Die mit ausgewählten Schwämmen (Hexactinellida und Demospongiae) aus dem Weddellmeer, Antarktis, vergesellschaftete Fauna

Associated fauna of selected sponges (Hexactinellida and Demospongiae) from the Weddell Sea, Antarctica

Kathrin Kunzmann
Kathrin Kunzmann

Institut für Meereskunde, Düsternbrookerweg 20, D-24105 Kiel, Germany

Inhalt

3.4.2 Vergesellschaftete Faunagruppen im zentralen Hohlraum 45
3.4.3 Vergesellschaftete Arten im zentralen Hohlraum 48
3.4.4 Schwammgröße als Kriterium der Bestiedlung 50

3.5 LANGENHAUFIGKEITSVERTEILUNG EINIGER AMPHIPODEN 53

3.6 MAGEN- UND DARMINHALTE EINZELNER SCHWAMM-
BESIEDLER .. 57
3.6.1 Proobranchier ... 57
3.6.2 Nudibranchier ... 58
3.6.3 Amphipoden .. 58

IV. Diskussion .. 60
4.1 METHODENKRITIK ... 60
4.2 SCHWÄMME ALS LEBENSRAUM FÜR BENTHISCHE
ORGANISMEN .. 61
4.2.1 Hexactinellida .. 61
4.2.1.1 Zentraler Hohlraum .. 62
4.2.1.2 Schwammoberfläche ... 71
4.2.1.3 Gewebsveränderung an der Oberfläche 75
4.2.1.4 Schwammgewebe ... 76
4.2.1.5 Basalskleren .. 77
4.2.2 Demospongiae .. 77
4.3 SCHLUßBETRACHTUNG ... 82

V. Literatur ... 86

VI. Danksagung ... 93
Abstract

During Polarstern expedition ANT VII/4 (Epos leg 3) to the eastern and southeastern part of the Weddell Sea, individuals of several dominant species of the sponge classes Hexactinellida and Demospongiae were collected. In total, 42 individuals of four hexactinellid species and 32 individuals of nine demosponge species were inspected with respect to associated in- and epifauna. Of the dominant hexactinellid species Rossella antarctica and Rossella racoviczai, 150 and 770 individuals, respectively were examined for associated fauna living in their central cavity. More than 3000 individuals belonging to more than 100 species were found in association with sponges. Polychaetes dominate in terms of abundance as well as in number of species.

It is obvious that hexactinellids and demosponges represent completely different habitats for the benthic fauna. The hexactinellids offer five different micro habitats, namely: the central cavity, the sponge surface, the predator induced surface tissue lesions, the sponge tissue and the basal scleres. The central cavity seems to be the most important micro habitat. 60% of the examined individuals of R. antarctica had associated infauna as compared to only 30% of R. racoviczai. Both sessile and motile fauna was found in association with sponges. For R. antarctica, the polychaetes represent the most dominant group, whereas in R. racoviczai the prosobranchs dominate. Some associated species are substrate selective, while others are sponge size selective.

Ophiuroids, asteroids and pantopods found in association with sponges are usually still juvenile. It is assumed that living in the central cavity protects them from predators and current action and that the micro habitat central cavity has a nursery function for these species.

Obvious differences in the colonization of the hexactinellids' surface show that outward pointing surface spicules or spicule veils are no defense against settlement of colony forming organisms, visits by motile organisms or predation by sponge eaters. Hexactinellids without protruding surface spicules show significantly less associated fauna than those with spicula. The demosponges offer only two different micro habitats, these are: the sponge's surface and the interior cavity. The collected infauna was less by number and by species with amphipods being the most dominant fauna group.

Stomach and intestine investigations of selected gastropod and amphipod species, collected from hexactinellids and demosponges, clearly show that some species are feeding on sponges. Length-frequency distributions of dominant amphipod species associated with the two sponge classes have shown that different age and molting sizes co-inhabit in the sponges.

Based on the results of this study and already published papers, it is possible to differentiate the relationships between hosts and guests of the dominant associated species and fauna groups. Major emphasis is placed on symphorism, entoeke and parasitism as main types of association.
Zusammenfassung

Insgesamt wurden über 3000 Individuen, die mehr als 100 Arten angehören, in Vergesellschaftung mit Schwämmen gefunden, wobei die Polychaeten die dominante und artenreichste Faunagruppe darstellen.

Deutliche Unterschiede in der Besiedlung der Schwammoberfläche verschiedener Hexactinellidenarten durch Organismen haben gezeigt, daß nach außen ragende Spicula kein Abwehrmittel gegen die Besiedlung durch koloniebildende Invertebraten, das Aufsuchen durch eine motile Fauna und den Wegfall durch andere Organismen sind. Hexactinelliden ohne nach außen ragende Spicula weisen eine wesentlich geringere vergesellschaftete Fauna auf, als solche mit Spicula.

Die Demospongien zeigen mit der Schwammoberfläche und den internen Hohlräumen nur zwei unterschiedliche Lebensräume. Die mit relativ wenigen Individuen gefundene vergesellschaftete Fauna war artenärmer, wobei die Amphipoden die dominante Faunagruppe darstellen.

Magen- und Darmuntersuchungen ausgewählter Gastropoden- und Amphipodenarten aus

Aufgrund der Ergebnisse der vorliegenden Studie und Angaben in der Literatur können für die dominanten vergesellschafteten Arten und Faunagruppen die Beziehungen zwischen Wirt und Gast differenziert werden. Dabei werden Symphorismus, Enzioke und Parasitismus als Typen der Vergesellschaftungen herausgestellt.
I. Einleitung

Die in der Mehrzahl marinen Schwämme sind aufgrund ihrer sessilen Lebensweise und ihres relativ ungegliederten Körpers erst 1825 als Tiere erkannt worden (Hadom & Wehner 1978). Schwämme sind suspensionsfressende Metazoen, die sich durch das Fehlen von Sinnes- und speziell differenzierten Muskelzellen klar von allen anderen Metazoen unterscheiden. Ihr Körper variiert in Habitus und Größe wie kaum bei einer anderen Metazoengruppe und kann von wenigen Millimetern bis zu zwei Metern Länge groß sein. Seit dem Präkambrium sind Schwämme nachgewiesen; inzwischen sind ca. 6000 Arten bekannt, welche sich vier Klassen zuordnen lassen: Demospongiae, Sclerospongiae, Calcarea und Hexactinellida.

Über die Vergesellschaftung von Hexactinelliden mit anderen Organismen außerhalb der Antarktis ist bisher nur wenig bekannt; als klassisches Beispiel gilt die in Japan anzutreffende Krebsart Spongicola venusta mit dem Gießkannenschwamm Euplectella oweni. Die Krebse, die meist paarweise als Jungtiere in den Glasschwamm eindringen, können ihn im erwachsenen Zustand nicht mehr verlassen, da die Löcher des allseitig gitterartigen Schwammskelettes dann zu klein sind. Die Wohnung des Krebspaares wird also gleichzeitig das gemeinsame Grab, was auch die japanische Volksbezeichnung für diesen in Japan als symbolisches Hochzeitsgeschenk verwendeten Glasschwamm mit seinen beiden Mieters besagt (kai-ro-doketsu = miteinander alt geworden, miteinander begraben sein; Arndt 1928).

Einleitung

Erste Unterwasservideos und -photos aus dem Weddellmeer (P. Marschall, J. Gutt, AWI Bremerhaven) zeigten, daß die im Schelfbenthos dominierenden Hexactinelliden bei fast völliger Abwesenheit anderer erhöhter Strukturen ein sehr wichtiges Substrat, z.B. für Holothurien, Crinoiden und Ophiuriden darstellen. Die Vermutung lag nahe, daß noch wesentlich mehr Tiergruppen die Schwämme als Lebensraum nutzen, als auf diesen Unterwasseraufnahmen erfaßt werden konnten.
Ziel dieser Studie war deshalb, die verschiedenen Lebensräume, die die Hexactinelliden und Demospongien des Weddellmeeres für vergesellschaftete Fauna bieten, darzustellen, und die Beziehungen zwischen den Schwämmen und ihren "Bewohnern" zu erläutern und zu differenzieren. Dabei sollten die Unterschiede der Faunenvergesellschaftung zwischen den einzelnen Schwarmarten herausgestellt werden.

Eine Aufstellung der mit Schwämmen vergesellschafteten Arten sowie der wichtigsten Faunagruppen soll Aufschluß darüber geben, welche Organismen bei den verschiedenen Schwarmarten zu finden sind. Daraus kann dann die Bedeutung vor allem der Hexactinelliden für die benthische Fauna abgeschätzt werden.
II. Material und Methoden

2.1 STATIONS-ÜBERSICHT

Eine Übersicht aller Stationen ist in Abbildung 2.1 und Tabelle 2.1 gegeben, wobei Abbildung 2.1 die geographische Verteilung der Stationen im Untersuchungsgebiet, mit Ausnahme der Transect-Stationen zeigt. Die Transect-Stationen befanden sich weit nördlich von den übrigen Stationsgebieten bei 60°59,80' S und 55°12,10' W bzw. 60°37,60' S und 46°58,10' W. In Tabelle 2.1 ist für jede Station das verwendete Fanggerät, Datum, Position und Tiefe aufgeführt. Vollständige Stationslisten und weitere Einzelheiten sind im Fahrtbericht veröffentlicht (Arntz et al. 1990).

2.2 FANGGERÄTE

2.2.1 Grundschleppnetz (GSN)

2.2.2 Agassiztrawl (AGT)

2.2.3 Benthopelagisches Netz (BPN)

Das benthopelagische Netz, welches auf diesem Fahrtabschnitt zum ersten Mal erprobt wurde, wird mit Hilfe einer Netzsonde ca. 2 bis 5 m über dem Meeresboden gefahren. Bei sehr unregelmäßiger Bodenbeschaffenheit ist dieses nicht immer möglich, so daß das Netz manchmal Bodenberührung haben kann, und daher auch Benthosorganismen sammelt. Das Netz hat eine Öffnung von 18 x 18 m (Hureau et al. 1990) und wird mit Scherbrettern und einem Rollengeschirr für 30 Minuten bei ca. 3 bis 5 kn Schleppgeschwindigkeit gefahren. Die Maschenweite im Steert beträgt 12 mm (K.-H. Kock, Bundesforschungsanstalt für Fischerei, Hamburg; pers. Mittlg.)
Tab. 2.1: Stationsliste. Angegeben ist die Position bei Schleppbeginn, TS = Transect, KN = Kapp Norvegia, HB = Halley Bay, VK = Vestkapp, T = Tiefe in m, STN = Stationsnummer, GSN = Grundschleppnetz, AGT = Agassiz Trawl, BPN = Benthopelagisches Netz.

<table>
<thead>
<tr>
<th>STN</th>
<th>Gerät</th>
<th>Datum</th>
<th>Position</th>
<th>Ort</th>
<th>T(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>GSN</td>
<td>15.01.89</td>
<td>60°59,80'S / 55°20,10'W</td>
<td>TS</td>
<td>200</td>
</tr>
<tr>
<td>217</td>
<td>GSN</td>
<td>18.01.89</td>
<td>60°37,60'S / 46°58,10'W</td>
<td>TS</td>
<td>235</td>
</tr>
<tr>
<td>224</td>
<td>GSN</td>
<td>25.01.89</td>
<td>71°15,80'S / 13°04,20'W</td>
<td>KN</td>
<td>185</td>
</tr>
<tr>
<td>226</td>
<td>GSN</td>
<td>28.01.89</td>
<td>75°15,90'S / 25°58,30'W</td>
<td>HB</td>
<td>570</td>
</tr>
<tr>
<td>230</td>
<td>AGT</td>
<td>30.01.89</td>
<td>75°14,20'S / 26°59,40'W</td>
<td>HB</td>
<td>275</td>
</tr>
<tr>
<td>235</td>
<td>GSN</td>
<td>31.01.89</td>
<td>75°09,10'S / 27°34,80'W</td>
<td>HB</td>
<td>405</td>
</tr>
<tr>
<td>235</td>
<td>AGT</td>
<td>31.01.89</td>
<td>75°08,90'S / 27°33,20'W</td>
<td>HB</td>
<td>400</td>
</tr>
<tr>
<td>241</td>
<td>GSN</td>
<td>01.02.89</td>
<td>75°02,97'S / 28°00,31'W</td>
<td>HB</td>
<td>450</td>
</tr>
<tr>
<td>245</td>
<td>AGT</td>
<td>02.02.89</td>
<td>74°39,70'S / 29°41,60'W</td>
<td>HB</td>
<td>483</td>
</tr>
<tr>
<td>248</td>
<td>GSN</td>
<td>03.02.89</td>
<td>74°39,91'S / 29°31,37'W</td>
<td>HB</td>
<td>600</td>
</tr>
<tr>
<td>249</td>
<td>GSN</td>
<td>04.02.89</td>
<td>74°37,38'S / 29°38,23'W</td>
<td>HB</td>
<td>705</td>
</tr>
<tr>
<td>256</td>
<td>BPN</td>
<td>08.02.89</td>
<td>75°10,92'S / 27°36,44'W</td>
<td>HB</td>
<td>395</td>
</tr>
<tr>
<td>258</td>
<td>BPN</td>
<td>09.02.89</td>
<td>74°40,22'S / 29°36,63'W</td>
<td>HB</td>
<td>500</td>
</tr>
<tr>
<td>269</td>
<td>BPN</td>
<td>12.02.89</td>
<td>72°54,07'S / 19°49,04'W</td>
<td>VK</td>
<td>605</td>
</tr>
<tr>
<td>270</td>
<td>AGT</td>
<td>12.02.89</td>
<td>73°21,30'S / 20°45,10'W</td>
<td>VK</td>
<td>300</td>
</tr>
<tr>
<td>271</td>
<td>AGT</td>
<td>12.02.89</td>
<td>73°17,00'S / 20°59,40'W</td>
<td>VK</td>
<td>380</td>
</tr>
<tr>
<td>273</td>
<td>AGT</td>
<td>13.02.89</td>
<td>73°34,80'S / 21°03,90'W</td>
<td>VK</td>
<td>195</td>
</tr>
<tr>
<td>281</td>
<td>AGT</td>
<td>18.02.89</td>
<td>71°39,50'S / 12°21,10'W</td>
<td>KN</td>
<td>425</td>
</tr>
<tr>
<td>282</td>
<td>AGT</td>
<td>18.02.89</td>
<td>71°31,70'S / 12°27,40'W</td>
<td>KN</td>
<td>590</td>
</tr>
<tr>
<td>284</td>
<td>GSN</td>
<td>18.02.89</td>
<td>71°12,01'S / 13°14,07'W</td>
<td>KN</td>
<td>410</td>
</tr>
<tr>
<td>290</td>
<td>AGT</td>
<td>19.02.89</td>
<td>71°05,90'S / 12°34,00'W</td>
<td>KN</td>
<td>528</td>
</tr>
<tr>
<td>291</td>
<td>GSN</td>
<td>19.02.89</td>
<td>71°06,17'S / 12°33,51'W</td>
<td>KN</td>
<td>510</td>
</tr>
</tbody>
</table>
2.3 UNTERSUCHUNGSMATERIAL

Für diese Studie wurden sowohl Individuen der Klasse der Hexactinellida als auch der Demospongiae untersucht. Im folgenden sollen kurz die grundlegenden morphologischen Charakteristika dieser beiden Klassen der Porifera aufgeführt werden.

2.3.1 Hexactinellida (Glasschwämme)

Material und Methoden

Abb. 2.2: Schematische Darstellung eines Hexactinelliden im Längsschnitt mit Angabe der Spiculaanordnung (aus Barthel & Tendal 1994).

2.3.2 Demospongiae (Horn-Kieselschwämme)

Zu den sowohl im marinen Milieu als auch im Süßwasser vorkommenden Demospongien zählen ca. 95% aller rezenten Schwammarten (Berquist 1978). Ihre Form ist im Vergleich mit Hexactinelliden sehr variabel. Die Formen- und Größenvielfalt erstreckt sich von inkrustierenden, sehr flachen Individuen über klumpige faustgroße Erscheinungen bis zu großen gewelltförmigen Organismen, die zwei Meter im Durchmesser erreichen können (Hartmann 1982). Das Skelett besteht aus ein- bis vielstrahligen, gelegentlich auch kugel-
oder geweihförmigen Silikatnadeln in Verbindung mit Sponginfasern und/oder Kollagen als Kittsubstanz.

Abb. 2.3: Schematische Darstellung des Hexactinellidengewebes im Querschnitt (aus Barthel & Tendal 1994). 1 = äußere Dermalmembran, 2 = äußere Trabekularschicht, 3 = Flagellenkammer, 4 = innere Trabekularschicht, 5 = innere Dermalmembran.

2.4 PROBENBEARBEITUNG

Die zum Teil mehrere Tonnen schweren Hols der Grundschleppnetzfänge brachten unter anderem riesige Mengen Schwämme an Deck. Aus diesen wurden nur diejenigen heraus sortiert, die augenscheinlich in einem guten Zustand waren, d.h. nicht zerrissen oder zer-

Abb. 2.4: Schematische Darstellung eines Vertreters der Demospongiae. Ak = Ausstromkanal, Dp = Dermalporen, Ek = Einstromkanal, O = Osculum, sH = subdermaler Hohlraum (nach Brien 1973).

Für die beiden Fragestellungen, welche Organismen einerseits in dem Schwammgewebe und den kleinen Hohlräumen leben, und andererseits welche Tiere den zentralen Hohlraum der Hexactinelliden aufsuchen, wurden die gesammelten Schwämme nach zwei verschiedenen Methoden aufgearbeitet. Diese sind in Tabelle 2.2 schematisch dargestellt.

2.4.1 Vollständig bearbeitete Schwämme

Tab. 2.2: Schematische Darstellung der Aufarbeitung des Probenmaterials.

<table>
<thead>
<tr>
<th>1 Hol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwämme, deren gesamte ver-</td>
</tr>
<tr>
<td>gesellschaftete Fauna bearbeitet</td>
</tr>
<tr>
<td>wurde:</td>
</tr>
<tr>
<td>gezielte Auswahl von Hexacti-</td>
</tr>
<tr>
<td>nelliden und Demospongien in</td>
</tr>
<tr>
<td>visuell einwandfreiem Zustand.</td>
</tr>
<tr>
<td>Bestimmung von Länge, Breite,</td>
</tr>
<tr>
<td>Gewicht und Volumen</td>
</tr>
<tr>
<td>Halbierung aller Hexactinelliden der</td>
</tr>
<tr>
<td>Länge nach. Fauna des zentralen</td>
</tr>
<tr>
<td>Hohlraumes abgesammelt und fixiert.</td>
</tr>
<tr>
<td>kleinere Hexactinelliden und Demo-</td>
</tr>
<tr>
<td>spongien ganz, größere Hexacti-</td>
</tr>
<tr>
<td>nelliden zur Hälfte konserviert. Die</td>
</tr>
<tr>
<td>andere Hälfte bei -40 °C eingefroren.</td>
</tr>
<tr>
<td>konservierte Schwämme sorgsam un-</td>
</tr>
<tr>
<td>ter dem Binokular zerzupft. Gefun-</td>
</tr>
<tr>
<td>dene In- und Epifauna vorsichtig</td>
</tr>
<tr>
<td>herauspräpariert. Anzahl und Frisch-</td>
</tr>
<tr>
<td>gewicht bestimmt und nach Taxa</td>
</tr>
<tr>
<td>getrennt fixiert. Fauna soweit möglich</td>
</tr>
<tr>
<td>bestimmt.</td>
</tr>
<tr>
<td>Schwämme, deren Fauna des</td>
</tr>
<tr>
<td>zentralen Hohlraums bearbeitet</td>
</tr>
<tr>
<td>wurde:</td>
</tr>
<tr>
<td>Sammlung von möglichst vielen</td>
</tr>
<tr>
<td>Individuen der Hexactinelli-</td>
</tr>
<tr>
<td>denarten R. antarctica und R.</td>
</tr>
<tr>
<td>racovitzae an Stationen mit</td>
</tr>
<tr>
<td>ausreichendem Material</td>
</tr>
<tr>
<td>Bestimmung von Länge und</td>
</tr>
<tr>
<td>Breite</td>
</tr>
<tr>
<td>Halbierung aller Hexactinell-</td>
</tr>
<tr>
<td>liden der Länge nach. Fauna</td>
</tr>
<tr>
<td>des zentralen Hohlraumes</td>
</tr>
<tr>
<td>abgesammelt und fixiert.</td>
</tr>
<tr>
<td>Schwammaterial nicht</td>
</tr>
<tr>
<td>weiter bearbeitet.</td>
</tr>
</tbody>
</table>
Im Labor wurde das konservierte Schwammgewebe sehr sorgfältig unter dem Binokular zerzupft und die dabei gefundene Infauna vorsichtig herauspräpariert bzw. von der Schwammoberfläche abgesammelt. Die Organismen wurden nach Taxa sortiert, die Individuen gezählt, gewogen und getrennt in 90%-igem Alkohol konserviert. Das Material wurde soweit möglich selbst bestimmt bzw. an Spezialisten weitergegeben.

2.4.2 Schwämme, deren zentraler Hohlraum bearbeitet wurde

Von den gesammelten Individuen wurden Länge und Breite gemessen und die im zentralen Hohlraum befindlichen Tiere abgesammelt. Die gefundene Infauna wurde nach Taxa getrennt in 90%-igem Alkohol konserviert. Das übrige Schwammaterial wurde nicht weiter bearbeitet.

2.4.3 Artbestimmung

2.5 LÄNGENHÄUFIGKEITSBESTIMMUNG DER AMPHIPODEN

2.6 PRÄPARATIONSMETHODEN

2.6.1 Spicula

2.6.2 Magen- und Darmtrakt der Prosobranchier

2.6.3 Magen- und Darmtrakt der Nudibranchier

2.6.4 Magen- und Darmtrakt der Amphipoden

Um Hinweise auf das Nahrungsspektrum einiger Amphipodenarten zu bekommen, die wiederholt im zentralen Hohlraum von Hexactinelliden gefunden wurden, wurden bei einzelnen Individuen Magen- und Darmuntersuchungen durchgeführt. Die Präparation des Magen- und Darmtraktes erfolgte durch laterales Aufschneiden des Chitinkörpers vom Cephalon bis zum Urosom. Der gesamte Verdauungsapparat wurde vorsichtig herauspräpariert, der Inhalt auf einen Objekträger überführt und anschließend mikroskopisch untersucht.

2.7 UNTERSUCHUNGSGEBIET

2.7.1 Lage

2.7.2 Topographie

Die etwa 2.500 km lange Küste zwischen der Atka Bucht und der Antarktischen Halbinsel besteht im wesentlichen aus Schelfeiskanten. Durch die Last des Eisschildes ist der Kontinentalabhang auf Tiefen zwischen 200 und 600 m abgesenkt (Hellmer & Bersch 1985) und erstreckt sich im östlichen Gebiet auf einer Breite von 10 bis 100 km (Voß 1988). Die Neigung des Kontinentalabhangs liegt bei 9-12° (Grobe 1986).

2.7.3 Sedimente

2.7.4 Hydrographie und Eisbedeckung

Im Untersuchungsgebiet haben wir es im wesentlichen mit zwei Wasserkörpern zu tun:

1.) Schelfwasser
Das Schelfwasser bedeckt die östlichen Schelfregionen bis in ca. 500-600 m Tiefe. Seine Temperaturen liegen zwischen -1,6 und -2,2°C, der Salzgehalt schwankt zwischen 34,28 und 34,44 ‰. Diese Wassermasse zeichnet sich außerdem durch einen hohen Sauerstoffgehalt von bis zu 7,3 ml O₂ l⁻¹ aus.

2.) Warmes Tiefenwasser
Im küstennahen Bereich des östlichen Weddellmeeres, wo das warme Tiefenwasser an den Schelf heranreicht, liegt seine obere vertikale Begrenzung bei ca. 500 m Wassertiefe. Im Vergleich zu den darüberliegendem Schelfwasser sind die Temperatur (+0,5 °C) und der Salzgehalt (34,6 ‰) deutlich höher. Der Sauerstoffgehalt mit 4,5 ml O₂ l⁻¹ ist dagegen deutlich geringer.

III. Ergebnisse

3.1 UNTERSUCHTE SCHWAMMARTEN

In der folgenden Liste sind alle in der vorliegenden Arbeit berücksichtigten Schwammarten systematisch geordnet aufgeführt. Zur Bestimmung wurden von jeder Schwammtart zuvor Spiculapräparate angefertigt (siehe 2.5).

Klasse: HEXACTINELLIDA

Unterklasse: Hexasterophora
 Familie: Rossellidae
 Rossella antarctica Carter, 1872
 Rossella nuda Topsent, 1901
 Rossella racovitzae Topsent, 1901
 Scolymastra joubini Topsent, 1910

Klasse: DEMOSPONGIAE

Unterklasse: Tetractinomorpha
 Ordnung: Hadromerida
 Familie: Axinellidae
 Pseudosuberites nudus Koltun, 1964
 Unterklasse: Ceractinomorpha
 Ordnung: Halichondrida
 Familie: Halichondriidae
 Halichondria hentscheli Koltun, 1964
 Ordnung: Poecilosclerida
 Familie: Mycalidae
 Mycale acerata Kirkpatrick, 1907
 Familie: Esperiopsidae
 Isodictya setifer (Topsent), 1901
 Familie: Tedaniidae
 Tedania oxeata Topsent, 1916
 Tedania trirhaphis Koltun, 1964
 Tedania charcoti Topsent, 1908
 Familie: Clathriidae
 Clathria pauper Broendsted, 1926
 Axociella nidificata (Kirkpatrick), 1907

3.1.1 Beschreibung der Schwammtypen

Im folgenden wird eine kurze Habitusbeschreibung der in dieser Studie untersuchten Schwammarten gegeben. Grundlage für die allgemeinen Beschreibungen sind Arbeiten von Koltun (1966; Demospongiae), Barthel & Tendal (1994; Hexactinellida) sowie eigene
Ergebnisse

Beobachtungen. Die Größenangaben beziehen sich auf eigene Messungen.

Klasse: HEXACTINELLIDA

Rossella antarctica

R. antarctica kann eine Größe von 30 cm erreichen, wobei die in dieser Studie untersuchten Exemplare in ihrer Länge von 3 - 26 cm, in ihrer Breite von 1,5 - 26 cm variierten. Dabei werden kugel-, vasen- oder faßförmige Formen angenommen. Das Osculum ist relativ groß und rund und mit einem Saum von bis zu einem cm langen Spicula umgeben. Die Schwammoberfläche ist mit mehr oder weniger deutlichen, bis zu 4 mm hohen, gleichmäßig verteilten Konulen besetzt. Aus jeder dieser Konulen ragt ein Spiculabündel heraus. Diese Bündel bilden einen für diese Schwammart charakteristischen Spiculamantel über der Oberfläche, der dadurch zustande kommt, daß die Skleren an ihren Enden oft mit tangential verlaufenden Verzweigungen miteinander "verklettet" sind.

Rossella racovitzae

Rossella nuda

Scolymastrea joubini

Diese Schwammart kann bis zu zwei Meter groß werden (Dayton 1979) mit einem Durchmesser von bis zu 70 cm, wobei die Exemplare dieser Studie eine maximale Höhe von 32 cm erreichten. Die Körperwand dieses weiß-grau erscheinenden Schwammes ist sehr fest, dickwandig und unelastisch. Die Schwammoberfläche ist glatt ohne Konulen und Spiculabündel.

Klasse: DEMOSPONGIAE

Pseudosuberites nudus

Halichondria hentscheli
Diese grau-beige gefarbte Schwammart ist vom visuellen Erscheinungsbild ähnlich wie *Pseudosuberites nudus*. Der rundliche Körper ist weich und von schlaffer Gestalt, die Oberflächenstruktur erscheint aufgelöst nach Verlust der dünnen Dermalmembran. Auch diese Schwammart ist mit großen Hohlräumen versehen.

Mycale acerata
Diese meist rundlich geformte, grau-braune Schwammart wird bis zu 26 cm hoch bei einer Breite von bis zu 18 cm. Die Oberfläche ist mit kleinen konischen Papillen besetzt, seltener wird eine glatte Oberflächenstruktur angetroffen. Die Dermalmembran ist sehr dünnhäutig und nach den Fängen meist nur noch stückchenweise vorhanden. In der Regel sind an der Schwammbasis zahlreiche gelb-orange gefärbte Larven von ca. 0,5 mm Durchmesser zu finden. Das Primär skelett ist auffällig weich und bieg sam; das dazwischenliegende Gewebe mit den Mikroskliren läßt sich leicht zerrupfen.

Isodictya setifer
Der Körper dieser Schwammart variiert von rundlichen bis zylindrischen Erscheinungsformen, die bis zu 20 cm hoch und 14 cm breit werden. Die Schwammoberfläche ist bedeckt von Konulen (bis 2,5 cm lang), die aus Fortsätzen der Basalskliren bestehen. Das Skelett dieser Schwammart ist sehr stabil, so daß es kaum möglich ist, den Schwamm zu zerrupfen.

Tedania oxeata
Die Oberfläche dieser rundlichen Schwammart ist meist uneben und von einer dünnen Dermalmembran umgeben. Der Schwammkörper ist reich an Hohlräumen, dabei porös und mürbe, so daß er leicht zerfällt. Unter der hautchenähnlichen Dermalmembran, die beim Fang meist zerstört wird, ähnelt der Schwammkörper vom Erscheinungsbild her einem menschlichen Gehirn. Die Größe dieser Schwammart ist bis zu 17 cm hoch und 14 cm breit.

Tedania trirhaphis
Individuen von *Tedania trirhaphis* sind grau-gelb mit einer ovalen bis rundlichen Körperform, bei einer Höhe bis zu 8 cm und einer Breite von 18 cm. Der Schwamm ist fest und weist große Poren auf, ebenso sind viele Furchen und kleine Höhlungen (Durchmesser ca. 2 mm) vorhanden. Die hautchenähnliche Dermalmembran kleidet diese Furchen und Höhlungen aus, desgleichen liegt sie der Schwammoberfläche auf. Auffällig ist, daß der Schwamm einen mucöse Schleim abgibt.

Tedania charcoti
Bei einer Höhe von 6 cm und Breite von 18 cm nimmt diese Schwammart eine ovale Form an. Dieser Schwamm ist sehr zerbrechlich und fällt leicht krümelig auseinander. Die Oberfläche besitzt große Tuberkel und ist von einer sehr dünnen Dermalmembran umgeben.

Clathria pauper
Der kugelförmige Körper (bis 17 cm hoch, 18 cm breit) dieses gelb-grauen Schwammes wird von zahlreichen, ca. 4 cm langen, anastomisierenden Skelettausläufern geformt, so daß der Schwamm das Erscheinungsbild eines Igelis annimmt. Diese ca. 1-4 mm dicken
Skelettausläufer sind weich, der ganze Schwamm erscheint elastisch.

Axosciella nidificata
Diese Art fällt durch viele lange und schmale, schornsteinähnliche Oscula auf. Die Form dieser Schwammart erscheint bei einer Höhe von bis zu 21 cm und einer Breite bis zu 10 cm zylindrisch. _A. nidificata_ ist sehr hart und leicht zerbrechlich, daher wurden nur Bruchstücke an Deck gebracht.

3.2 ARTENLISTE DER VERGESELLSCHAFTETEN FAUNA

Aufgeführt sind alle Arten, die bei der Aufarbeitung der unter 3.1 aufgelisteten Schwämme gefunden wurden. Die Bestimmung der u.a. Arten wurde von folgenden taxonomischen Experten übernommen:

Prosobranchia:
Dr. S. Hain, Alfred-Wegener Institut (AWI), Bremerhaven

Nudibranchia:
Dr. H. Wägele, Universität Oldenburg

Bivalvia:
Dr. S. Hain, AWI Bremerhaven

Polychaeta:
 a) Dr. L. Harris, Natural History Museum, Los Angeles, U.S.A.
 b) Dr. G. Hartmann-Schröder, Zoologisches Institut und Museum, Hamburg

Pantopoda:
Dr. F. Krapp, Zoologisches Forschungsinstitut und Museum Alexander König, Bonn

Halacarida:
Dr. I. Bartsch, Biologische Anstalt Helgoland, Hamburg (BAH)

Isopoda:
Prof. Dr. J.W. Wägele, Universität Bielefeld

Amphipoda:
Dr. M. Klages, AWI Bremerhaven

Holothuroidea:
Dr. J. Gutt, AWI Bremerhaven

Asteroidea:
Dr. J. Voß, Landesanstalt für Wasserhaushalt und Küsten, Kiel (LWK)

Ophiuroidea:
Dr. I. Bartsch, Biologische Anstalt Helgoland, Hamburg

TAXON:

SOLENOGASTRES (APLACOPHORA)

GASTROPODA, PROSOBRANCHIA

Trochidae:
Margarella sp.1

_Trochaclidae:
Ergebnisse

Trochaelis antarctica Thiele, 1912

Cerithiopsidae:
* Cerithiella sp.

Eulimidae:
* Balcis antarctica* (Strebel, 1908)

Cancellariidae:
* Admete sp.

Marginellidae:
* Marginella hyalina* Thiele, 1912

Rissoidae

GASTROPODA, NUDIBRANCHIA

Dorididae:
* Austrodoris kerguelenensis* Bergh, 1884

BIVALVIA

Nuculanidae:
* Yoldiella oblonga* (Pelseneer, 1903)
* Yoldiella sabrina* Hedley, 1916
* Yoldiella sp.

Philobryidae:
* Philobrya cf. barbata* Thiele, 1912
* Philobrya sublaevis* Pelseneer, 1903
* Adacnarca nitens* Pelseneer, 1903
* Lissarca notorcadensis* Melvill & Standen, 1907

Thyasiridae:
* Genaxinus bongraini* (Lamy, 1910)

Montacutidae:
* Mysella sp.

POLYCHAETA

Phyllodocidae

Polynoidae:
* Harmothoe spinosa* Kinberg, 1855
* Harmothoe hartmanae* Ushakov, 1962
* Polynoe cf. thouarelicola* Hartmann-Schröder, 1989

Syllidae:

Syllinae
* Trypanosyllis gigantea* (McIntosh, 1885)
* Trypanosyllis sp.
* Typosyllis hyalina* (Grube, 1863)
* Typosyllis armillaris* (Müller, 1776)
* Typosyllis sp.
* Amblyosyllis granosa* Ehlers, 1897
* Eusyllis sp. oder Pionosyllis sp.
* Pionosyllis sp.
* Exogone obtusa* H.-Schröder & Rosenfeld, 1988
Sphaerosyllis sp.

Nereididae:
- Nicon maculata Kinberg, 1866
- Neanthes kerguelensis (McIntosh, 1885)
- Nereis cf. pelagic lunulata Ehlers, 1901

Lumbrineridae:
- Augeneria tentaculata Monro, 1930
- Lumbrineris sp.

Orbinidae:
- Leitoscoloplos sp.
- Scoloplos (Leodamas) marginatus (Baird, 1897)
- Scoloplos (Leodamas) sp.

Paraonidae

Spionidae:
- Laonice weddellia (Hartmann, 1978)

Cirratulidae:
- Cirratulus cirratus (Müller, 1776)
- Cirratulus sp.

Acrospiridae

Maldanidae:
- Isocirrus yungi Gravier, 1911

Opheliidae:
- Ophelina cylindrica (Hansen, 1878)

Scalibregmidae

Oweniidae

Flabelligeridae:
- Flabelligera sp.

Sabellaridae

Terebellidae:
- Leaenira antarctica McIntosh, 1885
- Leaenira arenilega Ehlers, 1913
- Polycirrus sp.
- Terebella ehlersi Gravierm 1907
- Hauchiella tribullata (McIntosh, 1869)

Ampharetidae:
- Neosabellides elongatus (Ehlers, 1912)

Sabella sp.

Euchone pallida Baird, 1908

Perkinsiana antarctica (Kinberg, 1867)

Serpulidae:
- Serpula narconensis Baird, 1908

ACARI, HALACARIDA

Halacarellus sp.1
PANTOPODA
Nymphonidae:
- Nymphon australe Hodgson, 1902
- Nymphon bouvieri Gordon, 1932
- Nymphon lanare Hodgson 1907
- Nymphon lanare seu unguiculatum Hodgson 1927
- Nymphon mendosum Hodgson, 1907
- Nymphon multitudinatum Gordon, 1944
- Nymphon proceroides Bouvier, 1913
- Nymphon spec.
- Pentanyphon antarcticum Hodgson, 1904
- Pentanyphon sp.

Phoxichilidiidae:
- Anoplodactylus australis Hodgson, 1907

Ammotheidae:
- Achelia sufflata Gordon, 1944
- Ciliunculus cactoides Fry & Hedgpeth, 1969

Austrodecidae:
- Austrodecus glaciale Hodgson, 1907
- Austrodecus spec.

Rhynchothoracididae:
- Rhynchothorax australis Hodgson, 1907

Callipallenidae:
- Austropallene cf. cornigera (Möbius, 1902)

ISOPODA
Gnathiidae:
- Gnathia calva Vanhöffen, 1914

Aegidae:
- Aega antarctica (Hodgson, 1910)

Strenetriidae:
- Stenetrium acutum Vanhöffen, 1914

Pleurocopidae:
- Antias charcoti Richardson, 1906

Joeropsidae:
- Joeropsis antarctica Menzies & Schultz, 1968

AMPHIPODA
Sebidae:
- Seba antarctica Walker, 1906

Stegocephalidae:
- Andaniotes linearis K.H. Barnard, 1932
- Euandania gigantea (Stebbing, 1883)

Dexaminidae:
- Polycheria antarctica (Stebbing, 1875)

Colomastigidae:
- Colomastix simplicicauda Nicholls, 1938
Ergebnisse

Colomastix fissilingua Schellenberg, 1926
Ampeliscidae:
Ampelisca sp.
Leucothoidae:
Leucothoe spinicarpa Abildgaard, 1789
Eusiriidae:
Eusirus antarcticus Thomson, 1880
Eusirus microps Walker, 1906
Corophiidae:
Haplocheira barbimana (Thomson, 1879)
Stilipedidae:
Alexandrella sp.
Podoceridae
Haustoriidae
Lysianassidae
Stenothoidae

HOLOTHUROIDEA
Elpidiidae:
Achlyonice violaecuspidata Gutt, 1990
Abyssocucumis liouvillei Vaney, 1914
Ordng. Dendrochirotida
Cucumariidae:
Trachythyone bouvetensis Ludwig & Heding, 1935

ASTEROIDEA
Odontasteridae:
Acodontaster sp.
Ganeriidae:
Cycethra sp.
Perknaster sp.
Poraniidae:
Porania antarctica glabra Fisher, 1940
Solasteridae:
Paralophaster sp.

OPHIUROIDEA
Ophiuridae:
Ophiurolepis gelida (Koehler, 1901)
Ophiomastus conveniens Koehler, 1923
Ophiomonas spec.
Ophiocen megaloplax Koehler, 1901
Ophioplithinus brucei (Koehler, 1908)
Amphiuridae:
Amphius proposita Koehler, 1922
Amphiura deficiens Koehler, 1922
Amphiura sp.
Die Darstellung der Ergebnisse wird im folgenden getrennt behandelt nach den Schwämmen, die vollständig bearbeitet wurden (siehe 2.4.1) und denjenigen, bei denen nur die im zentralen Hohlraum befindliche Fauna herausgesammelt wurde (siehe 2.4.2).

3.3 FAUNA DER VOLLSTÄNDIG BEARBEITETEN SCHWÄMME (HEXACTINELLIDA UND DEMOSPONGIAE)

Die Auswahl der Großgruppen für die gefundene In- und Epifauna wurde entsprechend den am häufigsten auftretenden Taxa bestimmt. Es handelt sich hierbei um die Stämme Mollusca und Echinodermata, die Klassen Polychaeta und Pantopoda, die Ordnungen Isopoda und Amphipoda, sowie um die Familie Halacaridae.

3.3.1 Hexactinellida

Die Besiedlung der in dieser Studie untersuchten Hexactinelliden durch vergesellschaftete Fauna ist bei den einzelnen Arten recht unterschiedlich (Tab. 3.1).

Von der Schwammart *Scyphostra joubini* wurden vier Individuen mit einem Gesamtvolumen von 5.460 ml aufgearbeitet. Mit 145 Amphipoden, 18 Polychaeten und
fünf Mollusken wurden insgesamt 168 Tiere gefunden. Isopoden, Pantopoden und Echinodermen waren nicht mit dieser Schwammart vergesellschaftet.

Tab. 3.1: Aufstellung aller vollständig bearbeiteten Schwämme (Hexactinellida und Demospongiae). N = Anzahl untersuchter Schwämme, Vol = Gesamtvolumen aller Schwämme in ml, Poly = Anzahl Polychaeten, Amph = Amphipoden, Moll = Mollusca, Isop = Isopoda, Echi = Echinodermata, Pant = Pantopoda, Hala = Halacarida, () = Anzahl der Schwämme mit Halacarida, Total = Anzahl aller In- und Epifaunaindividuen (ohne Halacarida).

<table>
<thead>
<tr>
<th>Artname</th>
<th>N</th>
<th>Vol</th>
<th>Moll</th>
<th>Poly</th>
<th>Pant</th>
<th>Isop</th>
<th>Amph</th>
<th>Echi</th>
<th>Hala</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. antarctica</td>
<td>12</td>
<td>5465</td>
<td></td>
<td>43</td>
<td>510</td>
<td>15</td>
<td>59</td>
<td>56</td>
<td>6</td>
<td>(4)</td>
</tr>
<tr>
<td>R. nuda</td>
<td>7</td>
<td>4930</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>(4)</td>
</tr>
<tr>
<td>R. racovitzae</td>
<td>17</td>
<td>7540</td>
<td>8</td>
<td>80</td>
<td>7</td>
<td>4</td>
<td>32</td>
<td>8</td>
<td>-</td>
<td>(1)</td>
</tr>
<tr>
<td>S. joubini</td>
<td>4</td>
<td>5460</td>
<td>5</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>145</td>
<td>-</td>
<td>-</td>
<td>(4)</td>
</tr>
<tr>
<td>P. nudes</td>
<td>6</td>
<td>500</td>
<td>4</td>
<td>49</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>-</td>
<td>(1)</td>
</tr>
<tr>
<td>H. hentschelli</td>
<td>1</td>
<td>120</td>
<td>2</td>
<td>24</td>
<td>1</td>
<td>1</td>
<td>17</td>
<td>2</td>
<td>-</td>
<td>(-)</td>
</tr>
<tr>
<td>M. acerata</td>
<td>5</td>
<td>1460</td>
<td>1</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>108</td>
<td>1</td>
<td>-</td>
<td>(1)</td>
</tr>
<tr>
<td>L. setifer</td>
<td>2</td>
<td>370</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>(-)</td>
</tr>
<tr>
<td>T. oxeata</td>
<td>6</td>
<td>1410</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>2</td>
<td>-</td>
<td>(-)</td>
</tr>
<tr>
<td>T. trirhaphis</td>
<td>3</td>
<td>1670</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1176</td>
<td>1</td>
<td>-</td>
<td>(-)</td>
</tr>
<tr>
<td>T. charcoti</td>
<td>1</td>
<td>980</td>
<td>-</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>1</td>
<td>-</td>
<td>(-)</td>
</tr>
<tr>
<td>C. pauper</td>
<td>4</td>
<td>1440</td>
<td>-</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>(-)</td>
</tr>
<tr>
<td>A. nidificata</td>
<td>4</td>
<td>530</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(-)</td>
</tr>
<tr>
<td>Gesamt</td>
<td>72</td>
<td>31875</td>
<td>65</td>
<td>747</td>
<td>30</td>
<td>68</td>
<td>1580</td>
<td>23</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

3.3.2 Demospongiae

Ergebnisse

Isoscytia setifer zeigt bei zwei Exemplaren und einem Gesamtvolumen von 370 ml eine geringe Abundanz der Infauna. Mit fünf Polychaeten und einem Amphipoden konnten insgesamt nur sechs vergesellschaftete Individuen gefunden werden.

Vier Schwämme der Art *Axiociella nidificata* mit einem Gesamtvolumen von 530 ml wiesen 12 Polychaeten, jedoch keine Vertreter der übrigen Großgruppen auf.

Bei allen 72 Schwämme aus 13 Arten konnten insgesamt 2.513 vergesellschaftete Tiere gefunden werden, die sich aus 1.580 Amphipoden, 747 Polychaeten, 68 Isopoden, 65 Mollusken, 30 Pantopoden und 23 Echinodermen zusammensetzen.

Bei einigen Exemplaren aller vier untersuchten Hexactinellidenarten konnten Halacariden im Schwammgewebe gefunden werden (siehe Tab. 3.1). Es handelt sich hierbei um eine noch nicht beschriebene Art, *Halacarellus sp.1*, die sich anscheinend völlig auf das Leben im Wasserleitungssystem der Schwämme angepaßt hat (I. Bartsch, BAH; pers. Mittlg.). Im Gegensatz dazu konnten bei keiner der untersuchten Demospongienarten Halacariden nachgewiesen werden.

3.3.3 Besiedlungsmuster der vergesellschafteten Fauna in einzelnen Schwammindividuen

Die Abbildungen 3.2 - 3.12 zeigen für die in dieser Studie untersuchten Schwämme der Hexactinellidenarten *Rossella antarctica*, *R. nuda*, *R. racovitzae* und *Scolymastra joubini* sowie für die Demospongienarten *Pseudosuberites nudus*, *Mycale acerata*, *Tedania oxeata*, *T. triraphis*, *Clathria pauper* und *Axiociella nidificata* die Abundanzen der fünf In- und Epifaunagruppen, bezogen auf ein einheitliches Schwammvolumen von 500 ml. Im folgenden Text wird ausführlicher auf die dominanten vergesellschafteten Arten eingegangen.
3.3.3.1 Hexactinellida

Rossella antarctica

Von dieser Schwammart wurden insgesamt 12 Individuen an den Stationen 230 und 235 (Halley Bay: Tiefe 275 m und 405 m), 269 und 271 (Vestkapp: 600 m und 380 m) 281 und 282 (Kapp Norvegia: 425 m und 590 m) gesammelt.

Abb. 3.1: Polychaet auf der Schwammoberfläche von *Rossella antarctica*. Gut zu erkennen sind die an ihren Enden verkleidten hexactinen Spicula, die einen sogenannten Spiculamantel ausbilden. Unter diesem Skleren"dach" bietet sich ein Schutzraum für viele Organismen.

Alle untersuchten Schwämme weisen eine vergesellschaftete Fauna auf, wobei die Abundanz der Polychaeten mit 15 bis 126 Exemplaren pro 500 ml Schwamm immer am größten ist (Abb. 3.2a, b). Die dominante Polychaetenart, die mit bis zu 98 Individuen/500 ml Schwamm an der Schwammoberfläche unter den Skleren gefunden
Abb. 3.2a, b: Abundanz und Zusammensetzung der mit einzelnen Schwammindividuen von *Rossella antarctica* vergesellschafteten Fauna. Individuenanzahl aller Faunagruppen der untersuchten Schwammindividuen (Schwamm-Nr.) an den verschiedenen Stationen, bezogen auf ein einheitliches Schwammvolumen von 500 ml. a) Halley Bay-Stationen, b) Vestkapp- und Kapp Norvegia-Stationen.
wurde, ist *Pionosyllis* sp., vereinzelt *Typosyllis armillaris*. Diese Polychaetenarten werden nur maximal 7 mm groß und können sich gut unter dem schützenden "Skerendach" bewegen.

Auffällig ist, daß an den Stationen 230 und 235 aus der Gegend von Halley Bay (Abb. 3.2a), eine geringere Abundanz der vergesellschafteten Fauna gefunden wurde, als an den Stationen bei Kapp Norvegia und Vestkapp (Abb. 3.2b). Der Mittelwert der In- und Epifaunaabundanz aller Faunagroßgruppen beträgt für die Halley Bay Stationen 37, für die übrigen Stationsgebiete 107 Individuen pro 500 ml Schwamm.

Rossella nuda

Sieben Exemplare der Schwammart *R. nuda* von den drei Stationen 224, 290 (Kapp Norvegia: Tiefe: 185 m und 528 m) und 230 (Halley Bay: 275 m) wurden auf In- und Epifauna untersucht. Vier Individuen (Schwamm-Nr. 30, 40, 42 und 379) wiesen überhaupt keine vergesellschaftete Fauna auf; bei den übrigen drei Schwämmen konnte vergesellschaftete Fauna nur in geringer Stückzahl gefunden werden, wobei sich kein einheitliches Besiedlungsmuster erkennen läßt (Abb. 3.3). Die bei den Schwämmen Nr. 22 und 29 gefundenen erranten Polychaeten der Arten *Polynoe c.f. thouarellcola* und *Pionosyllis* sp. wurden aus dem zentralen Hohlräum abgesammelt. Die Pantopoden von Schwamm Nr. 29 befanden sich in den Basalskleren. Im Schwammgewebe selbst, welches von einer gut ausgebildeten, netzartigen Dermalmembran geschützt ist (Abb. 3.4), konnte keine Infauna gefunden werden. Nur bei Schwamm-Nr. 41, welcher eine kleine Gewebsveränderung mit aufgelockertem Gewebe ohne Dermalmembran aufwies, wurden Amphipoden der Familie Lysianassidae und der Art *Seba antarctica* gefunden.

Rossella racovitzae

Von dieser Hexactinellidenart wurden 17 Individuen von den Stationen 224 (Kapp Norvegia, Tiefe: 185 m), 235, 241 und 249 (Halley Bay: 400 m, 450 m und 705 m) präpariert. Die Abbildungen 3.5a und 3.5b zeigen, daß bei *R. racovitzae* recht unterschiedliche Besiedlungsmuster aufzufinden sind. So wurden bei allen acht Schwämmen von Station 241 hauptsächlich Polychaeten, zusätzlich bei drei Schwämmen (Schwamm-Nr. 67, 72 und 74) einige Amphipoden, sowie bei Schwamm-Nr. 75 auch Mollusken gefunden. Die Abundanz der Polychaeten ist an dieser Station mit 2 - 25 Individuen pro 500 ml Schwamm immer am größten. Die Polychaeten, hauptsächlich Vertreter der sedentären Familien
Abb. 3.3: Abundanz und Zusammensetzung der mit einzelnen Schwammindividuen von Rossella nuda vergesellschafteten Fauna. Individuenzahl aller Faunagruppen der untersuchten Schwammindividuen (Schwamm-Nr.) an den verschiedenen Stationen, bezogen auf ein einheitliches Schwammvolumen von 500 ml.

Abb. 3.4: Eine gut ausgebildete Dermalmembran bei der Schwannart Rosella nuda schützt das Schwammgewebe und macht ein Eindringen in das Wasserleitungssystem für andere Organismen fast unmöglich.
Ergebnisse

Rossella racovitzae

Abb. 3.5a, b: Abundanz und Zusammensetzung der mit einzelnen Schwammindividuen von *Rossella racovitzae* vergesellschafteten Fauna. Individuenanzahl aller Faunagruppen der untersuchten Schwammindividuen (Schwamm-Nr.) an den verschiedenen Stationen, bezogen auf ein einheitliches Schwammvolumen von 500 ml. a) Halley Bay-Station, b) Kapp Norvegia- und Halley Bay-Stationen.
Ergebnisse

Terebellidae und Sabellidae, sowie der erranten Arten Harmothoe spinosa und Typosyllis hyalina wurden ausschließlich in den z.T. sehr langen Basalskleren und den Spiculabündeln, die aus den Konulen der Schwammoberfläche herausragen, gefunden. Amphipoden der Art Polycheria antarctica hielten sich bei Schwamm-Nr. 67, 72 und 74 ebenfalls in den Basalskleren auf.

Die drei Schwämme von Station 224 zeigen eine größere Artenvielfalt als die Schwämme von Station 241, 235 und 249 (Abb. 3.5a, 3.5b). Neben einer geringeren Abundanz von Polychaeten (bis zu 10 pro 500 ml Schwamm) sind noch Vertreter der Großgruppen Mollusken, Echinodermen und Pantopoden gefunden worden. Schwamm-Nr. 23 wies in seinem zentralen Hohlraum neben der Gastropodenart Trochaclidis antarctica die Holothurie Abyssocucumis liouvillei auf. In den Basalskleren wurde der sedentäre Polychaet Scoloplos sp. gefunden. Bei Schwamm-Nr. 33 wurden Mitglieder verschiedener Pantopodenarten (sechs Arten pro 500 ml Schwamm) zwischen den Spiculabündeln der Schwammoberfläche gefunden, sowie Holothurien am oberen Rand des zentralen Hohlraums.

Auffällig ist, daß bei den drei Schwämme von Station 224 keine Amphipoden als vergesellschaftete Fauna zu finden waren. Die vier untersuchten Schwämme von Station 235 zeigten, abgesehen von Schwamm-Nr. 64, der keine In- und Epifauna aufwies, neben jeweils 3 Polychaeten pro 500 ml Schwamm auch Amphipoden der Art Seba antarctica. Bei Schwamm-Nr. 62 wurden 3 Amphipoden/500 ml in den Basalskleren des Schwammes gefunden; Nr. 632 wies eine kleine Gewebesveränderung auf, in der sich 22 Amphipoden (S. antarctica) aufhielten.

Bei Schwamm-Nr. 140 und 141 von Station 249 wurden lediglich im unteren Bereich des zentralen Hohlraums Polychaeten gefunden. Andere vergesellschaftete Fauna konnte hier nicht nachgewiesen werden.

Scolymastra joubini

Alle vier untersuchten Schwämme dieser Hexactinellidenart stammen von der Station 230 (Halley Bay, Tiefe: 275 m; Abb. 3.6). Normalerweise erscheint die Oberfläche von Scolymastra joubini sehr glatt, das Gewebe ist fest, der Körper dickwandig. In diesem Gewebe konnten bei zwei der untersuchten Schwämme nekrotisch erscheinende Stellen festgestellt werden. Es handelt sich hierbei um eine Ansammlung toter Nadelfilzes mit einem Durchmesser von ca. 3 bis 6 cm Größe, selten größer, inmitten von augenscheinlich gesundem Schwammgewebe. Im Gegensatz zu dem sehr festen übrigen Gewebe liegen die Spicula solcher Gewebesveränderungen sehr locker zusammen und machen einen Aufenthalt
Abb. 3.6: Abundanz und Zusammensetzung der mit einzelnen Schwammindividuen von *Scolymastra joubini* vergesellschafteten Fauna. Individuenanzahl aller Faunagruppen der untersuchten Schwammindividuen (Schwamm-Nr.) an den verschiedenen Stationen, bezogen auf ein einheitliches Schwammvolumen von 500 ml.

für die Amphipodenart *Seba antarctica*, die bei Schwamm-Nr. 44 mit 70 Individuen präpariert worden ist, möglich (Abb. 3.6). Die Polychaeten von Schwamm-Nr. 44, 45 und 50 wurden z.T. ebenfalls in Gewebsveränderungen, aber auch in den kurzen Basalskleren gefunden. Es handelt sich hierbei hauptsächlich um die Art *Pionosyllis sp.*. Schwamm-Nr. 45 und 50 zeigten nur eine leichte, oberflächliche Gewebsveränderung, hier wurde keine Fauna gefunden. Bei Schwamm-Nr. 45 hatten sich zwei Muscheln der Art *Mysella sp.* zwischen den Basalskleren mit ihren Byssusfäden festgeheftet. Pantopoden und Echinodermen fehlten völlig.

In Tabelle 3.2 werden die wesentlichen Ergebnisse von Kapitel 3.3.3.1 zusammengefasst, indem die unterschiedlichen Lebensräume der vier Hexactinellidenarten mit ihrer In- und Epifauna aufgelistet sind.
Tab. 3.2: Zusammenfassende Darstellung der Lebensräume und der In- und Epifaunaarten der vollständig bearbeiteten Hexactinelliden.

HEXACTINELLIDA

<table>
<thead>
<tr>
<th>Kriterium/Arten</th>
<th>R. antarctica</th>
<th>R. racovitzae</th>
<th>R. nuda</th>
<th>S. joubini</th>
</tr>
</thead>
<tbody>
<tr>
<td>spezieller Lebensraum</td>
<td>nadelpelz-ähnliche Oberfläche</td>
<td>herausragende Konulenspicula, Basalskleren</td>
<td>kein spezieller Lebensraum</td>
<td>Gewebeveränderung, zentraler Hohlraum</td>
</tr>
<tr>
<td>dom. Großgruppe</td>
<td>Polychaeten</td>
<td>Polychaeten</td>
<td>kaum Fauna vorhanden</td>
<td>Amphipoden</td>
</tr>
<tr>
<td>dom. Arten</td>
<td>Pionosyllis sp.</td>
<td>Pionosyllis sp.</td>
<td>Harmothoe sp.</td>
<td>Seba antarctica</td>
</tr>
<tr>
<td>weitere häuf. Gruppen</td>
<td>Pantopoda</td>
<td>Pantopoda</td>
<td>Amphipoda Holothuroidea</td>
<td>--</td>
</tr>
<tr>
<td>fehlende Gruppen</td>
<td>--</td>
<td>--</td>
<td>Isopoda Echinodermata</td>
<td>Pantopoda Isopoda Echinodermata</td>
</tr>
</tbody>
</table>

3.3.3.2 Demospongiae

Pseudosuberites nudus

Von dieser Schwammart wurden sechs Individuen von den Stationen 248 und 249 (Halley Bay, Tiefe: 600 m und 705 m) sowie 291 (Kapp Norvegia: 510 m) untersucht. In allen Schwämme wurde eine relative hohe Abundanz von In- und Epifauna gefunden, wobei die Polychaeten immer die dominante Großgruppe darstellen (Abb. 3.7).

Abb. 3.7: Abundanz und Zusammensetzung der mit einzelnen Schwammindividuen von *Pseudosuberites nudus* vergesellschafteten Fauna. Individuenanzahl aller Faunagruppen der untersuchten Schwammindividuen (Schwamm-Nr.) an den verschiedenen Stationen, bezogen auf ein einheitliches Schwammvolumen von 500 ml.

Myccale acerata
Fünf Individuen dieser Schwammart von den drei Stationen 211 und 217 (Transect, Tiefe: 200 m und 235 m) sowie 269 (Vestkapp: 605 m) wurden auf vergesellschaftete Fauna hin untersucht. Außer bei Schwamm-Nr. 13 wurden bei allen Schwämmen auffällig viele Amphipoden gefunden, die verschiedenen Arten angehören (Abb. 3.8). Diese hielten sich zum Teil in den Hohlräumen der Schwämme tief im Schwammgewebe auf. Bei Schwamm-Nr. 8 handelt es sich hauptsächlich um die Art *Andaniotes linearis* mit einzelnen Individuen der Art *Leucothoe spinicarpa* und *Ampelisca sp.*, bei Schwamm-Nr. 9 um die Art *Polycheria antarctica* sowie Vertreter der Familie Stegocephalidae, und bei Schwamm-Nr. 14 und 190 um wenige Vertreter der Art *Leucothoe spinicarpa*. Schwamm-Nr. 8, 9 und 13 wiesen noch einige Polychaeten unterschiedlicher Arten auf. Nur bei Schwamm-Nr. 8 wurde neben diesen beiden Großgruppen noch jeweils ein Vertreter der Ophiuroidea und Mollusca gefunden.

Tedania oxeata
An den Stationen 226 und 235 (Halley Bay, Tiefe: 580 m und 400 m) wurden sechs Schwämme dieser Demospongienart gesammelt und auf In- und Epifauna untersucht. Dabei wurden nur vereinzelt Amphipoden verschiedener Arten gefunden, die sich in den Hohlräumen des Schwammgewebes aufhielten. Es handelt sich hierbei um die Arten *Eustrus antarcticus, Leucothoe spinicarpa, Seha antarctica* und *Polycheria antarctica*, sowie um Vertreter der Familie Stenothoidae und Lysianassidae. Mit Ausnahme von Schwamm-Nr. 61, wo ein Terebellide präpariert wurde, konnten keine Polychaeten nachgewiesen werden.
Ergebnisse

Mycale acerata

Abb. 3.8: Abundanz und Zusammensetzung der mit einzelnen Schwammindividuen von *Mycale acerata* vergesellschafteten Fauna. Individuenanzahl aller Faunagruppen der untersuchten Schwammindividuen (Schwamm-Nr.) an den verschiedenen Stationen, bezogen auf ein einheitliches Schwammvolumen von 500 ml.

Tedania oxeata

Abb. 3.9: Abundanz und Zusammensetzung der mit einzelnen Schwammindividuen von *Tedania oxeata* vergesellschafteten Fauna. Individuenanzahl aller Faunagruppen der untersuchten Schwammindividuen (Schwamm-Nr.) an den verschiedenen Stationen, bezogen auf ein einheitliches Schwammvolumen von 500 ml.
(Abb. 3.9). Auf der Oberfläche von Schwamm-Nr. 35 wurde eine Holothurie der Art Achlyonice violaceaspidata gefunden, ein Ophiuroide der Art Ophiomastus conveniens befand sich im Schwammhohlraum. Schwamm-Nr. 36 wies keine Infauna auf (Abb. 3.9).

Tedania trirhaphis

![Graphik Tedania trirhaphis](image)

Abb. 3.10: Abundanz und Zusammensetzung der mit einzelnen Schwammindividuen von *Tedania trirhaphis* vergesellschafteten Fauna. Individuenanzahl aller Faunagruppen der untersuchten Schwammindividuen (Schwamm-Nr.) an den verschiedenen Stationen, bezogen auf ein einheitliches Schwammvolumen von 500 ml.

Clathria pauper

An den Stationen 282 und 291 (Kapp Norvegia, Tiefe: 590 und 510 m) wurden vier Individuen dieser Demospongienart gesammelt. Neben Schwamm-Nr. 335, wo keine In- und Epifauna gefunden wurde (Abb. 3.11), war die Abundanz von Epifauna, die zwischen
den igelartig angeordneten Fortsätzen anzutreffen war, gering. Es handelt sich hierbei um Polychaeten der Art *Pionosyllis* sp. (Schwamm-Nr. 336), sowie um eine nicht identifizierte Art bei Schwamm-Nr. 381, ferner um die Amphipoden *Eusirus antarcticus* (Nr. 337) und Vertreter der Familie Lysianassidae (Nr. 381). Die aus Schwamm-Nr. 336 präparierten Amphipoden konnten ebenfalls noch nicht identifiziert werden. Auf der Oberfläche von Schwamm-Nr. 381 wurden zwei Pantopoden der Art *Nymphon mendosum* pro 500 ml Schwammvolumen gefunden.

Clathria pauper

Abb. 3.11: Abundanz und Zusammensetzung der mit einzelnen Schwammindividuen von *Clathria pauper* vergesellschafteten Fauna. Individuenanzahl aller Faunagruppen der untersuchten Schwammindividuen (Schwamm-Nr.) an den verschiedenen Stationen, bezogen auf ein einheitliches Schwammvolumen von 500 ml.

Axociella nidificata
Von dieser schornsteinartig aussehenden Demospongienart konnten vier Exemplare von der Station 217 (Transect, Tiefe: 235 m) auf In- und Epifauna hin untersucht werden. Wie aus Abb. 3.12 zu erkennen ist, wurden nur Vertreter der Klasse Polychaeta in diesem Schwamm gefunden. Es handelt sich hierbei um die Art *Typosyllis* sp. und Vertreter der Familie Phyllodocidae bei Schwamm-Nr. 16, sowie um Vertreter der Familie Syllidae (Schwamm-Nr. 18) und einer bisher nicht identifizierten Art bei Schwamm-Nr. 19. Diese Polychaeten wurden beim Präparieren des Schwammgewebes entdeckt, tief im Schwammgewebe in einer Art Höhle lebend. Schwamm-Nr. 20 beinhaltete keine In- oder Epifauna.

In Tabelle 3.3 werden die wesentlichen Ergebnisse von Kapitel 3.3.3.2 zusammengefasst, indem die Lebensräume der vier Demospongienarten mit der jeweils dominanten In- und Epifauna aufgelistet werden.
Ergebnisse

Abb. 3.12: Abundanz und Zusammensetzung der mit einzelnen Schwammindividuen von *Axociella nidificata* vergesellschafteten Fauna. Individuenanzahl aller Faunagruppen der untersuchten Schwammindividuen (Schwamm-Nr.) an den verschiedenen Stationen, bezogen auf ein einheitliches Schwammvolumen von 500 ml.

Tab. 3.3: Zusammenfassende Darstellung der Lebensräume und der In- und Epifaunaarten der Demospongien. -- = nicht vorhanden

DEMOSPONGIAE

<table>
<thead>
<tr>
<th>Kriterium/Arten</th>
<th>P. nudus</th>
<th>M. acerata</th>
<th>T. oxeata</th>
<th>T. trirhapis</th>
</tr>
</thead>
<tbody>
<tr>
<td>spezifischer Lebensraum</td>
<td>interne Hohlräume</td>
<td>interne Hohlräume</td>
<td>interne Hohlräume</td>
<td>Oberfläche, interne Hohlräume</td>
</tr>
<tr>
<td>dominante Großgruppe</td>
<td>Polychaeta</td>
<td>Amphipoda</td>
<td>--</td>
<td>Amphipoden</td>
</tr>
<tr>
<td>dominante Arten</td>
<td>Pionryllis sp.</td>
<td>Stegocephalidae</td>
<td>--</td>
<td>Polychera antarctica</td>
</tr>
<tr>
<td></td>
<td>Terebellidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weitere häufige Großgruppen</td>
<td>Amphipoda</td>
<td>--</td>
<td>--</td>
<td>Polychaeta</td>
</tr>
<tr>
<td></td>
<td>Ophiuroidea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fehlende Großgruppen</td>
<td>--</td>
<td>Pantopoda</td>
<td>Mollusca</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isopoda</td>
<td>Pantopoda</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Isopoda</td>
<td></td>
</tr>
</tbody>
</table>
3.4 FAUNA DES ZENTRALEN HOHLRAUMS BEI ROSELLA (HEXACTINELLIDA)

Von der Art R. antarctica wurden insgesamt 150 Individuen an fünf Stationen gesammelt, während von R. racovitzae an drei Stationen 770 Individuen untersucht wurden (Tab. 3.4). Bei R. antarctica wiesen zwischen 38,5 % (St. 290) und 76,9 % (St. 273) der Individuen vergesellschaftete Fauna in ihrem zentralen Hohlraum auf, bei R. racovitzae zwischen 23,4 % (St. 258) und 34,6 % (St. 270). Mit durchschnittlichen 59,3 % wird der zentrale Hohlraum von R. antarctica wesentlich häufiger durch entöke Organismen besiedelt als der von R. racovitzae mit 26,2 %.

Tab. 3.4: Aufstellung aller Schwämme, deren zentraler Hohlraum bearbeitet wurde. N_{na} = Anzahl der insgesamt untersuchten Schwämme, N_{mit} = Anzahl der Schwämme mit Fauna im zentralen Hohlraum, % = prozentualer Anteil der Schwämme mit Fauna im zentralen Hohlraum.

<table>
<thead>
<tr>
<th>Station</th>
<th>N_{na}</th>
<th>N_{mit}</th>
<th>%</th>
<th>Station</th>
<th>N_{na}</th>
<th>N_{mit}</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. antarctica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>271</td>
<td>46</td>
<td>26</td>
<td>56,5</td>
<td>245</td>
<td>268</td>
<td>43</td>
<td>25,6</td>
</tr>
<tr>
<td>273</td>
<td>26</td>
<td>20</td>
<td>76,9</td>
<td>258</td>
<td>137</td>
<td>32</td>
<td>23,4</td>
</tr>
<tr>
<td>284</td>
<td>46</td>
<td>27</td>
<td>58,6</td>
<td>270</td>
<td>365</td>
<td>127</td>
<td>34,6</td>
</tr>
<tr>
<td>290</td>
<td>13</td>
<td>5</td>
<td>38,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>291</td>
<td>19</td>
<td>11</td>
<td>57,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>150</td>
<td>89</td>
<td>59,3</td>
<td>770</td>
<td>202</td>
<td>26,2</td>
<td></td>
</tr>
</tbody>
</table>

3.4.1 Verteilung der Infauna auf Schwammgrößenklassen

Ergebnisse

Abb. 3.13a, b: Größenklassenverteilung aller gesammelten Hexactinelliden der Arten *Rossella antarctica* (a) und *R. racovitzae* (b). Die Anzahl Schwämme, bei denen im zentralen Hohlraum Fauna gefunden wurde, ist schwarz dargestellt. N = Anzahl aller untersuchten Schwämme.

Ausgehend von drei Individuen der Größenklasse 2 - 3 cm, nimmt die Individuenanzahl von *R. antarctica* mit jeder Größenklasse langsam und stetig zu, bis sie bei einer Größe zwischen 9 und 10 cm ein Maximum erreicht, welches dann fast ebenso stetig wieder abnimmt. Der Kurvenverlauf würde hier einer Normalverteilung entsprechen. Ausgehend von 17 Individuen der Größenklasse 1 - 2 cm nimmt dagegen die Individuenanzahl von *R. racovitzae* exponentiell zu, um bei einer Größe von 4 - 5 cm bereits ein Maximum mit 102 Tieren zu erreichen. Anschließend nimmt die Individuenanzahl langsam und kontinuierlich ab, bis bei einer Länge von 16 cm nur noch vier Individuen gefunden wurden. Sowohl bei...
Ergebnisse

R. antarctica als auch bei *R. racovitzae* sind alle Größenklassen gleichmäßig durch vergesellschaftete Fauna besiedelt. Der Anteil beträgt für die einzelnen Größenklassen bei *R. antarctica* ca. 60 %, bei *R. racovitzae* ca. 30 %.

3.4.2 Vergesellschaftete Faunagruppen im zentralen Hohlraum

Im folgenden wird zuerst die Verteilung der Faunagruppen *Gastropoda, Nudibranchia, Polychaeta, Isopoda, Amphipoda, Asteroidea* und *Ophiuroidea* bei den untersuchten Hexactinelliden für jede Station aufgeführt. Später erfolgt eine Auflistung der dominanten Arten, die im zentralen Hohlraum von *Rossella antarctica* und *R. racovitzae* gefunden wurden (siehe 3.4.3).

Rossella antarctica

Tabelle 3.5a zeigt, wie viele Tiere der Faunagruppen *Gastropoda, Nudibranchia, Polychaeta, Isopoda, Amphipoda, Asteroidea* und *Ophiuroidea* im zentralen Hohlraum der Schwämm gefunden wurden. Für jede Station ist die Gesamtanzahl der Faunagruppenindividuen von allen Schwammexemplaren angegeben. Um einen Vergleich zu gewährleisten, wurde der prozentuale Anteil jeder Faunagruppe an der Gesamtfauna für jede Station berechnet.

Für *Rossella antarctica* zeigt sich, daß die Besiedlungsstruktur von Station zu Station verschieden ist. Auffällig ist allerdings, daß außer bei Station 273 am häufigsten errante Polychaeten im zentralen Hohlraum der Schwämm gefunden wurden. So haben die Polychaeten zwischen 35,7 und 59,3 % Anteil an der Gesamtfauna. An der Station 273 sind die Polychaeten jedoch nur mit knapp 1 % vertreten, hier dominieren die Isopoden mit 76 %. An den übrigen Stationen wurden dagegen nur vereinzelt Isopoden gefunden (1,7 und 5,4 %), an den Stationen 290 und 291 konnten gar keine Isopoden nachgewiesen werden.

Prosobranchia wurden an allen Stationen, außer 290, mit einem Anteil von 6,8 bis 27,8 % gefunden. Vertreter der Ordnung Nudibranchia konnten mit Anteilen von 1,7 bis 22,2 % an allen Stationen nachgewiesen werden. Der relative Anteil der Amphipoda betrug 2,7 bis 21,4 %; an der Station 291 waren keine Amphipoda vorhanden. Asteroidea waren mit 5,6 bis 20,3 % vertreten, an der Station 273 wurden keine Individuen dieser Klasse gefunden. Gelegentlich hielten sich Ophiuroidea im zentralen Schwammhohlraum auf; mit 1,8 % an Station 271, 4 % an Station 273 und 5,6 % an Station 291.

Rossella racovitzae

Bei *Rossella racovitzae* spielen die Polychaeten keine so dominante Rolle wie bei *Rossella antarctica*; nur an der Station 245 dominierten sie mit 56 % der Gesamtfauna (Tab. 3.5b). An den Stationen 258 und 270 machen sie lediglich einen prozentualen Anteil von 9,8 und 7,5 % aus. Dagegen wurden Isopoden relativ häufig gefunden. So sind sie an den Stationen 245 und 270 mit 20,3 und 33,2 % die zweithäufigste Infaunagruppe, an der Station 258 mit 39,2 % sogar die häufigste. Die Prosobranchia spielten bei Schwämmen der Station 270 eine dominante Rolle, hier erreichten sie mit 46,2 % den größten Anteil. An den Stationen 245 und 258 waren sie mit 13,5 bzw. 27,5 % noch relativ häufig. Auffällig ist, daß sowohl an der Station 245 als auch 258 keine Nudibranchier im zentralen Hohlraum der Schwämme gefunden wurden. An der Station 270 allerdings sind sie mit 9,5 % vertreten. Individuen
46 Ergebnisse

der Amphipoden wurden an allen drei Stationen gefunden, bei Station 258 sind sie mit 23,5 % vertreten, bei Station 245 und 270 dagegen nur mit 3,4 % und 3 %. Dagegen konnten Asteroidea an keiner Station nachgewiesen werden. Gelegentlich wurden Vertreter der Ophiuroidea gefunden; mit 7 % und 0,5 % an den Stationen 245 und 270 spielen sie nur eine geringfügige Rolle, an der Station 258 waren sie gar nicht vorhanden.

Tab. 3.5a,b: Faunagruppen aller Schwämme, deren zentraler Hohlraum bearbeitet wurde. Aufgeführt sind alle Infaunagruppen und deren Anzahl bei den Hexactinelliden Rossella antarctica und Rossella racovitzae an den einzelnen Stationen. () = Anzahl aller untersuchten Schwammindividuen an der jeweiligen Station, % Ant. = prozentualer Anteil der jeweiligen Faunagruppe an der Gesamtinfauna, Σ = Summe Infaunaindividuen.

a) Rossella antarctica

<table>
<thead>
<tr>
<th>Station/ Faunagruppe</th>
<th>271 %</th>
<th>273 %</th>
<th>284 %</th>
<th>290 %</th>
<th>291 %</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nudibranchia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polychaeta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asteroidea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophiuroidea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>271</td>
<td>273</td>
<td>284</td>
<td>290</td>
<td>291</td>
<td></td>
</tr>
</tbody>
</table>

b) Rossella racovitzae

<table>
<thead>
<tr>
<th>Station/ Faunagruppe</th>
<th>245 %</th>
<th>258 %</th>
<th>270 %</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nudibranchia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polychaeta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asteroidea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophiuroidea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>245</td>
<td>258</td>
<td>270</td>
<td></td>
</tr>
</tbody>
</table>

Die Abbildungen 3.14a und b zeigen, wie die einzelnen Tiergruppen bei R. antarctica und R. racovitzae durchschnittlich verteilt sind. Während bei R. antarctica die dominante
Ergebnisse

Gruppe die Polychaeta mit 32,3 % sind, gefolgt von den Isopoda mit 28,1 %, den Prosobranchia mit 12,9 %, den Amphipoda mit 9,7 %, den Asteroidea mit 9,2 %, den Nudibranchia mit 5,5 % und den Ophiuroidea mit 2,3 %, sind diese Gruppen bei R. racovitzae etwas anders verteilt. Hier sind die Prosobranchia mit 36,9 % die Gruppe mit dem höchsten Anteil, gefolgt von den Isopoda mit 31,7 %, den Polychaeta mit 17,2 %, den Amphipoda mit 6,5 %, den Nudibranchia mit 6,1 % und den Ophiuroidea mit 1,6 %. Asteroidea sind hier nicht vertreten. Es scheint, daß R. racovitzae bevorzugt von den Prosobranchiern, R. antarctica dagegen von den Polychaeten aufgesucht wird.

Abb. 3.14a, b: Durchschnittliche Zusammensetzung der im zentralen Hohlraum von Rossella antarctica (a) und R. racovitzae (b) befindlichen Fauna.
3.4.3 Vergesellschaftete Arten im zentralen Hohlraum

Tabelle 3.6 gibt einen nach Arten aufgeschlüsselten Überblick über die Fauna des zentralen Hohlraums von *R. antarctica* und *R. racovitzae*. Dabei ist die Gesamtanzahl der vergesellschafteten Individuen aller untersuchten Schwämme für jede Station gegeben. Die Taxa, die nur vereinzelt gefunden wurden (bis zu zwei Individuen) sind hier vernachlässigt.

Tab. 3.6: Infaunarten aller Schwämme, deren zentraler Hohlraum bearbeitet wurde.

Aufgeführt sind alle entöken Arten und deren jeweilige Anzahl bei den Hexactinelliden *Rossella antarctica* und *R. racovitzae* an den einzelnen Stationen. () = Anzahl aller untersuchten Schwammindividuen an der jeweiligen Station, Σ = Summe Infaunaindividuen, % = prozentualer Anteil.

<table>
<thead>
<tr>
<th>Arten/Station</th>
<th>Rossella antarctica</th>
<th>Rossella racovitzae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Σ</td>
<td>%</td>
</tr>
<tr>
<td>O. Nudibranchia:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. kerguelenensis</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Kl. Gastropoda:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. antarctica</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Margarella sp.1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>übrige Mollusken</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kl. Polychaeta:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. granosa</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>H. spinosa</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>T. gigantea</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N. maculata</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Pionosyllis sp.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O. Isopoda:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. antarctica</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>G. calva</td>
<td>1</td>
<td>56</td>
</tr>
<tr>
<td>S. acutum</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O. Amphipoda:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. antarctica</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E. microps</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>E. antarcticus</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>L. spinicarpa</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Alexandrella sp.</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>A. mixta</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Kl. Ophiuroidea:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Kl. Asteroidea:</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Gesamt</td>
<td>56</td>
<td>75</td>
</tr>
</tbody>
</table>
Ergebnisse

Rossella antarctica
Aus dem zentralen Hohlraum der 150 untersuchten Individuen der Hexactinellidenart Rossella antarctica wurden insgesamt 217 Organismen der am häufigsten vorkommenden Taxa herausgesammelt. Dominant sind der Isopode Gnathia calva mit 57 Individuen und 26,3 %, sowie die Polychaetenart Amblyosyllis granosa mit 51 Exemplaren und einem prozentualen Anteil von 23,5 %. Mit wesentlich weniger Individuen (22), erreicht der prozentuale Anteil des Prosobranchier Trochaclis antarctica nur noch 10,1 %.

Die Asteroiden, fast ausschließlich der Familie Ganeriidae, vermutlich der Gattung Cycethra zugehörig sind mit 9,2 % vertreten. Des weiteren folgen der Nudibranchier Austrodoris kerguelenensis (5,5 %), der Polychaet Trypanosyllis gigantea (4,6 %) und die Amphipoden Eusirus antarcticus und Leucothoe spinicarpa, sowie der Polychaet Pionosyllis sp. mit jeweils sieben Individuen und 3,2 %.

Mit weniger als 2 % der insgesamt gefundenen Fauna folgen der Amphipode Leucothoe spinicarpa, die Klasse der Ophiuroidea, der Isopode Stenetia acutum sowie die Polychaeten Nicon maculata und Pionosyllis sp.

Beim Vergleich der Besiedlung des zentralen Hohlraums der beiden Rossellidenarten fällt auf, daß die Abundanzen der einzelnen Tierarten sehr unterschiedlich sind. Bis auf den Isopoden Gnathia calva, der bei R. antarctica und R. racovitzae eine Häufigkeit von 26,3 bzw. 28,2 % einnimmt und damit die häufigste bzw. zweithäufigste vergesellschaftete Art ist, sieht die Verteilung der übrigen Faunenarten anders aus. Von den Polychaeten stellt Amblyosyllis granosa bei R. antarctica 23,5 % der Gesamtfauna, bei R. racovitzae nur 6,5 %. Dagegen ist Harmaothoe spinicarpa mit 7,1 % die in R. racovitzae am häufigsten gefundene Polychaetenart, bei R. antarctica sind es lediglich 0,5 %.

Der Prosobranchier Trochaclis antarctica stellt bei R. racovitzae mit 35 % der Gesamtfauna die dominante Infaunagruppe dar, während diese Art bei R. antarctica nur 10,1 % ausmacht. Asteroiden bilden bei R. antarctica die vierthäufigste Infaunagruppe, bei R. racovitzae konnte kein Individuum dieser Klasse nachgewiesen werden. Amphipoden spielen bei beiden Schwammarten keine dominante Rolle; bei R. antarctica machen sie zwischen
Ergebnisse

0,5 und 3,2 % der Gesamtnaunfa aus, wobei Seba antartica nicht nachgewiesen werden konnte. Bei R. racovitzae, wo die Arten Eusirus antarticus, Alexandrella sp. und Alexandria mixta völlig fehlen, bewegt sich die relative Besiedlung durch die übrigen Amphipodenarten Eusirus microps, Seba antartica und Leucothoe spinicarpa zwischen 2,9 und 1,6 %.

3.4.4 Schwammgröße als Kriterium der Besiedlung

Die Arten Austrodoris kerguelenensis (Nudibranchia), Trochaclis antartica (Prosobranchia), Gnathia calva (Isopoda), Amblyosyllis granosa, Harmothoe spinosa und Trypanosyllis gigantea (Polychaeta) konnten bei den Hexactinelliden, die nach vergesellschafteter Fauna des zentralen Hohlraums untersucht wurden, in größeren Abundanzen als die übrige Fauna gefunden werden (siehe Tab. 3.6). Dabei konnte festgestellt werden, daß diese bestimmte Schwammgrößen bevorzugen.

Rossella antartica

In Abbildung 3.15a, b ist die Häufigkeit angegeben, mit der fünf Infaunaarten bei bestimmten Längenklassen des Schwermlmes R. antartica gefunden wurden. Die Arten Austrodoris kerguelenensis, Trochaclis antartica und Gnathia calva zeigen einen ähnlichen Kurvenverlauf der Häufigkeit mit langsam zunehmender Besiedlungsanzahl, einem Maximum mit vier bis fünf befallenen Schwämmen einer bestimmten Größe, und anschließender Abnahme bei größeren Schwämmen. Dabei befinden sich die Maxima für diese drei Arten bei unterschiedlichen Schwammabmessungen; für G. calva liegt das Maximum bei 7 cm, für A. kerguelenensis bei 9 cm und für T. antartica bei 10 cm. Daraus ergibt sich eine Verschiebung des Kurvenverlaufes dieser drei Infaunaarten hin nach größeren Schwammindividuen (Abb. 3.15a).

Der Kurvenverlauf für den Polychaeten Amblyosyllis granosa ist der o.a. Arten ähnlich, wobei A. granosa mit einer Befallsfrequenz von sieben Individuen der Schwammabmessungen von 10 bis 20 cm eine deutliche Maxima erreicht (Abb. 3.15b). Bei den übrigen Längenklassen von 5 bis 20 cm konnte diese Art nur gelegentlich mit einem Individuum nachgewiesen werden. Die Polychaetenart Trypanosyllis gigantea wurde erst ab einer Schwammgröße von 9 cm bei R. antartica gefunden. Im Bereich der Abmessungsgruppen 10 bis 14 cm sind sie mehr oder weniger regelmäßig anzutreffen. Schwämmen über 14 cm scheinen nicht mehr besiedelt zu werden.

Rossella racovitzae

Für R. racovitzae wurde die Vorkommenshäufigkeit der vergesellschafteten Arten Austrodoris kerguelenensis, Trochaclis antartica, Gnathia calva, Amblyosyllis granosa und Harmothoe spinosa aufgestellt (Abb. 3.16a, b).
Abb. 3.15a, b: Vorkommen von Austrodoris kerguelenensis (Nudibranchia), Trochaclis antarctica (Gastropoda), Gnathia calva (Isopoda) (a) sowie Amblyosyllis granosa und Trypanosyllis gigantea (Polychaeta) (b) bei Rossella antarctica. Angegeben ist jeweils die Anzahl der Schwämme aus den einzelnen Größenklassen (Länge), die besiedelt wurde.
Abb. 3.16a, b: Vorkommen von Austrodoris kerguelenensis (Nudibranchia), Trochaclis antarctica (Gastropoda), Gnathia calva (Isopoda) (a) sowie Amblyosyllis granosa und Harmothoe spinosa (Polychaeta) (b) bei Rossella racovitzae. Angegeben ist jeweils die Anzahl der Schwämme aus den einzelnen Größenklassen (Länge), die besiedelt wurde.
Ergebnisse

Die Häufigkeit des Nudibranchiers A. kerguelenensis (nur an Station 270 nachgewiesen) erreicht bei 8 bis 10 cm Schwammlänge ein Maximum (vier besiedelte Schwämme). Diese nimmt mit zunehmender Schwammlänge langsam und regelmäßig ab. Schwämme über 19 und unter 4 cm werden offenbar nicht besiedelt. T. antarctica wurde am häufigsten bei der Längenklasse 8 cm gefunden. Die Häufigkeit nimmt ab einer Schwammgröße von 4 cm bis zum deutlichen Maximum bei der Größenklasse 8 cm mit 14 besiedelten Schwämmen zu und fällt dann wieder ab. G. calva konnte bereits in den kleinen Schwammen der Längenklasse 2 cm relativ häufig (acht besiedelte Schwämme) nachgewiesen werden. Die Besiedlungshäufigkeit dieser Isopodenart erreicht bei der Längenklasse 5 cm ein Maximum (neun besiedelte Schwämme) und fällt dann stark ab. G. calva besiedelt Schwämme bis 12 cm Länge nur noch gelegentlich (Abb. 3.16a).

Für beide Hexactinellidenarten läßt sich feststellen, daß die Größenklassen zwischen 7 und 10 cm am häufigsten durch die hier aufgeführten Arten besiedelt werden. Als Ausnahme bevorzugt bei R. racovitzae der Isopode Gnathia calva kleine Schwämme von 2 bis 7 cm Länge.

3.5 LÄNGENHÄUFIGKEITSVERTEILUNG EINIGER AMPHIPODEN

Die Amphipodenarten Seba antarctica, Polycrenia antarctica, Colomastix simplicauda, und Andanitotes linearis wurden mit 48 bis 898 Individuen in Vergesellschaftung mit einigen Schwämme gefunden. Um festzustellen, ob eine bzw. mehrere Generationen im Schwamm verweilen, oder ob nur eine zufällige Verteilung der Amphipoden vorliegt, wurde eine Längenhäufigkeitsverteilung aufgestellt.

Seba antarctica

Bei drei Schwämmen der Hexactinellidenart Scolymastra joubini wurden Amphipoden der Art Seba antarctica mit 60 bzw. 176 Individuen im zentralen Hohlraum (Schwamm-Nr. 43 und 176) und mit 68 Vertretern aus einem nekrotischen Gewebestück (Schwamm-Nr. 44) nachgewiesen.

Die Amphipoden aus Schwamm-Nr. 43 sind zwischen 3,5 und 7,5 mm lang, wobei mit 12 Individuen für die Längenklasse 4,5 mm ein Maximum erreicht wird (Abb. 3.17a). Es ist anzunehmen, daß es sich hier um nur eine Amphipodengeneration handelt. Dagegen setzt sich die Population von Seba antarctica aus Schwamm-Nr. 176 wahrscheinlich aus zwei Generationen zusammen, denn es können hier zwei weit voneinander getrennte Peaks der
Ergebnisse

Längenhäufigkeit beobachtet werden. Ein deutliches Maximum befindet sich bei einer Länge von 2,1 mm (29 Tiere), ein weiteres bei 4,5 mm (20 Tiere) (Abb. 3.17b).

Die aus einer Gewebsveränderung von Scolymastra joubini (Schwamm-Nr. 44) präparierten Amphipoden zeigen ein Maximum bei einer Länge von etwa 3,1 mm (14 Individuen), während bei den übrigen Längenklassen von 1,7 bis 6,3 mm die Amphipodenanzahl zwischen ein bis sechs Tieren schwankt (Abb. 3.17c). Ein zweites Maximum könnte sich im Bereich 5,0 mm andeuten.

Andaniotes linearis
Aus dem Schwammgewebe von Mycale acerata (Schwamm-Nr. 8) konnten 72 Individuen dieser Amphipodenart präpariert werden, welche zwischen 3,5 und 10,2 mm lang waren. Dabei zeichnet sich ein deutliches Maximum bei der Längenklasse 8,4 bis 8,7 mm mit acht und neun Tieren ab; die Anzahlen der übrigen Längenklassen bewegen sich zwischen ein und fünf Amphipoden (Abb. 3.18a).

Colomastix simplicauda
Die Amphipoden aus Tedania trirhaphis (Schwamm-Nr. 48) lassen sich in zwei bis drei mehr oder weniger deutlich voneinander getrennte Größenklassen unterteilen. Während bei 3,1 mm mit neun Tieren das erste Maximum erreicht wird, nimmt die Anzahl der Individuen bis zu einer Längenklasse von 4,2 mm ab. Das zweite Maximum wird bei der Größenklasse 5,6 mm mit 10 Amphipoden erreicht (Abb. 3.18b).

Polyche ria antarctica
Die 898 präparierten Amphipoden aus Tedania trirhaphis (Schwamm-Nr. 52) setzen sich aus zwei Generationen zusammen. Eine junge Generation mit Längen zwischen 1,7 und 3,5 mm und einem Maximum mit 175 Tieren bei 2,5 mm ist deutlich getrennt von älteren und größeren Tieren, die zwei Maxima bei 6,3 mm (31 Individuen) und 8,4 mm Länge (52 Individuen) erkennen lassen. Diese beiden Maxima könnten aber auch durch die unterschiedliche Größe der Amphipodenweibchen und -männchen verursacht sein (Abb. 3.18c).
Abb. 3.17a - c: Längenhäufigkeitsverteilung des Amphipoden *Seba antarctica* im Schwamm *Scolymastra joubini*. Angegeben sind außerdem die Gesamtzahl (n) der Amphipoden und die jeweilige Schwammnummer (NR.).
Ergebnisse

Andaniotes linearis (n=72) in Mycale acerata (Nr. 8)

Colomastix simplicauda (n=48) in Tedania trirhaphis (Nr. 48)

Polycheria antarctica (n=898) in Tedania trirhaphis (Nr. 52)

Abb. 3.18a - c: Längenhäufigkeitsverteilung der Amphipoden Andaniotes linearis (a) Colomastix simplicauda (b) und Polycheria antarctica (c) in den Schwämmen Mycale acerata und Tedania trirhaphis. Angegeben sind außerdem die Gesamtzahl (n) der Amphipoden und die jeweilige Schwammnummer ().
3.6 MAGEN- UND DARMINHALTE EINZELNER SCHWAMMBESIEDLER

3.6.1 Prosobranchier

Mit teils hohen Abundanzen wurde der Prosobranchier *Trochaclis antarctica* vornehmlich im zentralen Hohlraum von *R. racovitzae* gefunden (Tab. 3.4). Des weiteren wurde der bisher noch nicht identifizierte Prosobranchier *Margarella sp.* 1 vereinzelt im zentralen Hohlraum von *R. antarctica* und *R. racovitzae* nachgewiesen (Tab. 3.4). *Margarella sp.* 1 ist bisher vereinzelt bei hexactinelliden Schwämmen beobachtet worden, allerdings gelingt seit ca. drei Jahren die Lebendhalterung am Alfred-Wegener Institut ohne Schwamm als Substrat, d.h. dieser Prosobranchier ist nicht obligatorisch an Schwämme gebunden (S. Hain, AWI Brhv.; pers. Mittg.). Diese Beobachtung wurde als Anlaß genommen, bei einigen Vertretern der beiden Gastropodenarten rasterelektronische Magen- und Darmuntersuchungen durchzuführen, da die Vermutung nahe lag, daß sich diese Schnecken vom Schwammgewebe ernähren.

Trochaclis antarctica

Die Untersuchungen des Magen- und Darminhaltes von fünf Individuen haben ergeben, daß vereinzelt Mikroskleren von einer Größe bis ca. 10 μm nachgewiesen werden konnten (Abb. 3.19). Außer diesen Mikrosklen war kein anderer Mageninhalt vorhanden, d.h. diese Schneckenart scheint sich ausschließlich vom Schwammgewebe zu ernähren. Radscheluntersuchungen bestätigen diese Nahrungsaufnahme. Mit ihren sehr langgestreckten Zähnen kann die Schnecke die Megaskleren aussondern. Die Mikroskleren sind so klein, daß sie der Schnecke nicht schaden (S. Hain, AWI Brhv.; pers. Mittg.).

Margarella sp. 1

Von dieser Gastropodenart wurden ebenfalls fünf Individuen auf Magen- und Darminhalt rasterelektronenmikroskopisch untersucht. Dabei konnten, im Gegensatz zu *Trochaclis*...
Ergebnisse

antarctica, neben einigen Spicula und Nadelbruchstücken (Abb. 3.20) noch Diatomeen, viele Steinchen und Bruchstücke nicht mehr definierbarer Algen- und Sedimentreste nachgewiesen werden. Es handelt sich wohl hauptsächlich um Material, das am Boden des zentralen Hohlrums der Hexactinelliden sedimentiert.

Abb. 3.20: Hartteile aus dem Mageninhalt von Margarella sp.1. Bei dieser Prosobranchierart wurden Sandkörner, Schwammspicula sowie Reste von Diatomeen und Foraminiferen gefunden.

3.6.2 Nudibranchier

Nudibranchier, bei denen es sich ausnahmslos um die Art Austrodoris kerguelenensis handelt, hielten sich meist an der Wandungsmitte des zentralen Hohlrumes auf. Sie weiden die Schwammmoberfläche ab und nehmen dabei auch Schwammgewebe auf. Mikroskopische Untersuchungen bei einigen aus dem zentralen Hohlrum abgesammelten Individuen dieser Art haben gezeigt, daß sich diese Nacktschneckenart vom Schwammgewebe ernährt der Magen- und Darmtrakt einiger Tiere war angefüllt mit Schwammnadeln.

3.6.3 Amphipoden

An den Amphipodenarten Seba antarctica und Polycheria antarctica, welche in zum Teil größeren Stückzahlen bei verschiedenen Schwämmen gefunden wurden, wurden mikroskopische Magen- und Darmuntersuchungen durchgeführt.

Seba antarctica

Ergebnisse

nur in Vergesellschaftung mit Pseudosuberites nudus, Halichondria hentscheli und Tedania oxeata gefunden.

Lediglich bei drei Individuen aus Schwamm-Nr. 43 (Scolymastra joubini) wurden nadelähnliche Stäbchen gefunden, die als Spiculabruchstücke anzusehen, jedoch noch nicht eindeutig einer bestimmten Schwammart zuzuordnen sind (O. Tendal, Zoologisches Museum Kopenhagen; pers. Mittg.). Bei den übrigen untersuchten Amphipoden erschien der Magen- und Darminhalt leer, es konnten keine definierbaren Strukturen nachgewiesen werden.

Polycheria antarctica
IV. Diskussion

Es wurden einerseits 32 Exemplare von neun Demospongearten und 42 Exemplare von vier Hexactinellidenarten vollständig aufgearbeitet und sämtliche darin enthaltene In- und Epifauna herauspräpariert. Andererseits wurden insgesamt 920 Schwammindividuen der beiden im Weddellmeer häufig vorkommenden Hexactinellidenarten Rossella antarctica und Rossella racovitzae auf die im zentralen Hohlraum lebende Fauna hin untersucht. Im folgenden sollen die Lebensräume, die ein Schwamm für die Bodenfauna des Weddellmeeres bietet, im Hinblick auf die unterschiedlichen Vergesellschaftungen diskutiert werden. Dabei werden die Demospongien und Hexactinelliden getrennt behandelt, da durch ihre Morphologie (vergl. 2.3) völlig verschiedene Lebensräume bereitgestellt werden.

4.1 METHODENKRITIK

Die Probennahme der Schwämme für die vorliegende Studie erfolgte hauptsächlich mit Grundschleppnetz (GSN) und Agassiztrawl (AGT). Bei dieser wenig schonenden Probennahme werden die gesammelten Organismen gedrückt, gequetscht und durchgeschüttelt, so daß davon ausgegangen werden muß, daß ein Teil der mit den Schwämmen vergesellschafteten In- und Epifauna noch während des Fanges ausgewaschen wurde bzw. verlorenging. Unterwasseraufnahmen, die vor der Probennahme an fast jeder Station gemacht wurden, bestätigen, daß Schwämme von einer reichhaltigen motilen Epifauna, bestehend aus Crinoiden, Holothurien, Hydroiden, Asteroiden etc. besiedelt werden. Diese Epifauna konnte gar nicht oder nur noch in Fragmenten bei den an Deck gebrachten Schwämmen gefunden werden.

Eine Probennahme durch Taucher im Weddellmeer ist aufgrund der großen Tiefen und schwierigen Eisverhältnisse auszuschließen; doch wäre es für diese Studie wesentlich von Vorteil gewesen, wenn die zu untersuchenden Schwämme zusätzlich zu GSN und AGT mit der schonenderen Probennahme eines Großkastengreifers gesammelt worden wären.
Es war nicht möglich, wie zu Beginn vorgesehen, von ausgewählten Schwammarten an jeder Station eine bestimmte Anzahl Individuen zu sammeln, da an den verschiedenen Stationen z.T. recht unterschiedliche Mengen und Arten von Schwämmen an Deck gebracht wurden. So wurde an den Stationen, wo genügend Material zur Verfügung stand, eine repräsentative Anzahl Schwämm heraussortiert, wobei die Arten, mit denen nach ersten Untersuchungen keine oder sehr wenige Organismen vergesellschaftet waren, nicht in dieser Studie berücksichtigt wurden.

Da die z.T. schwierige Bestimmung der Schwämmen nach der Probennahme, bzw. für die Hexactinelliden erst nach Beendigung der Expedition durchgeführt werden konnte, erfolgte die Auswahl der Schwämmen zunächst nur nach grobmorphologischen Merkmalen. Dies hatte zur Folge, daß, obwohl nicht beabsichtigt, unterschiedliche Arten, die sich sehr ähnlich sehen, zunächst zusammengefaßt wurden (z.B. Vertreter der Familie Tedaniidae).

4.2 SCHWÄMME ALS LEBENSRAUM FÜR BENTHISCHE ORGANISMEN

4.2.1 Hexactinellida

Da sich die Ergebnisse der beiden unterschiedlichen Aufarbeitungsmethoden (siehe 2.4.1 und 2.4.2) für die mit Hexactinelliden vergesellschaftete Fauna z.T. überschneiden, aber vor allem ergänzen, werden sie hier gemeinsam diskutiert.

Von den vier Hexactinellidenarten Rossella antarctica, Rossella nuda, Rossella racovitzae und Scolymastra joubini wurden jeweils 12, 7, 17 und 4 Individuen vollständig aufgearbeitet, d.h. jeder einzelne Schwamm wurde stückchenweise unter einem Binokular zerzupft und die dabei gefundene In- und Epifauna herauspräpariert bzw. abgesammelt. Zusätzlich wurden 150 bzw. 770 Exemplare der Arten R. antarctica und R. racovitzae nur nach der im zentralen Hohlräum befindlichen Fauna hin untersucht.

Betrachtet man die Ergebnisse gemeinsam, so können Hexactinelliden folgende Lebensräume für die benthische Fauna bieten (Abb. 4.1):

4.2.1.1 Zentraler Hohlräum

Durch die zum Teil großen Oscularöffnungen aller in dieser Studie bearbeiteten Hexactinellidenarten gelangt auch sedimentierendes Material in den zentralen Hohlräum und bleibt dort am Boden liegen. Der Schwamm funktioniert ähnlich wie eine
Sedimentfalle, an deren Grund (Basis) sich eine Art Sekundärssubstrat für andere Organismen bildet, bestehend aus sedimentiertem Material und Spicula (Abb. 4.2). Dieses mehr oder weniger gut ausgeprägte Substrat konnte bei einigen großen Hexactinelliden beobachtet werden. Errante und sedentäre Polychaeten, Ophiuroiden, Asteroiden, Amphipoden und Gastropoden befanden sich gelegentlich darin (Abb. 4.1, Nr. 4). Bei den kleineren Hexactinelliden (< 10 cm), deren Osculum nur einen geringen Durchmesser besitzt, gelang sehr wenig sedimentierendes Material in den zentralen Hohlraum, hier konnte eine Substratbildung nicht beobachtet werden. Da auch keine der oben genannten Organismen gefunden wurden, kann davon ausgegangen werden, daß das Sekundärssubstrat eine wesentliche Grundlage für die an der Basis des zentralen Hohlraum gefundene Fauna darstellt.

Abb. 4.2: Blick in den zentralen Hohlraum der Hexactinellidenart Rossella racovitzae. Amphipoden sitzen in einer Gruppe an der Wandung des zentralen Hohlraums (dicker Pfeil). Eine Sedimentablagerung mit Bryozoen ist an der Basis des zentralen Hohlraums zu erkennen (dünner Pfeil). Die kurzen Spicula, die aus den stark ausgeprägten Konulen der Schwammeoberfläche herausragen, sind von Bryozoen und Hydrozoen bewachsen. (UW-Aufnahme von Dr. J. Gutt, AWI. Position 71°07,3'S; 011°41,4'W)

Der Aufenthalt im zentralen Hohlraum bietet folgende Vorteile:

w Wasserströmung

Über die Filtrationsleistung antarktischer Hexactinelliden ist zwar bisher noch nichts bekannt, jedoch ist sicher, daß das Umgebungswasser mittels aktiver Filtration durch das
Schwammgewebe hindurch transportiert wird und durch das Osculum wieder nach außen geführt wird (siehe 2.3.2). Versuche, im Flachwasser die Filtration antarktischer Schwämme mit Farbsuspensionen zu untersuchen, schlugen jedesmal fehl (Dayton, pers. Mittlg.).

b) Nahrung

Im zentralen Hohlraum größerer, vollständig bearbeiteter Hexactinelliden hielten sich vereinzelt die Asteroiden *Acodontaster sp.*, *Perknaster sp.*, *Porania antarctica glabra* und *Paralophaster sp.* auf. Über die Ernährungsweise dieser Arten im speziellen ist nichts bekannt; es ist zu vermuten, daß sie sich dort, wie für *Odontaster validus* beschrieben, dem jeweiligen Nahrungsangebot anpassen und sowohl das im zentralen Hohlraum sedimentierte Material als auch andere kleine Organismen, die den zentralen Hohlraum aufsuchen, aufnehmen. Auch eine Ernährung als Suspensionsfresser ist durchaus denkbar.

Für die im zentralen Hohlraum oft anzutreffenden Proobranchier Trochaclis antarctica und Margarella sp. konnte durch rasterelektronenmikroskopische Magen- und Darmuntersuchungen festgestellt werden, dass sie sich von Schwammgewebe ernähren.

Die Schnecke Margarella sp.1 hingegen enthieilt in ihrem Verdauungsstrakt neben Spicula auch viele kleine Steinchen, Diatomeenreste und andere Algenbruchstücke. Dabei handelt es sich um das Material, welches in den zentralen Hohlraum der Hexactinelliden sedimentiert. Margarella sp.1 scheint hier die Funktion eines Staub-
Diskussion

Trochaclis antarctica wurde in hohen Abundanzen im zentralen Hohlraum von *R. racovitzae* gefunden. Mit 35 % Anteil (108 Individuen) an der im zentralen Hohlraum lebenden Fauna stellt sie die dominante Art dar (Tab. 3.6), wobei sie in den Schwammgrößenklassen zwischen 7 und 11 cm auffällig oft nachgewiesen wurde. *Margarella sp.1* hingegen konnte nur noch mit sechs und zwei Individuen im zentralen Hohlraum von *R. antarctica* und *R. racovitzae* gefunden werden.

Die Ergebnisse der Magen- und Darmuntersuchungen von beiden Schneckenarten und die Feststellung, daß Sedimentablagerungen an der Basis des zentralen Hohlraumes von Hexactinelliden erst ab einer Schwammgröße von ca. 10 cm festgestellt wurden, erklären diese Beobachtungen.

Von den Hexactinelliden, bei denen nur der zentrale Hohlraum bearbeitet wurde, wurden hauptsächlich kleinere Schwämme, an deren Hohlraumbasis sich noch kein Sediment abgelagert hatte, untersucht. Hier war *Margarella sp.1* kaum anzutreffen, wohingegen sie im zentralen Hohlraum der größeren (vollständig bearbeiteten) Hexactinelliden häufiger zu finden war. Im Gegensatz zu *Trochaclis antarctica* scheint *Margarella sp.1* tatsächlich auf die Sedimentablagerungen an der Basis des zentralen Hohlraumes angewiesen zu sein. Für *T. antarctica* wirkt sich das sedimentierte Material eventuell sogar störend aus, so daß sie Schwämme, die größer als 13 cm sind, gar nicht mehr aufsucht (Abb. 3.15a, 3.16a).

c) Schutz vor Freßfeinden

Bei den gelegentlich gefundenen Asteroiden und Ophiuroiden handelt es sich in der

Ebenfalls im zentralen Hohlraum wurden Amphipoden der Art *Seba antarctica* gefunden, bei *Scolymastra joubini* in großen Abundanzen (bis zu 174 Individuen pro Schwamm), bei den übrigen Hexactinellidenarten nur vereinzelt. Nach dem Fang mit Grundschleppnetz oder Agassiztrawl befanden sich diese Amphipoden meist am Boden des zentralen Hohlraums von *Scolymastra joubini*. Auf Unterwasseraufnahmen kann man Amphipoden aber auch an der Wandung des zentralen Hohlraums sitzend beobachten (Abb. 4.2).

Seba antarctica wurde bei Fängen der ersten "Discovery"-Expedition als sehr häufiger Schwammbewohner beobachtet (Arndt 1933); in Südafrika fand Barnard (1916) ein Individuum dieser Art in einem Schwamm. Walker (1907) fand *S. antarctica* mit Größen von 4,25 bis 7,0 mm häufig bei Hut Point (McMurdo Sound, Antarktis). Schellenberg (1926) entdeckte schlupfrife Embryonen mit Längen um 1,4 mm. Die Individuen der vorliegenden Studie verteilen sich zwischen 1,7 und 7,3 mm, womit das bekannte Größenspektrum recht gut abgedeckt ist.

Es kann angenommen werden, daß die Amphipoden aus Schwamm-Nr. 176 (Abb. 3.17b) aus zwei Alters- oder Häutungsklassen stammen, wobei die erste, jüngere Häutungsklasse bei 2,1 mm liegt, und die zweite und ältere Häutungsklasse bei 3,8 bis 4,5 mm. Es handelt sich also nicht um eine zufällige Verteilung der Amphipoden im zentralen Hohlraum von *Scolymastra joubini*, sondern um aufeinanderfolgende Generationen einer Population. Da insgesamt wenig über die bearbeiteten Arten bekannt ist, und genaue Angaben über den Verlust beim Fang fehlen, können die sich teilweise überschneidenden Alters- bzw. Häutungsklassen jedoch nicht klar voneinander getrennt werden.

Strömungs- und damit Nahrungsbedingungen zu nutzen.

Vertreter der Nudibranchierart *Austrodoris kerguelenensis* wurden an der Wandung des zentralen Hohlraums sitzend bei den Schwämme gefunden, bei denen nur der zentrale Hohlraum bearbeitet wurde (Abb. 4.1, Nr. 2). Stichprobenartige Magen- und Darmuntersuchungen haben gezeigt, daß sich *A. kerguelenensis* vom Schwammgewebe ernährt.

Wandlung des zentralen Hohlraums abweidet und dabei u.a. Schwammgewebe aufnimmt.

Auffällig ist, daß diese Nacktschneckenart an jeder Station mit *Rossella antarctica* vergesellschaftet gefunden wurde, während sie bei *R. racovitzae* nur an einer Station (St. 270, Vestkapp) im zentralen Hohlraum anzutreffen war. Sowohl bei *R. antarctica* als auch bei *R. racovitzae* wurden die Schwammgrößen zwischen 8 und 10 cm bevorzugt von *A. kerguelensis* aufgesucht (Abb. 3.15a, 3.16a). Bei den hier gefundenen *Austrodoris*-Individuen handelt es sich um kleine, juvenile Vertreter mit einer maximalen Größe bis zu 3 cm; ausgewachsene Tiere können eine Länge von 20 cm und mehr erreichen (Dayton, pers. Mittlg.). Auch Wägele (1989) gibt an, daß hauptsächlich kleine Vertreter im zentralen Hohlraum hexactinellider Schwämme aufgefunden wurden.

Elvin (1976) führte Versuche mit der Nadibranchierart *Didulula sandiegensis* durch und stellte fest, daß sie aus mehreren Schwammarten die Schwammart *Haliclona pernollis* aufsucht. Der Autor vermutet, daß dieser Schwamm gelöste oder partiellere Lockstoffe freisetzt, welche *D. sandiegensis* veranlassen, diesen aufzusuchen. Dieses wäre ein Hinweis, warum *Austrodoris kerguelensis* vornehmlich die Hexactinellidenart *Rossella antarctica* aufsucht. An der Station 270, wo *A. kerguelensis* ausnahmsweise auch im zentralen Hohlraum von *R. racovitzae* gefunden wurde, wurde nur diese eine Schwammart gedrungen. Auch Unterwasseraufnahmen von dieser Station bestätigen, daß an dieser Station keine anderen Schwammarten vorkommen. Da also für *A. kerguelensis* an dieser Station keine Auswahl zwischen verschiedenen Schwämme bestand, mußte sie hier vermutlich auf *R. racovitzae* ausweichen.

Die Isopodenart *Gnathia calva* stellt bei *Rossella antarctica* die häufigste, bei *R. racovitzae* die zweithäufigste vergesellschaftete Art (vergl. 3.4.3) im zentralen Hohlraum der Schwämme dar (Abb. 4.1, Nr.2). Dabei sucht *G. calva* vornehmlich die kleinen Hexactinelliden mit einer Länge von 2-7 cm auf; ab einer Schwammgröße von ca. 12 cm wurde *G. calva* nicht mehr im zentralen Hohlraum hexactinellider Schwämme gefunden (Abb. 3.15a, 3.16a).

Diskussion

4.2.1.2 Schwammoberfläche

Die Schwammoberfläche (Abb. 4.1, Nr.7) ist bei den in der vorliegenden Studie untersuchten vier Hexactinellidenarten recht unterschiedlich ausgeprägt, was einen wesentlichen Einfluß auf die Besiedlung durch In- und Epifauna hat. Daher werden Rossella antarctica, R. racovitzae, R. nuda und Scolymastra joubini getrennt diskutiert.

Rossella antarctica

Rossella antarctica bildet, wie in Kapitel 3.1.1 beschrieben, mit ihren an den Enden verzweigten Skleren einen dichten Spiculamantel aus, der mit 1-2 cm Abstand parallel zur Schwammoberfläche ein Sklerendach bildet. Unter diesem Sklerendach befindet sich ein Lebensraum für viele kleine errante Polychaeten, Mollusken, Amphipoden, Asteroiden und Pantoopoden. So zeichnen die in dieser Studie untersuchten 12 Schwämme der Art Rossella antarctica insgesamt die höchste Abundanz der vergesellschafteten Fauna (Tab. 3.1), wobei die Polychaeten die dominante Faunagruppe darstellen. Mit bis zu 98 Individuen/500 ml Schwamm ist die Abundanz der maximal 7 mm langen Polychaetenart Pionosyllis sp. am größten. Pionosyllis sp. hielt sich hauptsächlich zwischen den Skleren auf der Schwammoberfläche auf.

Pionosyllis sp. gehört, wie die meisten der mit Schwämmen vergesellschafteten Polychaetenarten dieser Studie, zur Familie der Syllidae, Unterfamilie Syllinae (siehe 3.2). Im folgenden werden einige mit Schwämmen vergesellschaftete Polychaeten vorgestellt, die ebenfalls zu dieser Unterfamilie gehören:

San Martin (1990) beschreibt eine neue Pionosyllis-Art, Pionosyllis spinisetosa, mit einer Länge von ca. 7,8 mm, die in Schwämmen von Kuba und aus dem Golf von Mexiko vorkommt. Über die Ökologie und Ernährungsstrategie etc. macht der Autor keine weiteren Angaben.

Diskussion

Die *Asteroiden*, die sich unter dem Sklerendach befanden, sind alle klein (Radius: 1,0 - 6,0 cm) und können sich von daher gut zwischen den Spicula bewegen. Dieser geschützte Lebensraum kann, ähnlich wie der Boden des zentralen Hohlraums, als eine Art Kinderstube dienen, d.h. die Larven der Asteroiden suchen diesen Ort auf, um sich geschützt vor Fressfeinden entwickeln zu können.

Über die Ernährungsweise der gefundenen Asteroidenarten (*Cycethra sp.* und *Perknaster sp.*) ist nichts bekannt (siehe 4.2.1.1). Denkbar wären zwei Ernährungsweisen:

Daher wäre es auch für die mit *Rossella antarctica* vergesellschafteten Asteroiden (z.B. *Perknaster*, *Cycethra*) möglich, daß sie sich vom Schwammgewebe ernähren, denn McClintock (1987) stellte fest, daß antarktische Asteroiden gegenüber den tropischen oder temperierten Arten wesentlich mehr auf Schwämme als Nahrung spezialisiert sind. 83 % der häufig vorkommenden Asteroidenarten des McMurdo Sounds sind ausschließlich Schwammfresser gegenüber 16 % aus den Tropen und 7 % aus den gemäßigten Breiten.

So könnte sowohl das auf dem Spiculamantel hängengebliebene Material als auch die
Bryozoen, Hydrozoen und Foraminiferen, die vielfach auf dem Spiculamantel siedelnd beobachtet wurden, mit der sich zwischen den Sklern aufhaltenden motilen Fauna eine weitere Nahrungsgrundlage für Asteroiden darstellen (siehe 4.2.1.1).

Rossella racovitzae
Wie auf den Unterwasseraufnahmen (Abb. 4.2, 4.3 und 4.4) zu erkennen ist, bietet Rossella racovitzae mit seinen unverzweigten Sklern, die aus mehr oder weniger ausgeprägten Konulen einzeln (Abb. 4.4) oder in kurzen starken Büscheln (Abb. 4.2) herausragen, einen Lebensraum für benthische Organismen. Stehen Individuen von Rossella racovitzae dicht nebeneinander (Abb. 4.3), wirken die langen Spicula wie ein Filter, in dem Partikel hängen bleiben. Diese Spicula sind zum Teil stark bewachsen von Bryozoen, Foraminiferen, Hydrozoen u.a.. Zwischen den Spicula halten sich viele vergesellschaftete Tiere (Pantopoden, Asteroiden und Polychaeten) auf, welche die Schwammoberfläche durch Druck und Aggasitzwavel fast komplett bedecken. Nach dem Fang mit Grundschleppnetz und Aggasiztrawl waren die meisten der auf den Spicula festsetzenden koloniebildenden Organismen abgerissen, die zwischen den Spicula weidende Fauna nur noch mit wenigen Individuen vertreten. Aufgrund der Unterwasseraufnahmen und einem besonders gut erhaltenen Schwammexemplar, welches mit dem Multicorer gesammelt wurde (Schwamm-Nr. 332), kann man davon ausgehen, daß ein Großteil der mit Rossella racovitzae vergesellschafteten Epifauna beim Fang verloren gegangen ist.

Rossella nuda und Scolymastra joubini
Abb. 4.4: Auf den langen Skleren der Hexactinellidenart *R. racovitzae* (Bildmitte) sitzt ein Asteroid. (UW-Aufnahme von Dr. J. Gutt, AWI. Position 71°06,5'S; 011°39,6'W)

Zusammenfassend ergibt sich:

Auch McClintock (1987) bewies für einige antarktische Schwämme des McMurdo Sounds, daß ein hoher Spiculagehalt nicht vor Wegfraß schützt. Den Asteroiden ist es möglich, sich auf den langen Spicula von *R. racovitzae* fortzubewegen (Abb. 4.4). Aufgrund der Möglichkeit, ihren Magen zwischen den Spicula zur extraintestinalen Verdauung...
Diskussion

4.2.1.3 Gewebsveränderung an der Oberfläche

Bei allen Schwämmen der Art *Scolymastra joubini* konnte an einigen Stellen eine mehr oder weniger stark ausgeprägte Gewebsveränderung festgestellt werden (Abb. 4.1, Nr. 6). Im Gegensatz zum übrigen umgebenden Gewebe, welches bei *S. joubini* sehr fest und kompakt ist, waren folgende Unterschiede festzustellen:

a) die äußere und meist auch innere Dermalmembran war nicht mehr vorhanden
b) die Megaskleren schienen zusammenhänglos und "ungeordnet" durcheinanderzuliegen

c) Gewebereste waren oft bräunlich verfärbt.

In diesem aufgelockerten Spiculagesüs wurden bis zu 70 Amphipoden der Art *Seba antarctica* gefunden, vereinzelt auch die Polychaetart *Pionosyllis sp.*. In dem umgebenden "gesunden" Gewebe konnten dagegen keine Amphipoden nachgewiesen werden. Auch bei *Rossella racovitzae* (Schwamm-Nr. 632) wurden 22 Individuen von *S. antarctica* aus einer Gewebsveränderung präpariert. Bei *R. antarctica* und *R. nuda* wurde keine eindeutige Gewebsmodifikation festgestellt.

sie auch in dieser Studie beobachtet wurden, werden vom Schwamm überlebt und sind dann als kleine Einbuchtungen zu erkennen.

4.2.1.4 Schwammgewebe

Bei einigen Individuen aller untersuchten Hexactinellidenarten konnten Halacariden im Schwammgewebe gefunden werden (siehe Tab. 3.1) (Abb. 4.1, Nr. 3). Es handelt sich hierbei um eine neue, noch nicht beschriebene Halacaridenart der Gattung *Halacarellus*, *Halacarellus* sp.1, die sich scheinbar völlig an das Leben im Wasserleitungssystem der Schwämme angepaßt hat (I. Bartsch, BAH Hamburg: pers. Mittl.).

Vertreter der Halacarida (Meeresmilben) sind ca. 1 mm groß, träg und nicht schwimmend (Paulus 1985) und leben im Lückensystem zwischen Rhizoiden, Balaniden, Bryozoen- und im Hydrozoen-Dickicht sowie im Sand, Kies und weichem Schlamm.

Die Anpassung an das Leben im Wasserleitungssystem der Schwämme wird begründet durch folgende Auffälligkeiten:

a) Im Gegensatz zu anderen Halacariden sind die in den Hexactinelliden gefundenen Halacariden sehr zart gepanzert.

b) Sie haben nicht, wie sonst üblich, die Beine läßig vom Körper abgestreckt, sondern die Haltung der Beine deutet darauf hin, daß sie in eine enge Röhre gezwängt worden sind.

c) Die Krallen, die normalerweise mehr oder weniger sichelförmig sind, enden bei dieser Art auffällig spitz. Dies deutet darauf hin, daß sich diese Tiere nicht auf der Schwammoberfläche oder einem anderen Substrat fortbewegen können, sondern sich im Röhrensystern der Schwämme nur vorwärts- und rückwärtsstossen.

Vertreter der Gattung *Halacarellus* gelten als karnivor. Da das Körperintegument durchsichtig ist, kann man die aufgenommene Nahrung in Form dunkler Flecke normalerweise sehr gut erkennen. Alle aus den Schwämme präparierte Halacariden sind durchweg sehr hell, fast weißlich, was daraufhin deutet, daß diese Tiere das helle
Schwammgewebe aufgenommen haben.

Die neue Halacaridenart wurde nur bei den Hexactinelliden gefunden, die an den Stationen 224 und 230 (Kapp Norvegia, 185 m Tiefe; Halley Bay, 275 m Tiefe) gesammelt wurden. An den übrigen Stationen konnten keine Halacariden im Schwammgewebe nachgewiesen werden. Die Tiefen dieser Stationen betrugen zwischen 380 m bis 705 m. Vermutlich lebt Halacarellus sp.1 nur in Tiefen bis ungefähr 300 m.

4.2.1.5 Basalskleren

Neben vereinzelt vorkommenden Amphipoden und erranten Polychaeten der Familie Syllidae und Polyoidae wurden hauptsächlich sessile Polychaeten der Familien Terebellidae und Sabellidae gefunden, vereinzelt auch Angehörige der Familien Ampharetidae, Opheliidae und Orbiniidae.

4.2.2 Demospongiae

Die Demospongien bieten allein schon von ihrer äußeren morphologischen Gestalt völlig andere Lebensräume für vergesellschaftete Fauna als die Hexactinelliden. In der Regel
weisen die in der vorliegenden Studie untersuchten Arten, außer *Axociella nidificata*, eine rundliche Körperform auf, sind mit internen Hohlräumen versehen, besitzen aber keinen zentralen Hohlraum. Da die einzelnen Demospongienarten eine unterschiedliche vergesellschaftete Fauna aufweisen, werden sie getrennt behandelt.

Pseudosuberites nudus

Die Bryozoen, Hydrozoen und sessilen Polychaeten nutzen den sehr weichen, aufgelockerten Schwamm als Substrat. Vermutlich können sich diese Organismen an dieser Art Schwammgewebe sehr gut festheften und es ist den sedentären Polychaeten möglich, ihre Wohnröhren bis tief in das Schwammgewebe hineinzubauen. Die Anwesenheit der Bryozoen begründet wahrscheinlich das Vorkommen von Pantopoden, die sich, wie oben ausgeführt (Kap. 4.2.1.2), von den Bryozoenzooiden ernähren. Ophiuroiden und Asteroiden nutzen *Pseudosuberites nudus* wohl nur als Substrat und suchen die Schwammoberfläche nach Nahrungspartikeln in Form von sedimentiertem Material, oder auch anderen Organismen wie Polychaeten etc. ab. Bei den erranten Polychaetenarten handelt es sich um Vertreter der Familie Syllidae, für die sowohl eine Ernährung vom Schwammgewebe, als auch von den Bryozoen und Hydrozoen denkbar wäre (siehe 4.2.1.2).

Mycate acerata
Dayton (1979) stellte fest, daß diese circumpolar vertretene Demospongeientart in sieben Jahren das Volumen um 40 % vermehrt und damit gegenüber anderen antarktischen Schwarmarten relativ schnell wächst. Während antarktische Hexactinelliden sehr langsam wachsen (z.T. konnte in 10 Jahren keine Wachstumszunahme gemessen werden), dafür aber auch sehr alt werden, stirbt *M. acerata* dagegen nach 10-20 Jahren ab. Obwohl *M. acerata* für Goldfische hochtoxisch ist (McClintock 1987), hat sich die Asteroidenart *Perknaster fuscus antarcticus* darauf spezialisiert und kontrolliert durch Wegfraß von *M. acerata* die Populationsgröße dieser Demospongienart.

Schwämmen kaum vergesellschaftete Fauna gefunden wurde (Abb. 3.8), kann angenommen werden, daß der Lebensraum Schwamm für die Amphipoden nicht mehr attraktiv genug ist. Zum einen macht die lederartige Dermalmembran ein Eindringen in das Schwammgewebe sicherlich schwierig bis fast unmöglich und senkt wahrscheinlich auch die Filterleistung des Schwammes, zum anderen können sich diese Amphipoden nicht mehr in das kaum noch vorhandene Schwammgewebe einbetten.

Tedania trirhaphis

Das Vorkommen von Polycheria antarctica mit Schwämmen ist häufiger dokumentiert worden. 1875 beschrieb Stebbing erstmalig diese Amphipodenart, die aus einem Schwamm

Die in der vorliegenden Studie aufgestellte Längenhäufigkeitsverteilung von 898 Amphipoden, welche aus einem Exemplar des Schwammes Tedania trirhaphis präpariert wurden, zeigt, daß sich diese Population aus einer jüngeren bzw. kleineren (ca. 2,5 mm Länge) und einer älteren bzw. größeren Population (ca. 6,3 und 8,4 mm Länge) zusammensetzt (Abb. 3.18c). Wahrscheinlich gehören diese Amphipoden zwei Häutungsklassen an. Thurston (1974) gibt für Männchen von Polycheria antarctica eine Länge von 7 bis 8,5 mm an, für Weibchen 6,5 bis 8,5 mm. Die Geschlechter werden bei den Amphipoden dieser Studie nicht überprüft, es kann jedoch angenommen werden, daß die zwei Peaks in der Längenhäufigkeitsverteilung bei 6,3 und 8,4 mm durch die verschiedenen Geschlechter verursacht werden.

Aufgrund dieser Beobachtungen kann *Tedania trirhaphis* für *Polycheria antarctica* a) sowohl ständiger als auch vorübergehender Aufenthaltsort sein, der dem Amphipoden Schutz gewährleistet, b) als Nahrung dienen und c) eine Brutstätte sein. Die Beziehungen zwischen *T. trirhaphis* und *P. antarctica* scheinen mannigfaltiger zu sein, als sie von den Ergebnissen der vorliegenden Studie erklärt werden können. Um diese Wechselbeziehungen näher differenzieren zu können, wären Unterwasserbeobachtungen bzw. Hälterungsversuche in Aquarien wünschenswert.

Bei einem weiteren Exemplar von *T. trirhaphis* wurde neben einer relativ geringen Anzahl von *Polycheria antarctica* (18 Individuen/500 ml Schwamm) die Amphipodenart *Colomastix simplicauda* (28 Individuen/500 ml Schwamm) gefunden. *C. simplicauda* hielt sich meist in kugelförmig angeordneten Gruppen auf der Schwammoberfläche auf.

Tedania oxeata

Im Gegensatz zu *T. trirhaphis* wiesen fünf Exemplare von *Tedania oxeata* eine geringe Vergesellschaftung von Amphipoden auf. Insgesamt wurden nur ein Terebellide gefunden, daneben konnten verschiedene Amphipoden verschiedener Arten in den Schwamporen gefunden werden. Bei einem Schwamm konnte gar keine In- und Epifauna nachgewiesen werden. Für die unterschiedliche Besiedlung dieser beiden Arten der Gattung *Tedania* kommen folgende Annahmen in Betracht:

c) Elvin (1976) stellte fest, daß die Nudibranchierart *Dicaulula sandiegensis*, obwohl sie die

Clathria pauper

Axociella nidificata

4.3 SCHLUßBetrachtung

Die Schwämme der Antarktis bieten anderen Tieren auf vielerlei Art und Weise ein Sekundärsubstrat als vorübergehenden oder permanenten Aufenthaltsort. Es hat sich gezeigt, daß die Oberflächenstruktur und Gewebefestigkeit der Schwämme ein wichtiges Kriterium für die Besiedlung durch andere Organismen darstellt. Jeder in dieser Studie untersuchte Schwamm zeigt ein individuelles Bild der Zusammensetzung von In- und Epifauna. Anhand dieser Untersuchungen können in Zukunft ganz bestimmte In- und Epifaunaspzies bei den verschiedenen Schwammarten erwartet werden. Dies dürfte vor allem für Taxonomen eine wertvolle Hilfe sein. Wichtig ist auch die Erkenntnis, daß ein Schwamm nicht einen Lebensraum darstellt, sondern eine Reihe unterschiedlicher, und demnach auch durch verschiedene Organismen besiedelte Mikrohabitate beinhaltet (Abb. 4.1).

Für die in der vorliegenden Studie untersuchten Hexactinelliden und Demospongien und ihre In- und Epifauna können erstmalig verschiedene Typen der Vergesellschaftung beschrieben werden (Tab. 4.1 und 4.2). Einige Beziehungen zwischen Organismen und ihren Wirtsschwämme sind noch nicht eindeutig geklärt, lassen aber Annahmen über die Form ihrer Vergesellschaftung zu. Es ist nicht auszuschließen, daß weiterführende Untersuchungen über dieses Thema die z.T. hypothetischen Vergesellschaftungsformen bestimmter Organismen bestätigen, bzw. in Frage stellen.
Tab. 4.1: Zusammenfassende Darstellung der wichtigsten Vergesellschaftungstypen sowie der Lebensräume und funktionellen Beziehungen zwischen Hexactinelliden und häufigen "Bewohnern". -- = abwesend, + = vorhanden, ++ = häufig vorhanden. ZH = Zentraler Hohlraum, SO = Schwammoberfläche, OS = Oscuralöffnung, GV = Gewebsveränderung, BS = Basalskleren, SG = Schwammgewebe, temp. = temporär, sed. = sedentär, err. = errant.

HEXACTINELLIDA

<table>
<thead>
<tr>
<th>Arten</th>
<th>R. antarctica</th>
<th>R. racovitzae</th>
<th>R. nuda</th>
<th>S. joubini</th>
<th>Schwamm dient als</th>
<th>Typ Vergesellschaftung</th>
</tr>
</thead>
<tbody>
<tr>
<td>sed. Polychaeta</td>
<td>+ ZH</td>
<td>+ ZH,BS</td>
<td>--</td>
<td>--</td>
<td>Substrat</td>
<td>sessiler Symphorismus</td>
</tr>
<tr>
<td>Terebellidae</td>
<td>+ ZH</td>
<td>+ ZH,BS</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>err. Polychaeta</td>
<td>++ ZH</td>
<td>+ SH</td>
<td>--</td>
<td>--</td>
<td>Nahrung</td>
<td>Entökie temp. Symphorismus</td>
</tr>
<tr>
<td>Pionosyllis sp.</td>
<td>++ SO</td>
<td>+ SO,BS</td>
<td>--</td>
<td>--</td>
<td>Substrat Nahrung Kinderstube</td>
<td>temp. Symphorismus</td>
</tr>
<tr>
<td>Asteroidea</td>
<td>+ ZH</td>
<td>+ ZH</td>
<td>--</td>
<td>--</td>
<td>Nahrung</td>
<td>Entökie temp. Symphorismus</td>
</tr>
<tr>
<td>+ SO</td>
<td>+ ZH</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophiuroidea</td>
<td>+ ZH</td>
<td>+ ZH</td>
<td>--</td>
<td>--</td>
<td>Substrat Kinderstube</td>
<td>temp. Symphorismus</td>
</tr>
<tr>
<td>Pantopoda</td>
<td>++ SO</td>
<td>+ BS</td>
<td>+ BS</td>
<td>--</td>
<td>Substrat Nahrung</td>
<td>temp. Symphorismus</td>
</tr>
<tr>
<td>T. antarctica</td>
<td>+ ZH</td>
<td>++ ZH</td>
<td>--</td>
<td>--</td>
<td>Nahrung (und wird gereinigt)</td>
<td>Ektoparasitismus</td>
</tr>
<tr>
<td>Margarrella sp.</td>
<td>+ ZH</td>
<td>+ ZH</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nudibranchia</td>
<td>++ ZH</td>
<td>+ ZH</td>
<td>--</td>
<td>--</td>
<td>Nahrung</td>
<td>Ektoparasitismus</td>
</tr>
<tr>
<td>A. kerguelenensis</td>
<td>+ ZH</td>
<td>+ ZH</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td>+ SO</td>
<td>+ GV</td>
<td>--</td>
<td>++ ZH</td>
<td>Substrat Nahrung</td>
<td>Ektoparasitismus</td>
</tr>
<tr>
<td>S. antarctica</td>
<td>+ SO</td>
<td>+ BS</td>
<td>--</td>
<td>++ GV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. antarctica</td>
<td>+ SO</td>
<td>+ BS</td>
<td>--</td>
<td>++ GV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holothuroidea</td>
<td>--</td>
<td>+ OS</td>
<td>+ OS</td>
<td>+ OS</td>
<td>Substrat</td>
<td>Entökie</td>
</tr>
<tr>
<td>Isopoda</td>
<td>++ ZH</td>
<td>++ ZH</td>
<td>--</td>
<td>--</td>
<td>Lebensraum</td>
<td>Entökie</td>
</tr>
<tr>
<td>G. calva</td>
<td>+ SG</td>
<td>+ SG</td>
<td>+ SG</td>
<td>+ SG</td>
<td>Lebensraum Nahrung</td>
<td>Endoparasitismus</td>
</tr>
<tr>
<td>Halacarida</td>
<td>Halacarellus sp.</td>
<td>+ SG</td>
<td>+ SG</td>
<td>+ SG</td>
<td>Lebensraum Nahrung</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 4.2: Zusammenfassende Darstellung der wichtigsten Vergesellschaftungstypen sowie der Lebensräume und funktionellen Beziehungen zwischen Demospongien und häufigen "Bewohnern". -- = abwesend, + = vorhanden, ++ = häufig vorhanden, SO = Schwammoberfläche, SG = Schwammgewebe, temp. = temporär, sed. = sedentär, err. = errant.

<table>
<thead>
<tr>
<th>DEMOSPONGIAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arten</td>
</tr>
<tr>
<td>sed. Polychaeta</td>
</tr>
<tr>
<td>Terebellidae</td>
</tr>
<tr>
<td>err. Polychaeta Pionosyllis sp.</td>
</tr>
<tr>
<td>Asteroidea</td>
</tr>
<tr>
<td>Ophiuroidea</td>
</tr>
<tr>
<td>Pantopoda</td>
</tr>
<tr>
<td>Amphipoda</td>
</tr>
<tr>
<td>Stegocephalidae</td>
</tr>
<tr>
<td>L. spinicarpa</td>
</tr>
<tr>
<td>P. antarctica</td>
</tr>
<tr>
<td>C. simplicauda</td>
</tr>
</tbody>
</table>

Von sessilem Symphorismus, einem dauerhaften Siedeln auf der Oberfläche eines Schwammes kann für die sessilen Polychaeten (Terebelliden und Sabelliden) die Rede sein. Dagegen kann man von temporärem Symphorismus bei den Arten Pionosyllis sp. (Polychaeta), Polycheria antarctica und Leucothoe spinicarpa (Amphipoda) sowie bei Vertretern von Asteroidea, Ophiuroidea und Pantopoda sprechen. Eine Entökie, ein Aufenthalt in nach außen offenen Körperhöhlen der Hexactinelliden liegt bei Seba antarctica, Gnathia calva, Amblyosyllis granosa und Vertretern der Holothuroidea vor. Bei den Demospongiae sind Polycheria antarctica und Colomastix simplicinauda sowie
Vertreter der Stegocephalidae entöke Organismen.

Ektoparasitismus, eine schmarotzerhafte Form der Vergesellschaftung, konnte mit Hilfe von Magen- und Darmuntersuchungen für die Arten *Trochaclis antarctica*, *Margarella sp.1*, *Australodoris kerguelenensis*, *Seba antarctica* und *Polycleria antarctica* nachgewiesen werden. Auch für *Amblyosyllis granosa* und einige Asteroiden wird angenommen, daß sie sich zumindest fakultativ vom Schwammgewebe ernähren; Vertreter der Stegocephalidae fressen vermutlich Schwammlarven.

Endoparasitismus dagegen liegt bei den Halacariden vor, die im Wasserleitungssystem der Hexaxonelliden leben und sich höchstwahrscheinlich vom Schwammgewebe ernähren.

V. Literatur

VI. Danksagung

Herrn Prof. Dr. S.A. Gerlach danke ich für seine Anleitung, konstruktive Kritik und weiterführenden Anregungen für diese Arbeit. Ohne seine außergewöhnlich schnelle und zuverlässige Korrekturarbeit wäre der gesetzte Abgabetermin nicht einzuhalten gewesen.

Frau Dr. Dagmar Barthel ermöglicht mir mit einer Stelle im DFG-Projekt "Antarktische Schwämme" über dieses Thema zu promovieren und half mit wertvollen Hilfen und Anregungen sowie lebhaften Diskussionen zum Gelingen dieser Arbeit.

Mein herzlicher Dank gilt der Benthosökologischen Arbeitsgruppe der Hohenbergstraße für die freundliche Aufnahme in ihren kalten Kellergefilden. Die trotzdem warmherzige Atmosphäre, die hauptsächlich Renate Schütz und Dr. Heye Rumohr zu verdanken ist, und die ständige Hilfsbereitschaft haben mir sehr über manchen Krisenpunkt hinweg geholfen.

Die Zusammenarbeit mit Dr. Ole Tendal an Bord der "Polarstern" war ein hervorragender Einstieg in die Materie dieser Arbeit. "Mange tak" Ole, für die vielen kleinen und großen Hilfen, die Bestimmung der Demospongien und Hexactinelliden und nicht zu vergessen für die Versorgung mit dänischer Lakritz!

Frau Dr. I. Bartsch, Dr. J. Gutt, Dr. S. Hain, Frau Dr. L. Harris, Frau Dr. G. Hartmann-Schröder, Dr. M. Klages, Dr. F. Knapp, Dr. J. Voß, Frau Dr. H. Wägele und Prof. Dr. J.W. Wägele bin ich für die Bestimmung einiger Taxa zu großem Dank verpflichtet. Ohne Ihre Hilfe wäre ich bei der Bestimmung sicherlich in manche Sackgasse gelaufen.

Ganz besonders möchte ich mich bei Michael und Stefan bedanken, die trotz eigener Promotionsarbeiten so manchen Überfall auf ihr Labor im Alfred-Wegener-Institut geduldet haben und mir mit einigen weiterführenden Anregungen behilflich waren.

Einen herzlichen Dank allen Kolleginnen und Kollegen und vor allem den Freunden, die zum Gelingen dieser Arbeit beigetragen haben.

Diese Arbeit wurde durch Mittel der Deutschen Forschungsgemeinschaft finanziert (Ba 913/2) und von der European Science Foundation unterstützt.