Distinct modes of internal variability in the Global Meridional Overturning Circulation associated with the Southern Hemisphere westerly winds


Contact
Wei.Wei [ at ] awi.de

Abstract

The internal variability of the global meridional overturning circulation (GMOC) in long-term integration of the Earth system model COSMOS is examined in this study. Two distinct modes of the GMOC, which are closely linked to the Southern Hemisphere westerly winds (SWW) anomalies, are found on multidecadal and centennial time scales. The dominant mode is characterized by Southern Ocean dynamics: strengthening and poleward shift of the SWW associated with a positive phase of the Southern Annualar mode yield Ekman-induced northward mass transport, including a zonally asymmetric response in the Southern Ocean sea surface temperature, and a cooling in the tropical Pacific Ocean due to large-scale upwelling. The second mode projects mainly onto the Atlantic meridional overturning circulation (AMOC). It is driven by a combination of SWW variation and buoyancy forcing. Based on the relationship between the two modes together with the wind perturbation experiments, we emphasize that the full AMOC response to the SWW change takes several centuries in our model. The sea surface temperature in Northern Hemisphere high latitudes is significantly affected in this mode, showing a large-scale warming. Our results from a mid-Holocene experiment imply that both modes are independent from the climate background conditions in the Holocene. Finally, we argue that the natural modes of GMOC are important to understand trends in ocean circulation, with consequences for heat and carbon budgets for past, present and future climate.



Item Type
Article
Authors
Divisions
Programs
Publication Status
Published
Eprint ID
26034
DOI 10.1175/JPO-D-11-038.1

Cite as
Wei, W. , Lohmann, G. and Dima, M. (2012): Distinct modes of internal variability in the Global Meridional Overturning Circulation associated with the Southern Hemisphere westerly winds , Journal of Physical Oceanography, (42), pp. 785-801 . doi: 10.1175/JPO-D-11-038.1


Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Citation

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item