ePIC

Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi

Edit Item Edit Item

General Information:

Citation:
Rokitta, S. D. and Rost , B. (2012): Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi , Limnology & Oceanography, 57 (2), pp. 607-618 . doi: 10.4319/lo.2012.57.2.0607
Cite this page as:
DOI:
Official URL:
Contact Email:
Download:

[img]
Preview
PDF
0607.pdf

Download (654Kb) | Preview
Cite this document as:
Supplementary Information:

Abstract:

The effects of ocean acidification on the life-cycle stages of the coccolithophore Emiliania huxleyi and their modulation by light were examined. Calcifying diploid and noncalcifying haploid cells (Roscoff culture collection strains 1216 and 1217) were acclimated to present-day and elevated CO2 partial pressures (PCO2; 38.5 vs. 101.3 Pa, i.e., 380 vs. 1000 µatm) under low and high light (50 vs. 300 µmol photons m-2 s-1). Growth rates as well as cellular quotas and production rates of C and N were measured. Sources of inorganic C for biomass buildup were determined using a 14C disequilibrium assay. Photosynthetic O2 evolution was measured as a function of dissolved inorganic C and light by means of membrane-inlet mass spectrometry. The diploid stage responded to elevated PCO2 by shunting resources from the production of particulate inorganic C toward organic C yet keeping the production of total particulate C constant. As the effect of ocean acidification was stronger under low light, the diploid stage might be less affected by increased acidity when energy availability is high. The haploid stage maintained elemental composition and production rates under elevated PCO2. Although both life-cycle stages involve different ways of dealing with elevated PCO2, the responses were generally modulated by energy availability, being typically most pronounced under low light. Additionally, PCO2 responses resembled those induced by high irradiances, indicating that ocean acidification affects the interplay between energy-generating processes (photosynthetic light reactions) and processes competing for energy (biomass buildup and calcification). A conceptual model is put forward explaining why the magnitude of single responses is determined by energy availability.

Further Details:

Imprint
AWI
Policies:
read more
OAI 2.0:
http://epic.awi.de/cgi/oai2
ePIC is powered by:
EPrints 3