soil [Péwé, 1959; Black, 1976; Sletten et al., 2003; 

French, 2007]. The frozen ground cracks under volumetric tension due to long cold periods and a 

severe soil temperature drop in winter [Yershov, 2004; Christiansen, 2005; Fortier and Allard, 
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2005]. This in turn depends on the coefficient of thermal expansion which is larger in ice-rich 

sediments than in ice-free sediments [Lachenbruch, 1962] (Table 3.1). The strength and direction 

of stress vectors during thermal contraction, which determine dimension, shape, and orientation of 

thermal contraction polygons, are controlled by various factors such as air and ground temperature 

variations, subsurface conditions (i.e. rheology, water/ice content), topography, and stress-free 

vertical surface (e.g., breaks, other cracks, terrain edges, talik rims). Some of these factors are 

summarized in Table 3.1; these factors offer the possibility of estimating the subsurface and 

climate conditions that existed during polygon formation by geomorphometric properties.  

Although no clear evidence for the processes responsible for the formation of small-scale 

polygons on Mars can yet be presented, the distribution of these polygons at middle to high 

latitudes [Mangold, 2005; Levy et al., 2009a] and their spatial relationship to ground ice on Mars 

[Mangold et al., 2004] suggest that these landforms are formed by thermal contraction cracking, 

which is controlled by specific periglacial climatic and subsurface conditions [Levy et al., 2010a]. 

Furthermore, the relationship of likely active thermal contraction polygons to periglacial landscape 

features in a geomorphologic context compared to terrestrial analogues allows conclusions to be 

drawn about small-scale polygon origin on Mars. However, even if most of the conclusions about 

Martian polygon evolution are very detailed and plausible they frequently offer only qualitative 

explanations. Only a few studies have been done regarding polygon geomorphometry on Mars 

using quantitative methods [e.g., Rossbacher, 1986; Pina et al., 2008; Dutilleul et al., 2009; 

Haltigin et al., 2010]. Therefore, based on very-high-resolution stereo remote-sensing data, 

comparative quantitative terrain analysis in combination with geomorphological and 

sedimentological field data from terrestrial polygons were used to verify the hypothesis that 

polygonal structures on Earth and Mars, which are similar in appearance, originate from 

comparable processes. Additionally, a multivariate statistical approach has been applied to validate 

and compare the relationship of polygon geomorphometry to the topographical conditions of 

various polygonal sites from a mid-latitude region on the Martian northern hemisphere and an 

analogous high-arctic region in central Spitsbergen (Svalbard) [Hauber et al., 2011; Hauber et al., 

in press]. The main objective of this paper is, first to highlight the relationship between 

geomorphometric parameters of thermal contraction polygons and site-specific topographical and 

subsurface conditions on Earth. Second, this understanding will be applied to give insights into 

formation processes and subsurface conditions of small-scale polygonal patterned ground on Mars 

by comparison of their associated geomorphometry. Bearing in mind the regional 

geomorphological context of diverse polygonal fields within periglacial landscapes, this work is 

focused on Adventdalen (Svalbard) and on the scalloped terrain in Utopia Planitia (Mars). 
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3.2 Characterization of study areas 

3.2.1 Svalbard (Adventdalen) 

The Svalbard archipelago, and in particular its largest island, Spitsbergen (Figure 3.1), exhibits 

a diverse inventory of periglacial landforms in close spatial proximity. Svalbard is situated in the 

zone of continuous permafrost [Brown et al., 1998], which is widespread primarily outside the 

60%-glacier-covered area [Humlum et al., 2003]. Permafrost thickness ranges from 100 m in the 

valleys to around 450 m in the mountains [e.g., Liestøl, 1976; Isaksen et al., 2001]. Permafrost ages 

on Svalbard are estimated to be late Holocene in the valleys and the coastal areas [Humlum et al., 

2003]. The permafrost temperature on Svalbard is -2.3°C to -5.6°C [Christiansen et al., 2010], and 

active-layer thickness varies from a few decimeters to 1.5 m depending on vegetation, snow cover, 

and subsurface conditions [Sørbel et al., 2001].  

 

Figure 3.1: Context maps of the terrestrial study area. (a) Location of the Svalbard archipelago in 
the Arctic. (b) Map of Svalbard and its largest island Spitsbergen with the Adventdalen area 
marked by the black box. (c) HRSC-AX true-color image mosaic of the Adventdalen region with 
the location of the investigated polygonal fields shown. Elevation increases from site AD1 to site 
AD4. 

 

The main study area is Adventdalen in Central Spitsbergen (Figure 3.1b), a ~30 km long and 

~4 km wide U-shaped valley, which extends eastward from Svalbard’s main town Longyearbyen 

(78°13’00’’N, 15°38’00’’E). The area, deglaciated around 10 ka BP [Mangerud et al., 1992], is 
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one of the driest regions on Svalbard. The annual precipitation reaches only ~180 mm and the 

mean annual air temperature (MAAT) is around -6°C [Hanssen-Bauer and Førland, 1998]. The 

geology of the Adventdalen area is characterized by Jurassic and Cretaceous sandstones, siltstones, 

and shales. Most of the bedrock massifs bordering Adventdalen belong to the Helvetiafjellet and 

Carolinefjellet formations [Dallmann et al., 2001]. On the valley bottom, fine-grained loess-like 

deposits, most likely derived by deflation and local deposition of fluvial sediments, cover exposed 

terraces [Bryant, 1982]. The patchy vegetation cover is dominated by mosses, herbs, and shallow 

shrubs. On exposed dry areas, which are affected by wind action, the vegetation is very sparse. The 

valley bottom is characterized by pingos (i.e. ice-cored mounds) and ice-wedge polygons. Studies 

of polygonal patterned ground in the Adventdalen range from geomorphological and 

sedimentological surveys [e.g., Matsuoka and Hirakawa, 1993; Sørbel and Tolgensbank, 2002] to 

thermal contraction cracking monitoring [e.g., Matsuoka, 1999; Christiansen, 2005].  

Our study focuses on four polygon fields (AD1-AD4) distributed across almost the whole of 

Adventdalen (Figure 3.1c). The sites were chosen in the field in accordance with changes in 

morphology, topography, and related surficial sediment material given in the map of Tolgensbakk 

et al. [2001], which is explained in detail by Sørbel et al. [2001]. Site AD1 is located between 11 

and 15 m a.s.l. on a river terrace near Longyearbyen. This site, which has been well investigated by 

researchers of the University Center of Svalbard (UNIS), is characterized by low-centered 

polygons [Christiansen, 2005]. Site AD2 is located between 79 and 114 m a.s.l. and consists of 

high-centered polygons. High-centered polygons also characterize the sparsely-vegetated site AD3 

(82 to 112 m a.s.l.). Site AD4 is located at the highest elevation between 139 and 169 m a.s.l. 

3.2.2 Mars (Utopia Planitia, UP) 

The Martian study site was selected on the northern hemisphere of Mars in western Utopia 

Planitia (UP) (Figure 3.2) due to the availability of appropriate data (see section 3.3.2.) and our 

previous studies [Ulrich et al., 2010]. Furthermore, various periglacial-like features have been 

observed in the region, e.g., polygonal structures, scalloped depressions, and small mounds [e.g., 

Soare et al., 2005; Morgenstern et al., 2007; Burr et al., 2009; de Pablo and Komatsu, 2009; Lefort 

et al., 2009; Levy et al., 2009b; Ulrich et al., 2010; Séjourné et al., 2011]. These landforms are 

associated in a geomorphological context, suggesting the existence of ice-rich ground [e.g., 

Morgenstern et al., 2007; Lefort et al., 2009; Ulrich et al., 2010]. Present surface temperatures in 

the region have been detected to range from ~180 K in winter to ~240 K in summer [Morgenstern 

et al., 2007], but thermal modeling indicates they could reach ~260 K during summer [Ulrich et al., 

2010]. Geologically, the region is characterized by two main units: the Vastitas Borealis interior 

unit (ABvi), which underlies the Astapus Colles unit (ABa) [Tanaka et al., 2005]. The ABa unit is 

interpreted as a fine-grained volatile-rich (i.e. ice-rich) mantling layer tens of meters thick which 

was deposited during recent variations in Mars’ orbital parameters (i.e. higher obliquity) [e.g., 
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Kreslavsky and Head, 2000, 2002; Mustard et al., 2001; Head et al., 2003]. The older ABvi unit 

consists mainly of outflow channel sediments and subsequently reworked ice-rich deposits [Tanaka 

et al., 2005]. 

Generally, the region is characterized by a relatively smooth and flat surface. The most 

conspicuous landforms in western UP are asymmetrically-shaped scalloped depressions, which are 

interpreted as ground ice degradation features [e.g., Morgenstern et al., 2007; Lefort et al., 2009; 

Ulrich et al., 2010; Séjourné et al., 2011]. Isolated depressions (a few hundred meters to several 

kilometers in diameter) alternate with coalesced scalloped terrain and nested areas of completely 

removed mantel material (Figure 3.2b). About 24 % of this region is covered by scalloped terrain 

[Morgenstern et al., 2007]. Polygonal patterned ground is widespread in western UP [e.g., Seibert 

and Kargel, 2001; Lefort et al., 2009; Levy et al., 2009b]. Small high- and low-centered polygons 

(about 10 m in diameter) are associated with the scalloped depressions, showing an internal 

arrangement that is typical of all well-pronounced scalloped depressions. Large polygons (up to 

80 m in diameter) are distributed on the non-degraded plain uplands. 

In this work, we focused on four different polygon fields (named UP1 to UP 4), which are 

located in and around a medium-sized scalloped depression (Figure 3.2c). This depression is about 

800 m in diameter and 20 m deep, centered at ~92.12N and ~46.07E. 

 

 

Figure 3.2: Regional setting of the Martian study site. (a) Location of Utopia Planitia on the 
Martian northern hemisphere. (b) Investigated area in western Utopia Planitia. The region is 
characterized by single scalloped depressions and extended areas of coalesced scalloped terrain 
(CTX image subset: P02_001938_2263_XI_46N267W). (c) The scalloped depression and the 
associated polygonal structures on which this study is focused. The depression is characterized by a 
gentle south-facing slope and a steep north-facing scarp. Four elongated ridges within the 
depression are oriented subparallel to the north-facing slope. (HiRISE image subset: 
PSP_001938_2265 ; see also Fig.13b of Ulrich et al. [2010]) 
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3.3 Methods and data 

3.3.1 Field work and laboratory analyses 

Field work on Svalbard was conducted by making measurements and observations of various 

periglacial landforms, analyzing soil properties, and collecting soil samples during July-August 

2009 [see also Hauber et al., 2011; Hauber et al., in press]. The observed and measured parameters 

are used as a ground-truth dataset for remote-sensing analyses. In total, nine soil profiles were 

described and sampled at different polygon fields in the Adventdalen. At each site, active-layer 

samples were taken from centers and troughs of randomly-selected polygons. In situ measurements 

of active-layer thermal properties were done using a KD2 Pro Thermal Properties Analyzer 

(Decagon Devices Inc.), and soil water content was measured using a Hydrosense probe (Campbell 

Scientific Inc.). At site AD1, sediment samples from a polygon center (Figure 3.1) taken by Härtel 

and Christiansen [2010] were also used in order to complete the dataset for sedimentological 

analyses. 

Grain-size analyses were carried out using a Laser Particle Analyzer (Beckmann Coulter LS 

200) for the fine fraction (< 1 mm). The coarse fraction (>1 mm) was sieved additionally with an 

ATM sonic sifter separator (ATM Corporation, Milwaukee, WIS). Total carbon (TC), total organic 

carbon (TOC), and total nitrogen (TN) contents were determined with a CNS-Analyzer (Elementar 

Vario EL III). 

3.3.2 Remote sensing data 

Very-high-resolution images and topographic information about periglacial landforms on 

Svalbard were acquired in July and August 2008 with HRSC-AX, which is an airborne version of 

the HRSC (High Resolution Stereo Camera) currently orbiting Mars [Jaumann et al., 2007]. Color 

orthoimages (20 cm/pixel) and corresponding Digital Elevation Models (DEMs) with a cell size of 

50 cm and a vertical accuracy of 20 cm are available for seven regions on Svalbard [Hauber et al., 

2011; Hauber et al., in press]. HRSC-AX data from Central Svalbard were used for quantitative 

terrain and remote-sensing analyses. HRSC-AX is a multi-sensor push-broom instrument with nine 

CCD line sensors mounted in parallel. High-resolution stereo, multicolor, and multi-phase images 

are obtained simultaneously. True-color and false-color orthoimages are obtained by the four color 

channels (blue, green, red, and near-infrared). Based on the five stereo channels, which provide 

five different views of the ground, digital photogrammetric techniques are applied to reconstruct 

the topography. The stereo capability of the HRSC-AX allows the systematic production of high-

resolution DEMs. The principles of HRSC data processing and application are described by e.g., 

Wewel et al. [2000], Scholten et al. [2005], and Gwinner et al. [2009, 2010]. 

Martian polygonal structures were analyzed using High-Resolution Imaging Science 

Experiment (HiRISE) data [McEwen et al., 2007]. HiRISE provides data that have a quality and 
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scale comparable to HRSC-AX, with a very high spatial resolution of 30 cm/pixel and the 

possibility of 3D views by stereo pairs. The method of producing of high-resolution DEMs based 

on stereo pairs is available [Kirk et al., 2008]. However, detailed analyses, mapping, and extraction 

of geomorphometric parameters was restricted to the stereo pair PSP_001938_2265 and 

PSP_002439_2265 and the corresponding DEM with a grid spacing of 1 m. To our knowledge, this 

is the only HiRISE DEM covering scalloped terrain and related polygonal structures in UP, 

because HiRISE stereo pairs cover only very small parts of the Martian surface and are very 

difficult to process [Kirk et al., 2008; McEwen et al., 2010]. 

3.3.3 GIS Analysis and polygon mapping 

Polygons were manually digitized within ArcGISTM from panchromatic HiRISE and HRSC-

AX data using the corresponding DEMs and DEM-derived slope maps as well as 3D views (i.e. in 

case of the HiRISE data) for better visualizing polygon edges, fissures, troughs, and intersections. 

Only clearly-recognizable polygon fissures and troughs which could be reliably interpreted as non-

erosional linear structures have been mapped along the centerline (Figure 3.3). In case of the 

terrestrial high-centered polygons, the polygon interiors were also mapped along the highest points 

of the trough shoulders. The distance from each polygon trough shoulder to the shoulder edge of its 

nearest neighbor was then calculated automatically in ArcGISTM, allowing estimates of minimum 

polygon trough widths at each site. Furthermore, locations where two polygon-bounding troughs 

intersect were marked with points and the distributions of four- and three-ray intersections were 

distinguished (Figure 3.3). Theoretically, a polygonal field which is characterized by a higher 

frequency of connected four-ray intersections could be specified as an orthogonal polygon pattern 

even if the polygon geometry was primarily determined by the conjunction angle [e.g., 

Lachenbruch, 1962; French, 2007].  

 

Figure 3.3: Scheme of extracted 
geomorphometric parameters using the 
example of a high-centered polygon in 
the Adventdalen. Based on those 
characteristics, additional parameters 
could be calculated (see also 
Table 3.2). The centerline (i.e. the 
cracks that outline the low-centered 
polygons) surrounds the area. The 
length of the centerline represents the 
perimeter. Trough intersections are 
illustrated by the black dots. (p) 
polygon center point, (q) calculated 
minimum polygon trough width, (α) 
polygon main angle (i.e. direction of 
polygon elongation). Oblique 3-D view 
based on HRSC-AX topography data. 



Polygon pattern geomorphometry on Mars and Earth Chapter 3 
Accepted for publication in Geomorphology 
_______________________________________________________________________________ 
 

 55

A polygon was considered in the dataset if it was completely enclosed by troughs or cracks and 

if there was no doubt during mapping as to whether the visible lineaments corresponded to the 

original polygon form. Problems appear, for instance, at degraded surfaces, or where slope deposits 

are superimposed upon troughs. In those cases, the original polygon geometry was often difficult to 

identify precisely despite the high image resolution. 

For each recorded polygon, geomorphometric parameters (Figure 3.3) and topographical 

properties were extracted within ArcGISTM and added to an attribute table. Dimension parameters 

include area (A), perimeter (P), length (L), width (W), and size (S) (Table 3.2). The size was 

calculated as equivalent to the diameter (Yoshikawa, 2003). Three shape factors were calculated, 

including circularity (FF), aspect ratio (AR), and thickness ratio (Th) (Table 3.2). All shape factors 

have values between 0 and 1. The smaller the value, the thinner (i.e. more elongated) is the 

polygon. Topographical properties (i.e. elevation, slope angle, and slope aspect) were extracted for 

the center point of each polygon after smoothing the HiRISE DEM and the HRSC-AX DEM to 10 

m/pixel, taking into account small-scale changes in topography. Moreover, to investigate the 

relationship of the slope direction to the orientation of polygon elongation, the main angle of the 

longest axis of a minimum-area-bounding rectangle was calculated for each polygon, which is at 

least 15 % longer than broader. This bounding rectangle schematically represents the original 

orientation of polygon elongation (Figure 3.3). Fairly-symmetrical polygons which are not 15% 

longer than they are broad were not considered. Calculated angles range between 0° and 180°, 

where 0° corresponds to a polygon directed from east to west, 90° corresponds to a north-south 

direction, and 180° represents a west-to-east direction. Therefore, the slope aspect, represented by 

values ranging between 0° and 360°, was converted to values ranging between 0° and 180°, and 

thereafter represents the direction of slope angle. 

3.3.4 Numerical analysis 

Multivariate statistics in terms of ordination methods were applied to the remote-sensing 

datasets from Spitsbergen and Mars. First, principal component analyses (PCAs) were performed to 

assess the relationships among the polygon shape and the dimensional variables (Table 3.2). 

Second, redundancy analyses (RDAs, partial-RDAs) including environmental parameters as 

explanatory variables (Table 3.2) were applied to identify factors that could significantly explain 

variations in polygon shape and dimension. In preparation for the multivariate analyses, datasets 

were organized for each polygon site that contained all the studied polygons, dimension 

parameters, shape factors, and polygon main angles as response variables as well as topographical 

properties as environmental (i.e. explanatory) variables (Table 3.2). First, a data exploration was 

carried out to check the data distribution and relationships between the variables, and to calculate 

the statistical characters, such as mean, median, maximum (Max), and minimum (Min) values, or 

standard deviation (SD) and skewness (SK) for comparing of the different polygon sites. Circular 
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data, such as aspect and polygon main angle, were transformed by trigonometric functions [e.g., 

Roberts, 1986] (Table 3.2). Aspect transformation was accomplished by creating two variables, 

northness (No) and eastness (Ea). Polygon main angle values (0-180°) were transformed to cosine 

representation (CosMA), ranging thus from 1 to -1. Elevation is represented by the relative height 

(RH); the lowest-level polygon within each polygon site was set to RH = zero. 

 

Table 3.2: Geomorphometric parameters and topographical properties which were extracted and 
calculated for each considered polygon and used as variables in multivariate statistics. See also 
Figure 3.3. 

Variable 
(Abbreviation) 

Unit or Scale Source (Explanation) Type 

Response variables 

Area (A) Square meter HRSC-AX, HiRISE Dimension 

Perimeter (P) Meter HRSC-AX, HiRISE Dimension 

Size (S) Meter = )/4( A  Dimension 

Length (L) Meter 
HRSC-AX, HiRISE  
(largest diameter) 

Dimension 

Width (W) Meter 
HRSC-AX, HiRISE 
(smallest diameter) 

Dimension 

Circularity (FF) 0 to 1 = PA /4 ² Shape 

Aspect Ratio (AR) 0 to 1 = LW /  Shape 

Thickness Ratio (Th) 0 to 1 
= the polygon area versus the area of 
its minimum bounding rectangle 

Shape 

CosMA -1 to 1 
= cosine representation of polygon 
main angle values 

Orientation 
of polygon 
elongation 

Explanatory variables 

Relative Height (RH) 
Meter (above 
fixed point) 

DEM Topography 

Slope (Slo) Degrees DEM Topography 

Northness (No) -1 to 1 = cos (Aspect), DEM Topography 

Eastness (Ea) -1 to 1 = sin (Aspect), DEM Topography 

 

PCA and RDA were performed on standardized data (i.e. all variables have equal weights) 

using BRODGAR version 2.6.5. (Highland Statistics Ltd., UK). These ordination techniques are 

commonly used in ecological data analysis [Zuur et al., 2007]. PCA is a comparatively simple 

method used to visualize correlations between variables. RDA is an extension of the PCA; it 
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models the response variables as a function of the explanatory variables. The ordination axes and 

algorithm in RDA are based on the PCA.  

Ecological data which originate from neighboring objects in the same physical environment are 

often spatially autocorrelated, because the objects interact and are often more alike than objects 

which are far apart from each other. Spatial autocorrelation within our dataset, which could result 

in a lack of stochastic independence, was addressed using principal coordinates of neighbor 

matrices (PCNM) analyses [Borcard and Legendre, 2002; Borcard et al., 2004]. This method 

allows spatial patterns to be detected and quantified over a wide range of scale by creating spatial 

variables. Using the Cartesian coordinates (X, Y) of each polygon center, a set of spatial variables 

was generated for each polygon site. These analyses yielded up to 400 PCNM variables per site. To 

assess the amount of variance that is explained by the “pure” non-spatially-structured 

environmental variables, the effect of the spatial variables could then be partialled out by the use of 

variance partitioning through partial-RDA for each polygon dataset [e.g., Borcard et al., 1992; 

Zuur et al., 2007; Sweetman et al., 2010]. First, a series of RDAs were run constrained to each 

spatial and environmental variable. Only variables which explained a significant (p-value < 0.05) 

amount of variance in the polygon dataset were considered for further analyses. The statistical 

significance was tested continually by Monte Carlo permutation tests using 999 unrestricted 

permutations. Thereafter, we applied a separate RDA with a forward-selection procedure for all 

significant spatial and environmental variables to identify the most important variables that could 

ultimately explain variations in polygon dimension and shape among sites. Collinearity among the 

variables could be excluded, as all the highest variance inflation factors (VIFs) were less than 5. 

Finally, variance partitioning in a series of partial RDAs was conducted for each polygon site: i) on 

all forward-selected spatial and all forward-selected environmental variables; ii) on all forward-

selected spatial variables, using the forward-selected environmental variables as covariables; and 

iii) on all forward-selected environmental variables, using the forward-selected spatial variables as 

covariables. The amount of variance in each polygonal network that is explained by the pure 

environmental variables effect, the pure spatial variables effect, the shared effect, and the amount 

of unexplained variance could then be determined using the cumulative eigenvalues as the 

percentage of total inertia (i.e. variance) explained by each of these calculations. 

 

3.4 Results 

3.4.1 Geomorphology and morphometry of Adventdalen polygons 

Four polygonal fields were mapped with a total of 688 polygons (Figure 3.4 and Table 3.3). 

These fields are distinguishable with respect to their dimensions, geomorphology, and the 

associated surficial material. For each polygonal site, the characteristics of geomorphometric 

parameters are summarized in Table 3.4.  
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Figure 3.4: Mapped polygonal fields in the Adventdalen (Svalbard). HRSC-AX DEM subsets on 
panchromatic HRSC-AX images illustrate the topography at each site. Contours are given by the 
gray lines at 2 m intervals. The white dots mark the location of the investigated active-layer 
profiles. Profiles of diverse polygons at one site are labeled additionally (see Fig. 3.7). 

 

Site AD1 is located on the front of a recently inactive alluvial fan, which is cut by the 

Adventelva River. The area is exposed generally in a north-northeastern direction (Figure 3.4). The 

polygonal field is formed in eolian deposits [Tolgensbakk et al., 2001], which cover this part of the 

fan and is characterized by some orthogonal but mostly pentagonal and hexagonal low-centered 

polygons (Figure 3.5). Nearly 90% of the counted furrow intersections belong to the three-ray type 

(Table 3.3). The polygons are outlined by comparatively shallow (<40 cm deep) and narrow 

(<100 cm wide) furrows. Typically, the low-centered polygons are characterized by pairs of 

slightly-raised rims beside the furrows. Open cracks could be observed within the furrows during 

field work. Sizes of individual polygons range from 8.1 m to 50.8 m (mean 19.7 m). A shift to 

smaller dimensions can be seen in positive skewness (SK) of the dimension variables (Table 3.4). 

The vegetation cover shows a zonal distribution, with grasses and mosses in less-well drained 

centers. Dry and sparse vegetation covers the raised rims. However, not all of the mapped polygons 

are characterized by distinct low-lying centers. In these cases, the center can be described as rather 

flat, and the drainage situation is improved.  
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The AD2 polygonal field formed in glaciofluvial sediments [Tolgensbakk et al., 2001]. Its 

high-centered polygons are located on a terraced gentle slope (mean slope angle =3°), which is 

exposed in a south-southwest direction (Figure 3.4). The upper slope and the terrace transitions 

show steeper slope angles (up to 9°). Polygon sizes range from 9.4 m to 65.1 m (mean 29.7 m) 

(Table 3.4). Bigger polygons occur on gentle slope sections and smaller polygons on the steeper 

parts (Figure 3.5). In general, the polygonal field shows a pentagonal to hexagonal lattice. Only 4% 

of the mapped intersections belong to the four-ray type, which is the lowest percentage of this type 

of all mapped polygon sites (Table 3.3). The majority of polygonal troughs at site AD2 are less 

pronounced than at sites AD3 and AD4, especially in gentler, lower slope sections. The mean of 

the calculated minimum trough widths is 1.4 m, but the width can reach maxima of 4.2 m. Trough 

depths of 0.5 m on average were measured in the HRSC-AX DEM. Depths of more than 1 m could 

be observed in the field on steeper slope sections. Upon visual inspection of the DEM, polygons 

that appear bigger seem to be clearly elongated parallel to the slope contour and exist primarily in 

the lower slope sections (Figure 3.4). The calculated shape variables for site AD2 cannot be 

differentiated clearly from those of the other Adventdalen sites apart from a slightly larger variance 

of the values (Table 3.4). The vegetation cover at site AD2 is more or less closed but thins out up 

the slope and on exposed lower slope parts. The well-drained elevated polygon centers show 

hummocks covered by dry grasses, herbs, and shrubs, while grasses, mosses, and shrubs in the 

troughs appear to be more succulent. The shoulders of big troughs are often disrupted and only 

sparsely vegetated.  

According to Tolgensbakk et al. [2001], the AD3 polygonal field is spread on solifluction and 

autochthonous weathered material. The mean size of the high-centered polygons is 25.4 m (ranging 

from 10.4 m to 51.7 m) (Table 3.4). About 93 % of all observed intersections belong to the three-

ray type. This site is also located on a terraced slope. However, the southerly exposed slope is 

partly steeper (mean slope angle =4.9°) than the slope at site AD2. It rises shortly and sharply from 

the Adventelva River, and it is more frequently incised by fluvial channels (Figure 3.4). The 

polygonal field is cut by the river as well. A general trend in the distribution of larger polygons as a 

function of steeper slope sections could not be observed. Polygons at this site are rather regularly 

distributed with respect to their dimension and shape. The troughs, however, are more pronounced. 

The mean of the calculated minimum width at site AD3 is 2.3 m, ranging to maxima of 4.6 m 

(Table 3.3). Most of the measured trough depths ranged between 0.3 m and more than 1 m; the 

deeper troughs drain into the fluvial channels. Trough shoulders are disrupted by trough-parallel 

fractures (Figure 3.5). The site is characterized by generally drier surface conditions, but these 

change sharply in the eastern part and in the up-slope direction. The relatively closed but low-

standing vegetation cover on the elevated polygon centers changes to exposed vegetation-free 

areas; only low grasses and dry mosses can be found in the polygon troughs.  
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Figure 3.5: Photograph and HRSC_AX close-up of each polygonal field in the Adventdalen 
elucidate the site-specific differences in geomorphology. Low-centered polygons at site AD1 are 
formed in eolian deposits on an inactive alluvial fan. High-centered polygons at the sites AD2, 
AD3, and AD4 are formed in glaciofluvial sediments, solifluction and autochthonous weathered 
material, and autochthonous weathered material, respectively. The person in the photograph of site 
AD4 is sitting on the shoulder of a huge polygon trough, which can be seen in the lower left of the 
HRSC_AX close-up (Photographs of AD1 and AD2 by H. Hiesinger, AD3 and AD4 by M. Ulrich). 
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AD4, the most elevated polygonal field (Figure 3.4) in the Adventdalen (between 139 and 

169 m a.s.l.), is formed in autochthonous weathering material [Tolgensbakk et al., 2001] and 

characterized by remarkably wide and deep troughs and very sparse vegetation cover (Figure 3.5). 

The mean of the calculated minimum trough width is 2.9 m, but widths range to maxima of 7.5 m. 

The manually-measured depth of the troughs is between 0.5 m and >1 m. The size of the high-

centered polygons ranges between 9.8 m and 47.7 m (mean 24.2 m) (Table 3.4). Smaller, rather 

hexagonal polygons are located on an elevated terrace, which is characterized by a very dry surface 

(Figure 3.5). Secondary cracks can be observed within the polygon centers. They were probably 

formed by desiccation when the surface dried after spring snowmelt. The terrace continues on a 

south-southeast exposed slope which is inclined toward the Adventelva River. The mean slope 

angle is 3.5° but can reach about 10° in the lower slope sections. Down the slope, vegetation cover 

becomes denser and polygon dimensions increase. Here the polygons show an orthogonal lattice in 

some places. About 9% of all polygon intersections at site AD4 belong to the four-ray type (Table 

3.3).  

 

Table 3.3: Overview and characteristics of all mapped polygonal sites and corresponding trough 
intersections. 

Location ID Type N 
Covered 

area 
(m² x 103) 

Trough 
intersections 

3-ray 
(%) 

4-ray 
(%) 

Adventdalen AD1 
low 

center 
185 63 387 90.2 9.8 

Adventdalen AD2 
high 

center 
241 186 698 96.0 4.0 

Adventdalen AD3 
high 

center 
103 58 381 92.9 7.1 

Adventdalen AD4 
high 

center 
159 80 426 91.3 8.7 

AD total   688 387 1892   

Utopia 
Planitia 

UP1 
high 

center 
453 477 1293 92.4 7.6 

Utopia 
Planitia 

UP2 
low 

center 
756 58 1751 82.9 17.1 

Utopia 
Planitia 

UP3 
high 

center 
579 63 1562 86.4 13.6 

Utopia 
Planitia 

UP4 
low 

center 
566 30 1110 87.4 12.6 

UP total   2354 628 5716   

Total   3042 1 015 7608   

 

All high-centered polygonal fields are located on inclined surfaces. We found a small but 

significant correlation (r=0.32; p-value<0.05) between minimum polygon trough width and slope 

angle for all Adventdalen high-centered polygons. At all Adventdalen sites polygons are elongated 

in two main directions, subparallel to the contour of the slope and subparallel to the direction of 
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slope angle (Figure 3.6). The majority of polygons at site AD1 are elongated perpendicularly to the 

direction of slope angle. The majority of polygons at site AD3 and in particular at AD4 are 

predominantly elongated subparallel to the slope angle direction. For site AD2, a relative balance 

of orientation is shown in Figure 3.6 in contrast to the visual observations (see above; Figure 3.4). 

 

 

Figure 3.6: Orientation of polygon elongation (white) in relation to the direction of slope angle 
(black) for each terrestrial polygonal field. The ray length represents the number of polygons that 
fall within a specific angular region. Ray size (binning) is 10 degrees. Note that the x-axes are 
differently scaled and the rays are vertically mirrored for better visualization. 

3.4.2 Sedimentology of the Adventdalen polygons 

The sedimentological results for ten active-layer profiles of individual polygons representative 

of each polygonal field are summarized in Figure 3.7. Sediment data are presented for the trough 

and the center of one polygon at site AD2 and AD4a, respectively (Figure 3.4). Due to varying 

surface conditions down-slope at site AD4 an additional analysis is shown for an active-layer pit in 

a polygon trough (AD4b). Because of heterogeneous surface conditions at site AD3, the center and 

trough of two polygons were surveyed. At site AD1, samples from the topmost 100 cm of an 

active-layer pit and a permafrost core (Figure 3.4) were analyzed to complete the dataset. Field 

measurements of thermal conductivity and ground temperature were done exemplarily at sites 

AD2, AD3, and AD4a. These measurements were used additionally to distinguish the various 

polygon fields as well as the trough and center of separate polygons. 
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Figure 3.7: Active-layer sediment data and thermal properties from centers and troughs of selected 
polygons at each Adventdalen polygonal field (for locations see Figure 3.4). Parameters are plotted 
against depth below surface (dbs). Note the different scales of the y-axes. The bottom end of the 
grain-size distribution signatures represent the active-layer depths, except for AD1 in which an 
active-layer depth of around 60 cm was observed. The thermal conductivity and ground 
temperature data have been averaged over 3-4 measurements at different depths. 
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All active-layer profiles are characterized by poorly sorted, clayish to fine-sandy silts with 

varying amounts of gravel and low TOC values (Figure 3.7). The TOC/TN ratios are relatively 

wide (between 12 and 25). Except for the polygon center pit at site AD1, all profiles were dark-

grayish to grayish-black in color and unstratified. No signs of underlying ice wedges could be 

found at sites AD2, AD3, or AD4. Active-layer depths at all sites ranged between ~60 cm and 

~100 cm. The deepest active layer of ~100 cm (Figure 3.7) was measured where the vegetation 

cover was absent and the surface appeared mostly dry. In comparison to the other sites, the AD1 

profile shows less clay but higher sand contents corresponding to the mapped loess-like sediments 

of Tolgensbakk et al. [2001] and the material is better sorted. The AD4b trough profile contains the 

highest gravel content, particularly at the bottom (Figure 3.7). Furthermore, measurable proportions 

of gravel could be determined for sites AD2 and AD4a, corresponding to the glaciofluvially-

formed and autochthonously-weathered surface material suggested by Tolgensbakk et al. [2001]. 

At site AD2 only, the trough profile reveals considerably higher grain size mean values, 

corresponding to higher sand contents than in the related polygon center profile (Figure 3.7).  

The measured thermal properties reflect the sedimentological similarities of the four sites. The 

temperature decreases to about 0°C towards the permafrost table. Thermal conductivity values 

range around 1.0 Wm-1K-1 at all sites, increasing slightly with depth, and show higher values (up to 

2.6 Wm-1K-1) in the upper centimeters of the permafrost due to the ice content (e.g., the center of 

AD4a in Figure 3.7). The typical relationships of decreasing thermal conductivity with increasing 

organic carbon content and of increasing thermal conductivity with increasing soil moisture [e.g., 

Williams and Smith, 1989; French, 2007; Yershov, 2004] are confirmed by our measurements. 

3.4.3 Geomorphology and morphometry of Utopia Planitia (UP) polygons 

Polygonal networks in western UP show a zonal distribution that is associated with scalloped 

terrain. The study of the different polygonal networks allows detailed local analyses in a relatively 

limited spatial context. Therefore, we focused on one depression, representative of the 

geomorphological context of scalloped terrain and polygonal structures in UP (Figure 3.8). In total, 

four different types of polygonal networks including 2354 polygons were mapped (Table 3.3) and 

classified in and around this depression (UP1 to UP4). Similar to the terrestrial polygons in the 

Adventdalen, the Martian polygons are uniform with respect to their shape factors (Table 3.4). 

Only UP3 polygons reveal a slightly larger variance of the shape factor values and a little larger 

negative SK in circularity, which statistically would indicate less-elongated polygons (Table 3.4). 

The upper level, representing the non-degraded mantle material in the surroundings of the 

scalloped depression, is characterized by a random network of large irregular polygons (UP1) 

(Figure 3.8). These polygons range from almost flat to high-centered. The sizes of the mapped UP1 

polygons ranges from 13.1 m to 88.1 m (mean 34.3 m) (Table 3.4). Large troughs most commonly 

3 m to 4 m wide (max. >10 m) outlines the polygons. Narrow, indistinct cracks in polygon centers 
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form small secondary polygons. The HiRISE DEM indicates trough depths of more than 1 m. The 

polygonal network at site UP1 shows an orthogonal to hexagonal lattice (Figure 3.9). About 93% 

of the trough intersections belong to the three-ray type (Table 3.3). All elongated (i.e. >15% longer 

than wide) UP1 polygons are oriented mainly in the N-S or E-W direction (Figure 3.10). The 

surface around the depression is almost flat. Numerous boulders are distributed randomly in the 

area [see also Lefort et al., 2009]. The polygon troughs seem to be filled with fine-grained dark 

deposits (Figure 3.9). Differences of UP1 polygon shapes and dimensions were observed in relation 

to the topography around the scalloped depression. The polygons in the southern and southwestern 

more-elevated area are more distinct and bigger, their outlining troughs are clearly visible, and their 

centers are rather flat. In contrast, polygons in the north and northeastern lower area are smaller, 

very bumpy, and appear much more degraded; often only long north-south-trending troughs are 

visible (Figure 3.8). This topographic zonation of the upland polygons could be observed elsewhere 

in the investigated region. 

 

Figure 3.8: Mapped polygonal field in western Utopia Planitia. The polygons that make up the 
polygonal fields UP2, UP3, and UP4 are indicated by colors in the scalloped depression. 
Topography is illustrated by a HiRISE DEM subset (1 m/pixel, stereo pair: 
PSP_001938_2265_PSP002439_2265). 
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Table 3.4: Calculated statistical characteristics of the geomorphometric parameters for each 
polygonal field in the Adventdalen (AD) and Utopia Planitia (UP). (units and scales correspond to 
Table 3.2) 
  AD1 AD2 AD3 AD4 UP1 UP2 UP3 UP4 
Area Min 50.9 69.7 84.9 75.1 135.6 15.6 14.7 10.0 
 Max 2029.0 3328.6 2100.5 1785.7 6098.7 206.6 513.0 151.9 
 Mean 340.1 771.1 558.5 506.7 1053.4 76.7 109.2 52.4 
 Median 268.4 594.3 447.2 82.7 816.1 69.5 91.6 50.1 
 SD 261.6 534.7 378.2 331.0 830.3 35.5 65.2 18.4 
 SK 3.0 1.7 1.7 1.3 2.1 1.0 1.9 1.4 
Perimeter Min 30.4 35.2 39.9 37.2 46.8 16.3 16.6 13.2 
 Max 177.1 245.5 170.7 178.1 298.4 59.8 92.9 51.2 
 Mean 69.8 108.3 90.8 87.1 124.2 34.4 40.5 28.7 
 Median 65.0 100.5 87.2 82.7 117.9 33.6 38.9 28.2 
 SD 23.8 38.3 28.3 28.6 46.5 7.8 11.1 5.3 
 SK 1.6 0.8 0.9 0.7 0.9 0.5 1.0 1.0 
Size Min 8.1 9.4 10.4 9.8 13.1 4.5 4.3 3.6 
 Max 50.8 65.1 51.7 47.7 88.1 16.2 25.6 13.9 
 Mean 19.7 29.7 25.4 24.2 34.3 9.6 11.4 8.1 
 Median 18.5 27.5 23.9 23.5 32.2 9.4 10.8 8.0 
 SD 6.6 10.0 8.2 7.8 12.8 2.2 3.2 1.4 
 SK 1.5 0.7 0.9 0.6 0.9 0.5 0.9 0.5 
Length Min 11.4 13.3 14.8 13.4 18.8 6.4 6.1 5.1 
 Max 65.3 96.2 61.7 71.3 109.4 24.5 35.7 22.6 
 Mean 25.6 40.9 33.5 32.3 46.2 12.9 15.1 10.7 
 Median 24.2 37.4 31.7 30.3 43.8 12.3 14.7 10.3 
 SD 9.0 14.9 10.1 10.7 16.9 3.0 4.1 2.2 
 SK 1.6 1.2 0.8 0.8 0.8 0.8 1.0 1.4 
Width Min 7.0 10.2 9.6 9.9 12.3 4.1 4.2 3.8 
 Max 49.8 79.4 51.4 57.0 82.7 18.2 27.9 13.1 
 Mean 19.9 28.7 25.1 24.6 35.0 10.0 11.6 8.1 
 Median 18.6 27.2 23.4 23.8 33.4 9.9 11.1 8.0 
 SD 6.7 10.3 8.4 8.0 13.6 2.4 3.6 1.4 
 SK 1.5 1.2 0.9 0.6 0.9 0.4 0.9 0.2 
Circularity Min 0.58 0.47 0.57 0.58 0.41 0.41 0.21 0.46 
 Max 0.91 0.91 0.91 0.92 0.92 0.92 0.92 0.92 
 Mean 0.79 0.75 0.77 0.76 0.76 0.78 0.78 0.78 
 Median 0.81 0.76 0.78 0.77 0.76 0.78 0.79 0.80 
 SD 0.06 0.08 0.08 0.07 0.08 0.07 0.08 0.08 
 SK -0.83 -0.74 -0.49 -0.29 -0.77 -0.74 -1.46 -0.83 
Aspect ratio Min 0.41 0.37 0.45 0.46 0.37 0.35 0.37 0.37 
 Max 1.00 0.99 0.98 0.99 0.99 0.99 1.00 1.00 
 Mean 0.79 0.72 0.75 0.77 0.76 0.79 0.77 0.77 
 Median 0.80 0.72 0.76 0.78 0.77 0.80 0.79 0.78 
 SD 0.12 0.14 0.12 0.13 0.13 0.12 0.12 0.12 
 SK -0.50 -0.19 -0.48 -0.44 -0.35 -0.65 -0.60 -0.57 
Thickness Min 0.29 0.24 0.30 0.26 0.29 0.23 0.15 0.27 
ratio Max 0.76 0.84 0.70 0.80 0.85 0.88 0.86 0.79 
 Mean 0.53 0.49 0.51 0.51 0.55 0.52 0.53 0.54 
 Median 0.52 0.49 0.52 0.51 0.55 0.51 0.52 0.54 
 SD 0.09 0.10 0.10 0.10 0.11 0.10 0.11 0.11 
 SK -0.11 0.11 -0.15 0.19 0.05 0.13 -0.02 -0.08 
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The small-scale polygons within the scalloped depressions were classified as mixed-center 

polygons by Levy et al. [2009a]. Three different types of polygonal networks were identified (UP2, 

UP3, and UP4) (Table 3.3) in connection with the internal morphology of the scalloped depression 

(Figure 3.8). Stripes of low-centered (UP2) and high-centered (UP3) polygons with narrow troughs 

and cracks alternate concentrically from the north-facing scarp to the depression bottom (Figure 

3.9). These stripes of polygons are distinctly oriented along the scarp. The polygon troughs and 

cracks are mainly oriented perpendicular and parallel to the scarp. The relationship can also be seen 

from the direction of polygon elongation, reflecting the horseshoe shape of the north-facing slope 

(Figure 3.10). The orientation of polygon elongation is much more closely parallel to the slope 

angle on the steeper parts of the north-facing slope (slope angles ~14°). Low-centered polygons 

(UP2) show a more distinct orientation than high-centered polygons (UP3). The ridges within the 

depression are characterized by high-centered polygons with peaked and domed as well as flat 

elevated centers (UP3) (Figure 3.9b). The size of high-centered polygons ranges between 4.3 m and 

25.6 m (mean 11.4 m) (Table 3.4). These polygons are orthogonal, but hexagonal geometries exist 

as well. About 14% of the counted trough intersections belong to the four-ray type (Table 3.3). 

Four concentric zones of high-centered polygons corresponding to four internal ridges were 

mapped in the depression (Figure 3.8). The smallest and most distinct high-centered polygons exist 

on the less-pronounced ridge close to the scarp edge. Low- to flat-centered polygons with a mean 

size of 9.8 m (4.5 m to 16.2 m) (Table 3.4) are spread between the ridges (UP2) (Figure 3.9). The 

polygons closest to the scarp edge are characterized by distinct low-lying centers. Pairs of raised 

rims beside the outlining cracks are visible (Figure 3.9a). These strongly-oriented polygons with a 

clear orthogonal shape exhibit a very homogenous size distribution. The highest percentage of four-

ray intersections (~17%) among all Martian or terrestrial polygonal fields could be observed within 

this network (see Table 3.3).  

The south-facing slope is also characterized by patterns of low-lying centers (UP4) (Figure 

3.9c). These patterns overlay a larger polygonal network, indicating residues of upland polygons in 

this comparatively shallower part of the depression (Figure 3.8). The centers of these very small 

polygons are outlined by raised single ridges (Figure 3.9c). Cracks, which typically outline low-

centered polygons, were not identified. The polygon sizes at site UP4 range from 3.6 m to 13.9 m 

(mean 8.1 m) (Table 3.4). The network is characterized by an orthogonal to hexagonal lattice. 

About 87% of the mapped intersections at UP4 are of the three-ray type (Table 3.3). The 

orientation of polygon elongation is mainly north-south and normal to the average direction of 

slope angle (Figure 3.10). The striking spatial arrangement of the small-scale polygons within the 

scalloped depression is also visible in other well-pronounced single depressions in the region. 
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Figure 3.9: Close-up of each polygonal field in Utopia Planitia. (a) Large flat- to high-centered 
polygons on the uplands in the south of the scalloped depression. (b) Context of the polygonal 
network connected to the internal morphology of the scalloped depression. (c) Low-centered 
polygons with raised ridges flanking outlining fissures. (d) High-centered polygons on one of the 
interior scallop ridges. Smaller examples can be seen close to the north-facing scarp on the upper 
left image. (e) Low-centered polygons with single raised ridges overlying a larger polygonal 
network on the south-facing slope of the scalloped depressions. Cracks that outline the polygons 
are not visible. (Each subset from HiRISE image: PSP_001938_2265). 

 

 

 

 

 

 

 

 

 

Figure 3.10: Orientation of 
polygon elongation (white) in 
relation to the direction of slope 
angle (black) for each Martian 
polygonal field. The ray length 
represents the number of 
polygons that fall within a 
specific angular region. Ray size 
(binning) is 10 degrees. Note 
that the x-axes are differently 
scaled and the rays are vertically 
mirrored for better visualization. 
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3.4.4 Results of the multivariate statistics 

Principal component analyses (PCAs) were conducted and revealed similar results for all 

polygonal fields. Thus, PCA results are summarized using the example of a combined dataset 

which includes all investigated sites. The response variables extracted for each polygon (Table 2) 

are clearly separated on the first two PCA axes. Together, the cumulative percentage of eigenvalues 

reveals that 79% of the total variance is explained by PC1 and PC2. Variables representing polygon 

dimension are clearly correlated to PCA axis 1, explaining more than half of the variance (54%) in 

the polygon dataset. The PCA axis 2 is related to variables representing polygon shape. About 25% 

of the total variance is explained by this axis. The PCA reveals no correlation between dimension 

variables (PC1) and shape variables (PC2). The variable CosMA, representing direction of polygon 

elongation (Table 2), contributes only a little to the explained variance although a negative 

correlation to the shape factor variables was expected.  

In order to identify the specific environmental parameters that predominantly explain polygon 

shape and dimension, several constrained ordination analyses (RDAs, partial-RDAs) were 

performed. Variance partitioning (i.e., partial-RDA) with PCNM-analysis-derived spatial variables 

(see Section 3.3.4) was used to filter out spatially-structured effects (i.e., autocorrelation) in the 

environmental variables. Small but significant portions of the explained variance in most of the 

polygon dataset are primarily related to the elevation effect (i.e., RH), and secondarily to aspect 

(i.e., Ea) and slope angle. Figure 11 presents the results of variance partitioning. The bar plots 

illustrate the unexplained amount of variance in the dataset, as well as the amount explained by 

non-spatially-structured (i.e., pure) environmental factors, by the spatial variables alone, and by the 

spatially-structured components shared by the environmental and spatial variables. Large amounts 

of the explained variance are related to spatial factors, because neighboring polygons are often 

quite similar and polygon formation depends on the spatial position. RDA triplots are only 

exemplarily shown for sites AD3 and UP1 (Figue 12). All significant environmental and spatial 

variables (named PCNM) are plotted in relation to the response variables. Environmental and 

spatial variables which lost their significance after forward selection are marked. For site AD3, 

7.4% of the explained variance is attributed to the pure elevation effect (Figure 11). Ea was 

excluded after forward selection. RH shows clear correlation with the shape FF, AR, and Th 

(Figure 12a), but only a small correlation to the dimension variables. For site UP1, 6.3% of the 

explained variance is attributed to the pure effect of RH and Slo. No was excluded after forward 

selection (Figure 11). In the corresponding RDA triplot (Figure 12b), polygon dimension variables 

are positively correlated with RH but negatively correlated with the slope angle. Generally, a 

similar positive correlation of RH to the dimension variables is calculated in all site-specific RDAs 

in which RH was significant after forward selection (see Figure 11). A negative correlation is 

obvious only for sites AD4 and UP3. Furthermore, in site UP3, aspect represented by Ea has more 

explanatory power as RH. Slo and No were excluded here after forward selection. For site AD2, 
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only Slo was significant after forward selection and Ea was excluded. Even if only very little 

variance can be explained by the pure effect of Slo after variance partitioning for this site 

(Figure 11), slope angle shows a distinct correlation to the shape factors in the associated RDA 

triplot. After forward selection for site UP2, all environmental variables, which were significant 

before, must be excluded. Therefore, the explained variance at this site can only be attributed to the 

spatial variables. The highest amounts of variance (>80%) unexplained by either the environmental 

or the spatial variables were found for sites AD2 and UP4. 

 

 

Figure 3.11: Results of variance partitioning for each investigated terrestrial (AD1-AD4) and 
Martian (UP1-UP4) polygonal field. For each site the bar plot shows the different explained 
proportions of variance. The environmental variables explaining significant amounts of variance 
are listed on the left above the plots. Variables which were finally excluded after forward selection 
are given in parentheses. Variable abbreviations are used according to Table 3.2. For further 
explanations see text. 
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Figure 3.12: Example of 
redundancy analysis (RDA) triplots 
for (a) site AD3 and (b) site UP1 
showing the relationship of 
significant environmental (thick 
solid lines, underlined letters) and 
significant spatial (PCNM, thick 
solid lines, simple letters) variables 
to the response variables (thin solid 
lines, bolded letters). Environmental 
variables which were excluded after 
forward selection are illustrated as 
dotted lines. The grey dots illustrate 
the locations of polygon samples. 
Abbreviations are used according to 
Table 3.2. 
 

3.5 Discussion 

3.5.1 Relationship between geomorphometry and genesis for the terrestrial polygons 

The four polygonal fields in the Adventdalen are homogeneous with respect to their 

geomorphometric parameters. The statistical characteristics of FF, AR, and Th are similar for all 

sites (Table 3.4). However, the differing surface morphologies and dimensions indicate different 

stages of evolution (Table 3.5). The smallest and youngest polygons exist in the lower Adventdalen 

on flat terraces near the Adventelva River (site AD1). These are recently-active low-centered ice-
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wedge polygons. Active thermal contraction cracking is proven, and relatively large ice wedges 

exist below the wider furrows at site AD1 [Matsuoka and Hirakawa, 1993; Christiansen, 2005]. 

The ongoing activity of thermal contraction cracking has resulted in progressive polygon 

subdivision (Table 3.5), expressed by a higher frequency of four-ray intersections compared to site 

AD2, AD3, and AD4 (Table 3.3). Therefore, these polygons are regular in shape and smaller in 

size [Lachenbruch, 1966]. The largest high-centered polygons were observed in the central valley 

at site AD2. The dimensions of the observed high-centered polygons decrease from the central 

valley to the upper Adventdalen, but ages are probably increasing. The dating of pingo and ice-

wedge material suggests that periglacial landform formation in the lower Adventdalen was initiated 

about 3000 yr BP [Svensson, 1971; Jeppesen, 2001]. The late Holocene age of polygons in the 

lower Adventdalen (e.g., AD1) is likely, as they are located below the uppermost Holocene marine 

limit (~70 m above the present sea level). The relative sea level had fallen to the present-day 

position not until about 4300 yr BP [Lønne and Nemec, 2004]. Certainly, pingo ages have been 

identified to increase up the valley to about 7000 yr BP [Yoshikawa and Nakamura, 1996; Ross et 

al. 2007; Meier and Thannheiser, 2009; and references therein]. In general, this points to an older 

periglacial landform formation in the upper Adventdalen. Smaller high-centered polygons in the 

upper Adventdalen (AD4) have probably resulted from comparatively more permanent activity in 

the Holocene and thus enhanced polygon subdivision. The widths of the outlining troughs 

definitely increase in the up-valley direction to site AD4. This observation is in agreement with 

Malmström et al. [1973] who found the oldest and best-developed troughs on the highest terraces in 

this region. Furthermore, the same authors suggest a direct correlation between the width of ice 

wedges and the width of the overlying troughs. Based on the observed lack of ice wedges just 

below the active layer and of frost cracks extending through the active layer, which are regarded as 

indicators of wedge activity [e.g., Romanovskii, 1985; Mackay, 1992], the high-centered polygons 

in the central and upper Adventdalen are classified as inactive. The degradation and thawing of ice 

wedges has resulted in wide and deep troughs. This is supported by the relationship between larger 

trough widths and steeper slope angle. The evolutionary change from low-centered to high-

centered polygons caused by ice-wedge degradation [e.g., Washburn, 1979; Mackay, 2000] might 

be reinforced on slopes by increasing drainage along the polygon-outlining troughs [Fortier et al., 

2007]. This degradation factor dominates the recent development of the high-centered polygons in 

the middle and upper Adventdalen and prevents active frost cracking (Table 3.5); this is also true 

because snow accumulating in the deep troughs would have an insulating effect, preventing crack 

initiation [e.g., Mackay, 1974, 1992]. Crack formation is influenced by micro-climate, micro-relief, 

vegetation, and snow cover, and therefore by specific temperature conditions [Christiansen, 2005; 

Fortier and Allard, 2005], which further complicates the discussion of differing cracking activity in 

the Adventdalen. The change in cracking activity is thought to reflect a change in climate [French, 
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2007]. Conditions more favorable to frost cracking than those of today (e.g., lower ground 

temperatures) probably existed in the middle and upper Adventdalen earlier in the Holocene.  

The sedimentological properties of all active-layer profiles are relatively uniform, reflecting 

less variability in surficial material than suggested by Tolgensbakk et al. [2001]. Only small 

differences due to varying gravel contents were observed between the sites. Higher contents of 

gravel, in particular at the high-centered polygon sites in the upper Adventdalen, would be in 

agreement with current inactive thermal contraction cracking, because coarser-grained sediments 

require lower ground temperatures for cracking (< -6°C) [Romanovskii, 1985] than the existing 

average permafrost temperatures on Svalbard (-2.3°C to -5.6°C) [Christiansen et al., 2010]. 

Furthermore, we found that the smallest polygons are associated with the homogenous silty loess-

like deposits in the lower Adventdalen (AD1). The largest polygons are associated with higher 

gravel contents in the middle valley (AD2), i.e., with more compositionally heterogeneous 

sediments. This agrees with the suggestion of Lachenbruch [1962, 1966], that smaller regular 

polygons are related to homogenous fine-grained sediments with higher ground-ice contents due to 

the larger expansion coefficient and higher thermal stress. In contrast, larger irregular polygons are 

related to heterogeneous coarser-grained sediments (see also Table 3.1). Thus, we assume 

relatively high ground-ice contents at site AD1. At site AD4, the polygon size changes in 

accordance with the hillslope gradient and a change in grain-size distribution. Larger polygons, 

located down-slope, are associated with the highest measured contents of gravel (AD4b in 

Figure 3.7). By comparison, on the more elevated and horizontal parts, smaller polygons have 

formed in material with lower gravel contents and smaller mean grain size (AD4a; see also 

Figure 3.5). Furthermore, the polygonal network is rather irregular and shows a non-orthogonal 

lattice at its elevated parts. Down the slope, the larger polygons are mainly orthogonal (Figure 3.4). 

The relationship of ground material homogeneity to the orthogonality of polygonal systems is a 

further topic of debate (see Table 3.1). Most authors suggest that non-orthogonal (i.e. hexagonal) 

and complex systems are formed in homogenous material, while orthogonal lattices are related to 

heterogeneous material [Lachenbruch, 1962; French, 2007]. Such relationships could not be 

confirmed by our observations in the Adventdalen. With regard to the intra-site differences at AD4, 

orthogonal polygons are associated with more heterogeneous ground material down the slope. The 

regular AD1 polygonal network with partly orthogonal structures (Figures 3.4 and 3.5, Table 3.5) 

formed in homogenous ground material (see above).  

The direction of polygon elongation was measured to estimate the direction of primary 

cracking. The majority of polygons within all polygonal fields are elongated (i.e. they are 15% 

longer than wide); only a few polygons are characterized by their similar width and length. 

Theoretically, if first-order cracks are long and subsequently subdivided by shorter secondary 

cracks, as has been modeled by Plug and Werner [2001], the primary cracks would determine the 

direction of polygon elongation in most cases.  
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A distinct orientation of polygon elongation with respect to the direction of slope angle could 

be determined for the Adventdalen polygons (Figure 3.6). However, all polygonal networks are 

randomly formed in sensu Lachenbruch [1962, 1966] and are therefore not oriented to stress-free 

vertical zones such as the shore of the Adventelva River. But at the sites where the polygonal fields 

are formed on steeper slopes, in particular at sites AD3 and AD4 (Figure 3.4), the primary cracking 

seems to have occurred normal to the contour as polygon elongation is mainly parallel to the slope 

angle (Figure 3.6). Mackay and Burn [2002] reported similar primary crack orientation on the 

slopes of a drained lake site in the western Canadian Arctic. At our AD1 Adventdalen site, where 

the polygonal field is formed on a very gentle slope and in a rather flat area, polygon elongation is 

mainly parallel to the contour. A similar relationship was visually observed for the gentle slope 

sections at site AD2. These observations led to the assumptions that the gravitational effects on 

steeper slopes affect the direction of primary thermal contraction cracking and, furthermore, the 

orientation of polygons, because the secondary cracking occurs along the contour [Mackay and 

Burn, 2002]. 

The statistical analysis reveals differences within the individual polygonal fields in accordance 

with the site-specific conditions. Thus, the polygon geomorphometry is related to topographical 

conditions. The results of our multivariate statistics show that polygon dimension and shape are 

related to the location within a polygonal field, as expressed by the highly significant influence of 

the variable RH on almost all polygonal fields (Figure 3.11). This variable probably represents 

unmeasured or statistically unconsidered factors that vary along a hillslope gradient within the 

polygonal field, such as ground-ice and moisture contents, thermal conductivity (e.g., influenced by 

snow and vegetation cover), or grain-size distributions. Aspect and slope-angle conditions play a 

minor role in the statistics of our polygon dataset. This is unexpected, as subsurface and micro-

climate conditions also change with slope angle and aspect and should have an influence on initial 

thermal contraction cracking and subsequent polygon formation [e.g., Lachenbruch, 1966; Mackay, 

2000; Mackay and Burn, 2002]. Furthermore, interrelationships of slope conditions and polygon 

shape or dimension could be observed, as was discussed above. However, this was only slightly 

apparent in the statistics for the AD2 and AD4 Adventdalen sites (see Figure 3.11). 

3.5.2 Comparability of terrestrial and Martian polygonal structures 

The investigated polygonal structures in western UP on Mars share the geomorphological and 

morphometrical characteristics of the Adventdalen polygons. By comparing diverse 

geomorphometric criteria, several points are discussed by analogy (Table 3.5). The polygonal 

structures of western UP belong to the category of small-scale patterns, according to classifications 

of the wide variety of polygonal structures on Mars [e.g., Mangold, 2005; Levy et al., 2009a]. 

Besides the analogy to the terrestrial polygons, the thermal contraction cracking origin is more 

likely than other origins such as desiccation cracking, as the landscape assemblage in the region 
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points to a dry origin and there is no evidence of former lakes [Ulrich et al., 2010] or water-rich 

sediments essential for desiccation [El Maary et al., 2010]. The statistical properties indicate that 

the shape of the observed Martian and terrestrial polygons are similar (see Table 3.4). Additionally, 

the sizes of the UP polygons are comparable to those of the Adventdalen polygons and fall within 

the range of maximum fracture spacing under current climate conditions on Mars (<75 m) [El 

Maary et al., 2010]. They are also significantly smaller than polygons of tectonic origin [e.g., 

Hiesinger and Head, 2000]. Thus, we can conclude that they originated by thermal contraction 

cracking in connection with near-surface ground ice [Mellon, 1997; Mangold et al., 2004] 

(Table 3.5). The morphological differences between the observed Martian polygons reflect 

different ages, thermal contraction cracking activity, and local environmental conditions, similar to 

their terrestrial analogues. In both cases, flat- to high-centered polygons are separated by distinct 

outlining troughs. The trough widths and depths of the large high-centered polygons (UP1) as well 

as their older appearance suggest that the Martian upland polygons have undergone continuous 

degradation [Lefort et al., 2009]. In contrast to the Adventdalen high-centered polygons, where the 

trough expansion is related to ice-wedge degradation, it is suggested that the enlargement of 

polygon troughs on present-day Mars occurred by progressive sublimation of interstitial ice 

exposed after initial thermal contraction cracking [Mangold, 2005; Levy et al., 2010a]. Examples of 

such high-centered sublimation polygons are known from Beacon Valley, Antarctica [Marchant et 

al., 2002]. These high-centered polygons are formed on sediments which cover massive ice bodies 

(e.g., a stagnant glacier) by thermal contraction and the absence of a liquid phase. Polygon troughs 

are formed as sublimation is enhanced within the cracks due to the higher porosity and 

permeability of material trapped therein [Marchant and Head, 2007]. From the abundance of high-

centered polygons on Mars, Levy et al. [2009a] estimated that sublimation of ground ice in the 

absence of liquid water is the dominant formation process of Martian polygon morphology. This is 

consistent with the current very cold and dry climate on Mars. The geomorphology of the 

polygonal network observed at site UP1 is more likely to have resulted from interstitial ice 

sublimation than from ice-wedge degradation in the current stage of climate.  

Our data indicate a comparable frequency of three-ray intersections in the terrestrial and 

Martian high-centered polygons (Table 3.3), which is a sign of a lower degree of polygon 

subdivision (Table 3.5) by ongoing cracking and, therefore, older ages. This interpretation is 

supported by the larger polygon dimensions, which suggest older features formed under past 

environmental conditions [e.g., Mangold et al., 2004; see also next section]. No clear relationship 

was observed between a higher frequency of three-ray intersections and mainly hexagonal polygon 

geometry. Within the terrestrial and Martian polygonal fields, which exhibit more than 90% three-

ray intersections, orthogonal polygons are ubiquitous as well. The high frequency of three-ray 

intersections further points to a random formation of the polygonal networks (e.g., AD2 and UP1), 

as four-ray intersections are more typical of orthogonal polygons oriented at topographical edges 
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[e.g., Lachenbruch, 1966; Romanovskii, 1977], like in the UP2 and UP3 Martian polygonal 

networks (Figure 3.9c,d). 

A striking feature of the UP1 polygons is the distinct two-directional polygon elongation (i.e. 

N-S and E-W) which shows only a small relationship to the slope angle direction (Figure 3.10). 

Yoshikawa [2003] reported a similar observation in UP for slightly larger polygons and interpreted 

the predominantly N-S crack orientation as a sign of tectonic origin. Because the region is gently 

rising to the south, the observed orientation of polygon elongation would be in agreement with the 

notion (for terrestrial polygons) that the gravitational effect of the slope influences thermal 

contraction cracking, controlling crack initiation even if the slope angle is very low [French, 2007]. 

The two-directional polygon elongation could therefore be explained by even a very low slope 

angle (Table 3.5). The primary cracking occurred in equal parts along and perpendicular to the 

contour. Other possible explanations exist, such as energy transfer by warmer winds coming from a 

southern direction during summer [Morgenstern et al., 2007]. Winds could possibly increase 

temperature gradients and thus crack propagation in N-S-trending troughs, resulting in 

perpendicular secondary cracks forming in the E-W direction. 

Like the terrestrial low-centered polygons (AD1), the small Martian polygons (UP2) are 

characterized by pairs of raised rims beside the outlining fissures. The low-centered polygons on 

the south-facing scalloped depression slope (UP4) are exceptional, since they are characterized by 

single outlining ridges without fissures between them (Figure 3.9e). The UP2 polygons, 

particularly those situated close to the steep north-facing wall of the scalloped depression (Figure 

3.9c), show close similarities to the active low-centered polygons (AD1) in Adventdalen. In direct 

analogy, their fresh appearance as compared to the upland UP1 polygons, their small size, and their 

clear orthogonal lattice point to recently-active thermal contraction cracking processes due to 

homogenous fine-grained ice-rich material [Lachenbruch, 1962, 1966; Lefort et al., 2009]. Besides 

the distinct orthogonality of the UP2 polygons, the orientation of polygon elongation (Figure 3.10 

and Table 3.5), which is clearly parallel to the slope angle, suggests the primary cracking occurs 

perpendicular to the contour as the result of stress release at the scarp edge, and is further induced 

by the gravitational stress of the slope (Figure 3.13). Similar observations are reported by Levy et 

al. [2009a] for polygons present in Martian gully alcoves and by Mangold [2005] who also relates 

the orientation of orthogonal polygons inside Martian crater walls to the effect of slope. The 

orientation changes to a random orthogonal system at the foot of crater flanks. This is in agreement, 

first, with the observed changes in the character of the Martian UP2 and UP3 polygons to a random 

and increasingly complex network towards the depression bottom (Figure 3.13). Second, a similar 

change in polygon geometry was described for site AD4 in the Adventdalen where orthogonal 

structures are mainly grouped on steeper slope sections.  
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Figure 3.13: HiRISE subset showing small polygons of UP2 and UP3 character on the north-
facing slope of a large scalloped depression adjacent to the main study site. This example is 
representative of how polygon morphology changes in response to the slope angle and the distance 
to the scarp edge. Polygons are clearly orthogonal and cracks are strongly oriented at point 3. 
Polygons become increasingly randomly distributed, their orthogonality decreases, and troughs (i.e. 
cracks) widen towards the depression bottom (point 1). The location of the DEM-derived 
topographic profile (below) is marked by the white line in the image. (HiRISE image: 
PSP_001938_2265). 

 



Polygon pattern geomorphometry on Mars and Earth Chapter 3 
Accepted for publication in Geomorphology 
_______________________________________________________________________________ 
 

 79

The above suggestion for the highly significant influence of the variable RH within the 

multivariate statistics (Section 3.5.1) also applies to the Martian polygonal fields. This is 

particularly obvious for the UP1 polygonal field (see Figures 3.11 and 3.12) as the statistics 

confirm the visual observation explained in Section 3.4.3, i.e., that polygons in the lower area north 

of the depression are a little smaller, very bumpy and appear more degraded compared to the UP1 

polygons south of the depression. Slightly varying ground-ice conditions or even small-scale 

changes in albedo would have led to different polygon morphologies. Another interesting detail is 

the statistically higher influence of aspect (represented by the variable Ea) as compared to RH on 

the polygonal characteristics at site UP3 (Figure 3.11). The polygon geomorphometry changes with 

increasing degradation of the UP3 polygons towards the depression bottom because sublimation 

would be significantly lower on a north-facing slope than on a south-facing slope due to reduced 

insolation (Figure 3.9b). These interpretations of the multivariate statistical results highlight the 

helpfulness of this approach in interpreting initial polygon geomorphometry as a function of site-

specific conditions. Moreover, these discussions demonstrate the relationship of secondary polygon 

morphology to individual topographic conditions. 

3.5.3 Genesis of Mars polygons and environmental implications 

Based on our terrestrial studies and considering the landscape assemblage in UP, some 

implications for the formation of the Martian polygonal structures can be drawn (Figure 3.14). The 

large upland polygons (UP1) are probably very old and were formed after the deposition of the 

mantling material during conditions of high obliquity [Kreslavsky and Head, 2000, 2002; Mustard 

et al., 2001; Head et al., 2003]. An old age is also indicated by the fact that these polygons are 

truncated by the scalloped depressions (see Figure 3.2c). Troughs are often traceable across the 

steep north-facing scarps [Lefort et al., 2009; Ulrich et al., 2010] and the original polygonal 

network is visible in shallow depressions nearby or on south-facing slopes (see Section 3.4.3), 

where the lowering of the surface has not yet reached the maximum depths of the cracks [Lefort et 

al., 2009]. The sizes of the polygons indicate very deep thermal contraction cracking, which must 

be related to strong temperature gradients [Lachenbruch, 1962, 1966]. It was shown by thermal 

modeling that summer temperatures in this region could reach 273 K even at obliquities of 35°, but 

such temperatures are more likely at higher obliquity [Ulrich et al., 2010]. Very high temperatures 

in summer followed by an extreme temperature drop in winter could have led to deep crack 

penetration and the formation of larger polygons. Larger polygons, however, are also formed in 

material with lower ice content [Lachenbruch, 1966] as was discussed for the terrestrial polygons 

(see also Table 3.1). No clear relationship between polygon dimension and ground-ice content, 

which increases with latitude [e.g., Feldman et al., 2004], could be observed on Mars [Mangold et 

al., 2004; Mangold, 2005; Levy et al., 2009a]. The size of the upland polygons (UP1) is consistent 

with the findings of the Gamma Ray Spectrometer (GRS) that only ~4 to ~10 wt% water-ice 
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equivalent exists currently in the upper surface layer (<1 m depth) in the regions between 45°S and 

45°N [Boynton et al., 2002; Mitrofanov et al., 2002; Feldman et al., 2004]. If higher ground-ice 

contents than in the upper layer occur deeper than 1 m, which was inferred from the dimension of 

the scalloped depressions [Morgenstern et al., 2007; Ulrich et al., 2010], seasonal thermal waves 

should not reach this depth at the present time [Mellon, 1997; Mangold et al, 2004]. Thus, the 

process of thermal contraction cracking which formed the UP1 polygons is likely inactive today 

(Table 3.5 and Figure 3.14). Only small shallow cracks observed within some polygon centers were 

likely to have been formed subsequently. It is not clear, however, how much ground ice existed 

during times of higher obliquity when these polygons were formed and ground ice was more stable 

in the upper surface layer than it is today [e.g., Hecht, 2002; Head et al., 2003]. Currently, UP1 

polygons are more influenced by degradation through sublimation. This process would be 

enhanced by the dark fine-grained material trapped within the polygon troughs. Furthermore, the 

enrichment of fine material within the large cracks could have led to the formation of sand-wedge-

like structures [e.g., Sletten et al., 2003; Bockheim et al., 2009] (Table 3.5).  

The small Martian polygons (UP2, UP3, and UP4) were formed after the depression formed 

and must therefore be relatively young (Figure 3.14). If scallop formation is comparatively young, 

as stated e.g., by Ulrich et al. [2010], these polygons are not older than 5 Myr and are most likely 

much younger [e.g., Levy et al., 2009a, b, 2010a]. Based on the geomorphometry of the low-

centered polygons located on the north-facing slope of the depression (i.e. UP2), it was concluded 

that thermal contraction cracking is active there (Table 3.5) and that these polygons formed in fine-

grained ice-rich material. This is in agreement with the suggestion of Lefort et al. [2009] that they 

formed in connection to an ice table, which is closer to the surface there than on the uplands and 

deepens towards the south-facing slope. The lower amount of insolation on the north-facing slope 

results in higher ground-ice stability. This would explain currently active thermal contraction 

cracking despite lower temperature gradients on this permanently-shaded part of the depression 

[Lefort et al., 2009]. However, if ice-cemented material were to be exposed after scarp erosion [see 

Ulrich et al., 2010], initial cracking could have occurred immediately afterwards (Figure 3.14) and 

the small polygons could have been formed within a few tens of years [Mackay and Burn, 2002]. 

The cracks would then fill with wind-blown material, forming sand-wedges. Furthermore, if 

thawing of ground-ice enhanced the scarp erosional process during higher obliquity conditions 

[Ulrich et al., 2010], a small occasional water supply likely led to the formation of composite 

wedges [e.g., Murton, 1996] and thus the development of upturning ridges beside the cracks. As the 

ice-table deepens towards the depression bottom [Lefort et al., 2009] and the ground-ice content is 

lowered accordingly, the activity of the UP2 polygons decreases or even ceases entirely at a greater 

distance from the scarp [e.g., Mellon, 1997] (Table 3.5 and Figure 3.14).  
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The high-centered polygons on the ridges inside the depression (UP3) are proposed to have 

originated by similar processes as the UP2 polygons, although they represent older evolutionary 

stages in context of the equator-ward lateral depression formation and scarp erosion [Ulrich et al., 

2010; Séjourné et al., 2011]. After the ridges were formed, their exposed position led to an initial 

enhancement of sublimation within the previously-formed crack pattern, especially if composite 
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wedges existed below the cracks. Accordingly, the age of the UP3 polygons increases towards the 

depression bottom (Figure 3.14). They are further influenced by intensified erosion and degradation 

and thus changing geomorphology due to the aspect of the internal ridges as was identified by the 

statistics. The changing geomorphometry of the polygonal UP2 and UP3 networks within the 

depression (Table 3.5) is in agreement with the proposed lateral scarp formation in the equator-

ward direction [Ulrich et al., 2010; Séjourné et al., 2011]. While the UP2 and UP3 polygons are 

slightly smaller, more regular, orthogonal, and more subdivided on the north-facing slope, they are 

bigger, much more degraded, more irregular, and rather hexagonal on the depression bottom 

towards the south-facing slope (Figures 3.13 and 3.14). Moreover, the morphology of upturning 

ridges beside the outlining cracks of the low-centered UP2 polygons is consistent with the recent 

growth of sand wedges or even the hypothesis of composite-wedge formation during more benign 

conditions in the past. Levy et al. [2009b] suggested an alternative formation hypothesis to explain 

the elevation of mixed-center polygon shoulders. The location of sublimation would shift inside a 

polygon; sublimation would be enhanced within the polygon interior as the troughs become 

insulated from further deepening by the thickening of ice-depleted material therein, while the 

centers remain less-efficiently insulated. This could be an explanation for the UP4 polygonal 

network on the south-facing slope where no cracks and only single outlining ridges could be 

observed. The UP4 polygons show close similarities to the “brain terrain” discussed by Levy et al. 

[2009b]. After a small initial crack network, superimpose upon the remnants of the upland 

polygonal cracks, was formed by permanent insolation and therefore relatively higher temperature 

gradients (Figure 3.14), it is conceivable that the pattern was modified relatively quickly according 

to Levy et al. [2009b] by continuous ground-ice sublimation and subsidence of ice-depleted 

material. The UP4 polygonal field could be an expression of the flattening and recent surface 

stabilization by permanent insolation and continuous but slow ground-ice sublimation on the south-

facing scalloped depression slope [Ulrich et al., 2010].  

In summary, from the comparison of polygon geomorphometry alone it seems problematic to 

classify the Martian polygons as ice-wedge, sand-wedge, or sublimation polygons, not least 

because the Adventdalen polygons also show close similarities to sand-wedge or sublimation 

polygons in Antarctica [e.g., Péwé, 1959; Marchant et al., 2002; Sletten et al., 2003; Bockheim et 

al., 2009; Levy et al., 2010a]. If we consider the evolution of the UP polygons in the 

geomorphological context of the scalloped depression formation, it becomes obvious, however, that 

sand or even composite wedges are likely to be formed and that all the different polygonal fields 

represent different evolutionary stages within the landscape formation process (Figure 3.14). 

Differing local and regional changes in climate and ground-ice conditions are reflected in their 

geomorphology and geomorphometric characteristics. Recent polygon development in western UP 

seems to be limited to the effects produced when small-scale local conditions allow active thermal 

contraction cracking (Table 3.5). Regionally, the UP polygons have been influenced by dry 
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degradation processes such as ground-ice sublimation. As this is a very slow process, the polygon 

evolution in UP is currently almost stagnant compared to polygon evolution stimulated by the fast-

changing environment in Adventdalen. 

 

3.6 Conclusions 

Thermal contraction polygons in different stages of evolution on Svalbard were used as 

terrestrial analogues to elucidate the processes of small-scale polygon formation in western Utopia 

Planitia, Mars. Quantitative terrain analyses on the basis of very-high-resolution remote-sensing 

data indicate a comparable thermal contraction cracking genesis of the small-scale polygons 

investigated on Mars, and allowed us to infer specific atmospheric and subsurface conditions which 

exist or which existed in the past in relation to polygon formation on Mars. Both in Adventdalen 

and on Mars, polygon evolution is strongly related to regional and local landscape dynamics. On 

Earth and on Mars larger polygons were formed in the past during times when more favorable 

conditions allowed deep thermal contraction cracking. These polygons are currently degrading. The 

formation of composite wedges could have occurred in response to past orbital configurations of 

Mars, which led to the development of small low-centered polygons on north-facing scalloped 

depression slopes. These patterns show the closest analogy to ice-wedge polygons in Adventdalen. 

However, their location within the scalloped depressions probably allowed active thermal 

contraction cracking and possibly sand-wedge growth under current Martian climate conditions. On 

Earth ice-wedge polygons form due to the existence of liquid water, and are subsequently degraded 

by ground-ice thawing, while the present appearance of Martian polygons is primarily the result of 

dry degradation processes (i.e. sublimation). 

The multivariate statistical approach was successfully applied to quantitatively validate the 

relationship between polygon geomorphometry and topographical parameters. Comparatively few 

environmental parameters could be extracted out of DEMs and used in the statistics as explanatory 

(i.e. environmental) variables, which results in the relatively high amount of unexplained variance 

in the polygon dataset. In future work, further parameters reflecting not only topography but also 

subsurface and climate conditions should be included in the statistics. Furthermore, in cooperation 

with other quantitative methods like spatial point pattern analysis (SPPA) [e.g., Dutilleul et al., 

2009; Haltigin et al., 2010], a more detailed understanding of diverse polygonal geomorphometry 

can be achieved and linked to individual formation processes. 

Our results demonstrate the difficulty of addressing the question of what factors govern the size 

and shape of polygons. These results emphasize the complex interaction of various factors such as 

air and ground temperature variations, subsurface conditions, and topography. More detailed 

analyses of physical properties influencing polygon evolution should be performed, and the 

individual subsurface and climatic conditions of genetically differing polygonal structures must be 
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included in future quantitative terrain analyses. Field surveys of analogue morphologies in 

terrestrial permafrost environments are the necessary complement and provide the ground truth for 

remote-sensing data analyses. 
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Abstract 

Subsurface permafrost environments on Mars are considered to be zones where extant life 

could have survived. For the identification of possible habitats it is important to understand 

periglacial landscape evolution and related subsurface and environmental conditions. Many 

landforms that are interpreted to be related to ground ice are located in the Martian mid-latitudinal 

belts. This paper summarizes the insights gained from studies of terrestrial analogues to permafrost 

landforms on Mars. The potential habitability of Martian mid-latitude periglacial landscapes is 

exemplarily deduced for one such landscape, that of Utopia Planitia, by a review and discussion of 

environmental conditions influencing periglacial landscape evolution. Based on recent calculations 

of the astronomical forcing of climate changes, specific climate periods are identified within the 

last 10 Ma when thaw processes and liquid water were probably important for the development of 

permafrost geomorphology. No periods could be identified within the last 4 Ma which met the 

suggested threshold criteria for liquid water and habitable conditions. Implications of past and 

present environmental conditions such as temperature variations, ground-ice conditions, and liquid 

water activity are discussed with respect to the potential survival of highly-specialized 

microorganisms known from terrestrial permafrost. We conclude that possible habitable subsurface 

niches might have been developed in close relation to specific permafrost landform morphology on 

Mars. These would have probably been dominated by lithoautotrophic microorganisms (i.e. 

methanogenic archaea). 

 

4.1 Introduction and background 

The identification of possible habitable zones on extraterrestrial planets is one of the major 

challenges in planetary research. This quest is based predominantly on the search for zones outside 

the Earth where liquid water exists or has existed in the past. The occurrence of water is one of the 

major requirements for the existence, evolution, and preservation of biological systems. 

Habitability is generally defined as a measure of an environment’s potential, past or present, to 
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sustain any kind of life as we know it [e.g., Des Marais et al., 2003]. Kminek et al. [2010] defined 

the lower limits of temperature and water activity (aw) on Mars to which terrestrial organisms are 

able to replicate or extant Martian life could have survived to 25°C and 0.5, respectively, and 

defined the geomorphologic features, which meet these requirements under present-day conditions 

as special regions, such as gullies or the deep subsurface. Periglacial (i.e. cold-climate) features, for 

instance, are not considered to be special regions [Beaty et al., 2006; Kminek et al., 2010]. 

Mars is the most promising celestial body to search for water and habitable zones. 

Investigations of specific geomorphologic features (e.g., outflow channels, deltas, paleolakes) led 

authors to infer that water was active on the surface in the geological history of Mars [e.g., Carr, 

1996; Baker, 2001]. The almost global distribution of hydrated minerals on the very old (Noachian-

Hesperian) Martian surfaces of the low- and mid-latitude highlands further suggests diverse surface 

alterations in the distant past under the influence of water [e.g., Bibring et al., 2006, Chevrier and 

Mathé, 2007]. Based on these observations, it has often been suggested that life or the remnants of 

life (e.g. spores, organic detritus, fossil microorganisms) should be sought in the geologically 

oldest regions on Mars due to the assumption that conditions on early Mars (>3.8 Ga) were more 

favorable to the origin of biological systems [McKay and Stoker, 1989; Farmer and Des Marais, 

1999]. The present atmospheric conditions (i.e. very low pressure, low temperatures, hyper-aridity, 

high radiation) generally do not allow the permanent existence of liquid water and life on the 

Martian surface [Kminek et al. 2010]. If life still exists, it must have survived in well-protected 

ecological niches, which are still unknown [e.g., Horneck, 2000].  

Subsurface permafrost environments on Mars represent one possibility where highly-

specialized microorganisms could have survived or may still exist [e.g., Chapelle et al., 2002; 

Gilichinsky, 2007; Morozova et al., 2007]. Most of the water on Mars probably exists today as 

ground ice in the subsurface. This is supported by the findings of the Gamma Ray Spectrometer 

(GRS) on Mars Odyssey, which detected an increasing abundance of water-equivalent hydrogen 

(interpreted as ground ice) towards the Martian poles [Boynton et al., 2002; Mitrofanov et al., 

2002; Feldman et al., 2004]. The habitability of Martian high latitudes has been discussed by e.g., 

Jakosky et al. [2003] and Stoker et al. [2010]; the mid-latitudes could be of particular importance 

with respect to the search for life, because they represent a transition zone [Kreslavsky and Head, 

2002]. On the one hand, ground ice is permanently stable in the very cold polar regions [Mellon et 

al., 2004] and liquid water could probably occur only temporarily as salty solutions (i.e. 

cryobrines) under present-day climate conditions [e.g., Rennó et al., 2009; Möhlmann, 2010a]. On 

the other hand, temperatures could reach 273 K (H2O melting point) in the equatorial regions, but 

water and ground ice are unstable and will sublimate even from several meters deep in the ground 

because of very low atmospheric pressure [Mellon and Jakosky, 1995; Mellon et al., 2004]. Many 

landforms which are primarily distributed in the mid-latitudes (between ~30° and 60°), such as 

gullies and periglacial features (e.g., polygons, scalloped depressions, fractured mounds, viscous 
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flow features) [e.g., Malin and Edgett, 2000; Mangold, 2005; Burr et al., 2009; Levy et al., 2009a; 

Dundas and McEwen, 2010], are interpreted to have formed in the presence of transient surface 

water and/or the occasional thawing of ground ice which has occurred due to the extreme variations 

of Mars orbital configurations within the Late Amazonian [Costard et al., 2002; Dickson et al., 

2007; Ulrich et al., 2010]. Surface features possibly indicative of thawing, however, are not 

restricted to mid-latitudes, and have been found at high latitudes [Gallagher et al., 2011] and even 

near the equator [Balme and Gallagher, 2009]. Young periglacial landforms that resemble cold-

climate (i.e. permafrost) features on Earth are of particular astrobiological interest because, first, 

they suggest the presence of ground-ice dynamics during their formation and, second, permafrost is 

known to be a rich habitat for cold-adapted microbial communities [reviewed in Gilichinsky and 

Wagener, 1995; Wagner, 2008]. It is particularly interesting to discuss the habitability of regions 

on Mars where many possibly-periglacial landforms are spatially related, for instance Utopia 

Planitia (UP) or Martian mid-latitude craters [see Hauber et al., 2011], because in those regions it 

is necessary to consider the geomorphological context of diverse landscape features. 

The main purpose of this paper is to discuss the potential habitability of mid-latitude 

permafrost environments on Mars. Martian mid-latitudes in general are potentially interesting for 

habitability studies, and UP is the particular area we chose to focus on in our investigation of this 

topic. Based on the literature and on our own previous studies [Ulrich et al., 2010, in press], which 

were strongly guided by terrestrial analogue field work, diverse landforms are integrated to propose 

a conceptual scenario for periglacial landscape evolution. With focus on the formation theories of 

diverse permafrost landforms in western UP, the potential climate-related influence of water and/or 

thawing ground ice during climate changes within the last 10 Ma will be considered. Finally, we 

will discuss the overlap of past and present environmental conditions on Mars within the allowed 

environmental range for growth or survival of certain microorganisms in order to define possible 

habitable niches. 

 

4.2 Permafrost conditions of Utopia Planitia 

Possible periglacial landforms on Mars have been studied since the Viking era (late 1970`s). 

Their formation was interpreted to have occurred in association with Martian ground ice [e.g., 

Lucchitta, 1981; Rossbacher and Judson, 1981]. With the advent of high-resolution images 

acquired by the Mars Orbiter Camera (MOC, between 1997 and 2006) and the High Resolution 

Imaging Science Experiment (HiRISE, since 2006), the western UP region (centered at ~45°N; 

Figure 4.1), in particular, became the focus of periglacial investigations (see Table 4.1) because the 

landscape assemblages (e.g., scalloped depressions, polygonal patterned ground, and pingo-like 

features; Figure 4.2) show morphological analogies to permafrost landscapes on Earth [e.g., 

Morgenstern et al., 2007; Soare et al., 2008; Burr et al., 2009; Ulrich et al., 2010] (Figure 4.1c, d). 
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However, the role of liquid water in the evolution of the UP landscape is still under debate 

(Table 4.1). 

 

Figure 4.1: Regional setting of Utopia Planitia. (a) MOLA DEM on shaded relief shows the area 
located in the western part of the Utopia basin on which this work is focused (white rectangle). All 
periglacial features discussed and compiled from the literature in Tab. 1 are clustered between 30°-
60°N and 80°-120°E. The mid-latitudinal belts are highlighted. VL2, Viking Lander 2 site. The 
“High-Low” scale refers to elevation. (b) Geological map of western Utopia Planitia. According to 
Tanaka et al. [2005], the geological units with decreasing age are; Early Hesperian: HBu1=Utopia 
Planitia 1 unit. Late Hesperian: HBu2=Utopia Planitia 2 unit, AHEe=Elysium rise unit. Early 
Amazonian: ABvi=Vastitas Borealis interior unit, AEta=Tinjar Valles a unit. Late Amazonian: 
ABa=Astapus Colles unit. AHc=Crater unit. Examples of landscape assemblages are shown by 
HiRISE portions for (c) the ABa unit and (d) the ABvi unit. 
 

4.2.1 Latitude-dependent mantle deposits 

UP is part of the Utopia Basin (Figure 4.1a), which was probably formed by a giant impact 

during the (pre-) Noachian period (~4.5 to ~3.7 Ga) [McGill, 1989]. During the Hesperian (~3.7 to 

~3.0 Ga), the region underwent significant modifications by volcanic and tectonic activities. At the 

end of the Hesperian in transition to the Amazonian (<3 Ga) the basin was filled by outflow 

channel deposits; these deposits were subsequently reworked to form the Vastitas Borealis units, 

which underlay the region today [see Tanaka et al., 2005, and references therein].  
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The Late Amazonian was characterized by depositions of an ice-dust mixture, building a tens-

of-meters-thick ice-rich sediment mantle that spreads over the mid- to high latitudes on both 

hemispheres and covers the Vastitas Borealis units on the northern hemisphere [e.g., Kreslavsky 

and Head, 2000; Mustard et al., 2001; Head et al., 2003]. This mantle was identified on the basis 

of Mars Orbiter Laser Altimeter (MOLA) and MOC data. It forms layered deposits covering older, 

rougher terrain, which appear to be smooth where they are not degraded [Kreslavsky and Head, 

2000; Mustard et al., 2001] (see Figure 4.2b, e). The degradation of the ice-rich mantle increases 

towards the equator and is attributed to insolation-driven sublimation of ground ice [Mustard et al., 

2001; Milliken and Mustard, 2003, Morgenstern et al., 2007]. This process has created a distinctive 

appearance and specific surface morphologies, especially in the regions between 30° and 60°; this 

suite of characteristics has been referred to as “dissected mantle terrain” (DMT) by Milliken and 

Mustard [2003]. In the western UP, the Astapus Colles unit (ABa), which overlies the Vastitas 

Borealis interior unit (ABvi), represents parts of the DMT [Tanaka et al., 2005] (Figure 4.1b). 

Many periglacial features are widespread on the ABa unit (Figure 4.1c) and the surrounding ABvi 

unit (Figure 4.1d), reflecting the assumed presence of ground ice. 

The poleward-increasing hydrogen content in surface soils detected by GRS, which is mainly 

interpreted as a signal of ground ice [e.g., Feldman et al., 2004], supports these theories of mantle 

formation. Extreme variations in Martian orbital parameters and the related changes in insolation 

intensity are thought by many authors to be the driving force for the cyclical deposition and 

mobilization of volatiles [e.g., Head et al., 2003; Levrard et al., 2004; Madeleine et al., 2009]. 

Laskar et al. [2004] precisely calculated orbital parameter variations and corresponding insolation 

changes for the last 10 to 20 Ma. Insolation and surface temperatures are often suggested to vary 

with the obliquity cycle (~120 ka). Moreover, variations are related to eccentricity (cycle of 95 to 

99 ka) and the perihelion precession (51 ka cycles) [Laskar et al., 2002]. During high-obliquity 

conditions water-ice is removed from the polar reservoirs, transported equator-ward, and deposited 

as a mantle consisting of an ice-dust mixture; in contrast, during low obliquity conditions, like the 

present, interstitial ice within the upper surface layer becomes unstable, sublimates, and is 

transported pole-ward. Thus the mantle becomes progressively degraded between 60° and 30° [e.g., 

Mustard, et al., 2001; Milliken and Mustard, 2003]. Alternatively, Levrard et al. [2004] and 

Madeleine et al. [2009] propose that under prolonged high-obliquity conditions volatiles are 

transported from the poles to the equatorial regions, building tropical mountain glaciers. During 

moderate obliquity (~25° to 35°), this equatorial ice reservoir sublimates and the water is then 

redistributed pole-ward and accumulates as air-fall deposition (i.e. precipitation) of ice and dust 

[Levrard et al., 2004]. The volatile cycling in response to orbital variations led Head et al. [2003] 

to infer that the surface of Mars is influenced by ice ages, and that Mars currently exits in an 

interglacial period. According to the orbital parameters, the most recent ice ages occurred during 

high obliquity periods less than ~5 Ma ago [Head et al., 2003; Levrard et al., 2004]. 
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Table 4.1: Literature-based compilation of records focusing on Utopia Planitia and landforms in 
which water, ground ice, and/or glacier ice are suggested to have played a role during formation 

Form Interpreted process Suggested 
liquid 
water 
activity 

Relative 
age 

Data Author 

Ground-ice degradation features 

Scalloped 
depressions 

- insolation-driven ground-ice 
sublimation  
- volume loss and surface collapse 

Low Late 
Amazonian 

HRSC, 
THEMIS-VIS, 
MOC, MOLA 

Morgenstern 
et al. [2007] 

Scalloped 
depressions 

- evaporation and drainage of melt-
water ponds 

Very high Late 
Amazonian 

MOC Soare et al. 
[2007] 

Pits along pedestal 
craters 

- sublimation of volatiles Low Amazonian CTX, MOLA 
THEMIS-VIS 

Kadish et al. 
[2008] 

Lobate, scalloped 
and rimless 
depressions 

-  episodic loss of ponded water by 
evaporation or drainage 

Very high Late 
Amazonian 
 

MOC,  
THEMIS-VIS, 
HiRISE 

Soare et al. 
[2008] 

Scalloped 
depressions 

- insolation-driven ground-ice 
sublimation  
- localized thawing and slumping 
events 
- volume loss and surface collapse 

Low to 
middle 

Late 
Amazonian 

HiRISE,  
MOC, 
THEMIS-IR 

Lefort et al. 
[2009] 

Scalloped 
depressions 

- insolation-driven ground-ice 
sublimation  
- surface subsidence and lateral 
growth 
- slumping processes due to 
increasing sublimation and 
occasional thawing  

Low to 
middle 

Late 
Amazonian 

HiRISE, CTX, 
THEMIS-IR,  
MOLA 

Ulrich et al. 
[2010] 

Scalloped 
depressions 

- ground-ice sublimation 
- surface subsidence and lateral 
growth 
- increasing sublimation at interior-
polygon troughs 

Low to 
middle 

Late 
Amazonian 

HiRISE, 
MOLA 

Séjourné et 
al. [2011] 

Polygonal patterned ground 

Small-scale 
polygonal structures 

- thermal contraction cracking 
- ice-wedge growth 

Middle to 
high 

Amazonian MOC Seibert and 
Kargel 
[2001] 

Small-scale 
polygonal structures 

- thermal contraction polygons 
- ice wedges 
- after slow loss of ponded water  

Very high Late 
Amazonian 

MOC, MOLA Soare et al. 
[2005] 

Small-scale 
polygonal structures 

- thermal contraction cracking 
- enhanced degradation of N-S 
trending cracks by warm winds 
during summer 

Low Late 
Amazonian 

HRSC, 
THEMIS-VIS, 
MOC, MOLA 

Morgenstern 
et al. [2007] 

Small-scale 
polygonal structures 

- ice-wedge polygons 
- freeze and thaw cycles included 

Very high Late 
Amazonian 
 

MOC,  
THEMIS-VIS, 
HiRISE 

Soare et al. 
[2008] 

Small-scale 
polygonal structures 

- thermal contraction polygons at 
different stages of evolution 
- modification by sublimation 

Low to 
middle 

Late 
Amazonian 

HiRISE,  
MOC, 
THEMIS-IR 

Lefort et al. 
[2009] 

“Brain terrain” and 
small-scale 
polygonal structures 

- thermal contraction cracking 
- differential sublimation and 
topographic inversion 

Very low Late 
Amazonian 

HiRISE Levy et al. 
[2009b] 

Small-scale 
polygonal structures 

- thermal contraction polygons at 
different stages of evolution 
- uncertain filling of cracks 
- degradation by sublimation 

Low to 
middle 

Late 
Amazonian 

HiRISE, 
MOLA 

Séjourné et 
al. [2011] 

Small-scale 
polygonal structures 

- thermal contraction polygons at 
different stages of evolution 
- sand-wedge formation 
- current degradation by 
sublimation 
- formation of composite wedges 
by occasional ground ice thawing 

Low to 
middle 

Late 
Amazonian 

HiRISE Ulrich et al. 
[in press] 
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Table 4.1: (Continued) 
Form Interpreted process Suggested 

liquid 
water 
activity 

Relative age Data Author 

Pingo-like structures 

Small crater-floor 
mounds 

- hydrostatic (closed-system) 
pingos 
- formed after the presence and 
drainage of ponded water by 
ground-ice aggradation 

Very high Late 
Amazonian 

MOC, MOLA Soare et al. 
[2005] 

Small fractured and 
flat-topped mounds 

- analogue to terrestrial pingos 
- uncertain process 
- presence of ground ice and 
subsurface liquid water is 
suggested 

High Amazonian HiRISE, CTX 
MOC 

Dundas et 
al. [2008] 

Raised rim landforms - collapsed hydrostatic (closed-
system) pingos 

Very high Late 
Amazonian 
 

MOC,  
THEMIS-VIS, 
HiRISE 

Soare et al. 
[2008] 

Dome, cone, and 
ring-shaped features 

- open-system (hydraulic) pingos 
at different stages of evolution  
- melting ground ice due to deep 
subsurface heat source 

High Amazonian MOC,  
THEMIS-VIS, 
HRSC, MOLA 

de Pablo 
and 
Komatsu 
[2009] 

Others      

Gullies - meltwater migration through a 
thawed ice-rich regolith to gully 
alcoves 

Very high Late 
Amazonian 

MOC Soare et al. 
[2007] 

Lobate flows, 
concentric crater 
fills, arcuate ridges 

- glacial origin Low Late 
Amazonian 

MOC, MOLA, 
THEMIS-
VIS/NIR, 
HiRISE, CTX 

Pearce et 
al. [2011] 

 

4.2.2 Ground-ice and environmental conditions 

In contrast to the DMT hypotheses, Mellon et al. [2004] present ground-ice stability models for 

Mars and suggest that the behavior of ground ice is controlled by a climate- and latitude-dependent 

water exchange which occurs via vapor diffusion into and out of the subsurface regolith. Ground 

ice is currently not stable within the upper surface layer in UP, but the region is located near the 

modeled boundary of the global mean ground-ice stability zone [e.g., Mellon and Jakosky, 1995]. 

The permafrost table is assumed to be stable at a depth of about 1-2 m; this is true especially if ice-

cemented layers are insulated by dry, ice-depleted surface deposits [Mellon et al., 2004]. However, 

the permafrost table could be much closer to the surface and ground ice could be stable due to more 

favorable local conditions like shaded pole-facing slopes or areas with higher albedo and/or lower 

thermal inertia (the ability of material to store and conduct heat) [Mellon et al., 2004; Schorghofer 

and Aharonson, 2005]. The quantity of ice in the upper ground (<1 m) in UP detected by the GRS 

is estimated to be about 7 wt%, e.g., at the Viking Lander 2 (VL2) site (47.7°N, 134.1°E) (see 

Figure 4.1a) [Feldman et al., 2004]; this estimate is, however, much more than the amount directly 

measured at VL2 (Table 4.2). Generally, hydrogen concentrations detected by GRS between 40° 

and 60° latitude on both hemispheres are in the range of 4 wt% to 20 wt% water equivalent 

[Boynton et al., 2002; Mitrofanov et al., 2002; Feldman et al., 2004].  
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Figure 4.2: Examples of periglacial-like landforms in Utopia Planitia (see also Table 4.1). (a) 
Scalloped terrain with coalesced asymmetrical depressions extending over different elevations 
(CTX image: P02_001938_2263_XI_46N267W; 46.37°N, 91.10°E). (b) Group of small fractured 
mounds interpreted to be analogues to terrestrial pingos (ice-cored mounds) and a polygonal 
network. Note in the lower right radial and concentric cracks are probably formed due to a 
subsurface structural weakness caused by a mantle-covered crater (HiRISE Image: 
PSP_006804_2220; 40.00°N, 83.04°E). (c) Polygonal structures in and around scalloped 
depressions. Larger polygons on the non-degraded uplands, truncated by the depressions, can be 
distinguished from small low- and high-centered polygons on a north-facing scalloped depression 
slope (upper part of the image) (HiRISE image: PSP_001938_2265; 45.00°N, 92.10°E). (d) 
Polygonal network with well-pronounced N-S trending troughs and pit chains (HiRISE image: 
PSP_002202_2250; 40.00°N, 84.44°E). (e) and (f) Other features of possible glacial and periglacial 
origin, which are linked to climate-related accumulation of ice-rich material and landscape 
modification. (e) Filled crater and “brain terrain” (HiRISE image: PSP_006962_2215; 40.00°N, 
90.09°E). (f) Concentric crater fill, rimless depressions, and “brain terrain” described by Levy et al. 
[2009b] (HiRISE image: PSP_002782_2230; 40.00°N, 90.03°E). North is always up. 
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Morgenstern et al. [2007] showed that the present mean surface temperatures in the western 

UP region range from ~180 K in winter to ~240 K in summer and thermal modeling indicates that 

temperatures could reach ~260 K during summer [Ulrich et al., 2010]. This is consistent with the in 

situ observations at the VL2 site (Table 4.2). About 24 cm below the surface, however, 

temperatures fall to about 222 K [Kieffer, 1976] and would probably continue to decrease rapidly to 

~180 K in an ice-cemented soil layer as was modeled by Mellon et al. [2004] for a latitude of 55°S. 

Thus, if similar deposits exist for the UP region, temperatures therein would be far below the 

current Martian frost point of water (typically ~198 k) and temperature fluctuations would probably 

be restricted to the uppermost soil layers [Mellon et al., 2004; Schorghofer and Aharonson, 2005]. 

If liquid water exists, it could therefore only be stable in an extremely salty solutions (i.e. a 

cryobrine) [see e.g., Möhlmann, 2010a; Tosca et al., 2011] or as thin films of adsorption water [e.g. 

Möhlmann, 2005]. Combining VL2 surface pressure data, which consistently show values above 

the triple point of water (6.1 mbar, ~273 K; see Table 4.2), temperature data from the Viking 

orbiter, and MOLA topography data, Lobitz et al. [2001] estimate that pure liquid water could be 

stable currently in the form of thin films at some locations during 5% of the Martian year. Haberle 

et al. [2001] point out that pressure values in the northern lowland are indeed above 6.1 mbar but 

temperatures never exceed 273 K and water could therefore not be stable against freezing or 

evaporation above 30°N. Thus, even if transient liquid water could exist on the surface or even in 

the subsurface today, it would not act as a geomorphological agent although it could have 

implications for biological systems. However, as the occurrence of ground ice is the major 

requirement for liquid water, these discussions elucidate the reality that minor variations in the 

Martian climate may be sufficient to re-start a water-influenced periglacial landscape evolution in 

UP. As modeled by Mellon and Jakosky [1995], an obliquity exceeding 27° (today ~25°) is 

required for ice to be stable at latitudes 30° and higher and ground ice becomes globally stable at 

an obliquity exceeding 32°. Thus, most authors (see Table 4.1) suggest that the periglacial 

landscape dynamics in UP were primarily forced under higher obliquity conditions than exist at 

present; at that time, ground ice was stable near the surface even in the mid-latitudes, and more 

favorable climate conditions would have allowed temperatures to increase above the melting point 

of water (i.e. 273 K) [Costard, et al., 2002; Kreslavsky et al., 2008; Ulrich et al., 2010]. 

4.2.3 Periglacial Features 

4.2.3.1 Scalloped depressions 

Asymmetrically-shaped scalloped depressions with steeper slopes facing pole-wards are the 

most remarkable landforms in western UP (Figure 4.2a). According to Morgenstern et al. [2007] 

about 24% of the area between 40°N-50°N and 80°E-85°E is characterized by scalloped 

depressions with an increasing coverage from north to south. These small (<3 km wide), shallow 

(<30 m deep), and rimless depressions have been observed on the southern hemisphere (i.e. Malea 
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Planum) as well, and show an opposed shape [e.g., Lefort et al., 2010]. Often these depressions 

coalesce into entire areas of scalloped terrain. Scalloped, rimless, and flat-floored depressions are 

thought to be the results of ground-ice degradation. Generally, there is an ongoing debate regarding 

their formation (see also Table 4.1). Some authors suggest ground-ice sublimation as the main 

formation process, which is driven by insolation and is enhanced on equator-facing slopes [e.g., 

Morgenstern et al., 2007; Lefort et al., 2009]. A climatically-controlled evolution in which ground-

ice sublimation and surface subsidence is combined with an equator-ward lateral development by 

possible ground-ice thawing on pole-facing slopes during periods of high obliquity is discussed by 

Ulrich et al. [2010] and Séjourné et al. [2011]. Others have interpreted the depressions as residues 

of thermokarst lakes, which would have formed by the thawing of ground ice and the evaporation 

of ponded water during more benign climate conditions [Costard and Kargel, 1995; Soare et al., 

2007, 2008]. According to Lefort et al. [2010], the northern scallops are older than the southern 

analogs which formed in less ice-rich and thinner mantle deposits. Generally, as Milliken and 

Mustard [2003] have pointed out, we know that the scalloped terrain did not erode through the 

entire DMT because the underlying bedrock or substrate is not exposed. This suggests that the 

mantle in regions influenced by scalloped depressions is probably thicker than the mantle found at 

lower latitudes [Milliken and Mustard, 2003; Morgenstern et al., 2007]. 

 

4.2.3.2 Polygonal patterned ground 

Polygonal structures are widespread on Mars, especially at mid- and high-latitudes. There is a 

general consensus that, analogous to terrestrial ice- or sand-wedge polygons, the small-scale 

polygons (<100 m in diameter) originated by thermal contraction cracking in connection with 

ground ice, and their distribution is controlled by climate factors [e.g., Mellon, 1997; Mangold, 

2005; Levy et al., 2009a]. However, there is an ongoing debate about whether ice wedges could 

have been preserved below some small-scale polygonal structures (Table 4.1). Levy et al. [2009a] 

have pointed out that under current atmospheric conditions sand-wedge and sublimation polygons 

dominate the Martian surface.  

The UP region is characterized by distinct small-scale polygonal structures (Figure 4.2c, d), 

clearly related to the scallop morphology [e.g., Ulrich et al., in press]. These structures exist in 

different formation stages due to the varying subsurface and climate conditions. The non-degraded 

uplands surrounding the scalloped depressions show large flat to high-centered polygons, which are 

outlined by deep and wide troughs. Within the scallops, strips of small low- and high-centered 

polygons alternate concentrically from the steep north-facing slopes to the depression bottoms 

(Figure 4.2c). Low-centered polygons show especially strong similarities to active low-centered 

ice-wedge polygons on Earth [Seibert and Kargel, 2001; Soare et al., 2005; Séjourné et al., 2011]. 

In contrast, Levy et al. [2009b] propose that the concentration of low-centered polygons within the 
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scalloped depressions indicates that locally-enhanced sublimation of ground ice has occurred, and 

that the formation of these polygons originated by topographic inversion after the sublimation was 

intensified inside a polygon. 

 

Table 4.2: Some measured and assumed environmental conditions at the Viking Lander 2 site 
(47.7°N, 134.1°E), representative for UP 

Parameter conditions Quantity / Amount  References 

Surface and soil temperatures 

daily 183 to 268 K 
Measured at VL2 
[Kieffer, 1976] 

seasonal 
~180 to ~240 K 
~180 to ~260 K 

Morgenstern et al. [2007] 
Ulrich et al. [2010] 

~24 cm below surface ~222 K Kieffer [1976] 

Permafrost table 
(~1-2 m below surface) 

~180 K Mellon et al. [2004] 

Upper ground-ice (<1 m) 

Water-equivalent hydrogen ~7 wt% 
GRS detection  
[Feldman et al., 2004] 

Soil water content ~2 wt% 
Measured at VL2 
[Anderson and Tice, 1979] 

Pressure (daily mean) 
~7.5 mbar in summer to ~10 mbar 
in winter 

Measured at VL2 
[Hess et al., 1980] 

Nutrients (C, H, N, O, P, S) Available from atmosphere 

All compiled as inferred by 
Stoker et al. [2010] 

Chemical energy source for 
microorganisms 

Perchlorate and reduced iron 

Salinity  High 

aw Very low 

pH Slightly alkaline 

 
 

4.2.3.3 Pingo-like features 

Pingos are perennial frost mounds that indicate the presence of permafrost. They are formed by 

the growth of a massive ice-core and the subsequent up-doming of the overlying terrain surface 

[see Gurney, 1998, and references therein]. Important preconditions for pingo formation are the 

pressurized migration of liquid water through unfrozen zones within permafrost and, thus, the 

occurrence of unconsolidated, permeable ground layers [Gurney, 1998; Dundas and McEwen, 

2010; Grosse and Jones, 2011]. Pingos are generally conical with circular to elliptical outlines; 

diameters range up to 600 m and they can be several tens of meters in height [Gurney, 1998]. 

Fractures (i.e. dilation cracks) have often developed in the overlying surface by the radially-
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outward displacement of material, and central depressions are commonly formed on collapsing 

pingos [Mackay, 1987]. 

Small fractured mounds, domes, and ring-shaped features at many sites on Mars were 

interpreted to be pingos or collapsed pingos [see Burr et al., 2009; Dundas and McEwen, 2010; and 

references therein] (see Table 4.1). Concerning the pingo-like features in UP (Fig. 4.2b), Burr et al. 

[2009] pointed out that the question of the water source required for pingo formation remains open. 

On Earth hydrostatic closed-system pingos are widespread in arctic lowlands and have formed 

mostly within drained thermokarst depressions [Grosse and Jones, 2011] by re-freezing of 

unfrozen zones from all sides following water migration under hydrostatic pressure. Hydrologic 

open-system pingos are mostly distributed in areas with topographic relief (e.g., valleys of east 

Greenland and Svalbard) and formed by pressurized (artesian) water from a hydraulic head [e.g., 

Yoshikawa, 1993].  

Besides the hypotheses of obliquity-driven formation of pingos in a “wet” periglacial 

environment [Soare et al., 2005, 2008], de Pablo and Komatsu [2009] propose a possible magma 

chamber under the Utopia basin as a heat source for melting ground ice. However, based on a 

Mars-wide inventory of fracture mounds using HiRISE data, Dundas and McEwen [2009] 

concluded that fractured mounds on the floors of mid-latitude craters morphologically most closely 

resemble terrestrial pingos [see also Hauber et al., 2011] and suggest that pingo-like features in UP 

are more likely formed by latitudinally-controlled erosion processes [Dundas and McEwen, 2009]. 

 

4.3 Permafrost as microbial habitat on Earth 

Among all extreme terrestrial habitats [Rothschild and Mancinelli, 2001], permafrost is the 

most promising analogue for a potential life habitat on Mars [e.g. Gilichinsky et al., 1995]. Studies 

of microbial diversity in permafrost and cold-climate environments show that terrestrial permafrost 

is colonized by high numbers of very specialized cold-adapted (psychrophilic) microorganisms 

[Wagner, 2008]. They have existed for several million years independent of photosynthetic energy 

production and can be still active with very low amounts of unfrozen water [e.g., Rivkina et al., 

2000; Gilichinsky et al., 2007]. Moreover, the cold and freeze tolerance of permafrost-derived 

bacteria seems to be associated with salt tolerance [Vishnivetskaya et al., 2000; Gilichinsky et al., 

2005; Morozova and Wagner, 2007].  

In light of the present-day Martian climate and subsurface conditions, Antarctic dry permafrost 

is often suggested as the most probable analogue environment to Mars. Gilichinsky et al. [2007] 

reported that microorganisms occur in Antarctica as deep as several meters in ~5 Ma old, dry, 

frozen deposits, and that they are still metabolically active at ground temperatures between 18°C 

and 28°C. In addition, Rivkina et al. [2000] and Vishnivetskaya et al. [2000] isolated bacteria 

from 2-3 Ma old Siberian permafrost deposits at ~25 m and ~40 m depth, respectively, in ground 
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temperatures of about 10°C. The activity of methanogenic archaea for instance is also evident in 

24-m-deep Siberian Late Pleistocene ice-rich sediments [Griess et al., in prep].  

In spite of the extreme habitat conditions in deeper permafrost zones, the active layer, 

especially, is subjected to drastic variations of environmental conditions (e.g., temperature, salinity, 

soil pressure, moisture, oxygen) due to strong seasonal changes in air temperature (approx. between 

50°C and +30°C), snow cover, and related freeze and thaw cycles [e.g., Yershov, 2004]. 

Differences in micro-relief formed by cryogenic processes in the active layer also influence the 

composition and activity of microbial communities [e.g., Wagner et al., 2005; Liebner et al., 2008]. 

Detailed analyses of microbial community compositions within the active layer of a low-centered 

ice-wedge polygon in the Siberian Lena Delta, for instance, revealed great abundance and diversity, 

a diversity as large as or even greater than the diversity seen in soil ecosystems existing in more 

moderate conditions [Wagner et al., 2005].  

With respect to Mars and its potential habitability, the biological activity at low temperatures in 

relation to low aw is of special interest [Kminek et al., 2010]. Several studies show that microbial 

communities isolated from permafrost environments are able to remain metabolically active down 

to 20°C (~250 K) [Rivkina et al., 2000; Jakosky et al., 2003]. According to Beaty et al. [2006] and 

Kminek et al. [2010], no microbial reproduction below 20°C and below aw=0.5 has been 

demonstrated so far. However, it is well known that microorganisms may survive or be active at 

temperatures far below 20°C [see e.g., Horneck, 2000; de Vera et al., 2010]. Besides resistance to 

low temperature and a high desiccation tolerance, the metabolic (e.g., potential to grow 

lithoautotrophic without any organic carbon source) and genetic (e.g., regulation of specific genes, 

initialization of repair mechanisms) potential of the microorganisms is important to survive and 

adapt to changing environmental conditions like in terrestrial or Martian permafrost ecosystems. 

Such organisms are most likely to be analogous to any organism that could exist under Martian 

environmental conditions [e.g., Chapelle et al., 2002; Morozova et al., 2007]; this will be discussed 

in detail below. 

 

4.4 Habitability during events of periglacial landscape evolution in 

UP 

The formation of a volatile-rich mantle deposit (consisting of an ice and dust mixture) under 

higher obliquity conditions is considered to be the starting point for a simple conceptual model of 

periglacial landscape evolution in UP. Strong seasonal temperature gradients allowed deep thermal 

contraction cracking more or less simultaneously, which led to the ubiquitous formation of large 

polygonal systems on the former UP surface. This event was followed by the degradation of ground 

ice, which caused volume loss and surface subsidence and resulted in the formation of rimless, 

scalloped depressions. Different stages of ice loss and lateral basin growth are marked by interior 
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step-like ridges elongated subparallel to the steep north-facing scarps. The scalloped depression 

formation, in turn, is postdated by the development of different small low- and high-centered 

polygonal patterns located within the depressions. Finally, fractured mounds (i.e. pingo-like 

features) would have been formed simultaneously with the three events just described, because they 

are almost free standing and not located within scalloped depressions but are crossed by radial 

cracks (see Figure 4.2b). 

According to Ulrich et al. [2010, in press], almost all periglacial landforms in UP were formed 

in relation to high ground-ice contents and partly to by ground-ice thawing and the existence of 

transient liquid water. However, the absolute timing and duration of these events are still unknown, 

in particular the length of periods with temperatures around 273 K that would have allowed the 

existence of liquid water. Mars experienced a period of high mean obliquity (~35° ± 10°) around 

10 to 5 Ma ago, with a transition period around 5-4 Ma to modern conditions of lower mean 

obliquity (~25° ± 10°) [Laskar et al., 2004]. When the obliquity is high (>35 to 45°), ground ice 

could be stable near the surface in the mid-latitudes and surface temperatures could reach 273 K 

during summer due to increased insolation [Mellon and Jakosky, 1995; Costard et al., 2002; Ulrich 

et al., 2010]. Such favorable conditions would be more probable, however, if the orbit was both 

highly oblique and highly eccentric and the Martian summer coincided with the perihelion. In 

accordance to Paige [2002], summer temperatures remain well above the melting point of water 

throughout the Martian day if obliquity approaches 45°, eccentricity approaches 0.11, and the 

summer in one of both hemispheres coincides with perihelion. Based on Martian climate models 

and our model results [Ulrich et al., 2010], we estimate that a minimum threshold for liquid water 

and habitable conditions will occur in UP if an obliquity higher than 35° coincides with an 

eccentricity higher than 0.08 (more likely >0.1), and the northern Martian summer (solar longitude 

Ls = 90°-180°) occurs at perihelion. Using the calculations from Laskar et al. [2004], such distinct 

periods could be determined for the last 10 Ma (Figure 4.3). For the time before 4 Ma ago, 28 such 

periods were distinguished. These periods cover time spans between 1,000 and 14,000 consecutive 

years and return at intervals of between 41,000 and 1.38 million years. The shortest recurrence 

intervals of about 41,000 to 48,000 years occurred between ~9.82 Ma and ~9.45 Ma ago. If the 

eccentricity threshold is set to 0.1, only 7 such periods remain. The latest periods of 1,000 and 

4,000 consecutive years that meet these requirements started 4.330 Ma and 4.439 Ma ago, 

respectively. One period occurred between 7.864 Ma and 7.855 Ma and 4 periods of 1,000 to 

12,000 consecutive years occurred between ~9.76 Ma and ~9.45 Ma ago (Figure 4.3). At these 

times, potentially habitable conditions most likely existed regionally in UP during summer, and 

liquid water was probably stable for long enough to act as a periglacial agent, assuming a mean 

atmospheric pressure identical to that of today (Table 4.2) or even higher [see Phillips et al., 2011]. 

In particular, the periods 7.864 Ma to 7.855 Ma ago and ~9.76 Ma to ~9.45 Ma ago correspond 

with estimated times of active layer processes in the mid-latitudes [Kreslavsky et al., 2008]. During 
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periods when eccentricity was also higher than 0.08, habitable conditions could have occurred, at 

least locally, under specific relief conditions, like exposed slopes.  

These results should not be regarded as definitive and precise predictions of when Mars was 

habitable. Instead, they are meant to provide a temporal estimate of how long and in which 

intervals liquid water might have occurred in the Late Amazonian. Besides the climate-driven 

temperature changes, seasonal and diurnal changes must also be considered in future discussions of 

habitability during the last 10 Ma on Mars. As was shown by Ulrich et al. [2010], night-time 

temperatures drop to ~200 K even at >45° obliquity, and below 200 K at ~35° obliquity. Similar 

variations may be expected for seasonal temperature changes.  

 

 

Figure 4.3: Variations in Mars’ obliquity (black line) and eccentricity (red line) for the last 10 Ma 
[data from Laskar et al., 2004] and possible habitable periods in which the northern summer (Ls 90 
– 180°) coincided with perihelion, the obliquity was above 35°, and the eccentricity was above 0.08 
(black arrows) or above 0.1 (red arrows). Numbers above the arrows indicate the period’s duration 
if these conditions occurred successively every 1000 years, the minimum time step modeled by 
Laskar et al. [2004]. 

 

In the last 4 Ma, the threshold criteria for liquid water and habitable conditions discussed above 

were never met. Although several excursions to higher obliquity (~35°) might have facilitated 

temperatures of >273 K during summer, these excursions did not coincide with a higher 

eccentricity (Figure 4.3). It is therefore questionable whether liquid water could have existed 

during such periods to act as a geomorphic agent. The morphology of gullies in the mid-latitudes, 

however, has been frequently interpreted as the result of liquid water activity and the origin of 

these gullies has been dated to fairly recent times [e.g., ~300 ka ago, Reiss et al., 2004; <2.4 Ma 

ago, Schon et al., 2009a]. 
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If periglacial landforms in UP are related to the existence of liquid water, the influence of water 

was restricted to conjuncture periods of favorable orbital parameters as shown in Figure 4.3. The 

existence of locally habitable conditions would therefore be closely connected to the 

geomorphological situation during the formation of individual permafrost features. Specific 

locations probably provide climatic niches which exhibit a relatively higher likelihood of habitable 

conditions (Figure 4.4).  

The morphology of scalloped depressions suggests high ground-ice contents. These 

depressions are formed by spatially-varying ground-ice conditions and changes in insolation and 

temperature, which lead to local thawing within the depressions. In particular, the steep pole-facing 

slopes receive the highest insolation rates, and temperatures can be well above 273 K at high 

obliquity conditions (~45°). Night-time temperatures are warmer on these slopes than on flat 

surfaces or on equator-facing slopes [Paige, 2002; Ulrich et al., 2010]. Today, pole-facing slopes 

in scalloped depressions are less insolated and permanently shaded, which results in lower 

temperature gradients and higher ground-ice stability near the slope surface. This would diminish 

deeper subsurface desiccation [e.g., Mellon et al., 2004]. The unique appearance of the polygonal 

structures in and around the scalloped depressions in UP suggests that higher temperatures and 

stronger seasonal temperature gradients existed during their formation. It is conceivable that 

habitable conditions could exist in particular within polygonal cracks, if an occasional water supply 

supported the formation of ice-wedge-like polygons during high obliquity conditions, especially on 

the steeper pole-facing depression slopes [Kreslavsky et al., 2008] (Figure 4.4). Considering that 

drier conditions [see Levy et al., 2009a,b] existed during the formation of the larger polygons 

around the scallops, deep thermal contraction cracks partly filled with fine-grained material [Lefort 

et al., 2009] would provide weakness zones where thermal waves and higher temperatures could 

reach deeper subsurface layers (Figure 4.4). Furthermore, seasonal thermal waves could penetrate 

deeper into the ground during high obliquity conditions than is currently possible [Mellon, 1997], 

inducing more benign micro-climatic conditions within the ice-cemented subsurface soil. If the 

pingo-like features in UP were indeed formed by the growth of a massive ice-core (see above) they 

must be considered as landforms with very high potential for habitable conditions (Figure 4.4). 

Our “dry” approach to Martian periglacial dynamics contradicts the “wet” periglacial evolution 

suggested by e.g., Soare et al. [2008] (see also Table 4.1). Besides the lack of geomorphological 

indicators of long-lived standing bodies of water in UP [Lefort et al., 2009; Ulrich et al., 2010], a 

wet scenario is also not likely because of the seasonal and diurnal temperature variations mentioned 

above. Since the periglacial landforms appear unaltered and well-preserved under the current 

atmospheric conditions, they must have been formed after the deposition of the latest ice-rich 

deposits. If the suggested periglacial landform evolution corresponds to the estimated periods of 

favorable climatic conditions (Figure 4.3), it appears unlikely that the last mantle deposition 

occurred during the most recent obliquity excursion around 0.4 – 2.1 Ma [Head et al., 2003]. If the 
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surface age of the youngest mantle in UP is really only ~1.5 Ma, as determined by the analysis of 

crater size-frequency distributions [e.g., Levy et al., 2009b], its thickness would have had to be very 

small to prevent it from obscuring the permafrost morphology in UP [see Willmes et al., in 

revision]. This seems to be inconsistent with the thickness of the mantle material (Morgenstern et 

al., 2007), which suggests its deposition over tens of millions of years [e.g., Madeleine et al., 

2009]. Levrard et al. [2004] concluded that the latest mantle was formed between ~5-3 Ma ago. 

Moreover, recent crater dating of the DMT in Malea Planum (~55°-60°S), which is the closest 

morphological analogue landscape on Mars to UP, resulted in a mantle deposition age of ~3-5 Ma 

[Willmes et al., in revision]. According to these chronological constraints, the latest major 

permafrost landform modification in UP should be considered to have occurred during periods 

when high obliquity and high eccentricity coincided, ~4.0 to 5.6 Ma ago (Figure 4.3). 

 

 

Figure 4.4: Block scheme of the periglacial landform assemblages in UP, in relation to estimated 
subsurface conditions and potential present-day habitable niches. Habitable niches could have 
resulted from regional habitable conditions in UP during landform formation under the climate 
periods highlighted in Figure 4.3. For further discussion see text. PLF, pingo-like feature (The 
question mark below indicate a hypothetical ice core). The depression is about 1000 m in diameter. 
Ground depth is not to scale. Portion of HiRISE image PSP_001938_2265 superposed on HiRISE 
DEM (stereo pair: PSP_001938_2265_PSP_002439_2265). 

 

4.5 Could life have potentially survived during the last 10 Ma in UP? 

Several paleoclimate models of early Mars have shown that, prior to 3.8 Ga ago, Mars was 

characterized by more moderate temperatures than today, the presence of liquid water, and an 
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anoxic atmosphere, conditions comparable to those extant on early Earth [Durham et al., 1989; 

McKay et al., 1992] at a time when the evolution of microorganisms had already started [Schopf, 

1993]. Therefore, the possibility of finding present or past evidence of life (most likely microbial 

life) on Mars exists, hypothetically. Assuming that early life developed on Mars, Martian life must 

have either adapted to drastically changing environmental conditions or become extinct. 

A basic requirement for any form of life as we know it is a biologically usable carbon and 

energy source. Since organic carbon has not been detected so far at the Martian surface [Klein, 

1998], the most probable carbon source might be carbon dioxide, which can be used to generate 

biomass via autotrophic processes. Carbon dioxide can also be used as an electron donor for the 

oxidation of hydrogen or other inorganic electron acceptors (e.g., Fe3+, MnO2, SO4
2-) to generate 

the energy necessary for life. In addition to carbon and energy, life requires some other specific 

elements to generate biomass, such as H, N, O, P, and S. Most of these elements can be found on 

Mars and in UP [reviewed in Stoker et al., 2010] (see Table 4.2); therefore, this does not appear to 

be a problem for potential life on Mars.  

Besides a carbon-based metabolism with an adequate source of energy, liquid water is 

considered to be one of the prerequisites for habitability. Several studies have indicated that water 

flowed on the surface of early Mars [e.g., Carr, 1996; Baker, 2001; Squyres et al., 2004; Andrews-

Hanna and Lewis, 2011]. The environmental conditions on present-day Mars do not allow liquid 

water to be permanently stable at the surface, but water could periodically become available for 

microorganisms under changing seasonal and diurnal temperature and pressure conditions as 

interfacial water or cryobrines [Möhlmann, 2010a]. One possibility for survival of Martian 

microorganisms could be subsurface ecosystems such as deep sediments, where liquid-like 

(‘unfrozen’) adsorption water could play a key role in allowing the transport of nutrients and the 

waste products of biological processes [Möhlmann, 2005].  

Temperature is another important factor regulating the activity and survival of microorganisms. 

The minimum temperature for growth of microorganisms was recently reported to be 35°C 

(~238 K) [Panikov and Sizova, 2007]. Growth yields of isolated microorganisms were maintained 

down to 17°C; these yields were similar to those obtained from microorganisms kept at 

temperatures above the freezing point. Between 18°C and 35°C, growth was only detectable for 

three weeks after cooling. After that, metabolic activity declined to zero, and the microorganisms 

entered a state of reversible dormancy. These findings are in accordance with the grouping of 

microbial metabolic rates of cold-adapted microorganisms that was proposed by Price and Sowers 

[2004]: rates of their first group are sufficient for microbial growth; those of their second group are 

sufficient for metabolism but too low for growth; rates of their third group allow survival in a 

dormant state accompanied by macromolecular damage repair. Diurnal average subsurface 

temperature profiles calculated for the mid-latitudes on Mars indicated temperatures as low as 

around 90°C (~180 K) in an ice-cemented soil [Mellon et al., 2004]. However, as mentioned 
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above (see also chapter 4.4), it seems feasible that higher temperatures could be reached in deeper 

subsurface layers because thermal waves follow deep contraction cracks [Mellon, 1997]. This 

offers an opportunity for microbial life, since it was shown in a Mars simulation experiment that 

microorganisms from terrestrial permafrost environments can survive a diurnal temperature profile 

between about 75°C and 20°C [Morozova et al., 2007]. In addition, McGrath et al. [1994] showed 

that the intracellular water in fossil bacteria from permafrost soils was not crystallized as ice even 

at an extreme temperature of 150°C. 

Regardless of the extreme conditions described for microbial life on present Mars, the present 

study showed that during the last 10 Ma distinct periods existed in the UP region which enabled 

liquid water to exist, depending on the obliquity and eccentricity of Mars (Figure 4.3). If life 

developed on early Mars during the first main climate stage, which was a water-rich and cold 

epoch (Noachian to Early Hesperian) [Fairén et al., 2010], and this life survived by adaptation to 

the drastically changing environmental conditions, UP seems to provide some of the best isolated 

niches for life during the above-mentioned time period. Potential niches for microbial life include 

for instance, permafrost features such as polygonal structures with deep contraction cracks and 

ground ice as well as the pole-facing slopes of asymmetrically-shaped scalloped depressions, which 

are less thoroughly dried compared to the opposite sites (Figure 4.4). 

Comparable environments exist in Arctic and Antarctic permafrost on Earth. From the 

microbiological point of view the best-studied terrestrial permafrost analogues are low-centered 

ice-wedge polygons, cryopegs (over-cooled water brine lenses), and Holocene to Pliocene 

permafrost deposits [reviewed in Wagner, 2008]. In spite of the harsh environmental conditions 

(e.g., low temperature, high salinity, low aw, long-lasting background radiation resulting from 

accumulation over geological time-scales) of terrestrial permafrost, all the habitats are 

characterized by high cell numbers and a great diversity within the microbial communities 

[Vishnivetskaya et al., 2006; Steven et al., 2007; Wagner et al., 2007; Liebner et al., 2008; Koch et 

al., 2009; Yergeau et al., 2010].  

Cryopegs, for example, which are lenses of ground containing over-cooled water brines that are 

perennially cryotic (9°C to 11°C), are discussed as providing one potential niche for remaining 

life on Mars [Gilichinsky et al., 2005]. Freezing of terrestrial cryopegs is prevented by freezing-

point depression due to the high salt content (140-300 g l1) of the pore water. A variety of salt- 

(halophilic) and cold- (psychrophilic) adapted microorganisms isolated from cryopegs of Late 

Pleistocene age indicate the possibility of a trophic food chain within the microbial communities of 

this specific niche [Gilichinsky et al., 2005; Shcherbakova et al., 2005].  

Viable microorganisms have survived even in several-million-years-old permafrost deposits 

[Vorobyova et al., 1997; Gilichinsky et al., 2007]. These microorganisms constitute the residue of 

the autochthon population within the paleosoils; this population was enclosed during deposition of 

fresh sediments. Survival could have been possible by anabiosis (living in a dormant stage) or by 
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reduced metabolic activity in unfrozen water films. The latter was recently shown for methane-

producing microorganisms (methanogenic archaea, Figure 4.5) [Wagner et al., 2007; Koch et al., 

2009; Griess et al., in prep.]. Methanogenic archaea, which are considered to be one of the initial 

organisms of life on Earth, are strictly anaerobic microbes characterized by a lithoautotrophic 

metabolism [Hedderich and Whiteman, 2006]. They gain energy by the oxidation of inorganic 

substances such as hydrogen. Carbon dioxide can be used as the only carbon source. The existence 

of this kind of metabolism is one of the most important presumptions for long-term survival of 

microorganisms in extreme environments like terrestrial permafrost [Morita, 2000]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 4.5:  
DAPI stained fluorescence microscopic 
images of methanogenic archaea isolated 
from Siberian permafrost environments; (a) 
Candidatus Methanosarcina gelisolum SMA-
21, (b) Methanobacterium SMA-26, (c) 
Methanosarcina SMA-17. 
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It was further shown that methanogens from Siberian permafrost are multi-tolerant against 

various stress conditions. For example, Methanosarcina SMA-21 (Candidatus Ms. gelisolum, 

Figure 4.5) [Wagner et al., in prep.], isolated from Siberian permafrost-affected soils, is 

characterized by an extreme tolerance to low temperature (78°C), high salinity (up to 6M NaCl), 

prolonged starvation, and desiccation (aw shifts between 0.1 and 0.9) [Morozova et al., 2007; 

Morozova and Wagner, 2007]. This strain also showed an extreme resistance to the effects of UV 

(F37 = 14-15 kJ m2) and ionizing radiation (D37 = 6-7 kGy; unpublished data), which is comparable 

to the most radiation-resistant bacteria Deinococcus radiodurans [Ito et al., 1983]. Furthermore, 

Methanosarcina SMA-21 and other methanogens from Siberian permafrost (Figure 4.5) survived 

for 3 weeks under simulated thermo-physical Martian conditions, while the reference organisms 

from non-permafrost environments did not survive [Morozova et al., 2007]. Additionally, Kral et 

al. [2004] showed that specific methanogens are able to grow on a Mars soil simulant when they 

are supplied with carbon dioxide, molecular hydrogen, and varying amounts of water.  

All these pieces of evidence demonstrate the potential of a subsurface microbial community 

dominated by lithoautotrophic growing microorganisms (e.g., methanogens) [Chapelle et al., 2002] 

to exist within the periglacial environments of the Martian mid-latitudes (i.e. UP). The results 

presented about the environmental conditions in UP during the last 10 Ma and the above-mentioned 

findings of other authors on the adaptation and survival of microorganisms, particularly 

methanogenic archaea, indicate that this region seems to be habitable at least for highly-specialized 

microorganisms comparable to methanogens from terrestrial permafrost. The special 

geomorphological and climatic situation of the Martian mid-latitudes generally, as was discussed 

for UP in particular, between the very cold polar regions and the deeply desiccated low-latitudes 

highly increases their potential habitability. 

 

4.6 Conclusions 

In this study we used an interdisciplinary approach to discuss the potential habitability of the 

Martian mid-latitudes with a focus on permafrost landforms in UP. Several past and present 

environmental ground-ice conditions, deduced from our own previous geomorphological studies 

and the literature, are synthesized with respect to the allowed environmental range for survival and 

even growth of microorganisms. Lithoautotrophic microorganisms seem to be the most likely and 

the best-adapted microbial communities to dominate such permafrost environments, as they 

dominate similar environments on Earth (Figure 4.5). It has been suggested that the short-lived 

trace gas methane exists in the Martian atmosphere [e.g., Mumma et al., 2009]. This suggestions 

has not yet been sufficiently validated [see, e.g., Zahnle et al., 2011], but if this methane exists, it 

could have originated from biological methane production similar to those performed by 

methanogenic archaea on Earth. Capillary waters or salt-rich undercooled solutions acting like pure 
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water could have provided physiology-supporting fluids, even at very low temperatures 

[Möhlmann, 2010a].  

Liquid water involved in the evolution of permafrost landforms on Mars could have allowed 

the development of highly-specialized microorganisms; these microorganisms might have survived 

in micro-climatic permafrost niches, such as deep thermal contraction cracks, ground ice situated 

close to the surface on pole-facing slopes, or even pingo-like features. The numerical models by 

Laskar et al. [2004] extracted specific, but few periods during the last 10 Ma which meet the 

requirements of coinciding high obliquity (>35°), high eccentricity (>0.1), and northern summer at 

perihelion; at such times thaw processes and liquid water could have regionally existed in UP to 

influence periglacial landscape evolution in Martian mantle deposits. 

Finally, Kminek et al. [2010] define a “special region” on Mars “as a region within which 

terrestrial organisms may be able to replicate, OR a region which is interpreted to have a high 

potential for the existence of extant Martian life”. With respect to the past and present 

environmental conditions influencing permafrost landforms in UP, Martian periglacial features 

might be classified as special regions in future searches for evidence of life on Mars. 
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5. Synthesis: The question about periglacial landscape evolution and 

habitability on Mars: Lessons learned from Earth 

The major goal of this thesis was to deduce and reconstruct processes and environmental 

conditions responsible for the formation of periglacial landforms on Mars. It has already been 

suggested that these landforms were shaped by ground-ice (i.e. permafrost) dynamics. Therefore, 

the intention was, first, to understand the environmental conditions influencing certain permafrost 

features within arctic landscapes on Earth, and then to transfer this knowledge to Martian 

periglacial landscapes by analogical reasoning [Baker, 2008]. In addition, quantitative analyses of 

landform morphology were applied to extend the studies beyond the mostly descriptive (i.e. 

qualitative) previously published geomorphological comparisons between Earth and Mars. 

Depressions formed by permafrost degradation and polygonal patterned ground were selected as 

typical periglacial relief features for these morphometric analyses, modeling of process-controlling 

factors, and multivariate statistics. 

 

5.1 Terrestrial periglacial landscape analogues to Mars 

Detailed morphometric investigations comparing a large thermokarst depression in Siberian 

ice-rich deposits to scalloped depressions formed in Martian mid-latitude mantling deposits 

revealed a comparable asymmetrical morphology, which was interpreted as an indication of the 

lateral development of both kinds of depressions (Figure 5.1, Chapter 2). Insolation was identified 

as a major factor influencing retrogressive growth in both cases (Figures 2.9 and 2.17). Since size 

and depth of terrestrial thermokarst depressions are known to be related to the ice content of the 

deposits in which these depressions are formed (Figure 2.8), it was concluded that the development 

of the Martian scalloped depressions must be connected to ground-ice contents higher than the 

amounts indicated by remote-sensing measurements for the uppermost 1 m of sediments in the 

Utopia Planitia region (see Figure 1.2A) [Boynton et al., 2002, Mitrofanov et al., 2002, Feldman et 

al., 2004]. Moreover, based on the knowledge of terrestrial thermokarst and on the specific 

morphology of the Martian scalloped terrain (Figure 2.14), the hypothesis that the Martian 

depressions are formed by thermokarst (i.e. wet periglacial) processes [e.g., Soare et al., 2007, 

2008] has been rejected (Figure 5.1).  

Quantitative terrain analyses of ice-wedge polygons in the Adventdalen (Svalbard) and small-

scale polygonal structures in Martian mid-latitudes revealed a comparable thermal contraction 

cracking genesis (Chapter 3), indicating that the seasonal variations in ground temperature that are 

essential for thermal contraction cracking existed in the Martian study area. Differences between 

the size and morphology of the polygons on Earth and on Mars are believed to reflect regional and 

local landscape dynamics (Table 3.5). In particular, the smallest studied Martian low-centered 
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polygons showed very close analogies to active ice-wedge polygons on Svalbard (Figure 5.2). It 

was thus concluded that thermal contraction cracking is very likely to be active currently only in 

certain micro-climatic niches (Figure 3.14) where fine-grained ice-rich deposits exist very close to 

the surface. Temperatures above the melting point of water are not necessary to enable this process 

to occur. If an occasional local liquid-water supply existed, however, it is conceivable that 

composite wedges were formed under past climate conditions (Figure 5.2, see Section 3.5.3). 

Under present-day hydrological and climatic conditions in Martian mid-latitudes (see Table 4.2), 

dry degradation processes are the dominant influence on polygon morphology in Utopia Planitia on 

a regional scale. 

 

 

Figure 5.1: Comparison of the analogous ground-ice degradation features investigated on Mars 
and Earth. (a) Scalloped depressions on the southern hemisphere of Mars. (b) Scalloped 
depressions on the northern Martian hemisphere. Note the opposite asymmetrical shape of the 
southern and northern depressions. (c) Landscape characterized by thermokarst depressions on 
Kurungnakh Island (Lena Delta, NE Siberia). Note the channels connecting and draining the 
thermokarst depressions. Such features cannot be seen in (a) and (b). 
 

 

Figure 5.2: Comparison of the thermal contraction polygons investigated on Mars and Earth. (a) 
Small low- and high-centered polygons on the north-facing slope of a scalloped depression in 
Utopia Planitia. Thermal contraction cracking might be active here if an ice-table exists very close 
to the surface. The formation of composite wedges in the past might have affected the origin of the 
low-lying centers. (b) Active low-centered ice-wedge polygons in the Adventdalen (Central 
Spitsbergen). 
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Different scenarios for landscape evolution in Martian mid-latitude craters are discussed in the 

appendix of this thesis [Hauber et al., 2011], which are based on additional analogue studies of e.g. 

gullies, striped patterned ground, pingo mounds, and protalus ramparts in the Adventdalen 

(Svalbard). The differing interpretations of periglacial landscape evolution in Martian mid-latitude 

impact craters in a dry, wet, or snow scenario reveal the different possible implications for 

interpreting landscapes on Mars.  

 

5.2 Liquid water and habitable zones on Mars 

Generally, the existence of liquid water on present-day Mars facilitated by, e.g., the lowered 

melting point of brines, cannot be excluded. Although whether liquid water exists on Mars today 

remains an open question, it may be assumed that the thawing of ground-ice, if it were happening 

today, would be restricted to small micro-climatic niches (e.g., exposed slopes). In a regional 

context, ground ice in Utopia Planitia probably exists at greater depths than the depths to which 

thermal waves could penetrate into the subsurface. Furthermore, temperatures within the ice-

cemented soil are probably at or below the current Martian freezing point (typically -72° C) [e.g., 

Mellon et al., 2004] and even below the eutectic temperatures of several salty solutions [e.g., 

Möhlmann and Thomsen, 2011]. Therefore, it is obvious that in a regional context dry periglacial 

processes dominate the Martian permafrost geomorphology today and have done so throughout 

most recent times; this stands in clear contrast to the freeze-thaw conditions in the studied 

terrestrial analogue sites (Figure 5.3, see also Figure 1.3). However, it seems mandatory that the 

discussion on climate and subsurface conditions on Mars inferred from the study of specific 

morphological features requires a more integrated view of diverse landforms in a landscape context 

(Chapter 4 and Appendix). Unambiguous interpretations of Martian surface features as permafrost 

landforms, and even the influence of water in periglacial landscape evolution, is not without 

problems, because different processes acting in different environments can produce landforms that 

appear superficially similar. For example, it is shown in this thesis appendix that certain Martian 

landforms (e.g., fractured mounds) can easily be misinterpreted as periglacial landforms (e.g., 

open-system pingos, see Figure A13) if liquid water in the subsurface is presupposed. Thus, other 

scenarios for landscape evolution in the Martian northern mid-latitude lowlands cannot be excluded 

(Figure 1.2). Summarizing the insights from terrestrial analogue studies for periglacial landscape 

evolution on Mars, however, it was concluded in Section 4.4 that thaw processes and liquid water 

have played a role in the development of permafrost landforms in Utopia Planitia, but climate 

conditions allowing this to occur were rare in the Martian past and have been almost absent in the 

last 4 Ma (Figure 4.3). The results are consistent with estimations of rare times during which 

active-layer processes could have occurred on the Martian surface [Kreslavsky et al., 2008]. It is 

also stated by Kreslavsky et al. [2008] that, in accordance with the modeled trend of Mars’ orbital 
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parameters [Laskar et al., 2004], it is not likely that conditions will be conducive to active-layer 

formation in the foreseeable future.  

 

Figure 5.3: This water-phase diagram compares the current mean temperature and pressure ranges 
and habitability of the study regions investigated on Earth and Mars (Drawing is not to scale). Also 
shown is the Utopia Planitia (UP) temperature range that is suggested in this work to have existed 
in the past, during Late Amazonian periods of favorable orbital configurations (see also 
Figure 4.3). In accordance with Phillips et al. [2011] it is also likely that the pressure increased 
with increasing obliquity due to CO2 release into the atmosphere from degrading Martian polar 
caps. Higher summer temperatures and pressures at those times, which rose above the triple point 
(~273 K, 6.1 mb), would increase potential UP habitability.  
 

Although it is suggested here that transient liquid water and occasional thaw processes have 

influenced periglacial landscape evolution in Utopia Planitia in the past, the results from analogue 

studies and geomorphometric analyses presented in this thesis contradict the former existence of 

long-standing water bodies during the Late Amazonian [Soare et al., 2008; Soare and Osinski, 

2009], and it is equally unlikely that pure ice wedges, whose formation requires a substantial 

amount of water, could have existed [e.g., Seibert and Kargel, 2001; Soare et al., 2005] (see also 

Table 3.1). As discussed in Section 4.4, these suggestions do not match with seasonal and diurnal 

temperature changes even if more benign climate periods occurred in the past (Figure 5.3). 

Moreover, the landscape assemblage in Utopia Planitia does not show any signs of wet periglacial 

processes (e.g., narrow channels connecting thermokarst-like depressions, Figure 5.1), although 

such processes have been suggested for the formation of equatorial periglacial landscapes on Mars 

[Balme and Gallagher, 2009; Warner et al., 2010] (see also Section 2.5.2). However, some 

periglacial-like features in Utopia Planitia, in particular pingo-like features (see Figure 4.2b), cause 

questions to be raised about the influence of substantial amounts of liquid water, if these landforms 
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are really analogous to terrestrial pingos [e.g., de Pablo and Komatsu, 2009]. These questions may 

never be answered, because answering them would require ground truthing by robotic exploration 

or even field work.  

Finally, it can be stated that the investigation of permafrost landforms on Mars in analogy to 

terrestrial periglacial features has enhanced our knowledge of current and past environmental 

conditions in Martian mid-latitudes. It has been shown that the present-day appearance of the 

landforms studied in Utopia Planitia is consistent with the effects of the current Martian climate 

conditions. The development of these landforms is currently stagnant and they are preserved by the 

cold desert climate. However, the permafrost landforms evolved in relation to high ground-ice 

contents under past climate conditions during which the Martian orbital configurations (i.e. high 

obliquity, high eccentricity, and Martian summer at perihelion) allowed temperatures to rise above 

the melting point of water and, therefore, thaw processes and occasional liquid water to be 

geomorphically active (Figure 5.3, see Section 4.4 and Figure 4.3). 

How can all this be related to the second goal of this thesis, the identification of habitable 

zones on Mars? Answering this question is the main purpose of the paper presented in Chapter 4. 

Generally, this thesis has highlighted the wide distribution of permafrost landforms in Martian mid-

latitudes, and has suggested that liquid water may have had a distinct influence on the evolution of 

these landforms. The source of this water is very likely to be ground ice, which exists or existed in 

high contents. While Mars transited through its three global climatic eras (Figure 1.1), from a 

relatively wet planet on which the basic requirements for life were present to the current extremely 

arid and cold climate which makes the surface generally uninhabitable [Fairén et al., 2010], the 

subsurface permafrost has provided one environment where very specialized life forms could have 

survived in isolated niches until today (Sections 4.4, 4.5, and Figure 4.4). Beside the morphological 

evidence of past liquid water activity, ice may be present near the surface, on the pole-facing slopes 

of the scalloped depressions in Utopia Planitia, or perhaps on the pole-facing inner walls of craters 

(see Appendix); the presence of this ice enhances the potential habitability of a site [Stoker et al., 

2010]. Therefore, the studies presented in Chapter 2 and in Chapter 3 enable us to designate 

potential habitable niches (Figure 4.4), and thus contribute to answering the main questions of the 

Helmholtz research alliance, which framed this PhD thesis (see Chapter 1, Preface). However, 

many other key factors determine the habitability of a site (e.g., current evidence for liquid water, 

thermodynamic conditions, and stability of liquid water, energy, nutrients, etc.) [see Stoker et al., 

2010]. After computing a habitability index (HI) based on all these key factors for all known 

landing sites on Mars, it was suggested by Stoker et al. [2010] that the Phoenix Lander site in the 

northern polar region (~68°N) holds the highest potential for current habitability. This conclusion is 

based primarily on the in-situ observations and subsequent calculations of potential liquid water at 

the Phoenix Lander site [e.g., Rennó et al., 2009; Smith et al., 2009]. The lowest HI was computed 

for the Viking Lander 2 (VL2) site in eastern Utopia Planitia. Although no liquid water could be 
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observed at the VL2 site, the presence of winter frost [Svitek and Murray, 1990] increases the 

potential of its occurrence (see also Chapter A7 and Figure A14). As a final statement, considering 

liquid water activity in the evolution of the periglacial Utopia Planitia landscape as suggested in 

this work and the current environmental conditions at the VL2 site (see Table 4.2), which are, e.g., 

far closer to the triple point of water (Figure 5.3) than the extremely cold conditions in the polar 

regions, the habitability potential of the Utopia Planitia region (and even other mid-latitude 

periglacial regions) must be considered similar to or even higher than the potential computed for 

the Phoenix Lander site.  

 

5.3 Limitation to and benefits of terrestrial analogue studies 

Generally, there are no places on Earth which would perfectly match the past and present 

climate conditions on Mars (Figure 1.3). Nevertheless, there are terrestrial environments 

sufficiently similar to Martian climate conditions differing during Mars’ geological history that the 

terrestrial and Martian environments can be compared [Fairén et al., 2010]. Terrestrial polar 

regions are considered to be the closest environmental analogues to the Late Amazonian and to 

present-day Mars. However, compared to the dry polar deserts of the Antarctic Dry Valleys, it is 

far more difficult to consider arctic periglacial environments to be analogous to Martian 

landscapes, due to their comparatively wetter and warmer hydrological and climatic situation. In 

contrast to Antarctica, however, arctic landscapes often exhibit diverse periglacial landforms in 

close spatial proximity that are of different generations or exist in different stages of development, 

a situation which can be observed in particular at Martian mid-latitudes, thereby making it possible 

to investigate a large number of landforms in their geological and geomorphological context as 

well as the processes of periglacial landscape formation. For instance, the Ice Complex landscapes 

(i.e. Yedoma) in NE Siberia (Section 2.2.1) have allowed the interrelationships of active 

thermokarst processes, polygon development, and pingo evolution in fine-grained and very ice-rich 

sediments within an old permafrost environment to be explored; such an environment is 

characterized by long-term stable cold climate conditions and the absence of large Pleistocene ice 

sheets [Hubberten et al., 2004; Schirrmeister et al., in press]. On the other hand, the central regions 

of Spitsbergen provided insights into the relationships of numerous active mountainous periglacial 

processes with polygonal patterned ground and pingos within a comparatively dry and partly non-

vegetated environment (Section 3.2.1) [e.g., Hauber et al., in press]. The key aspect of this study 

was the analysis of the multiple factors responsible for forming terrestrial geomorphological 

systems and to extrapolate their relationships to the Martian landscapes, considering the prevailing 

atmospheric, hydrological, and geological conditions on Mars [Baker, 2008]. To go beyond this 

goal would be problematic, because it is clear that terrestrial periglacial analogues can only reflect 

individual processes or sub-aspects, which even on Earth are influenced by a complex of 
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environmental parameters that are, typically, not fully understood. These parameters, such as 

landscape, substrate, vegetation, and climate, are and were interrelated in a definitely different way 

on Mars or are not and were probably never an issue (e.g., vegetation). Furthermore, it may be 

assumed that periglacial processes on Earth take place comparatively quickly, on time scales of 

tens to 104 years, and the effect of these processes can be observed in a single person’s lifetime [see 

e.g., Mackay and Burn, 2002, 2011], while comparable processes on Mars occur on very long time 

scales (approx. between 10³ to 106 years and maybe more) due to the long-term cold and dry 

environment [e.g., Baker, 2001]. Therefore, the analogue studies presented in this thesis can only 

provide initial suggestions about the processes that may have influenced periglacial landform 

evolution on Mars, by making comparisons with the manifold processes which already exist on 

Earth. 

The use of terrestrial analogues benefits from both field and remotely-sensed data (see 

Figure 1.5). While the former provides the necessary ground truth for remote-sensing analyses, 

increases the spatial resolution, and allows the subsurface to be sampled, the latter allows a more 

integrated view of large-scale relationships [Sharp, 1988; Grosse et al., 2006; Hauber et al., in 

press]. In particular, the application of remote-sensing data, which provide both high-resolution 

imagery and topographic information (i.e. HiRISE for Mars, HRSC-AX for Earth), was very 

helpful for quantitative terrain analyses. For successful terrestrial analogue studies it is necessary to 

use remote-sensing data that have a quality and scale comparable to that of planetary data. 

Interestingly, while very-high-resolution Martian satellite data (e.g. from HiRISE, MOC) are freely 

available online, terrestrial remote-sensing data at a comparable resolution are rare and, moreover, 

very expensive (e.g., GeoEye-1, Ikonos), which limits their potential for use in successful analogue 

studies. Within this work, different kinds of data were successfully implemented into GIS 

environments for each investigated site. Geomorphometric parameters were extracted from remote-

sensing and topographic data, combined with field data, and used for various GIS-based spatial 

investigations and in numerical analyses. Nevertheless, the usefulness of remotely-sensed data is 

limited to analyzing the current evolutionary stage of a landscape, not least because remote sensing 

creates a snapshot of an ongoing process. Furthermore, the analysis of the Martian landscape, 

which lacks appropriate field data, is limited to the parameters which can be extracted from the 

available spacecraft data. For instance, the in situ data acquired by the Phoenix mission and 

previously by the Viking mission fostered the investigations of Martian mid- and high-latitude 

environments. Images taken by the landers’ cameras allowed geomorphological features to be 

identified which cannot be analyzed even in the very-high-resolution (~30cm/pixel) HiRISE data 

[see Levy et al., 2009c; Marchant and Head, 2010]. Finally, this thesis confirms that the 

combination of remote-sensing analysis with detailed analogue field studies is a promising 

approach to utilize in order to increase our knowledge of Martian landforms. Quantitative methods 
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are a useful tool; using such methods is necessary to reduce the ambiguity in interpreting analogous 

landforms.  

 

5.4 Outlook and future prospectives 

Although huge progress has been made in understanding the climatological, hydrological, 

geological, and astrobiological significance of Martian permafrost landforms, so far we have only 

rather randomly scratched the surface with respect to understanding the evolution of periglacial 

landscapes on Mars. Many questions remain open, providing rich potential for future 

investigations. The continuing study of analogous terrestrial landforms is necessary to increase our 

understanding of the terrestrial periglacial landscape systems, in order to enable an extrapolation of 

this knowledge to a specific extraterrestrial target. Detailed field studies should be extended to 

other Arctic regions as well; many such potential field sites are quite easily accessible and provide 

an environment that is closely analogous to that of Mars (e.g., Axel Heiberg Island in the Canadian 

high Arctic) [Pollard et al., 2009]. More detailed investigations of physical properties and the 

individual subsurface and climatic conditions influencing different kinds of landforms should be 

performed and integrated in quantitative analyses. The application of more advanced techniques 

(e.g., ground-based geophysical methods, drilling, etc.) will help us to understand ground-ice 

conditions in relation to periglacial landforms on Earth, and could provide ground truth for 

understanding data detected by satellites orbiting Mars (e.g., radar sounder data) [Clifford et al., 

2010]. Furthermore, the better we understand the similarities and differences between terrestrial 

and Martian environments, the more effective will be the testing and certifying of such equipment 

and techniques, which are moreover often designed to study Martian permafrost landforms and 

cryosphere [e.g., Frolov, 2003; Smith and McKay, 2005; Pfiffner et al., 2008; Barfoot et al., 2010]. 

Extensive quantitative analyses of Martian landform geomorphometry in this work were 

limited by the availability of high-resolution topographic data. The ongoing acquisition of HiRISE 

data and the processing of appropriate DEMs [Kirk et al., 2008; McEwen et al., 2010] are 

necessary. These data will provide the possibility for more extensive and accurate studies. 

Comparative investigations must be extended to different latitudinal and altitudinal regions on 

Mars to understand individual morphological evolution with respect to the varying temperature, 

pressure, and geological setting. In addition, HiRISE DEMs provide more accurate input for 

thermal modeling; such modeling will become increasingly useful for understanding thermal 

variations related to certain periglacial features, and for estimating sublimation and/or melting of 

the ice therein over different Martian climatic periods. Finally, more in situ data of subsurface 

conditions at different latitudes gained by lander and rover missions would help us to achieve 

greater insights into the complex nature of Martian ground ice. 
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A particular intention of this thesis was to combine the results of geomorphological work with 

microbiological expertise, in order, ultimately, to determine habitable zones on Mars. Such an 

interdisciplinary approach was particularly suitable for those estimations and should be utilized 

more often in future astrobiological studies. The combination of different fields of expertise is the 

intention of astrobiology; this approach should be continued and intensified. An understanding of 

the complex interactions of biology, geology, chemistry, and physics is important for the study of 

the origin and evolution of life in the universe.  
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Abstract 

Periglacial landforms on Spitsbergen (Svalbard, Norway) are morphologically similar to 

landforms on Mars that are likely related to the past and/or present existence of ice at or near the 

surface. Many of these landforms, such as gullies, debris flow fans, polygonal terrain, fractured 

mounds, and rock glacier-like features, are observed in close spatial proximity in mid-latitude 

craters on Mars. On Svalbard, analogous landforms occur in strikingly similar proximity, which 

makes them useful study cases to infer the spatial and chronological evolution of Martian cold-

climate surface processes. The analysis of the morphological inventory of analogous landforms on 

Svalbard and Mars allows constraining the processes operating on Mars. Different qualitative 

scenarios of landscape evolution on Mars help to better understand the action of periglacial 

processes on Mars in the recent past. 

 

A1 Introduction 

Many young landforms on Mars that were probably formed by exogenic processes show a 

latitude-dependent geographic distribution. They include surface mantling [Kreslavsky & Head, 

2000; Mustard et al., 2001; Morgenstern et al., 2007], lobate debris aprons, lineated valley fill, and 

concentric crater fill [e.g., Squyres, 1978], viscous flow features [Milliken et al., 2003], gullies 

[Balme et al., 2006; Kneissl et al., 2010], and patterned ground [Mangold, 2005]. Other landforms 

such as pedestal craters seem to indicate a preservation of near-surface ice and are latitude-

dependent as well [Kadish et al., 2009]. Collectively, these landforms are hypothesized to represent 



Svalbard landforms as analogues for Mars Appendix 
Geological Society, London, Special Publications 356, 111-131 
_______________________________________________________________________________ 
 

 117

the surface records of Martian ice ages [e.g., Head et al., 2003] that were induced by astronomical 

forcing (Laskar et al. 2004) and associated climate changes [Toon et al., 1980; Jakosky & Carr, 

1985; Mischna et al., 2003; Forget et al., 2006; Schorghofer, 2007]. Previous authors often 

considered only one of such feature classes in isolation (e.g., gullies), without taking into account 

the geomorphologic context. It was not until the recent advent of high-resolution data from orbit 

and the in situ investigation of Martian high-latitude terrain by the Phoenix lander that allowed to 

develop a more integrated view of diverse landforms into a landscape evolution model [e.g., Balme 

& Gallagher 2009; Levy et al. 2009c]. A more comprehensive investigation of the full assemblage 

of landforms by means of landscape analysis, however, has the potential to reduce the ambiguity in 

interpreting landforms and to reveal the evolution of the climatic environment in more detail. The 

phenomenon of equifinality (i.e. similarly looking landforms resulting from diverse processes) is 

particularly problematic in planetary geomorphology, where the morphology as inferred from 

remote sensing data such as images and Digital Elevation Models (DEM) is the only observable 

component. An instructive example is the case of pitted mounds on Mars, which have been 

interpreted in the past as modified impact craters, rootless cones, cinder cones, and pingos. In some 

of the studies that favoured pingos, the interpretations were based on poor evidence and attracted 

criticism from terrestrial permafrost researchers [Humlum & Christiansen, 2008]. Here we present 

permafrost landforms of Svalbard (Norway) as useful terrestrial analogues for the suite of possible 

periglacial landforms that are typically found at mid-latitudes on Mars. We build on our previous 

investigations of gullies and fans [Hauber et al., 2009], and include a number of classical 

periglacial landforms (patterned ground, rock glaciers, pingos) that all have close morphological 

analogues on Mars. Based on this comparison, we propose several evolutionary scenarios which 

could help to develop a better understanding of the sequential formation of the Martian landforms. 

 

A2 Permafrost and periglacial features on Mars and Svalbard 

Mars may be regarded as a permafrost planet, following the definition of permafrost as given 

by Everdingen [2005]: “Ground (soil or rock […]) that remains at or below 0°C for at least two 

consecutive years, regardless of the water content”. In fact, the shallow subsurface of Mars 

probably experienced temperatures that were continuously below 0°C for most of its history [e.g., 

Shuster & Weiss, 2005]. In the current Martian climate, ground ice is thought to be stable only at 

higher latitudes [e.g., Leighton & Murray, 1966; Smoluchowski, 1968; Fanale et al., 1986; Mellon 

& Jakosky, 1993], and indeed the Phoenix mission has provided unambiguous evidence for very 

shallow and rather pure ground ice at a latitude of 68.2°N [Smith et al., 2009]. The latitudinal range 

of ice stability is, however, a function of the planet’s obliquity (i.e. the tilt of the rotational axis). 

Mars` obliquity is assumed to vary widely [Ward, 1973; Touma & Wisom, 1993], and at an 

obliquity exceeding 32° (today: ~25°) ground ice becomes globally stable [Mellon & Jakosky, 
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1995]. An obliquity exceeding ~27° is required for ice to be stable at latitudes of 30° and higher 

[Mellon & Jakosky, 1995, their fig. 10d]. Other factors that affect the stability of ground ice are 

geographic variability, soil properties, rocks, and local slopes [see Mellon et al., 2009, and 

references therein]. The large and frequent oscillations of Mars` obliquity [an obliquity cycle spans 

117,000 years; Laskar et al., 2004] should have a significant influence on the volatile distribution 

on the surface [Jakosky et al., 1995], and climate modelling using Global Circulation Models 

(GCM) confirms this view [Forget et al., 2006; Levrard et al., 2004; Madeleine et al., 2009]. It 

appears likely that water ice was frequently driven from the poles towards lower latitudes during 

periods of higher obliquities, when the polar regions received more incoming solar energy [Forget 

et al., 2006]. In contrast, water ice was redistributed towards higher latitudes during following 

periods of lower obliquities [Levrard et al., 2004]. Ground ice can thus be expected to be a 

significant factor in Martian landscape evolution. Recent observations indeed showed that near-

surface water ice is present even in mid- and low-latitude regions [Holt et al., 2008; Byrne et al., 

2009; Vincendon et al., 2010a,b], in contrast to expectations from theoretical modelling (see 

above).  

 

Figure A1: Location and climate of study areas on Svalbard. (a) Map of Svalbard with study areas 
(boxes, see (c) and (d)). (b) Climate zones and morphogenetic regions on Earth; modified from 
Baker [2001] and Head & Marchant [2007]. Climatic conditions on Mars (present and inferred 
past) are indicated by hatched area. (c) Study area on Brøgger peninsula (shaded elevation model 
derived from ASTER data). (d) Study area in Adventdalen (shaded elevation model derived from 
ASTER data). Numbers in (c) and (d) mark geographic locations mentioned in the text: 1-
Stuphallet, 2-Adventfjord, 3-Adventdalen, 4-Hannaskogdalen, 5-Hiorthfjellet, 6-Eskerdalen. 
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To complement theoretical modelling, comparisons with terrestrial analogues are mandatory to 

constrain the action of periglacial processes and corresponding landscape evolution on Mars. 

Present-day Mars is cold and dry, so surface processes acting in terrestrial cold deserts should be 

considered as useful analogues. The closest cold-climate analogue to Mars on Earth are the 

Antarctic Dry Valleys [Anderson et al., 1972; Marchant & Head, 2007, 2010], a polar desert 

environment with exceptionally cold and dry conditions [Doran et al., 2002] and correspondingly 

small active layer depth [Bockheim et al., 2007]. Other polar regions also display morphological 

analogues to Mars, however, and the archipelago of Svalbard and its largest island, Spitsbergen 

(Figure A1a), offer a diverse inventory of periglacial landforms in close spatial proximity. Terrain 

phenomena such as pingos, ice wedge polygons and rock glaciers are widespread, especially in the 

dry central regions of Spitsbergen. Periglacial features such as solifluction lobes occur primarily in 

the more humid western regions. Various forms of patterned ground, such as stone circles and 

stripes are widespread and well developed (see Åkerman [1987] for a review of periglacial 

landforms of Svalbard). Examples of periglacial morphologies are closely located to the 

settlements of Longyearbyen and Ny Ǻlesund on the main island, Spitsbergen, making them very 

useful morphological analogue to Martian cold-climate landforms. Major controls on permafrost 

aggradation are wind, snow, and avalanches [Humlum, 2005]. A particularly interesting aspect of 

permafrost on Svalbard is its interaction with glaciers [Etzelmüller & Hagen, 2005], because such 

interaction is often neglected in the literature [Haeberli, 2005] but may be highly important on 

Mars. 

 

A3 Data 

Martian surface features were analyzed using high-resolution images of the CTX (Context 

Camera) and HiRISE (High Resolution Imaging Science Experiment) cameras, which have spatial 

resolutions of 5-6 m/pixel and ~30 cm/pixel, respectively. An airborne version of the HRSC (High 

Resolution Stereo Camera) was used for the acquisition of stereo and color images of Spitsbergen. 

HRSC-AX is a multi-sensor push broom instrument with 9 CCD line sensors mounted in parallel. 

It simultaneously obtains high-resolution stereo, multicolour and multi-phase images. The 

particular value of HRSC-AX is the stereo capability, which allows to systematically produce high-

resolution Digital Elevation Models (DEM) with grid sizes between 50 cm and 1 m [Wewel et al., 

2000; Scholten & Gwinner, 2004; Scholten et al., 2005; Gwinner et al., 2005, 2006, 2009, 2010]. 

The HRSC-AX flight campaign in July/August 2008 covered a total of seven regions in Svalbard: 

(i) Longyearbyen and the surroundings of Adventfjorden (all place names on Svalbard are as given 

as in the topographic map series, scale 1:100,000, published by the Norsk Polarinstitutt, Tromsø, 

Sheets C9 and A7), (ii) large parts of Adventdalen, (iii) large parts of the Brøggerhalvøya (halvøya 

= peninsula) in western Spitsbergen, (iv) the Bockfjorden area in northern Spitsbergen, (v) the 
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northeastern shore of the Palanderbukta and the margin of the adjacent ice cap in Nordaustlandet, 

(vi) an area on Prins Karls Forland, and (vii) the area of the abandoned Russian mining settlement 

of Pyramiden together with the nearby Ebbedalen. The landforms discussed in this study are 

located on the Brøgger peninsula and in Adventdalen and its vicinity (Figure A1a). In two field 

campaigns in 2008 and 2009, both areas covered by HRSC-AX were visited. 

 

A4 The Svalbard Climate 

The present climate of Svalbard is arctic (Figure A1b). The mean annual air temperature at the 

airport in Longyearbyen, which is located only a few kilometers from the study area of 

Adventdalen, ranges between about –6°C at sea level and –15°C in the high mountains [Hanssen-

Bauer & Førland, 1998]. Annual precipitation is low and reaches only ~180 mm in central 

Spitsbergen (Table A1). The central part of Spitsbergen can therefore be considered to be a polar 

(semi)desert, which is defined as an area with annual precipitation less than 250 millimeters and a 

mean temperature during the warmest month of less than 10°C [Walker, 1997]. About 60% of 

Svalbard is covered by glaciers and ice caps, and relatively small glaciers and ice caps are situated 

on many massifs and valleys around Adventdalen. The unglaciated part of Svalbard is 

characterized by continuous permafrost, which has a thickness of 10-40 m in coastal regions, about 

100 m in the major valleys, and >450 m in the highlands [Listøl, 1976; Isaksen et al., 2000; Sollid 

et al., 2000].  

 
Table A1: Climate at Svalbard Airport. For the series of observed and modelled annual and 
seasonal precipitation sums from 1912 to 1993, the following values are given: mean, standard 
deviation, absolute minimum and absolute maximum. SD: Standard deviation; Corr.: correlation 
coefficient between observed and modelled precipitation series [data from Hanssen-Bauer & 
Førland, 1998]. For comparison, the mean annual air temperature at the floor of the Dry Valleys in 
Antarctica ranges from -14.8°C to -30°C, and the mean annual precipitation is <<100 mm, but can 
be as low as 13 mm [Doran et al., 2002; Campbell & Claridge, 2004]. 
 

Season  Mean SD Min. Max. Mean SD Min. Max.  

  Observed T [°C] Modelled T [°C] Corr. 
Year  –6.3 1.7 –12.2 –3.1 –6.4 1.0 –8.9 –4.0 0.61 
Winter (DJF) –14.0 3.6 –23.2 –7.6 –14.1 2.4 –19.1 –9.1 0.62 
Spring (MAM) –10.8 2.4 –19.3 –6.7 –10.8 1.7 –15.2 –7.5 0.58 
Summer (JJA) 4.3 0.7 2.5 6.1 4.2 0.5 3.2 5.4 0.54 
Autumn (SON) –4.8 2.0 –11.3 –1.3 –4.9 1.5 –8.7 –1.8 0.66 

 

 

 

  Observed P [mm] Modelled P [mm] Corr. 
Year  180.7 49.8 86.4 317.0 178.7 33.5 93.5 286.6 0.54 
Winter (DJF) 53.4 24.3 16.8 140.0 52.8 11.5 24.5 86.8 0.40 
Spring (MAM) 35.6 10.4 6.4 125.9 34.3 13.6 10.6 65.5 0.60 
Summer (JJA) 43.7 21.2 3.0 114.0 43.7 18.7 8.3 100.8 0.57 
Autumn (SON) 48.1 17.0 18.4 109.0 47.9 13.1 21.5 79.1 0.54 
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A5 Morphological comparisons between Mars and Svalbard 

Many possible glacial and periglacial landforms are located in mid-latitude impact craters on 

Mars. This specific geologic setting provides ideal study cases, because there is high relief 

provided at the crater walls and the opportunity to study the effects of insolation variations, since 

craters are axisymmetric features and their inner walls have an azimuthal range of the entire 360°. 

It has been found by many previous researchers that the pole-facing walls of impact craters are 

particularly prone to be shaped by glacial and periglacial processes [e.g., Dickson et al., 2007]. In 

this section, the inventory of such landforms is briefly reviewed and compared to analogous 

landforms on Svalbard. We note here that all of these features have been found in craters on Mars, 

sometimes several of them in the same crater, but so far no crater was found that would host all of 

them together. 

 

Figure A2: Locations of regional features on Mars mentioned in the text (shaded version of 
MOLA DEM). 

 

A5.1 Martian landforms 

Many landforms on Mars that are morphologically similar to terrestrial glacial and periglacial 

landforms occur in the middle latitudes, between ~30° and ~60° (Figure A2). They are situated 

along the high-relief belt of the Martian dichotomy boundary and other regions of high relief [e.g., 

Head et al., 2006; Pierce & Crown, 2003; Chuang & Crown, 2005; van Gasselt et al., 2010] as 

well as in flat-lying regions such as Utopia Planitia [Morgenstern et al., 2007, Lefort et al., 2009, 

Soare et al., 2005]. A particularly interesting setting is the pole-facing inner wall of impact craters. 

Most gullies (Figure A3a) have been found on such walls, especially in the southern hemisphere 

[Dickson et al., 2007]. On the base of some gullies, spatulate depressions are delineated towards 

the inner crater floor by arcuate ridges, which have been compared to moraines [e.g., Berman et al., 

2005, fig. 1]. Other landforms of possible periglacial origin have been observed in close spatial 

association with the crater wall-gullies, including polygons (Figure A4a) [Levy et al., 2009d], 

patterned ground (Figure A5a) [Mangold, 2005], lobate features (Figure A6a and A7a) [Milliken et 

al., 2003], and fractured mounds (Figure A8a) [Dundas et al., 2008]. The unique occurrence of 
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diverse possible periglacial landforms within a small area with considerable relief makes such 

craters an ideal study case for the action of periglacial processes on Mars. In the following, they 

will be compared with terrestrial analogues on Spitsbergen. Based on this comparison, possible 

scenarios of landscape evolution on Mars will be outlined. 

 

 

Figure A3: Gullies and fans on Mars and Svalbard. (a) Gully in Martian crater at 38.5°S/319.8°E 
(HiRISE PSP_006888_1410). (b) Gully and debris flow fan in Hannaskogdalen, Svalbard. Note the 
similarity in morphology and scale between the two systems. (c) Close-up field photo (taken from 
opposite mountain) of the fan surface shown in b. Note the morphological indicators of debris 
flows, such as large lateral levees and flow tongues. 
 

 

Figure A4: Polygons on Mars and Svalbard. (a) Oriented-orthogonal polygons pattern on a ridge 
between two gullies on the northern wall of Hale crater, Mars. The polygons have high centers and 
diameters between ~5 and ~10 meters (HiRISE image PSP_004072_1845; near 34.6°S, 323.1°E). 
(b) High-center orthogonal polygons in central Adventdalen (HRSC-AX image). The polygons 
have high centers and diameters between ~10 and ~20 meters. A trough which is typical for this 
type of polygons is shown in panel (c). (c) Trough between high-center polygons in central 
Adventdalen. Note the fractured and degraded appearance of the trough shoulders. Spade for scale. 
 

A5.2 Svalbard landforms 

The main study site is Adventdalen, a ~40 km-long and up to ~3 km-wide valley in central 

Spitsbergen that was deglaciated about 10,000 years ago [Mangerud et al., 1992]. The valley hosts 

a large number of periglacial landforms, both on the valley flanks and on the valley floor. The 

mountain massifs and the upper parts of many valleys are still partly covered by polythermal or 
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cold-based glaciers, which can be partly debris-covered [Tolgensbakk et al., 2000]. Distinctive end 

moraines, which may be ice-cored [Lukas et al., 2005], mark the former larger extent of the 

glaciers. Some tongue-shaped rock glaciers are perched in cirques and broad alcoves [Isaksen et 

al., 2000; Ødegård et al., 2003]. Protalus ramparts, defined as “ridges or ramps of debris formed at 

the downslope margin of a snowbed or firn field” [Shakesby, 1997], are well developed on the foot 

of high cliffs on the Brøgger peninsula (Figure A7b, c). Rock fall is frequent from the steep cliffs 

that mark the flat-topped summits of the mountains [André, 1995]. The flanks of the massifs 

bordering the valley are dissected by numerous gullies (Figure A3b, c), which are the transport 

pathways for debris flows. Debris flows can reach volumes of 50 to 500 m3 in the Longyearbyen 

valley (Larsson, 1982), and their recurrence interval is 80 to 500 years (André, 1990).  

 

 

Figure A5: Comparison between alternating bright and dark stripes on Mars and sorted stripes on 
Svalbard. (a) Alternating dark and bright stripes near gullies on the inner wall of a Martian impact 
crater (HiRISE image PSP_001684_1410; near 38.9°S, 196.0°E). The orientation of the stripes is 
approximately downslope. (b) Sorted stripes on the western slopes of the Hiorthfjellet massif (east 
of Adventfjorden, Spitsbergen). Note the striking similarity in scale between a and b. (c) Sorted 
stripes in Adventdalen (Spitsbergen). Coarser and slightly elevated unvegetated stripes alternate 
with finer-grained and vegetated stripes (person for scale). 
 

 

Figure A6: Comparison between lobate structures on Martian slopes and solifluction features on 
Svalbard. (a) Lobate features on the inner wall of an impact crater on Mars (near 71.9°N/344.5°E; 
HiRISE PSP_010077_2520). The morphology is identical to that of lobate solifluction sheets [cf. 
Ballantyne & Harris, 1994, fig. 11.1]. Although this particular example is on the wall of a crater in 
high latitudes, it is expected that such features might also be found in mid-latitude craters. 
(b) Solifluction lobes on the slopes of Louisfjellet (central Spitsbergen, Svalbard). Note the striking 
similarity in scale and morphology between (a) and (b). 
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Figure A7: Possible protalus ramparts on Mars (left) and Svalbard (right). (a) Protalus lobe-like 
structures at the base of a large scarp on the northern wall of Hale Crater (CTX image 
P15_006756_1454; near 34.6°S, 323.1°E; North is up). The steep front is characterized by 
polygons [see Reiss et al., 2009; their fig. 10b and c]. (b) Protalus lobes on the northern tip of Prins 
Karls Forland (Svalbard) [see Berthling et al., 1998] at the western foot of the Fuglehukfjellet 
massif (aerial photo S 704128, Norsk Polarinstitutt, Oslo, Norway; from André [1994]; North is 
towards the left). (c) Close-up image of protalus rampart at Stuphallet, Brøgger peninsula (see 
person for scale). The surface of the steep front consists of very coarse blocks (diameters of up to 
tens of cm). 
 

 

Figure A8: Comparison between fractured mound on Mars and pingo on Svalbard. (a) Fractured 
mound on floor of crater in southern hemisphere (detail of HiRISE image PSP_007533_1420; near 
37.9°S, 347.2°E) [see Dundas & McEwen, 2010]. (b) Pingo in upper Eskerdalen (central 
Spitsbergen) with fractures on its top (HRSC-AX image, acquired in July 2008). Note the 
morphologic similarity to the shallow fractured mound shown in a. (c) Field photograph of pingo 
shown in (b). North is up in panels (a) and (b). View towards northeast in panel (c). 

 

Between the gullies, many slopes display evidence for solifluction (Figure A6b) and sorting 

processes (sorted and non-sorted nets and stripes; Figure A5b, c) [Sørbel & Tolgensbakk, 2002]. 

The debris flows build up fans, characterized by channels with lateral levees, flow tongues, and 

coarse sediment [for a description of an alluvial fan in a permafrost region see Catto, 1993]. Where 

fans extend to the shore of the estuary at the mouth of Adventdalen, they can form an arctic fan 

delta [Lønne & Nemec, 2004]. In the inland, debris flow fans at the downstream-end of the gullies 

coalesce along the valley to form bajadas. The valley floor is occupied by the large braided river, 

Adventelva, which often cuts the toes of the fans. Several open-system (hydraulic) pingos are 

located near the fans on the valley floor (Figure A8b, c) [Listøl, 1976; Yoshikawa, 1993; Yoshikawa 

& Harada, 1995]. River terraces are overprinted by thermal-contraction cracks that form 

widespread nets of ice-wedge polygons (Figure A4b, c) [Christiansen, 2005]. Most of the 
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landforms on the valley flanks can be considered to be part of an ice-debris transport system, where 

mass wasting takes place both by steady state processes (small-scale rockfall, avalanches, glacial 

and fluvial transport, and solifluction) and by more extreme short-lived processes (large-scale 

rockfall, landslides, debris flows) [Haeberli, 1985]. Figure A9 demonstrates the spatial 

arrangement of the landforms in Adventdalen in an idealized sketch, and Figure A10 shows a three-

dimensional perspective view of the Hiorthfjellet massif exhibiting some of the features in their 

real setting. 

 

Figure A9: Ensemble of glacial and periglacial landforms observed in Adventdalen (central 
Spitsbergen, Svalbard [modified from Haeberli, 1985, fig. 1]. The qualitative sketch is not meant to 
represent the real situation in Adventdalen, but to illustrate the spatial arrangement of the 
landforms. Morphologically similar landforms have been observed in Martian mid-latitudes craters, 
often in comparably close spatial proximity. The unique advantage of such terrestrial analogues is 
their potential to provide constraints in the interpretation of planetary surface morphologies. 
 

A6 Discussion 

The above comparisons suggest that periglacial processes might have operated in Martian mid-

latitude craters. However, the exact nature, intensity and sequence of these processes are unclear. 

We present three different models, which outline in a qualitative way some possible scenarios how 

mid-latitude craters were shaped in the recent Martian history by processes involving water ice and, 

to a lesser degree, liquid water. It is important to note that these models are not thought to be 

mutually exclusive, nor do they necessarily include all processes that operated on Mars. Instead, 

they are suggested as examples of how planetary landform analysis guided by terrestrial knowledge 

can yield improved insight into the evolution of complex landscapes.  
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Figure A10: Example of close spatial proximity of glacial and periglacial landforms on Svalbard. 
The scene (width ~3.7 km; North is towards the background) was computed from HRSC-AX stereo 
images and shows the Hiorthfjellet mountain massif on the northern side of the Adventfjord. 
Numbers refer to specific landforms: 1-gullies; 2-alluvial fan; 3-debris flow fans merging along the 
valley wall into a bajada; 4-slope stripes; 5-rock glacier; 6-pingo; 7-braided river. All of these 
landforms have close morphological analogues in Martian mid-latitude craters. 
 

The premise of the models is that during higher obliquity water ice is driven from the poles 

towards lower latitudes where it is precipitated as snow. During periods of lower obliquities, the 

precipitated snow would sublime or melt, and water vapour would be redistributed at higher 

latitudes. This basic pattern of volatile transport through the atmosphere as a function of obliquity 

has been modelled with GCM [Mischna et al., 2003; Levrard et al., 2004; Forget et al., 2006; 

Madeleine et al., 2009], and the modelling results successfully predict ice accumulation at places 

where indeed an increased frequency of possible glacial landforms have been observed (e.g., east 

of the Hellas basin, west of the Tharsis Montes, and at the Deuteronilus Mensae region). If this 

premise is accepted, it implies that the pattern of deposition and degradation of snow and the 

associated periglacial processes operate in cycles, as the obliquity varies cyclically. One of such 

cycles is discussed in the following for each of the scenarios. 

Following the scheme of landscape evolution proposed by Morgenstern et al. [2007] for the 

lowlands of Utopia Planitia, the initial process in the cycle of deposition and degradation is the 

subaerial deposition of a volatile-rich mantle consisting of a layered mixture of dust and snow. 

Martian dust is suggested to origin from volcanic sources, meteoritic impact and rock erosion, and 

is redistributed by global dust storms [Kahn et al., 1992]. The dust particles act as condensation 

nuclei for water-ice [e.g., Gooding, 1986]. The dusty snow mantle would be thicker at the pole-

facing wall, but would also cover the crater interior and smaller crater therein. This stage is 

common to all three scenarios (Figure A11a-c, stage I). Such a mantling deposit has been suggested 
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already on the basis of Mariner 9 data [Soderblom et al., 1973], and was later revealed in detail by 

high-resolution topography [Kreslavsky & Head, 2000] and images [Mustard et al., 2001]. This 

mantling layer has a thickness in the order of tens of meters in lowlands [Morgenstern et al., 2007], 

but it is not clear how much of this thickness is deposited during one obliquity cycle. The 

microclimatic conditions at pole-facing (inner) walls of craters are such that ice is preferentially 

accumulated and preserved in these locations, i.e., they function as cold traps for atmospheric water 

ice [Hecht, 2002; Schorghofer & Edgett, 2006; Head et al., 2008]. 

 

A6.1 The ‘dry’ scenario 

Over time, the accumulated snow pack would increase in thickness and eventually the lower 

portions would transform into glacier ice (Figure A11a, stage II). This glacier would probably 

contain a significant amount of dust (and perhaps wind-blown sand, but no or very few rock 

fragments), and we tentatively suggest the term “dust glacier”. The plan-view shape of such 

glaciers would typically be tongue-shaped (length > width), as it is commonly observed on Earth 

(for a comparison between these shapes on Mars and Earth, see Arfstrom & Hartmann [2005] their 

fig. 2). If it were cold enough, this glacier would freeze to the underlying crater wall and be a cold-

based glacier, as they were previously suggested for Mars [Head & Marchant, 2003]. A cold-based 

glacier would cause little or no erosion of the underlying crater wall, and therefore the slope of this 

wall might remain more or less unchanged. At the downslope termination of the glacier, thrust or 

push moraines could develop [e.g., Berman et al., 2005], because even if there was no basal sliding 

of the glacier, it would deform internally and move downslope. The presence of push moraines in 

front of cold-based glaciers is well documented on Earth [e.g., Haeberli, 1979], where push 

moraines are the morphological result of permafrost deformation. These moraines would be piled 

up to ridges, which might contain some ice. In some cases, a lobate body might form at the base of 

the crater wall that has a width larger than its length (Figure A7a). This class of flow features 

exhibits a striking large-scale similarity to protalus ramparts on Svalbard (Figure A7b). The spatial 

proximity of “dust glaciers”, (ice-cored) moraines, and permafrost features such protalus ramparts 

would not be surprising, since it was suggested that these landforms might be part of a 

morphological and developmental continuum [Shakesby et al., 1987]. At smaller scales of 

observation, however, significant differences become obvious between the Martian and terrestrial 

features shown in Figure A7. The steep distal front of the Martian flow feature is overprinted by 

polygons [cf. Reiss et al., 2009, fig. 10], which have likely be developed as thermal contraction 

cracks in fine-grained material. In contrast, the distal fronts of the protalus ramparts on Svalbard 

consist of coarse, decimetre-sized rocks derived from steep cliffs and mountain slopes. The 

difference is easily explained, however, if the relief above the features is taken into account. On 

Svalbard, the slopes are steep, and frequent mass wasting delivers copious amounts of coarse 

particles, which form the rocky part of the rock glacier. On the other hand, the lower slopes of large 
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and old craters on Mars (such as Hale Crater, in the example of Figure A7a) are much gentler, and 

the material being mixed with ice to form the protalus rampart-like feature would be fine-grained 

airborne dust. On the surface of such a body, it would be reasonable to expect the formation of 

sublimation polygons.  

After the obliquity decreases, the ice would slowly become unstable and begin to sublimate. A 

lag deposit of dust and sand would form at the top of the glacier, decreasing the rate of sublimation 

[Mellon & Jakosky, 1993; Chevrier et al., 2007]. Internally, the glacier might still be deformed. If 

the lag deposit has some cohesion, e.g., from cementation, the ongoing internal deformation of the 

glacier body might crack the lag deposit and form tension fractures, normal faults and grabens 

paralleling the topographic contours. When sublimation would have removed most of the ice, a 

thick and very fine-grained lag deposit (dominated by dust-sized particles) would remain above a 

thinned body of buried glacier ice. At the same time, the mantling deposit in the crater interior 

would also degrade and become thinner. Where this mantling filled a smaller impact crater, it 

might be preferentially preserved, leaving a high-standing mound of the mantling that could 

develop fractures at its top. As Dundas & McEwen, [2010] already discussed, such a fractured 

mound could easily be misinterpreted as a pingo (Figure A11a, stage III). Thermal contraction 

polygons could develop in the sublimation lag. In analogy to the McMurdo Dry Valleys in the 

Antarctica, these polygons could be sublimation polygons [Marchant et al., 2002], as suggested for 

Mars by Levy et al. [2009a]. It has to be noted, however, that the exact nature of the polygons (ice 

wedge polygons, sand wedge polygons, or sublimation polygons) remains an open question, since 

the morphology alone does not allow for an unambiguous identification of either of these forms 

[e.g., van Gasselt et al., 2005]. For example, degraded ice-wedge polygons in Adventdalen 

(Figure A4b, c) display a morphology that can hardly be distinguished from sublimation polygons 

in remote sensing imagery. With continual degradation, the volume of the remaining ice would be 

so small that scalloped depressions would form between the thrust moraines, left behind as arcuate 

ridges, and the remaining lag deposit on the crater walls (Figure A11a, stage III). Remnant thicker 

patches of near-surface ground ice [Costard et al., 2002] or snow perched high in alcoves on the 

crater rim [Head et al., 2008] might finally melt [Hecht, 2002; Kossacki & Markiewicz, 2004]. The 

meltwater could either run off surficially and initiate fluvial transport and downstream deposition, 

where an alluvial fan would form (Figure A11a, stage III). Alternatively, the meltwater could 

infiltrate into the lag deposit, saturate it, increase the pore pressure and thus reduce its shear 

strength, which would increase the susceptibility of the material to gravity-driven failure and debris 

flows [e.g., Iverson et al., 1997]. The degree of saturation is commonly increased if a low 

permeability layer in the subsurface is present, which leads to the transient perching of the water 

table [Reid et al., 1988], and the frozen underground would be such a hydrologic barrier. Another 

factor favouring the development of debris flows in this setting on Mars is the small grain size of 

the lag deposit, because clay-sized material is required to maintain the high pore pressures needed 
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during the flow [Iverson, 1997]. This mechanism of debris flow initiation has also been proposed 

by Lanza et al. [2010]. Unambiguous evidence for debris or mud flows on Mars has indeed been 

found by Levy et al. [2010b]. The debris flows and the fluvial processes would form a downstream 

fan, as it is typical for Earth. The fans have been dated by crater counting and have ages in the 

order of 105 to 106 years [Reiss et al., 2004; Schon et al., 2009a]. In the “dry” model, a transition 

takes place from glacial to periglacial processes, and the formation of gullies and fans from and on 

the lag deposit would be the final stage [Dickson & Head, 2009]. 

 

A6.2 The ‘wet’ scenario 

The second scenario starts as the “dry” one, except that a warm-based or polythermal “dust 

glacier” would form. This glacier would experience basal melting and, therefore, the ice and 

subglacial meltwater would erode and steepen the crater wall (Figure A11b, stage II). Another 

difference to the first scenario would be the extent of the permafrost layer. Beneath the warm-based 

glacier, the permafrost would disappear, and liquid water generated by the basal melting of the 

glacier would infiltrate into the substrate. A similar scheme was proposed by Carr & Head [2003] 

and Fassett & Head [2006]. The groundwater would migrate down towards the interior of the 

crater. In the subsurface of the crater floor, beyond the extent of the glacier, there would be an 

impermeable permafrost layer above the groundwater, and the hydraulic head would pressurize the 

groundwater. At weak spots in the crater floor, which would be abundant due to the fracturing that 

was created at the impact, this groundwater could ascend as artesian water. Reaching the near 

surface, it would freeze and build a growing ice core. With time, a mound consisting of this ice 

core and some overlying mantle deposit would rise. This is how hydraulic (open-system) pingos 

grow on Earth, except that they do not form in craters, but in valleys where the hydraulic head has 

its source in nearby mountains [Müller, 1959; Worsley & Gurney, 1996; Mackay, 1998]. The 

pingos in the study area in Spitsbergen are also thought to form by this mechanism [Listøl, 1976, 

fig. 2]. If the same process applies to Mars, it would represent an example of glacier-permafrost 

interaction, which is also considered to be an important factor in landform evolution on Svalbard 

[Etzelmüller & Hagen, 2005]. The steepening of the crater wall by glacial erosion would increase 

the probability for rockfall, which was suggested as a triggering mechanism for debris flows on 

Earth, if the other requirements (saturated soil, positive pore pressure) are met [Hsu, 1975; 

Johnson, 1995]. Except for these differences, this “wet” scenario would otherwise be very similar 

to the “dry” scenario, and glacial processes (including surficial meltwater production and runoff; 

Fassett et al., 2010) would be followed by the formation of periglacial landforms (polygons, 

solifluction lobes, rock glaciers, pingos) and, finally, paraglacial processes (avalanches, rock falls, 

debris flows, chemical denudation, mechanical fluvial denudation, surface movements/creep; 

Figure A11b, stage III). 
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A6.3 The ‘snow’ scenario 

A thick snowpack might form instead of a glacier in the “snow” scenario (Figure A11c, 

stage I). The transition of snow (or rather firn) to glacier ice is defined by density and starts at 

~830 kg m-3, where interconnecting air passages between ice grains become sealed off [Paterson, 

1994] and reaches a final value of 917 kg m-3 [Knight, 1999, tab. 3.3] (for an extended discussion 

of ice metamorphism, firnification, and ice formation see Shumskii 1964, p. 240-303). While it is 

known that many factors such as vapour transport, the diurnal and seasonal temperature variations 

and other factors control the snow densification on Mars [Arthern et al., 2000], a clear difference 

between Earth and Mars is the rate of gravity-driven snow densification (sintering). Other factors 

being equal, the transition from snow (or rather firn) to glacier ice should therefore occur on Mars 

at a larger depth than on Earth (the Martian gravitational acceleration at its surface is about 38% of 

that on the Earth`s surface). Typical values for this depth on Earth are ~10 to 20 m in temperate 

areas, and >>50 m in cold continental areas [e.g., Shumskii, 1964, p. 275]. The timescales of this 

transformation are also vastly different, depending on the climate. In cold and dry climates such as 

in Antarctica, the transformation may require up to 2500 years [Paterson, 1994, tab. 2.2], while it 

can be as short as a few years only in more temperate regions such as in northwestern Canada. In 

summary, it can be expected that it takes longer in a very cold and presumably rather dry climate 

on Mars to transform snow to firn and finally to ice than on Earth. This should be true even for 

recent periods of higher obliquity. Similarly, one might expect snowpacks on Mars that reach larger 

thicknesses than on Earth before they transform to glacier ice. Based on these qualitative 

considerations, it seems likely that in many cases the accumulation of snow did not result in a 

glacier, but in a thick snowpack with intercalated layers of dust and perhaps wind-blown sand [cf. 

Williams et al., 2008, fig. 3]. The snow scenario is perfectly in agreement with an interpretation of 

the features shown in Figure A7a as protalus ramparts, because such landforms on Earth are 

evidence for snow accumulation. Sublimation of snow would again favour the formation of a lag 

deposit on top of the snowpack. The slow downward creep [Perron et al., 2003] in combination 

with compaction and sublimation of snow could induce fracturing of the overlying lag deposit 

(Figure A12a). A terrestrial analogue for this process was described by Koster [1988], who 

investigated niveo-aeolian forms in Alaska. He found that denivation of sand-covered snow on 

dunes can produce deformational structures such as tensional cracks and compressional features 

(Figure A11b) [see also Dijkmans, 1990; fig. 3B], which are morphologically similar to the 

contour-parallel fractures and grabens commonly seen on the lower slopes of mantling deposits and 

fans on Mars (cf. Figure A12a). The creep of the snowpack might also pile up some permafrost 

material at the base, analogous to the moraines as in the dry and wet scenarios (Figure A11c, 

stage II). 
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Figure A12: (a) Extensional features 
(normal faults and grabens) trending 
normal to the topographic gradient of the 
inner wall of an impact crater in the 
northern mid-latitudes (near 39.5°N, 
105.4°E; detail of HiRISE PSP_001357 
_2200, North is up). (b)  Niveo-aeolian 
sediment at the lee (slip) side of a 
transverse dune in the Great Kobuk Sand 
Dunes (NW Alaska, USA; from Koster 
[1988], photograph by J. Dijkmans). 

 

The melting of a dusty snow pack has long been recognized as a potential source of liquid 

water on Mars [Clow, 1987], and more recent studies confirmed this possibility [Williams et al., 

2008]. While the results of Williams et al. [2008] apply only to periods of higher than today`s 

obliquity, Möhlmann [2010b] emphasizes the effect of the “solid-state greenhouse effect” in 

generating liquid water in snow packs and concludes that even in the current climate of Mars, 

liquid water can be produced. Williams et al. [2009] modelled snow melt at mid-latitudes on Mars 

and found that enough meltwater can be generated to produce gullies, an idea that had been 

previously suggested by Christensen [2003]. Whenever the snow melting occurred exactly, it 

would be a viable process to provide the required liquid water for gully and fan formation in the 

“snow” scenario. If an active layer existed in the past [Kreslavsky et al., 2008], solifluction might 

occur in the form of frost creep or gelifluction, although the period of the freeze/thaw cycles is 

difficult to constrain (day-night or seasonal cycles). Fractured mounds would form as erosional 

forms, not as pingos. Where all the snow in the surrounding has decreased in height or disappeared, 

snow hummocks would remain, consisting of residual snow patches or ridges [Koster & Dijkmans, 

1988]. When the tops of these denivation forms are broken up into radial patterns, they display a 

strikingly similar morphology to Martian fractured mounds (Figure A13). There is a huge 

difference in scale between the two types of fractured mounds shown in Figure A13, but the 
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principle should work for the larger fractured mounds on Mars as well. The other landforms would 

form very similarly as in the other scenarios (Figure A11c, stage III). An important aspect of this 

scenario and the associated snow melting would be intensified chemical weathering, the role of 

which has been underestimated in the past even on Earth [Thorn, 1988]. 

 

 

Figure A13: Comparison between fractured mound on Mars and niveo-eolian features on Earth. 
(a) Mound with radial fractures on the floor of an impact crater in the southern mid-latitudes. The 
surface of the mound is superposed by several round depressions, which might be due to collapse 
and/or impact cratering (near 33.6°S, 124°E; detail of HiRISE PSP_002135_1460; North is up). 
(b) Snow hummock with radial tensional cracks on the Great Kobuk Sand Dunes (Alaska, USA) 
[from Koster & Dijkmans, 1988]. The hummock is a denivation form that developed in niveo-
eolian beds. Note the morphological similarity to (a), but also note the large difference in scale 
(these hummocks are only a few decimetres to one meter wide). See text for details. 

 

A7 Conclusions 

Despite significant differences in the climates of Mars and Svalbard, a suite of very analogous 

landforms has developed, though perhaps over enormously different timescales. Attempts to 

reconstruct palaeo-climates on Mars have to take into account that different processes acting in 

different environments can produce similar results (equifinality). The integrated analysis of 

landscapes can reduce such ambiguities. 

The landform inventory associated with pole-facing inner walls of impact craters in the Martian 

mid-latitudes (Figure A14) suggests the geologically recent action and interaction of glacial and 

periglacial processes. Based on terrestrial analogue landforms in similarly close spatial proximity 

on Svalbard, three scenarios of sequential landscape evolution are presented for Mars. All scenarios 

start with initial snow fall and the deposition of a dusty snow pack, and they all end with recent 

gully and fan formation. These scenarios are qualitative in the sense that none of them is expected 

to exactly represent the real situation on Mars. In fact, the scenarios are not mutually exclusive, and 

mixed cases (e.g., the dry and the snow scenarios) are very plausible. Dependent on latitude and 

insolation, some craters might have been shaped by the dry scenario, while craters at other latitudes 

might have been shaped by the wet scenario.  
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Figure A.14 
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The different scenarios also have different implications for the interpretation of certain 

landforms. For example, fractured mounds are unlikely to be open-system pingos in the dry 

scenario, because that does not predict liquid water in the subsurface, a prerequisite for the growth 

of hydraulic pingos. On the other hand, basal melting of snow in the snow scenario could lead to 

infiltration of liquid water into the subsurface and the formation of a hydraulic pingo as in the wet 

scenario. 

The landscape evolution proposed here would be controlled by obliquity and/or orbital 

parameters such as eccentricity or the position of perihelion, and is therefore assumed to be cyclic. 

Several successive episodes of deposition and removal have already been suggested by, e.g., 

Kreslavsky & Head [2002], Schon et al. [2009b], and Morgan et al. [2010]. Processes implying an 

active layer might have operated in the past, although an active layer does not exist today 

[Kreslavsky et al., 2008]. It is thus important to realize that the Martian mid-latitude morphologies 

do not represent a stable situation over long periods. Instead, this is a dynamic landscape in 

constant, though perhaps very slow, transition, and patterns of sedimentation and erosion overprint 

each other repeatedly. Nevertheless, the associated rates for erosion (e.g., in the dry scenario) are 

likely to be very low, and not all traces of former ice ages are extinguished by later glaciations. 

Therefore, the spatial extent of former and more widespread glaciation can be identified by careful 

morphological analysis [Hauber et al., 2008; Dickson et al., 2008, 2010; Head et al., 2010].  

 _______________________________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A14: (Continued) Assemblages of possible periglacial landforms and water ice on 
Martian pole-facing crater walls. (a) Part of south-facing inner wall of Hale Crater, displaying 
several landforms that resemble periglacial landforms on Svalbard (CTX image P15_006756_1454 
superposed on HRSCDEM, HRSC h0533_0000). View is towards the NE, no vertical exaggeration, 
image width is about 12 km. (b) Perspective view of a crater in the southern mid-latitudes (at 
45.668S, 238.118E; CTX image B05_011519_1341 superposed on HRSC DEM, HRSC 
h0424_0000). View is towards the NE, no vertical exaggeration, crater diameter is 26 km. (c) 
Slightly rotated detail of the scene shown in (b), with gullies and possible moraines at the downward 
termination of the inferred location of former glaciers (view towards the north). (d) Snow and frost 
on pole-facing slopes (crater centre at 46.058S, 183.858E; detail of HRSC h8569_0000; image 
acquired during the southern winter at solar longitude (LS) 147.88). The bright material is likely to 
be water ice, as it was found by the Compact Reconnaissance Imaging Spectrometer (CRISM) at a 
similar latitude during the same season (see panels g and h). (e) Another example of snow and frost 
preferentially accumulated on pole-facing slopes (crater centre at 39.68S, 158.328E; detail of HRSC 
h8527_0000; image acquired during the southern winter at LS 141.68). The white box marks the 
location of panel (f) and corresponds to an area where bright material accumulated on the inner wall 
of a smaller impact crater. (f) Detail of the previous image. The area of snow accumulation 
corresponds exactly to sites where gullies, fans and moraine-like landforms are observed (detail of 
CTX B05_011746_1401). (g) CRISM false-colour image of a crater rim in Terra Sirenum (near 
38.98S, 195.98E). Frost is characterized by a ‘bluer’ colour than the rock and soil. The image was 
taken during the Martian winter at LS 140.68 (image source: NASA PlanetaryPhotojournal, 
#PIA09101; image credit: NASA/JPL/JHUAPL). (h) Same scene as (g), with the colour indicating 
the depths of absorption bands of H20-frost at 1.50 µm (blue) and CO2-frost at 1.45 µm (green). 
While CO2-frost occurs only at the coldest, most shaded areas, water ice is more widespread and 
occurs on slopes incised by many gullies (image source: NASA PlanetaryPhotojournal, #PIA09101; 
image credit: NASA/JPL/JHUAPL) [see also Vincendon et al., 2009]. 
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Not all craters are necessarily expected to be exactly in the same stage of this landscape 

evolution. In general, however, the observations of gullies with very recent activity [e.g., Reiss et 

al., 2010; Dundas et al., 2010; Diniega et al., 2010] point to a late stage situation for most mid-

latitude craters at the present time. This is also in agreement with observations of current 

degradation of the mantling deposit in mid-latitudes [Mustard et al., 2001; Morgenstern et al., 

2007; Lefort et al., 2009; Zanetti et al., 2010] and with theoretical modelling of ground ice stability 

in the recent history of Mars [Chamberlain & Boynton, 2007]. 

The importance of snow (Figures 12 and 13) should not be neglected in assessing the relative 

importance of glacial and periglacial processes on Mars. Snow and nivation processes are 

important factors in the geomorphology of polar and cold-climate regions [e.g., Thorn, 1978; 

Christiansen, 1998], and snowpacks might be viable alternatives to glacial interpretations of some 

Martian surface features. Wind should also be an important factor, as it can transport snow and 

accumulate it in protected regions [Head et al., 2008], where it could act as a landscape forming 

agent. 
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