Die Tanaidaceenfauna des Beagle-Kanals und ihre Beziehungen zur Fauna des antarktischen Festlandsockels

The Tanaidacean fauna of the Beagle Channel and its relationship to the fauna of the Antarctic continental shelf

Anja Schmidt

ISSN 0176 - 5027
Gewidmet meinem lieben Vater

Anja Schmidt
Arbeitsgruppe Prof. Dr. Angelika Brandt
Abt. Niedere Tiere II
Zoologisches Institut und Zoologisches Museum Hamburg
Martin-Luther-King-Platz 3
D-20146 Hamburg

Im wesentlichen unveränderte Druckfassung einer Diplomarbeit, die der Universität Hamburg im Januar 1999 vorgelegt wurde.
Inhaltsverzeichnis

Zusammenfassung.. III
Summary ... V
1. Einleitung.. 1

2. Material und Methoden.. 4
 2.1 Untersuchungsgebiet... 4
 2.1.1 Lage und Topographie .. 4
 2.1.2 Sedimente... 6
 2.1.3 Hydrographie und Eisbedeckung ... 7
 2.1.4 Primärproduktion und Sedimentation .. 8
 2.2 Probenahme.. 8
 2.2.1 Stationsübersicht .. 8
 2.2.2 Bearbeitung der Proben.. 11
 2.2.3 Standardisierungen... 11
 2.3 Taxonomie.. 12
 2.3.1 Determination der Arten ... 12
 2.3.2 Dokumentation der Arten ... 13
 2.3.2.1 REM-Fotographie ... 13
 2.3.3 Morphologie und Terminologie der Tanaidacea.. 13
 2.4 Ermittlung des Artenreichtums... 15
 2.5 Vergleich der Tanaidacea-Fauna des Beagle-Kanals mit der übrigen Magellan-Region und dem antarktischen Festlandsockel ... 15
 2.6 Morphometrie und postmarsupiale Entwicklung.. 15
 2.6.1 Morphometrische Messungen ... 15
 2.6.2 Bestimmung von Geschlecht, Entwicklungsstadium und Reifegrad 17
 2.6.3 Analyse zusammengesetzter Längen-Häufigkeitsverteilungen 20
 2.6.4 Bestimmung der Fekundität ... 21

3. Ergebnisse.. 22
 3.1 Taxonomische Bestandsaufnahme der im Beagle-Kanal vertretenen Tanaidacea.... 22
 3.1.1 Die Tanaidacea der Antarktis und Subantarktis .. 42
 3.2 Zonierung der Tanaidacea im Beagle-Kanal ... 47
 3.2.1 Horizontale Zonierung der Tanaidacea .. 47
 3.2.2 Vertikalzoniierung der Tanaidacea ... 52
 3.2.3 Sedimentabhängigkeit der Tanaidacea .. 53
 3.3 Morphometrie und postmarsupiale Entwicklung der Arten Apseudes heroae und Allotanais hirsutus .. 57
 3.3.1 Stadien der postmarsupialen Entwicklung und ihre Merkmale 57
 3.3.1.1 Apseudes heroae .. 57
 3.3.1.2 Allotanais hirsutus ... 60
 3.3.2 MIX-Analyse zusammengesetzter Längenhäufigkeitsverteilungen nach MACDONALD & PITCHER (1979) und Zusammensetzung der Population von Apseudes heroae 64
 3.3.3 Zusammensetzung der Population von Allotanais hirsutus 68
 3.3.4 Geschlechterverhältnis ... 72
 3.3.5 Fekundität .. 73
 3.3.6 Relation zwischen Cephalothoraxbreite und Eizahl der Weibchen im Kopulationsstadium .. 73
<table>
<thead>
<tr>
<th>4. Diskussion</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Methoden</td>
<td>76</td>
</tr>
<tr>
<td>4.2 Taxonomische Bestandsaufnahme</td>
<td>77</td>
</tr>
<tr>
<td>4.3 Systematik der Tanaidacea</td>
<td>78</td>
</tr>
<tr>
<td>4.4 Die Magellanregion</td>
<td>79</td>
</tr>
<tr>
<td>4.5 Die Tanaidaceenfauna im Vergleich</td>
<td>81</td>
</tr>
<tr>
<td>4.5.1 Vergleich der Tanaidaceenfauna des Beagle-Kanals mit der übrigen</td>
<td>81</td>
</tr>
<tr>
<td>Magellanregion</td>
<td></td>
</tr>
<tr>
<td>4.5.2 Vergleich der Tanaidaceenfauna der Magellan-Region mit der Tanaidaceen</td>
<td>84</td>
</tr>
<tr>
<td>fauna des antarktischen Festlandsockels</td>
<td></td>
</tr>
<tr>
<td>4.6 Zonierung der Tanaideea im Beagle-Kanal</td>
<td>88</td>
</tr>
<tr>
<td>4.6.1 Horizontale Zonierung der Tanaidacea</td>
<td>88</td>
</tr>
<tr>
<td>4.6.2 Tiefenzonierung der Tanaidacea</td>
<td>89</td>
</tr>
<tr>
<td>4.6.3 Sedimentabhängigkeit</td>
<td>90</td>
</tr>
<tr>
<td>4.7 Morphometrie und postmarsupiale Entwicklung</td>
<td>92</td>
</tr>
<tr>
<td>4.7.1 Zusammensetzung der Population von Apseudes heroae</td>
<td>92</td>
</tr>
<tr>
<td>4.7.2 Zusammensetzung der Population von Allotanais hirsutus</td>
<td>94</td>
</tr>
<tr>
<td>4.7.3 MIX-Analyse zusammengesetzter Längenfähigkeitsverteilungen nach</td>
<td>96</td>
</tr>
<tr>
<td>MacDonald & Pitcher (1979)</td>
<td></td>
</tr>
<tr>
<td>4.7.4 Geschlechterverhältnis und Hermaphroditismus</td>
<td>97</td>
</tr>
<tr>
<td>4.7.5 Fekundität</td>
<td>98</td>
</tr>
<tr>
<td>4.7.6 Dauer der Lebenszyklen</td>
<td>99</td>
</tr>
<tr>
<td>4.7.7 Hypothetische Rekonstruktion der Entwicklungszyklen von Apseudes heroae</td>
<td>101</td>
</tr>
<tr>
<td>Allotanais hirsutus</td>
<td></td>
</tr>
<tr>
<td>6. Literaturverzeichnis</td>
<td>104</td>
</tr>
<tr>
<td>Danksagung</td>
<td>113</td>
</tr>
</tbody>
</table>
Zusammenfassung

Summary

In November 1994 the Chilean-Italian-German joint research project „Joint Magellan“ Victor Hensen Campaign was performed in order to investigate the marine fauna and flora of the Magellan region. The principal goal of the expedition was to extend the biological work and knowledge, which has so far been undertaken in the Antarctic, in the Subantarctic and cold temperate South American waters. This study presents the first taxonomic-systematical inventory of Tanaidacea of the Beagle-Channel and the area close to the Atlantic continental slope. The second part of this study focusses on possible reasons for variations of composition and density of the tanaidacean fauna at different stations through the channel (esp. sediment composition, depth etc.)

The Beagle Channel is the southernmost fjord of South America. Tanaidacean were found in epibenthic sledge samples of 18 stations of 12 sampling locations. These stations were taken along a transect through the Beagle Channel in depths between 25 und 665 m. For comparison three supplementary sledge-samples were taken during the Polarstern-Expedition ANT XIII/4 in May 1996 of the area off the continental slope southeast off the Beagle Channel in depths between 97 and 1279 m. The total investigated material comprised 2175 specimens and 27 species of eight families of Tanaidomorpha and two families of Apseudomorpha. Eleven species (Pseudonototanais werthi, Nototanaidae sp., Meromonacantha macrocephala, Peraeospinosus adipatus, Libanius monacanthus, Stenotanais sp., Araphura sp., Siphonolabrum cf. fastigatum, Mirandotanais vorax, Leptognathia armata, Leptognathia breviremis) were sampled in the Magellan region for the first time. The genus Stenotanais (Anarthruridae) was reported for the first time in the southern hemisphere. Moreover, the depth distribution of seven species could be expanded.

The tanaidacean fauna in the Beagle Channel is highly heterogeneous. All families of Tanaidomorpha were represented in the samples analysed. According to the present study our knowledge on tanaidacean species of the Magellan region has to be increased from 25 to 36. The density of specimens was very different at stations. Some species were presented by only one specimen while two species, Allotanais hirsutus und Apseudes heroae, strongly dominated all samples. Generally, very low species numbers and abundances were found in the area of the Beagle Channel which was influenced by the Pacific while substantially higher values were found at the eastern entrance on the atlantic side off the Beagle Channel. Most
species seemed to prefer sediment consisting of either crushed shells or soft bottom. Depth did not significantly effect the presence of species and abundances in the study area.

Morphometric investigations of the different stages during the postmarsupial development of the dominant species Apseudes heroae und Allotanais hirsutus were further aspects of the study presented herewith. Such investigations on Subantarctic tanaidaceans are novel and presented for the first time. It is hypothesized that low Subantarctic temperatures prolong several developmental stages of Tanaidaceae. Hypothetical life cycles of Apseudes heroae und Allotanais hirsutus were reconstructed on the background of knowledge on the population dynamics of other related species.

1 Einleitung

Der in der Magellan-Region gelegene Beagle-Kanal ist der südlichste Fjord Südamerikas. Aufgrund der relativen Nähe zur Antarktischen Halbinsel und damit in Zusammenhang stehender historisch-geologischer Entwicklungen ist der Beagle-Kanal für faunistische Vergleiche zwischen der Magellan-Region und der Antarktis besonders interessant.

Einleitung

Eine erste umfangreichere taxonomische Bestandsaufnahme der Tanaidacea der Magellan-Region erfolgte durch Sieg (1986 a) auf der Grundlage qualitativer Proben verschiedener Reisen mit dem FS Hero.

Die vorliegende Arbeit verfolgt drei Hauptanliegen:

Desweiteren werden erstmals für zwei subantarktische Arten der Tanaidacea (Apseudes heroae und Allotanais hirsutus) morphometrische Untersuchungen sowie Untersuchungen zur
2 Material und Methoden

2.1 Untersuchungsgebiet

2.1.1 Lage und Topographie

Material und Methoden

Abb. 2-1: Lage des Untersuchungsgebietes. Allgemeine Karten (A) von Südamerika und (B) vom Beagle Kanal (verändert nach ARNTZ et al., 1994 aus LINSE & BRANDT, 1998)

In der östlichen Mündung des Kanals ist der patagonische Schelf relativ schmal und flach, die durchschnittliche Wassertiefe liegt bei 50 m (St. 1206, 1200, 1213, 1178). Hier ist eine geomorphologische Schwelle, die den Kanal von der Drake-Passage trennt (BRANDT et al., 1997).

Das Mündungsgebiet durchziehen mehrere tiefere Kanäle, die das küstennahe Gebiet mit dem atlantischen Kontinentalabhang verbinden. Der tiefste, Paso Picton, ist bis zu 130 m tief. Er grenzt an die Westküste der Isla Picton und die Ostseite von Isla Navarino. Die drei Stationen vom Kontinentalabhang und dem vorgelagerten Bereich (40/110, 40/111, 40/117) erreichen eine Tiefe von 97-99, 102-104 und 1253-1279 m. Im Verlauf des Kanals nimmt weiter westlich die Tiefe ständig zu und erreicht mit 665 ihren tiefsten Punkt (Station 1263 vor der Insel Timbal Chico). Ihre Umgebung ist wesentlich flacher (< 150 m). Der „Canal Ballenero“ besitzt ebenfalls einen recht tiefen Bereich mit Tiefen bis zu 600 m (St. 1279, 1270).

Die Karte des Untersuchungsgebietes wurde mit Hilfe des Computerprogramms MICROSOFT ENCARTA erstellt.

\subsection*{2.1.2 Sedimente}

Material und Methoden

2.1.3 Hydrographie und Eisbedeckung

Meereisbildung und Eisbedeckung sind für den Beagle-Kanal bisher nicht beschrieben worden. Im Kanal auftretende Eisberge kälten aus den Gletschern Garibaldi, Romanche, Francia, Italia und Yendegaia.
Material und Methoden

2.1.4 Primärproduktion und Sedimentation

2.2 Probenahme

2.2.1 Stationsübersicht

<table>
<thead>
<tr>
<th>Station</th>
<th>Datum</th>
<th>Start</th>
<th>Westen</th>
<th>Schlupfstrecke (m)</th>
<th>Tiefe (m)</th>
<th>Sediment</th>
<th>Station (Nr.)</th>
<th>Expedition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1205</td>
<td>14.11.94</td>
<td>53°48.13</td>
<td>53°48.10</td>
<td>66°58.45</td>
<td>66°58.62</td>
<td>186</td>
<td>66</td>
<td>EBS feiner Molluskschill</td>
</tr>
<tr>
<td>1200</td>
<td>14.11.94</td>
<td>53°38.52</td>
<td>53°38.57</td>
<td>67°12.86</td>
<td>67°11.26</td>
<td>428</td>
<td>40</td>
<td>EBS Molluskschill</td>
</tr>
<tr>
<td>1194</td>
<td>12.11.94</td>
<td>53°06.94</td>
<td>53°06.95</td>
<td>60°55.54</td>
<td>60°55.67</td>
<td>246</td>
<td>110</td>
<td>EBS kein Sediment gesammelt</td>
</tr>
<tr>
<td>1197</td>
<td>11.11.94</td>
<td>53°07.92</td>
<td>53°08.00</td>
<td>65°58.28</td>
<td>65°58.31</td>
<td>152</td>
<td>117</td>
<td>EBS feiner Schlamm</td>
</tr>
<tr>
<td>1218</td>
<td>11.11.94</td>
<td>53°07.30</td>
<td>53°07.28</td>
<td>65°52.78</td>
<td>65°52.90</td>
<td>132</td>
<td>25</td>
<td>EBS Rotalgen und Cephalopodeschill</td>
</tr>
<tr>
<td>1315</td>
<td>11.11.94</td>
<td>53°06.89</td>
<td>53°06.72</td>
<td>65°39.95</td>
<td>65°39.92</td>
<td>316</td>
<td>63</td>
<td>EBS Molluskschill</td>
</tr>
<tr>
<td>1237</td>
<td>11.11.94</td>
<td>53°00.51</td>
<td>53°00.48</td>
<td>60°33.14</td>
<td>60°33.29</td>
<td>169</td>
<td>103</td>
<td>EBS sehr feiner Schlamm</td>
</tr>
<tr>
<td>1346</td>
<td>11.11.94</td>
<td>54°58.00</td>
<td>54°57.85</td>
<td>68°49.31</td>
<td>68°49.40</td>
<td>400</td>
<td>253</td>
<td>EBS sehr feiner Schlamm</td>
</tr>
<tr>
<td>1347</td>
<td>11.11.94</td>
<td>54°59.43</td>
<td>54°59.51</td>
<td>69°04.64</td>
<td>69°04.28</td>
<td>410</td>
<td>100</td>
<td>EBS feiner Schlamm, grobe Sterne, Foraminiferen</td>
</tr>
<tr>
<td>1248</td>
<td>11.11.94</td>
<td>54°58.80</td>
<td>54°58.78</td>
<td>69°01.75</td>
<td>69°01.98</td>
<td>247</td>
<td>217</td>
<td>EBS feiner Schlamm und Sand</td>
</tr>
<tr>
<td>1253</td>
<td>11.11.94</td>
<td>54°55.12</td>
<td>54°55.11</td>
<td>69°19.89</td>
<td>69°20.13</td>
<td>255</td>
<td>265</td>
<td>EBS sehr feines Schlamm</td>
</tr>
<tr>
<td>1257</td>
<td>11.11.94</td>
<td>54°53.43</td>
<td>54°53.32</td>
<td>69°30.34</td>
<td>69°31.14</td>
<td>295</td>
<td>350</td>
<td>EBS Schlamm, Foraminiferen</td>
</tr>
<tr>
<td>1261</td>
<td>21.11.94</td>
<td>54°53.64</td>
<td>54°53.81</td>
<td>69°38.98</td>
<td>69°39.54</td>
<td>319</td>
<td>120</td>
<td>EBS Schwamm, Schlamm</td>
</tr>
<tr>
<td>1265</td>
<td>21.11.94</td>
<td>54°54.04</td>
<td>54°54.04</td>
<td>70°12.76</td>
<td>70°12.52</td>
<td>266</td>
<td>665</td>
<td>EBS Schlamm, Molluskschill</td>
</tr>
<tr>
<td>1270</td>
<td>21.11.94</td>
<td>54°55.17</td>
<td>54°55.23</td>
<td>70°45.15</td>
<td>70°44.81</td>
<td>379</td>
<td>135</td>
<td>EBS grober, steiniger Sand, Foraminiferen, Schlamm</td>
</tr>
<tr>
<td>1279</td>
<td>21.11.94</td>
<td>54°46.48</td>
<td>54°46.90</td>
<td>71°08.48</td>
<td>71°08.35</td>
<td>178</td>
<td>580</td>
<td>EBS feiner, terriger Schlam</td>
</tr>
<tr>
<td>1307</td>
<td>23.11.94</td>
<td>54°12.37</td>
<td>54°13.79</td>
<td>70°51.81</td>
<td>70°51.90</td>
<td>347</td>
<td>271</td>
<td>EBS feiner Schlamm, Sand, Foraminiferen</td>
</tr>
<tr>
<td>40110</td>
<td>16.05.95</td>
<td>53°26.5</td>
<td>53°26.4</td>
<td>66°15.0</td>
<td>66°15.3</td>
<td>293</td>
<td>102-104</td>
<td>EBS Schell</td>
</tr>
<tr>
<td>40111</td>
<td>17.05.95</td>
<td>54°28.08</td>
<td>54°28.8</td>
<td>66°30.4</td>
<td>66°30.3</td>
<td>155</td>
<td>1253</td>
<td>EBS Lehm, große Toeklumpen</td>
</tr>
<tr>
<td>40117</td>
<td>18.05.95</td>
<td>53°24.6</td>
<td>53°24.1</td>
<td>66°15.6</td>
<td>66°15.3</td>
<td>97-99</td>
<td>DRG</td>
<td>südöstl. 1. Nueva</td>
</tr>
</tbody>
</table>

* zusätzliche Sedimentinformation aus LINSE (1997)
Abb. 2-2: Das Untersuchungsgebiet mit den einzelnen Stationen als Pins dargestellt (I. = Isla, Is. = Islas)
2.2.2 Bearbeitung der Proben

2.2.3 Standardisierungen

Um die Daten der Individuenzahlen der einzelnen Stationen miteinander vergleichen zu können, wurden die Individuenzahlen auf 1000 m²Schleppfläche standardisiert. Die reale Schleppfläche wurde mit der folgenden Formel nach BRATTEGARD & FOSSA (1991) errechnet (Gl. 2-1):

\[
\text{Schleppfläche in m} = 1852 \times \sqrt{\Delta \text{lat}^2 + (\cos \text{lat} \times \Delta \text{long})^2}
\]

\(\Delta \text{lat} = \text{Differenz Breitengrade Beginn und Ende in Dezimalschreibweise}\)
\(\cos \text{lat} = \cos \text{Längengrad in Dezimalschreibweise, hier Position Beginn gewählt}\)
\(\Delta \text{long} = \text{Differenz Längengrad Beginn und Ende in Dezimalschreibweise}\)

In Tab. 2-1 sind die Schleppstrecken angegeben. Da die Probe der Station 40/110 extrem groß war, wurde sie nur zur Hälfte aussortiert. Die Individuenzahlen wurden entsprechend verdoppelt. Bei der Probe der Station 40/117 handelt es sich um einen kleinen Teil der Gesamtprobe aus einem Dredgenfang, den Herr Rauschert Frau Linse zur Verfügung gestellt hatte. Hier waren quantitative Auswertungen nicht möglich.

2.3 Taxonomie

2.3.1 Determination der Arten

Die Determination der Tanaidaceen-Taxa wurde in der vorliegenden Arbeit mittels morphologischer Merkmalen durchgeführt. Es gibt keine Bestimmungsliteratur für die Tanaidaceen der Magellan-Region.

2.3.2 Dokumentation der Arten

2.3.2.1 REM-Fotographie

2.3.3 Morphologie und Terminologie der Tanaidacea

Von frontal nach proximal:

- Antennula = 1. Antenne = A 1
- Antenna = 2. Antenne = A 2
- Labrum = L
- Mandibeln = Md
 - Rechte Mandibel = Md,
 - Linke Mandibel = Md,
- Labium = La
- Maxillula = 1. Maxille = Mx 1
- Maxilla = 2. Maxille = Mx 2
- Maxilliped = Mxp
- Epignath = Epipodit = Epi
- Cheliped = Che
- Pereopoden = P 1 – P 6
- Pleopoden = Pl 1 – Pl 5
- Pleotelson = Plt
- Uropoden = Uro
Material und Methoden

Abb. 2-4: Orientierung und Bezeichnung der Extremitäten bei den Tanaidacea. A. Habitus; B. Cheliped; C. Pereopod (aus SIEG, 1977).

14
2.4 Zonierung der Tanaidacea im Beagle-Kanal und ihr Artenreichtum

Die Verteilung der Artenzahlen sowie der Abundanzen im Verlauf des Beagle-Kanals wurde von West nach Ost, in bezug auf die Tiefe und Beschaffenheit des Untergrundes betrachtet.

2.4.1 Ermittlung des Artenreichtums

Der Artenreichtum wurde als Artenzahl pro Station gemessen.

In der vorliegenden Arbeit wurden der Diversitätsindex (H') nach SHANNON & WEAVER (1949) sowie die Äquität (J) nach PIELOU (1966) berechnet, jeweils mit dem dekadischen Logarithmus.

2.5 Vergleich der Tanaidaceaenauna des Beagle-Kanals mit der übrigen Magellan-Region und dem antarktischen Festlandsockel

Hier wurden die Daten der taxonomischen Bestandsaufnahme des Beagle-Kanals mit Literaturdaten verglichen, die in Form von Tabellen zusammengestellt wurden. Außerdem wurden Faunenübereinstimmungen (hier Anteil gemeinsamer Arten an der Gesamtartenzahl zweier Regionen in Prozent) und der Anteil an Endemismen (Anteil der Arten, die nur in einer bestimmten Region vorkommen, an der Gesamtartenzahl dieser Region in Prozent) für einzelne Regionen berechnet und mit Literaturdaten verglichen. Hierbei wurden die nicht ganz abgesicherten und mit (+) in der Tab. 3-2 gekennzeichneten Vorkommen in die Berechnungen mit einbezogen.

2.6 Morphometrie und postmarsupiale Entwicklung

2.6.1 Morphometrische Messungen

Die beiden häufigsten Arten *Apseudes heroae* (Apseudidae) und *Allotanais hirsutus* (Tanaidae) wurden in ihrer Individuenzahl erfasst. Von Tierfragmenten wurden nur die Kopffragmente gezählt, um Doppelzählungen zu vermeiden. Mit Hilfe eines Binokulars (Wild M5) wurden die einzelnen Tiere wie folgt bearbeitet. Alle Individuen wurden einzeln auf einen Hohlschliff-Objektträger in Glycerin gelegt. Bei allen Individuen wurde die maximale
Material und Methoden

Cephalothoraxbreite, bei einem kleineren Teil der Individuen zusätzlich die Körperlänge von der Spitze des Rostrums bis zum Hinterrand des Pleotelsons von dorsal unter zu Hilfenahme eines Meßokulars gemessen.

Als Längenmaß wurde die Cephalothoraxbreite gewählt, weil sie der sonst meist üblichen Cephalothoraxlänge gegenüber mehrere Vorteile hatte. Die seitlichen Konturen des Cephalothorax waren deutlich zu erkennen, der Cephalothorax auch bei z.T. beschädigten Tieren war meist noch gut erhalten. Außerdem konnten auf diese Weise Meßungsauigkeiten durch das bei *Apsudes heroeae* unterschiedlich nach ventral gebogene Rostrum vermieden werden. Für die Messung der Körperlänge wurden gekrümmte Tiere vorsichtig mit einer Nadel flachgedrückt. Das Meßokular wurde für die verschiedenen Vergrößerungen mit einem Objektmikrometer auf mm geeicht und die gemessenen Skalentente wurden entsprechend in mm umgerechnet und auf 2 Stellen nach dem Komma gerundet. Die Meßgenauigkeit lag bei 0,014 mm bei 56-facher und 0,025 mm bei 32-facher Vergrößerung.

Da jeweils zwischen der Cephalothoraxbreite und der Körperlänge dieser beiden Tanaidaceenarten eine hochsignifikante lineare Beziehung bestand (vergl. Abb. 2-5 u. 2-6), wurde die Cephalothoraxbreite für die Längenhäufigkeitsverteilungen verwendet. Auf diese Weise konnten auch die Individuen gemessen werden, bei denen Pereonsegmente oder Pereon- und Pleonsegmente fehlten. Die Meßfehler bei flachgedrückten, vorher gekrümmten Tieren konnten minimiert werden.

Es wurde jeweils mit dem Computerprogramm STATISTICA eine Regressionsanalyse durchgeführt und der Korrelationskoeffizient (R) nach Pearson berechnet. Die Regressionsanalyse ergab für *Apsudes heroeae* mit 123 gemessenen Individuen einen Korrelationskoeffizient nach Pearson von 0,9837 mit einer Irrtumswahrscheinlichkeit p = 0,000. Die Regressionsanalyse für *Allotanaeus hirsutus* ergab mit 231 Wertepaaren einen Korrelationskoeffizienten nach Pearson von 0,9687 ebenfalls mit einer Irrtumswahrscheinlichkeit von p = 0,000. In Abb. 2-5 und 2-6 sind die linearen Beziehungen zwischen der Cephalothoraxbreite und der Körperlänge dargestellt mit Angabe des Bestimmtheitsmaßes R² und der berechneten Funktion.

Die Beziehung zwischen Cephalothoraxbreite und Körperlänge ist somit isometrisch, die Cephalothoraxbreite kann zur Untersuchung von Längenhäufigkeitsverteilungen bei diesen Arten herangezogen werden.
Material und Methoden

Um die Zusammensetzung der Populationen der zwei Tanaidaceenarten analysieren zu können und dabei eventuelle Messungsauigkeiten aufzufangen, wurden die Individuen in mehrere Cephalothoraxbreite-Größenklassen von jeweils 0,03 mm Klassenbreite eingeteilt.

Eine umfangreiche Tabelle mit allen Daten und Messwerten der einzelnen Individuen von *Apseudes heroae* und *Alloananais hirsutus* befindet sich bei Prof. Dr. Angelika Brandt im Zoologischen Institut und Zoologischen Museum der Universität Hamburg und kann jederzeit eingesehen werden.

Abb. 2-5: *Apseudes heroae*. Cephalothoraxbreite gegen die Körperlänge aufgetragen.

Abb. 2-6: *Allotanaais hirsutus*. Cephalothoraxbreite gegen die Körperlänge aufgetragen.
2.6.2 Bestimmung von Geschlecht, Entwicklungsstadium und Reifegrad

- **Brood-pouch embryo (BPE)**

Die folgenden Stadien der postmarsupialen Entwicklung gehen jeweils durch eine oder mehrere Häutungen in das nächste Stadium über.

- **Manca-1**

- **Manca-2**

- **Juvenile**
Material und Methoden

und Neutrum 2) konnten in dieser Untersuchung nicht unterschieden werden. Die Neutren entwickeln sich zu Männchen oder Weibchen im Vorbereitungsstadium.

- **Weibchen im Vorbereitungsstadium**

- **Weibchen im Kopulationsstadium**
 Diese geschlechtsreifen Weibchen haben ein voll ausgebildetes Marsupium. Hier wurden drei verschiedene Zustände unterschieden:
 - Weibchen mit einem leeren Marsupium, die kurz vor der Eiablage stehen oder bei denen die Manca-Stadien das Marsupium bereits verlassen haben
 - Weibchen mit Eiern im Marsupium
 - Weibchen mit BPEs bzw. Mancastadien im Marsupium

- **Weibchen im Zwischenstadium (intermediate stage)**

- **Männchen**
 Die männlichen Geschlechtskegel sind sichtbar und die Chelipeden mehr oder weniger deutlich vergrößert.

Die Berechnung der mittleren Cephalothoraxbreiten der einzelnen Stadien wurden auf der Grundlage der absoluten Häufigkeiten durchgeführt.

Bei einigen wenigen Individuen konnte das Geschlecht oder das Entwicklungsstadium nicht sicher bestimmt werden, da die dafür notwendigen Körperteile fehlten. Bei Individuen, denen die Oostegiten-tragenden Pereonsegmente fehlten, konnte nicht eindeutig geklärt werden, ob es sich um Neutren oder Weibchen handelte. Diese Individuen wurden in den Ergebnissen als
Material und Methoden

„nicht weiter klassifizierbare Individuen“ bezeichnet und in Tab. 3-7 und 3-8 mit einem Fragezeichen versehen. Wenn solche Fragmente von *Allotanaeis hirsutus* anhand der Chelipenden-differenzierung dem weiblichen Geschlecht zugeordnet werden konnten, war aber nicht zu klären, ob es sich um Weibchen im Vorbereitungs-, Zwischen- oder Kopulationsstadium handelte.

Bei der Umrechnung der Individuenzahlen auf 1000 m² Schleppfläche wurde auf ganze Individuen auf- bzw. abgerundet. Dadurch kam es automatisch zu geringen Rundungsfehlern. Die Gesamtaussage wurde hierdurch nicht beeinträchtigt.

Die anderen Tanaidaceenarten wurden ebenso hinsichtlich ihrer Populationsstruktur untersucht. Aufgrund der geringen Individuenzahl wurde auf Längenhäufigkeitsmessungen verzichtet.

2.6.3 Analyse zusammengesetzter Längen-Häufigkeitsverteilungen

Für die Analyse wurden sämtliche Längenmessungen dieser Art von allen Stationen zusammengefaßt, um eine möglichst repräsentative Probe der Population zu erhalten.

Mit Hilfe der Längenhäufigkeitsverteilungen und Bestimmung der verschiedenen Entwicklungsstadien und deren Reife wurde versucht, die Strukturen der Populationen der beiden do-
minanten Arten Apseudes heroae und Allotanais hirsutus zu analysieren und Aussagen über deren postmarsupiale Entwicklungen zu machen. Das zugrundeliegende Datennmaterial der Stationen 1200, 1206 und 1213 wurde jeweils auf 1000 m² hochgerechnet und zusammengefaßt. Den Längenhäufigkeitsverteilungen für Allotanais hirsutus der Stationen 40/110 und 40/117 wurden jeweils die absoluten Häufigkeiten zugrundegelegt.

2.6.4 Bestimmung der Fekundität

Die Fekundität (Fruchtbarkeit) wurde wie bei MASUNARI (1983) für Leptochelia savignyi (KROYER, 1848) durch Addition aller Eier der Marsupien jedes Weibchens und anschließender Teilung durch die Anzahl der eiertragenden Weibchen errechnet. Die Weibchen mit zerrißnom Marsupium und offensichtlich fehlenden Eiern wurden von der Berechnung ausgeschlossen, ebenso die Weibchen mit Embryos oder Manca-1 Stadien.

\[
\text{Fekundität} = \text{durchschnittliche Eizahl pro eiertragendes Weibchen.}
\]

Der Fekunditätsbereich gibt den Bereich der gezählten Eizahlen der Weibchen an (vgl. COREY, 1981).

3 Ergebnisse

3.1 Taxonomische Bestandsaufnahme der im Beagle-Kanal vertretenen Tanaidacea

<table>
<thead>
<tr>
<th>Ordnung: TANAIDACEA</th>
<th>Unterordnung: NEOTANAIDOMORPHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unterordnung: APSEUDOMORPHA</td>
<td>Familie: Tanaidae*</td>
</tr>
<tr>
<td>Überfamilie: Apseudoidea</td>
<td>Familie: Neotanaidae</td>
</tr>
<tr>
<td>Familie: Anuropodidae</td>
<td>Unterordnung: TANAIDOMORPHA</td>
</tr>
<tr>
<td>Familie: Apseudellidae</td>
<td>Familie: Tanaidae*</td>
</tr>
<tr>
<td>Familie: Apseudidae*</td>
<td>Überfamilie: Parataanoidea</td>
</tr>
<tr>
<td>Familie: Gigantapseudidae</td>
<td>Familie: Anarthritidae*</td>
</tr>
<tr>
<td>Familie: Kalliapseudidae</td>
<td>Familie: Nototanaidae*</td>
</tr>
<tr>
<td>Familie: Metapseudidae*</td>
<td>Familie: Leptocheliidae*</td>
</tr>
<tr>
<td>Familie: Pagurapseudidae</td>
<td>Familie: Paratanidae*</td>
</tr>
<tr>
<td>Familie: Parapseudidae</td>
<td>Familie: Pseudozeuxidae*</td>
</tr>
<tr>
<td>Familie: Sphyrapidae</td>
<td>Familie: Pseudotanaidae*</td>
</tr>
<tr>
<td>Familie: Tanapseudidae</td>
<td>Familie: Typhlotanaidae*</td>
</tr>
<tr>
<td>Familie: Whiteleggiidae</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Da erst eine später Untersuchung zeigen wird, wie viele Arten die Morphotypen Leptocheliidae sp. 1-6 tatsächlich darstellen, wurden diese als eine Art gezählt. Die z. Z. nicht zuzuordnenden Manca indet. wurden nur bei der Individuenzahl berücksichtigt, nicht aber bei der Artenzahl.

Auf eine ausführliche Beschreibung der Arten wurde verzichtet. Es wurden aber jeweils Literaturhinweise dazu gegeben. Soweit wie möglich wurde jeder Art eine Abbildung vom Habitus beigefügt.

Neue Ergebnisse für die zoogeographischen Verbreitung und/oder Tiefenverbreitung, die durch die vorliegende Arbeit erlangt wurden, sind in der taxonomischen Bestandsaufnahme (Kap. 3.1) mit unterstrichenem Fettdruck gekennzeichnet.

Ergebnisse

Auf eine ausführliche Beschreibung der Arten wurde verzichtet. Es wurden aber jeweils Literaturhinweise dazu gegeben. Soweit wie möglich wurde jeder Art eine Abbildung vom Habitus beigefügt.

Neue Ergebnisse für die zoogeographischen Verbreitung und/oder Tiefenverbreitung, die durch die vorliegende Arbeit erlangt wurden, sind in der taxonomischen Bestandsaufnahme (Kap. 3.1) mit unterstrichenem Fettdruck gekennzeichnet.
Ordnung TANAIDACEA DANA, 1849
Unterordnung APSEUDOMORPHA SIEG, 1980
Überfamilie: Apseudoidea LEACH, 1814
Familie Apseudidae LEACH, 1814

Apseudes heroae SIEG, 1986

Abb. 3-1: *Apseudes heroae* SIEG, 1986. Weibchen Habitus.

In SIEG (1986 a) befindet sich die Beschreibung der Art *Apseudes heroae* (Abb. 3-1). Die Art ist charakterisiert durch eine partielle Verschmelzung der vierten und fünften Pedunkularsegmente der Antenne 2, durch den Verlust der gewöhnlich reduzierten *Lacima mobilis* der rechten Mandibel, durch nur einen Grabfuß (Pereopod 1), durch eine sternale Reihe kleiner Dornen auf dem Propodus von Pereopod 5-6, und durch lange gefiederte Borsten auf Basis, Merus und Carpus des Pereopod 6.

Deutlich zu erkennen waren außerdem das Epistom und das spitz zulaufende Rostrum (vgl. Tafel 1, Abb. E in Kap. 3.3.1.1). Im Unterschied zur Beschreibung von SIEG (1986 a) wiesen die Männchen am Carpus und Propodus des Chelipeden sternal jeweils zwei kräftige Dornen auf, die zahnähnliche Projektion auf der tergalen Kante des Propodusfingers war zusätzlich gezähnt (vgl. Kap. 3.3.1.1. und Tafel 1, Abb. B). Die Weibchen besaßen ebenfalls eine zahnähnliche Projektion (vgl. Kap. 3.3.1.1 und Tafel 1, Abb. F).
Ergebnisse

- Größe: Weibchen: 3,5-5,5 mm lang; 6,5x länger als breit; Männchen: (etwas kleiner) 2,1-4,7 mm lang
- Verbreitung: Magellan-Region, Brasilien
- Tiefe: 13-900 m

Synapseudes idios GARDINER, 1973

Eine detaillierte Beschreibung der Art Synapseudes idios (Abb. 3-2) befindet sich bei GARDINER (1973). Antenne 2 siebengliedrig, erstes Pleonit frei, erstes und zweites Pleonit aus dorsaler Perspektive hervortretend, Pleonit 3-5 meist vorhanden, aber nur von der Seite gesehen als schmale, hervortretende Leisten zu erkennen.

- Größe: Weibchen: 3,0 mm lang; 5-7x länger als breit; Männchen: 2,6 mm lang, 5,2x länger als breit
- Verbreitung: Magellan-Region
- Tiefe: 0-903 (?) m

2 Bei der Untersuchung unbestimmten Materials aus der Sammlung Niedere Tiere II des Zoologischen Instituts und Zoologischen Museums konnte ein Weibchen mit Manca-I Stadien im Marsupium aus Brasilien als Apsides heroae identifiziert werden.
Unterordnung: TANAIDOMORPHA SIEG, 1980

Überfamilie: Tanaoidea DANA, 1849

Familie Tanaidae DANA, 1849

Allotanais hirsutus (BEDDARD, 1886)

Detaillierte Beschreibungen sind bei SHINO (1978) und SIEG (1980 c) zu finden. Die Art Allotanais hirsutus (Abb. 3-3) ist deutlich an der kranzförmigen Beborstung des ersten und zweiten Gliedes der fünfgliedrigen Antenne I zu erkennen (Tafel 2, Abb. C u. F in Kap. 3.3.1.2) und dem breiten (breiter als langen) Cephalothorax. (Tafel 2, Abb. E in Kap. 3.3.1.2).

Größen: Weibchen: 7,85 mm lang (bis 9 mm (BEDDARD, 1886)); 1,5 mm breit, Männchen: 6,75 mm lang; 2,20 mm breit (zu der Größe der Individuen dieser Untersuchung vgl. Kap. 3.3.2.2)

Tiefe: 0-300 m

Überfamilie: Paratananoidea LANG, 1949

Familie Pseudozeuxidae SIEG, 1982

Heterotanoides meridionales SIEG, 1986

Größe: sehr klein
Weibchen 1,0-1,3 mm lang; etwas mehr als 4,5x länger als breit (diese Untersuchung: 1,4 mm lang; 0,25 mm breit); Männchen: 1,4-1,5 mm lang; 5,8x länger als breit (1,1 mm lang; 0,2 mm breit)
Verbreitung: Magellan-Region
Tiefe: 22-63 m

Familie Leptocheilidae LANG, 1973

* Pseudonotothenais werthi (VANHOFFEN, 1914)

- Größe: Weibchen 1,8-2,0 mm lang; 6x so lang wie breit
- Verbreitung: Kerguelen, Crozet-Inseln., Kurilen, Südgeorgien, Magellan-Region
- Tiefe: 07-217 m

28
Leptochelidae sp. 1-6

Hier handelt es sich um sechs verschiedene Morphotypen männlichen, weiblichen oder juvenilen Stadiums mit jeweils maximal zwei Individuen, die sich ohne Präparation nur bis zur Familie bestimmen ließen. Eine genaue Bestimmung, Dokumentation und Präparation wird später erfolgen. Von einem Morphotyp wurden zwei kleine Männchen gesammelt. Eine Präparation wird zeigen, ob es sich eventuell um *Pseudoleptochelia antarctica* (LANG, 1953 a) handeln könnte.

Familie Paratanaidae LANG, 1949

Paratanais oculatus (VANHOFFEN, 1914)

![Paratanais oculatus (VANHOFFEN, 1914). Habitus Weibchen (aus SHINO, 1978)](image)

- Größe: Weibchen: 6,41 mm lang; 1,15 mm breit (Pereonit 4)
- Verbreitung: Kerguelen, Falkland-I., Macquarie-I., Magellan-Region
- Tiefe: 0-903 m
Paratanaidae sp. 1

Ohne eine Präparation, die später erfolgen wird, konnte das sehr kleine juvenile Tier nur bis zur Familie bestimmt werden.

Paratanaidae sp. 2.

- Größe: Männchen: 1,6 mm lang; 4,5x länger als breit
- Verbreitung: Magellan-Region
- Tiefe: 0-104 m
Familie Nototanaidae SIEG, 1976

Nototanais dimorphus (BEDDARD, 1886)

Abb. 3-8: Nototanais dimorphus (BEDDARD, 1886). Links Weibchen, Mitte Männchen, rechts Pleopod (aus SIEG, 1980 b).

- Größe: Weibchen: 2,75 mm lang; 0,54 mm breit; Männchen: bis 3,5 mm lang
- Tiefe: 4-360 m

Nototanaidae sp.

Familie Pseudotanaidae SIEG, 1976

Pseudotanais sp

Familie Typhlotanaidae SIEG, 1984

Meromonacantha macrocephala HANSEN, 1913

![Diagramm](image)

Abb. 3-9 *Meromonacantha macrocephala* HANSEN, 1913. Weibchen. Habitus links von dorsal (aus SIEG, 1986 b), rechts von lateral, mit Cheliped und Uropod (aus VANHOFFEN, 1914).

Größe: Weibchen: 1,5-2,0 mm lang; 6,5x so lang wie breit

Verbreitung: bipolar(?): Nordatlantik: südwestlich von Island, 1554 m (HANSEN, 1913); Ostantarktische Subregion: Gauss-Station, 385 m (VANHOFFEN, 1914); Weddellsee, 257-289 m; Bransfield-Straße, 1265-1376 m (KUDINOVA-PASTERNAK, 1993), Magellan-Region

Tiefe: 100-1554 m

Peraeospinosus adipatus TSAREVA, 1982

Abb. 3-10 Peraeospinosus adipatus TSAREVA, 1982. Weibchen Habitus (aus SIEG, 1986 a)

Größe: Weibchen: ca. 2,2 mm lang; 6,3x so lang wie breit

Verbreitung: Südlicher Teil der Antarktischen Halbinsel „Adelie-Küste/Kosmonautensee (TSAREVA, 1982); Südshettland-I. (King-George I.); Scotiaregion, Ostantarktis, Weddellsee (SIEG, 1988), Magellan-Region

Tiefe: 45-496 m
Ergebnisse

Familie Anarthuridae LANG, 1971
Unterfamilie Akanthophoreinae SIEG, 1986 b
Eine genaue Diagnose der Unterfamilie befindet sich bei SIEG, 1986 b

Akanthophoreus australis (BEDDARD, 1886)

Abb. 3-1: _Akanthophoreus australis_ (BEDDARD, 1886). Weibchen Habitus, Cheliped (aus SIEG, 1986 b).

- Größe: Weibchen: ca. 3,45 mm lang; 0,44 mm breit
- Tiefe: 5-1376 (?) m
Die Art war deutlich an der Form der Pereonite (Abb. 3-12 links) und des Pleotelsons zu erkennen (Abb. 3-12 rechts). Die Pleopoden waren sehr stark reduziert. Für ausführlichere Artbeschreibung s. LANG (1971 b).

- Größe: Weibchen: ca. 3,5 mm lang; 0,8 mm breit
- Verbreitung: verstreute Funde aus ostantarktischer Subregion (VANHÖFFEN, 1914; KUSSAKIN, 1966; KUDINOVA-PASTERNAK, 1975); Weddellsee (SIEG, 1986 b), Scotiaregion (SIEG, 1988), Magellan-Region
- Tiefe: 124-932 m

Ergebnisse

- Größe: Juvenil: ca. 2,5 mm lang; 0,4 mm breit
- Verbreitung: **Magellan-Region**
- Tiefe: 100-350 m

Stenotanais sp.

Größe: *S. crassicata*: Juvenil: 1,54-1,8 mm lang (Juvenil: ca. 4,2 mm lang; 0,3 mm breit)

Verbreitung der Gattung: Nordost-Atlantik, **Magellan-Region**

Tiefe der Gattung: **1253-4800 m** (*S. crassicata*: 2070-2916 m)

Tanaella unisetosa SIEG, 1986

Eine Artbeschreibung zur Art *Tanaella unisetosa* (Abb. 3-13) liefert Sieg (1986 a). Neben dem charakteristischen Habitus war die vorspringende dornähnliche bewimperte Struktur am *Pars molaris* der rechten Mandibel (Abb. 3-13 rechts) und der einästige kräftig entwickelte Uropod mit rudimentärem Exopoditen zu erkennen. Der proximale Rand der verschmolzenen Maxillipeden lief in einen schmalen Kiel aus, der an der Spitze mit feinen Borsten besetzt (Abb. 3-13 Mitte) war.

- Größe: Weibchen: 3,7-4,0 mm lang; 6,5x länger als breit
- Verbreitung: Magellan-Region, Scotia-Region, Süd-Shetland-Inseln, Antarktische Halbinsel, Weddellsee
- Tiefe: 40-137 m

Unterfamilie Anarthurinae Lang, 1971

Eine genaue Diagnose der Unterfamilie befindet sich bei Sieg, 1986 b.

Siphonolabrum cf. fastigatum Sieg, 1986

![Abb. 3-14: Siphonolabrum fastigatum Sieg, 1986. Weibchen, Habitus, Cheliped, Uropod (aus Sieg, 1986 a)](image)

Siphonolabrum fastigatum (Abb. 3-14) ist bei Sieg (1986 a) genauer beschrieben. Eine spätere Präparation und Vergleich mit dem Typenmaterial wird zeigen, ob es sich hier um diese Art handelt. Charakteristisch ist die Form des Chelipeden (Abb. 3-14 Mitte) sowie die pseudozweiiästigen Uropoden (Abb. 3-14).
Ergebnisse

- Größe: Weibchen: 1,9 mm lang, 6,3x länger als breit
- Tiefe: 49-75 (2537) m

Anarthrurinae sp.

Bei diesem einzelnen Individuum handelt es sich wahrscheinlich um eine weitere Art der Gattung *Siphonolabrum*. Erst eine spätere Präparatio wird Aufschluß darüber geben.

Unterfamilie Leptognathiinae SIEG, 1973

Eine genaue Diagnose der Unterfamilie befindet sich bei SIEG, 1986 b.

Dimorphognathia heroae SIEG, 1986

Geschlechtskegel (Abb. 3-15 Mitte). Merus, Carpus und Propodus der Pereopoden 1-6 weisen viele Reihen feiner Borsten auf. Der Uropod ist nur scheinbar zweästig.

- Größe: Männchen: 1,6 mm lang; 6x länger als breit
- Verbreitung: Magellan-Region
- Tiefe: 0-903 m

Leptognathia breviremis (LILLJEBORG, 1864)

- Größe: Weibchen: 1,5-2 mm lang; 5,5x länger als breit
- Verbreitung: Nordatlantik (24-3366 m); zweifelhaft (nach SIEG, 1986 b): Kurilen-Kamtschatka-Graben, 4895-7295 m (KUDINOVA-PASTERNAK, 1970), Karibische See, 4320 m (KUDINOVA-PASTERNAK, 1978); wohl zu *L. breviremoides* gehörig (nach SIEG,
1986 b): Scotia-See, 1425 m (KUDINOVA-PASTERNAK, 1975); **Magellan-Region** (100-217 m)

- Tiefe: 24-7295(?) m

Abb. 3-17: *Leptognathia armata* HANSEN, 1913

Abb. 3-17: Leptognathia armata HANSEN, 1913. Weibchen: Pleon mit ventralen Tuberkeln (aus HANSEN, 1913)

Es ist noch unklar zu welcher Unterfamilie der Anarthuridae und zu welcher Gattung die Art gehört. Hansen (1913) unterschied zwischen *Leptognathia armata* und *L. hastata* HANSEN, 1913; KUDINOVA-PASTERNAK (1965) hielt sie für synonym. Ein kaum zu übersehendes Bestimmungsmerkmal stellen die Pleonite dar, die ventral je einen Tuberkel besitzen, wobei der letzte wesentlich kräftiger entwickelt, stark nach caudal verlängert und spitz zulaufend ist (vgl. Abb. 3-17) Er erreicht fast das Pleotelsonende. Außerde weisen Pereopod 4-6 am Dactylus Reihen von kleinen Zähnchen auf.

- Größe: Weibchen: 2,5-3,8 mm lang

- Verbreitung: verstreut: Nordatlantik, Pazifik, Antarktis, Kapbecken (20-25°S), Angola-Becken (17°S), Scotiaregion, Madagascarr-Becken, Mosambik-Becken; **cosmopolitisch** (KUDINOVA-PASTERNAK, 1986); **Magellan-Region**

- Tiefe: **135-8006 m**
Mirandotanais cf vorax KUSSAKIN & TSAREVA, 1974

- Größe: Weibchen: 1,5-2,5 mm lang
- Tiefe: 10-125 m

Weiterhin konnten zwei Individuen nur bis zur Überfamilie Paratanaoidea bestimmt werden: (Paratanaoidea sp. 1, Paratanaoidea sp. 2), deren Präparation zu einem späteren Zeitpunkt Aufschluß geben wird. Zwei Manca-Stadien (Manca indet. 1, Manca indet. 2) gehören ebenfalls dieser Überfamilie an.

3.1.1 Die Tanaidacea der Antarktis und Subantarktis

In diesem Kapitel befindet sich eine aktuelle Zusammenstellung der zoogeographischen Verbreitung der Tanaidacea der Antarktis und Subantarktis. Alle Verbreitungsdaten der Tanaidacea der Antarktis und Subantarktis wurden hierfür zusammengetragen und mit den Ergebnissen der vorliegenden Arbeit aktualisiert.

Tab. 3-2 enthält eine aktualisierte Zusammenstellung der Tanaidacea der Antarktis und Subantarktis mit den jeweiligen Verbreitungsdaten inkl. der neuen Daten der vorliegenden Arbeit. Sie dient als Grundlage für die Berechnung der Endemismen und Artenübereinstimmungen in Kap. 4.5.2.1. Die zoogeographische Einteilung der verschiedenen Regionen der Antarktis und Subantarktis ist in Abb. 3-19 dargestellt.

| Tab. 3-1: Artenzahlen verschiedener Regionen der Antarktis und Subantarktis |
|-----------------------------|-----------------------------|
| Region | Artenzahl |
| Westantarktis | 34 |
| Ostantarktis | 34 |
| Antarktischer Festlandsockel| 50 |
| Antarktische Tiefseebecken | 48 |
| Magellan-Region* | 34 |
| Kerguelen-Region | 27 |
| Subantarktische Tiefsee | 29 |

*zu zwei Arten weniger als in Kap. 4.5.1 angegeben, da Nototanaidae sp. und Araphura sp. hier nicht mit einbezogen wurden.

42
<table>
<thead>
<tr>
<th>Art</th>
<th>Antarkt. Festland</th>
<th>ATS</th>
<th>Subantarktische Regionen</th>
<th>Botschaften</th>
<th>ausländisch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>landschaft</td>
<td></td>
<td></td>
<td>Br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APESEUDIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apselus cruciferus Shinjo, 1979</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apselus diversus Link, 1968</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apselus hercules Sen, 1969</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apselus perigraecus KUHN & PASTERNAK, 1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apselus scoliosus Link, 1968</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apselus spectabilis Link, 1983</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apselus spicoides (Link, 1956)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apselus unicus KUHN & PASTERNAK & PASTERNAK, 1981</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepiosudidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepiosudus algeria (Link, 1969)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepiosudus communis (Link, 1969)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepiosudus gazette (WULFF, 1906)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepiosudus gregarius (WULFF, 1913)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepiosudus shihii (LACE, 1968)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphyrospatula dipleur Link, 1968</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARAMESIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salpea pauciseta (BRU, 1971)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TANAIIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaidium plumatum (KUHN & PASTERNAK, 1975)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaidium affinis WULFF, 1965</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaidium aequitans BETHAM, 1886</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaidium antiquum KUHN, 1967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaidium emmiger (WULFF, 1950)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaidium giganteum WULFF, 1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaidium haddii (WULFF, 1956)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaidium henselii GARDNER, 1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaidium kuchentli KUHN & PASTERNAK, 1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaidium magnificus KUHN & PASTERNAK, 1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaidium trinodretae GARDNER, 1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TANAIIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allotanaidum formosus (BETHAM, 1886)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langitanaidum angustifrons THIELSEN, 1982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langitanaidum bifidum SHINJO, 1983</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langitanaidum megas SHINJO, 1976</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langitanaidum villavikesare (STUDER, 1953)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peucotidae stoloni (THIELSEN, 1971)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peucotidae stoloni (THIELSEN, 1971)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peucotidae stoloni (THIELSEN, 1971)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peucotidae stoloni (THIELSEN, 1971)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TANAIIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocanista novorheinelandica (THIELSEN, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art</td>
<td>Antarkt. Fast-landsockel</td>
<td>ATS</td>
<td>Subantarctische Regionen</td>
<td>STS</td>
<td>außerhalb</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>--------------------------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>LEPTOCHELIIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lampedilla lampedilla (BROWN, 1957)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudolampelea antarctica (LANG, 1953)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudolampelea brevispiculum (SIEG, 1985)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudolampeleoides wundwund (VANHOFFEN, 1914)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARATANAIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paratanais spec. (VANHOFFEN, 1914)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTOTANAIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nototanais antarcticus (HODGSON, 1902)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARATANAIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protanaissus spec. (VANHOFFEN, 1914)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSEUDOTANAIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protanaissus spec. (VANHOFFEN, 1914)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPHLOTANAIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typhlotranous longispinis (KUZMINOV-PASTERNAK, 1975)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudotanais spec. (VANHOFFEN, 1914)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akanthophoreinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akanthophoreus sp. (VANHOFFEN, 1914)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ergebnisse
<table>
<thead>
<tr>
<th>Art</th>
<th>Artifakten</th>
<th>MRT</th>
<th>ESS</th>
<th>ART</th>
<th>PR</th>
<th>WD</th>
<th>AVS</th>
<th>OF</th>
<th>ARS</th>
<th>STS</th>
<th>OAS</th>
<th>WSS</th>
<th>HSS</th>
<th>LSS</th>
<th>MSL</th>
<th>NRG</th>
<th>VGS</th>
<th>USK</th>
<th>1234</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anerhirinae</td>
<td>Anarthura simplex G.O. Sars, 1862</td>
<td>SR</td>
<td>SoB</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lophognathinae</td>
<td>Lophognathina brevirostrum (Lilljeborg, 1864)</td>
<td>OA, WS</td>
<td>ScB</td>
<td></td>
</tr>
<tr>
<td>Lophognathinae</td>
<td>Lophognathina brevirostrum (Lilljeborg, 1864)</td>
<td>OA, WS</td>
<td>ScB</td>
<td></td>
</tr>
<tr>
<td>Lophognathinae</td>
<td>Lophognathina brevirostrum (Lilljeborg, 1864)</td>
<td>OA, WS</td>
<td>ScB</td>
<td></td>
</tr>
<tr>
<td>Lophognathinae</td>
<td>Lophognathina brevirostrum (Lilljeborg, 1864)</td>
<td>OA, WS</td>
<td>ScB</td>
<td></td>
</tr>
<tr>
<td>Lophognathinae</td>
<td>Lophognathina brevirostrum (Lilljeborg, 1864)</td>
<td>OA, WS</td>
<td>ScB</td>
<td></td>
</tr>
<tr>
<td>Lophognathinae</td>
<td>Lophognathina brevirostrum (Lilljeborg, 1864)</td>
<td>OA, WS</td>
<td>ScB</td>
<td></td>
</tr>
<tr>
<td>Lophognathinae</td>
<td>Lophognathina brevirostrum (Lilljeborg, 1864)</td>
<td>OA, WS</td>
<td>ScB</td>
<td></td>
</tr>
<tr>
<td>Lophognathinae</td>
<td>Lophognathina brevirostrum (Lilljeborg, 1864)</td>
<td>OA, WS</td>
<td>ScB</td>
<td></td>
</tr>
<tr>
<td>Lophognathinae</td>
<td>Lophognathina brevirostrum (Lilljeborg, 1864)</td>
<td>OA, WS</td>
<td>ScB</td>
<td></td>
</tr>
<tr>
<td>Lophognathinae</td>
<td>Lophognathina brevirostrum (Lilljeborg, 1864)</td>
<td>OA, WS</td>
<td>ScB</td>
<td></td>
</tr>
<tr>
<td>Lophognathinae</td>
<td>Lophognathina brevirostrum (Lilljeborg, 1864)</td>
<td>OA, WS</td>
<td>ScB</td>
<td></td>
</tr>
<tr>
<td>Lophognathinae</td>
<td>Lophognathina brevirostrum (Lilljeborg, 1864)</td>
<td>OA, WS</td>
<td>ScB</td>
<td></td>
</tr>
</tbody>
</table>

3 Anerhuridae mit unklarer Artifakten- und Untergattungszugehörigkeit.

46
3.2 Zonierung der Tanaidacea im Beagle-Kanal

In diesem Kapitel wird zunächst die horizontale Verteilung der Tanaidacea in bezug auf ihre Arten- und Individuenzahlen im Beagle-Kanal untersucht. Anschließend wird auf die Tiefenverteilung sowie auf die Substratabhängigkeit eingegangen. Grundlage sind die Daten der 15 Stationen direkt aus dem Beagle-Kanal, sowie die Vergleichsstationen (1200, 1206) südlich der Mündung des Kanals in den Atlantik und die Stationen aus der Umgebung des Kontinentalabhangs (40/110, 40/111 und 40/117). Die Vergleichsstation 1307 wurde in die Diagramme mit aufgenommen, enthielt aber keine Tanaidaceen. Bei der Betrachtung der Individuenzahlen wurden die Abundanzen der jeweiligen Stationen auf 1000 m² hochgerechnet, um sie miteinander vergleichen zu können.

Tab. 3-3 gibt einen Überblick über die Abundanzen der Arten auf den einzelnen Stationen und informiert über die relativen Abundanzen, hochgerechnet auf 1000 m² Schleppfläche.

3.2.1 Horizontale Zonierung der Tanaidacea

<table>
<thead>
<tr>
<th>Artenschlüssel</th>
<th>Stationen</th>
<th>1301</th>
<th>1279</th>
<th>1270</th>
<th>1269</th>
<th>1268</th>
<th>1267</th>
<th>1253</th>
<th>1247</th>
<th>1248</th>
<th>1237</th>
<th>1184</th>
<th>1178</th>
<th>1197</th>
<th>1194</th>
<th>1213</th>
<th>1200</th>
<th>1206</th>
<th>40/110</th>
<th>40/111</th>
<th>40/117</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artenzahlen</td>
<td></td>
</tr>
<tr>
<td>Aphaniodes heros</td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Synaspis redes dons</td>
<td></td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>Alotana hirsuta</td>
<td></td>
</tr>
<tr>
<td>Heterotanodes mendicoreals</td>
<td></td>
<td>3 (16)</td>
<td></td>
</tr>
<tr>
<td>Pseudotananaea werthi</td>
<td></td>
<td>29 (220)</td>
<td>1 (4)</td>
<td></td>
</tr>
<tr>
<td>Leptocellidae sp 1</td>
<td></td>
<td>1 (4)</td>
<td>1 (4)</td>
<td></td>
</tr>
<tr>
<td>Leptocellidae sp 2</td>
<td></td>
</tr>
<tr>
<td>Leptocellidae sp 3</td>
<td></td>
</tr>
<tr>
<td>Leptocellidae sp 4</td>
<td></td>
</tr>
<tr>
<td>Leptocellidae sp 5</td>
<td></td>
</tr>
<tr>
<td>Leptocellidae sp 6</td>
<td></td>
</tr>
<tr>
<td>Paratananidae sp 1</td>
<td></td>
<td>21 (137)</td>
<td>1 (7)</td>
<td></td>
</tr>
<tr>
<td>Paratananidae sp 2</td>
<td></td>
</tr>
<tr>
<td>Nototanae dimorphus</td>
<td></td>
</tr>
<tr>
<td>Nototanae sp</td>
<td></td>
</tr>
<tr>
<td>Psedotananae sp 1</td>
<td></td>
<td>1 (2)</td>
<td>1 (3)</td>
<td></td>
</tr>
<tr>
<td>Menonononatana macropoche</td>
<td></td>
<td>1 (4)</td>
<td>6 (15)</td>
<td>1 (4)</td>
<td></td>
</tr>
<tr>
<td>Peranaglyphus adjutius</td>
<td></td>
</tr>
<tr>
<td>Anisaglyphus australis</td>
<td></td>
<td>1 (2)</td>
<td></td>
</tr>
<tr>
<td>Anisaglyphus sp</td>
<td></td>
<td>1 (3)</td>
<td>2 (5)</td>
<td>2 (8)</td>
<td>3 (8)</td>
<td></td>
</tr>
<tr>
<td>Libanania monoceratus</td>
<td></td>
<td>1 (6)</td>
<td>1 (6)</td>
<td></td>
</tr>
<tr>
<td>Steroceranae sp</td>
<td></td>
</tr>
<tr>
<td>Tanasea uniseta</td>
<td></td>
<td>15 (35)</td>
<td>16 (88)</td>
<td></td>
</tr>
<tr>
<td>Anisaglyphus sp</td>
<td></td>
<td>1 (4)</td>
<td>1 (3)</td>
<td></td>
</tr>
<tr>
<td>Siphonolabrum fastigatum</td>
<td></td>
</tr>
<tr>
<td>Dimorphoglyphus heros</td>
<td></td>
</tr>
<tr>
<td>Leptocerithia errata</td>
<td></td>
<td>1 (6)</td>
<td>2 (5)</td>
<td></td>
</tr>
<tr>
<td>Leptocerithia brevirostris</td>
<td></td>
</tr>
<tr>
<td>Mirananalanae sp 2</td>
<td></td>
<td>1 (3)</td>
<td>1 (3)</td>
<td></td>
</tr>
<tr>
<td>Paratananae sp 1</td>
<td></td>
</tr>
<tr>
<td>Paratananae sp 2</td>
<td></td>
</tr>
<tr>
<td>Manusia indet sp 1</td>
<td></td>
</tr>
<tr>
<td>Manusia indet sp 2</td>
<td></td>
</tr>
<tr>
<td>Individuenzahl</td>
<td></td>
<td>0 (8)</td>
<td>2 (5)</td>
<td>0 (0)</td>
<td>1 (3)</td>
<td>2 (6)</td>
<td>13 (31)</td>
<td>7 (28)</td>
<td>5 (14)</td>
<td>1 (6)</td>
<td>1 (4)</td>
<td>31 (236)</td>
<td>0 (0)</td>
<td>42 (132)</td>
<td>969 (2264)</td>
<td>885 (4758)</td>
<td>75 (850)</td>
<td>4 (24)</td>
<td>118 (810)</td>
<td>2157 (2157)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artenschlüssel</td>
<td></td>
<td>0 (1)</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>1 (2)</td>
<td>5 (5)</td>
<td>5 (3)</td>
<td>1 (1)</td>
<td>1 (3)</td>
<td>0 (0)</td>
<td>1 (2)</td>
<td>6 (3)</td>
<td>3 (4)</td>
<td>10 (4)</td>
<td>4 (3)</td>
<td>2 (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vom westlichen Ausgang bis zur Mitte des Beagle-Kanals stieg die Zahl der gesammelten Arten auf fünf an und sank anschließend wieder ab. Im östlichen Mündungsgebiet (1284 bis 1213) war außer den Stationen 1197 und 1194 eine Artenzunahme auf bis zu sechs Arten in Richtung Atlantik festzustellen. Die vor Isla Wollaston bzw. Isla Barnevelt im Atlantischen Ozean gelegenen Stationen wiesen drei bzw. vier Tanaidaceenarten auf. Die Station 4011 vom Kontinentalabhang enthielt vier Arten.

Die Abundanzen (Abb. 3-21) im westlichen Mündungsbereich waren mit fünf bis sechs Tieren pro 1000 m² sehr gering wie auch die Artenzahl (zwei Arten). Die Vergleichsstationen im Atlantik südlich des Mündungsgebietes (1206 und 1200) wiesen dagegen mit 4758 bzw. 2264 Tieren die höchsten Abundanzen auf. Auch die Station 40/110 mit 650 Individuen in der Nähe des Kontinentalabhanges war relativ individuenreich. Auf der Station 40/111 vom Kontinentalabhang waren auf einer Fläche von 1000 m² nur 26 Tiere vertreten. Im Beagle-Kanal selbst stiegen die Abundanzen von West nach Ost von drei auf 32 Individuen pro 1000 m² an (Station 1247), fielen aber anschließend wieder auf 13 Individuen pro 1000 m² ab. Im beginnenden Mündungsbereich nördlich der Isla Picton war ebenfalls eine Abnahme der Abundanzen auf sechs bzw. vier Individuen pro 1000 m² erkennbar (Station 1237, Station 1184). Die Proben der Stationen 1197 und 1194 enthielten keine Individuen. Im Gegensatz dazu traten aber ganz in der Nähe auf der Station 1178 wieder sehr hohe Abundanzen auf (236 Tiere).
Abb. 3-21: Abundanzen der Tanaidaceen auf den einzelnen Stationen von West nach Ost auf 1000 m² Schleppfläche hochgerechnet, ohne Station 40/117. Graue Säulen = Stationen im Beagle-Kanal, weiße Säulen = Vergleichsstationen vor Isla Wollaston und Isla Barnevelt; schwarze Säulen = Stationen vom Kontinentalabhang und vorgelagerten Regionen.

Artenübereinstimmungen des östlichen Mündungsgebietes gab es mit Ausnahmen von *Pseudotanais werthi* jeweils nur entweder mit den Stationen im inneren Bereich des

Die Individuendichten der einzelnen Arten waren im Kanal selbst mit 2-15 Tieren pro 1000 m² meist relativ gering. In der westlichen Mündung lagen die Abundanzen etwas höher bei 3-220 Tieren pro 1000 m², während sie auf den Vergleichsstationen im Atlantik fünf bis 4651 Individuen pro 1000 m² betrugen.

Zur weiteren Charakterisierung der Stationen wurden der Diversitätsindex H' nach SHANNON & WEAVER (1949) und die Äquität E nach PILOU (1977) berechnet (Tab. 3-4). Die Diversitätsindices der einzelnen Stationen variierten zwischen 0 und 0,7, die Äquitäten zwischen 0 und 1. Den höchsten Diversitätsindex wiesen die Station 40/110 mit 0,72 und 1248 mit 0,67 auf; die größte Äquität zeigte die Station 40/111 sowie die Station 1248.

<table>
<thead>
<tr>
<th>Station</th>
<th>Diversitätsindex H'</th>
<th>Äquität E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1307</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1279</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1270</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1263</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1251</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1257</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1253</td>
<td>0,30</td>
<td>1</td>
</tr>
<tr>
<td>1247</td>
<td>0,64</td>
<td>0,91</td>
</tr>
<tr>
<td>1248</td>
<td>0,67</td>
<td>0,96</td>
</tr>
<tr>
<td>1246</td>
<td>0,43</td>
<td>0,89</td>
</tr>
<tr>
<td>1237</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1184</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1178</td>
<td>0,13</td>
<td>0,27</td>
</tr>
<tr>
<td>1197</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1194</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1213</td>
<td>0,55</td>
<td>0,71</td>
</tr>
<tr>
<td>1200</td>
<td>0,31</td>
<td>0,64</td>
</tr>
<tr>
<td>1206</td>
<td>0,05</td>
<td>0,09</td>
</tr>
<tr>
<td>40/110</td>
<td>0,72</td>
<td>0,76</td>
</tr>
<tr>
<td>40/111</td>
<td>0,50</td>
<td>1,00</td>
</tr>
<tr>
<td>40/117</td>
<td>0,21</td>
<td>0,44</td>
</tr>
</tbody>
</table>

4 Aussagen über die tatsächliche Artenzahl und Artenübereinstimmungen der nicht bestimmmbaren Individuen der Leptochelidae (sp. 1-6) können hier nicht gemacht werden.
3.2.2 Vertikalzonierung der Tanaidacea

Abb. 3-22 stellt die Artenzahlen der verschiedenen Stationen nach steigender Tiefe dar. Die meisten Arten wurden auf den flacheren Stationen in Tiefen von 25 bis 104 m gesammelt mit einem Maximum von zehn Arten bei einer Tiefe von 104 m. Ab einer Tiefe von 217 m kamen noch einmal bis zu fünf Arten vor. Mit zunehmender Tiefe verringerte sich die Artzahl, während auf der Tiefseestation mit einer Tiefe von 1279 m nur vier Arten ein höhere Artzahl nachgewiesen wurde als z.B. bei 350 m (eine Art). Ein deutlicher Trend läßt sich jedoch nicht erkennen.

Die Abundanzen ließen in bezug auf die Tiefe einen deutlicheren Trend erkennen (Abb. 3-23). Die Stationen des Beagle-Kanals mit seinen Mündungsregionen zeigten mit zunehmender Tiefe eine deutliche Abnahme der Abundanzen in Tiefen zwischen 25 (Station 1178) und 106 m (Station 1184). Ab 135 m Tiefe (Station 1270) stiegen die Abundanzen noch einmal auf bis zu 28 Tieren pro 1000 m² an und sanken dann wieder ab. Auf der Tiefseestation war die Abundanz mit 24 wieder geringfügig höher.
3.2.3 Sedimentabhängigkeit der Tanaidaceae

Das Sediment des Beagle-Kanals besteht entweder aus Schill, Mischboden oder Weichboden. Die Stationen 1178, 1206, 1200, 1213, und 40/110 wurden in die Kategorie Schill (Mollusken-, Cirripedier-, Foraminiferenschill) eingeteilt. Weichboden (Schlamm, feiner Schlamm, Ton) war auf den Stationen 1194, 1197, 1237, 1246, 1248, 1253, 1261, 1279 und 40/11 zu finden. Mischboden setzte sich zusammen aus Schill, groben Steinen oder Sand und Schlamm und betraf die Sedimente der Stationen 1247, 1257, 1263, 1270 und 1307. Die Sedimentstruktur der Station 1184 war nicht bekannt. Es ist aber anzunehmen, daß das Sediment auf Station 1178 sehr ähnlich war, da die Stationen sehr dicht nebeneinander lagen (vgl. auch Tab. 2-1 Kap. 2.2.1).

Im östlichen Ausgang des Beagle-Kanals dominiert Schill, im Inneren des Kanals Weichboden.

Die Anzahl der Artenzahlen auf den verschiedenen Sedimenttypen ist in Tab. 3-5 dargestellt. Die meisten Arten (40 %) kamen nur auf Schilluntergrund vor, hingegen 30 % auf Weichboden. Nur 15 % der Arten wurden sowohl auf Weich als auch auf Mischboden gesammelt, je-
weils 7,5% kamen auf Misch- bzw. auf Misch- und Weichboden vor. Keine Art war auf allen drei Sedimenttypen vertreten. Abb. 3-24 zeigt, daß die Artenzahl auf den Schill-Stationen etwas höher als auf Weichboden- oder Mischboden-Stationen war.

Tab. 3-5: Vorkommen der einzelnen Arten auf den verschiedenen Sedimenttypen. Misch = Mischboden, Weich = Weichboden.

<table>
<thead>
<tr>
<th>Art</th>
<th>Schill</th>
<th>Misch</th>
<th>Weich</th>
<th>Schill + Misch</th>
<th>Weich + Misch</th>
<th>Schill + Weich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apseudes heroeae</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synapaeudes idios</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allotanaidae hirsutus</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterotanais meridionales</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudotanaisa worthi</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptochelidae sp. 1-6</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paratanaisa oculatus</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paratanaidae sp. 1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paratanaidae sp. 2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nototanaidae sp.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudotanaidae sp.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meromonakantha macrocephala</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peraeospinus adipatus</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthophoreus australis</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Araphuridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidus marianensis</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenotanaidae sp.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaella unisetosa</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anarthrinus sp.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anarthrinus sp.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siphonolabrum fastigatum</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimorphognatha heroeae</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptognatha armilla</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptognatha breviremis</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mirandotanaidae vorax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paratanaisa sp. 1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paratanaisa sp. 2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>11</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>%-Anteil</td>
<td>40,0</td>
<td>7,5</td>
<td>30,0</td>
<td>0</td>
<td>7,5</td>
<td>15,0</td>
</tr>
</tbody>
</table>

98,5 % der in dieser Untersuchung nachgewiesenen Individuen der Tanaidaceen kamen auf Schilluntergrund vor. Dagegen war jeweils nur ein geringer Anteil auf Weichboden und Mischboden zu finden (s. Tab. 3-6). Auch Abb. 3-25 verdeutlicht, daß die Abundanzen auf den Stationen mit Schill als Untergrund wesentlich höher waren als auf den anderen Sedimenttypen.

Tab. 3-6. Vorkommen der Individuenzahlen der einzelnen Arten auf den verschiedenen Sedimenttypen, hochgerechnet auf 1000 m² Schleppfläche.

<table>
<thead>
<tr>
<th>Sedimenttyp</th>
<th>Weichboden</th>
<th>Mischboden</th>
<th>Schill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil absolut</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Individuen / 1000 m²</td>
<td>86</td>
<td>39</td>
<td>8044</td>
</tr>
<tr>
<td>1,0</td>
<td>0,5</td>
<td>98,5</td>
<td></td>
</tr>
</tbody>
</table>

55
Abb. 3-25: Verteilung der Abundanzen auf die Sedimenttypen der Stationen auf 1000 m² Schleppfläche hochgerechnet. Die Stationen sind von feinem zu grobem Sediment geordnet.
3.3 Morphometrie und postmarsupiale Entwicklung der Arten *Apseudes heroae* und *Allotanais hirsutus*

3.3.1 Stadien der postmarsupialen Entwicklung und ihre Merkmale

3.3.1.1 *Apseudes heroae*

Die Untersuchung der 343 Individuen von *Apseudes heroae* ergab 136 Männchen, 95 Weibchen, 74 Juvenile und 32 Manca-Stadien. Tab. 3-7 gibt die Anzahl der einzelnen Entwicklungsstadien auf den verschiedenen Stationen an.

Als verschiedene Geschlechter bzw. Stadien konnten Männchen, Weibchen im Vorbereitungsstadium (V♀, preparatory female), Weibchen im Kopulationsstadium (K♀, copulatory female), Juvenile (= Neutren), Manca-2 Stadien und Manca-1 Stadien unterschieden werden.

<table>
<thead>
<tr>
<th>Stadium</th>
<th>Anzahl</th>
<th>Cephalothoraxbreite (mm)</th>
<th>Merkmale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Männchen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td></td>
<td>deutlicher Geschlechtskegel am 6. Pereonsegment - sicherstes Merkmal (Tafel 1.C, rasterelektronenmikroskopische Aufnahme des Geschlechtskegels mit 2 nebeneinanderliegenden Öffnungen*, aus denen jeweils ein Borstensbusch* herausfährt)</td>
</tr>
</tbody>
</table>
| | 1206 | | **geschlechtsspezifische Differenzierung des Che (werden mit der Größe und Reife des Männchens immer stärker ausgesprochen)**, kleine Männchen zeigen noch keine Che-Differenzierungen
| | 12'13 | | **kräftigere Ausbildung von Carpus und Chela, Carpus und Propodus jeweils sternal mit 2 kräftigen Dornen, tergale Kante des Propodusfingers mit zahnähnlicher und zusätzlich gesägter Struktur (s. Tafel 1.B) = Rasterelektronenmikroskopische Aufnahme eines geschlechtsspezifisch stark differenzierten Che) |
| **Weibchen im** | | | |
| Vorbereitungsstadium | 123 | 0,38-0,77 | |
| | 1 | | Ausbildung von Carpus und Chela, Carpus und Propodus jeweils sternal mit 2 kräftigen Dornen, tergale Kante des Propodusfingers mit zahnähnlicher und zusätzlich gesägter Struktur (s. Tafel 1.B) = Rasterelektronenmikroskopische Aufnahme eines geschlechtsspezifisch stark differenzierten Che) |
| **Weibchen im** | | | |
| Kopulationsstadium | 77 (1) | 0,56-0,36 | |
| | 2 (1) | | Ausbildung von Carpus und Chela, Carpus und Propodus jeweils sternal mit 2 kräftigen Dornen, tergale Kante des Propodusfingers mit zahnähnlicher und zusätzlich gesägter Struktur (s. Tafel 1.B) = Rasterelektronenmikroskopische Aufnahme eines geschlechtsspezifisch stark differenzierten Che) |
| **Juvenile (Neutren)** | 66 | 0,35-0,62 | |
| | 6 | | **wie Weibchen, aber keine Oostegite** |
| | 74 | | **wie Weibchen aber ohne geschlechtspezifische Differenzierungen (vereinzelt Ansätze der Dornen am Carpus oder der zahnähnlichen Strukturen am Propodusfinger)** |
| **Manca-2 Stadium** | 31 (1) | 0,20-0,41 | |
| | 31 (1) | | **6. Peritrem rudimentär (nur wenig länger als die Pleomeren)** |
| | | | **P 6 rudimentär** |
| | | | **keine Pleopoden** |
| | | | **keine geschlechtspezifischen Differenzierungen** |
| | | | **Habitus ähnlich wie Juvenile** |
| **Manca-1 Stadium** | 1 | 0,30-0,41 | |
| | 1 | | **6. Peritrem von Pleomeren nicht zu unterscheiden** |
| | | | **P 6 fehlt vollständig** |
| | | | **keine Pleopoden** |
| **nicht klassifizierbar**| 5 | 0,30-0,41 | |
| | 1 | | **nicht feststellbar, ob Juvenile, Manca-2 Stadien oder kleine Männchen, da nur Cephalothoraxfragmente vorhanden** |

* unter dem Binokular nicht sichtbar
* davon 8 mit Eiern, 4 mit Larven im Marsupium, 2 mit leerem Marsupium
Tafel 1: *Apseudes heroe*. Rasterelektronenmikroskopische Aufnahmen.

3.3.1.2 *Allotanais hirsutus*

Es ließ sich bei dieser Art zwischen Männchen, Weibchen im Vorbereitungsstadium, Weibchen im Kopulationsstadium und Juvenilen unterscheiden. Anhand der Oostegitengröße konnten zusätzlich drei verschiedene Häutungsstadien innerhalb des Vorbereitungsstadium unterschieden werden. Abb. 3-26 zeigt diese Stadien bei der Art *Tanais dulongi* AUDOIN, 1826, die denen von *Allotanais hirsutus* ungefähr entsprachen.

Das größte hier gesammelte Tier war männlicher Geschlechts und 7,61 mm lang. Das Stadium der Weibchen im Zwischenstadium (Z♀) zwischen K♀ und V♀ konnte nicht eindeutig identifiziert werden. Es wurden keine weiblichen Individuen mit Narben von abgeworfenen Brutsäcken gefunden. Es ist aber möglich, daß es sich bei einigen zu den Juvenilen gezählten Individuen um Weibchen des Zwischenstadiums handelt, die aber aufgrund nicht erkennbarer Narben nicht als solche identifiziert werden konnten (s. Diskussion).

Die Untersuchung der einzelnen 1652 Individuen von *Allotanais hirsutus* ergab 57 Männchen, 26 Weibchen, und 1507 Juvenile. Bei 63 Individuen ließ sich nicht feststellen, ob es sich um Juvenile oder Weibchen handelte, da die dafür notwendigen Pereonsegmente fehlten (nicht klassifizierbar). Manca-Stadien waren nicht vorhanden. Tab. 3-8 gibt die Anzahl der einzelnen Stadien auf den verschiedenen Stationen an, sowie die Spannweite der Cephalothoraxbreiten. Weder konnten bei den Weibchen Geschlechtspapillen noch bei den Männchen rudimentäre Oostegiten festgestellt werden.
<table>
<thead>
<tr>
<th>Stadium</th>
<th>Anzahl</th>
<th>Anzahl der Individuen 1200</th>
<th>1202</th>
<th>1203</th>
<th>110</th>
<th>917</th>
<th>110</th>
<th>917</th>
<th>110</th>
<th>917</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stadium</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2. Stadium</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3. Stadium</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wachstumsreaktion</th>
<th>Vorteil</th>
<th>Vorsteiger</th>
<th>Vorteil</th>
<th>Vorsteiger</th>
<th>Vorteil</th>
<th>Vorsteiger</th>
<th>Vorteil</th>
<th>Vorsteiger</th>
<th>Vorteil</th>
<th>Vorsteiger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stadium</td>
<td>0</td>
</tr>
<tr>
<td>2. Stadium</td>
<td>0</td>
</tr>
<tr>
<td>3. Stadium</td>
<td>0</td>
</tr>
</tbody>
</table>

* alle mit einem in den Brackets 2 nur mit einem Exemplar
Die folgende Tabelle (Tab. 3-9) gibt Auskünfte über die Geschlechterverteilung bzw. Anzahl der Stadien aller in der vorliegenden Arbeit untersuchten Arten.

<table>
<thead>
<tr>
<th>Art</th>
<th>d♀</th>
<th>T♀</th>
<th>V♀</th>
<th>K♀</th>
<th>Juvenile (Neutren)</th>
<th>Maneo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apseudes hercine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1200</td>
<td>123</td>
<td>5</td>
<td>77</td>
<td>8</td>
<td>4 2</td>
<td>68 32</td>
</tr>
<tr>
<td>Vic Hen 1200</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synapudes idios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT XIII/4 40/117</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1206</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1206</td>
<td></td>
<td>53</td>
<td>9</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT XIII/4 40/110</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT XIII/4 40/117</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterotanaides centonialis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1213</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1178</td>
<td></td>
<td>6</td>
<td>3</td>
<td>9</td>
<td>9 2</td>
<td></td>
</tr>
<tr>
<td>Pseudorotanaides of worths</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT XIII/4 40/110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT XIII/4 40/110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptocheliidae sp. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1248</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptocheliidae sp. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptocheliidae sp. 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT XIII/4 40/110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptocheliidae sp. 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1248</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptocheliidae sp. 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1248</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptocheliidae sp. 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT XIII/4 40/110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paratanais oculatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT XIII/4 40/110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT XIII/4 40/117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paratanaisidae sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT XIII/4 40/110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paratanais indet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT XIII/4 40/110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nototanaidae dimorphus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1237</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nototanaidae sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1247</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudotanaidae sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1248</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meromoniacantha macrocephala</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1247</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1248</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1253</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peraeospinosus adiatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT XIII/4 40/110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akanthophoreus australis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vic Hen 1184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenotanaidae sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT XIII/4 40/111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptocheliidae sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT XIII/4 40/111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

63
3.3.2 MIX-Analyse zusammengesetzter Längenhäufigkeitsverteilungen nach MacDonald & Pitcher (1979) und Zusammensetzung der Population von Apseudes heroeae

Mit dem Computerprogramm wurde im ersten Versuch die Gesamtverteilung der Art *Apseudes heroeae* auf ihre „Einzelkomponenten“ (Geschlechter und Entwicklungsstadien) untersucht. Dieses schloß bei den größeren Tieren sowohl Männchen als auch Weibchen ein. Abb. 3-27 stellt die auf 1000 m² hochgerechnete Gesamtverteilung der Gesamtpopulation aus den Individuen der Stationen 1200, 1206, 1213 dar. Die MIX-Analyse führte zu keinem signifikanten Ergebnis, da bei den adulten Weibchen eine einzelne Längenklasse (0,68 mm) so deutlich aus der Verteilung herausragte, daß eine Anpassung an eine aus Normalverteilungen zusammengesetzte Verteilung nicht gelang. Da die benachbarten Längengruppen deutlich unterhalb der zu erwartenden Verteilung lagen, wurde geschlossen, daß es sich bei der stark überrepräsentierten Längengruppe um ein Artefakt aus den Messungen handelt. Daraufhin wurde die Längenhäufigkeitsverteilung der Art ohne Berücksichtigung der adulten Weibchen analysiert. Die Werte der besten Anpassung der Gesamtverteilung ohne Weibchen sind in

<table>
<thead>
<tr>
<th>Art</th>
<th>Zahl der Tiere</th>
<th>Längenklassen</th>
<th>Anzahl der Tiere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanaella unisetosa</td>
<td></td>
<td>1000 m²</td>
<td>14</td>
</tr>
<tr>
<td>Anarthrurinae sp.</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Siphonolabrum cf. fastigatum</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Araphura sp.</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dimorphognathia heroeae</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Leptognathia armata</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Leptognathia brevremis</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mirandotanais vorax</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Paratanaoidea sp. 1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Paratanaoidea sp. 2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Manca indet. A</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Manca indet. B</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Ergebnisse
Tab. 3-10 angegeben. Die MIX-Analyse zeigte, daß die Gesamtverteilung (ohne Weibchen) aus mindestens drei Normalverteilungen zusammengesetzt ist.

Tab. 3-10: Werte der besten Anpassung der Gesamtverteilung der *Apsedes heroae*-Population ohne Weibchen.

<table>
<thead>
<tr>
<th>Normalverteilung*</th>
<th>Mittlere Länge L (mm)</th>
<th>SEM (mittlere Standardabweichung)</th>
<th>SD (Standardfehler des Mittelwertes)</th>
<th>SE (Standardfehler der Standardabweichung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>0,371</td>
<td>0,0023</td>
<td>0,032</td>
<td>0,00018</td>
</tr>
<tr>
<td>2*</td>
<td>0,569</td>
<td>0,0300</td>
<td>0,066</td>
<td>0,00210</td>
</tr>
<tr>
<td>3*</td>
<td>0,002</td>
<td>0,0610</td>
<td>0,050</td>
<td>0,00220</td>
</tr>
</tbody>
</table>

* Erklärung der Normalverteilungen in Kap. 3.3.2

Abb. 3-27 stellt die der Gesamtpopulation aus den Stationen 1200, 1213, 1206 und 1213 in einem Säulendiagramm dar, die Abb. 3-28 A-D gibt die einzelnen Längenhäufigkeitsverteilungen der Männchen, Weibchen, Juvenilen und Manca-Stadien an.

Die erste Normalverteilung setzt sich zusammen aus dem Manca-2 Stadium, Juvenilen und kleinen Männchen der Cephalothoraxbreite 0,38-0,47 mm. Die nicht sicher als Männchen, Juvenile oder Manca-2 Stadien einzuordnenden Individuen spielen hier eine zu vernachlässig...
Ergebnisse

Betrachtet man die Manca-2 Stadien für sich, ergibt sich eine Verteilung mit einem Peak von 47 Individuen pro 1000 m² mit einer Cephalothoraxbreite von 0,35 mm. Die Verteilung der Juvenilen zeigt einen Peak bei der Größenklasse 0,38 mm mit einer Anzahl von 73. Die *Apseudes heroeae* Männchen weisen insgesamt drei Peaks in ihrer Verteilung auf (vgl. Abb. 3-28 C). Der erste liegt bei der Größenklasse 0,38 mm (29 Tiere), die gleichzeitig die kleinste Cephalothoraxbreite der Männchen darstellt und von dem aus die Verteilung nach rechts weiter abfällt. Die Individuenzahlen steigen dann allmählich an bis zum zweiten Peak mit 51 Individuen der Größenklasse 0,62 mm. Es folgt eine allmäßliche Abflachung und ein dritter Peak mit 28 Tieren der Cephalothoraxbreite 0,71 mm. Die meisten weiblichen Individuen gehörten der Größenklasse 0,68 mm an. Dies traf sowohl für die Weibchen im Vorbeireitungsstadium (63 Tiere) als auch im Kopulationsstadium (19 Tiere) zu. Ein kleinerer Peak trat bei 0,59 mm Breite auf.
A: Manca-Stadien, B: Juvenile = Neutren, C: Männchen, D: Weibchen im Vorbereitungsstadium (V) und im Kopulationsstadium (K).
3.3.3 Zusammensetzung der Population von *Allotanais hirsutus*

Mit der häufigsten Art *Allotanais hirsutus* konnten MIX-Analysen weder für die Stationen 1200, 1206 und 1213 noch für die Stationen 40/110 und 40/117 durchgeführt werden, da sich jeweils die ersten Häufigkeitsverteilungen, die hauptsächlich aus der Gruppe der Juvenilen bestanden, als zu dominant erwiesen.

Abb. 3-29 stellt die auf 1000 m² hochgerechnete Gesamtverteilung der Gesamtpopulation aus den Individuen der Stationen 1200, 1206 und 1213 vom November 1994 dar. Die Juvenilen dominieren sehr stark, so daß auf ein adultes Tier (Männchen und Weibchen) ca. 12 juvenile Tiere kommen. Es deutet sich aber an, daß in der Gesamtverteilung mehrere Einzelverteilungen enthalten sind. Dies wird deutlicher, wenn die Geschlechter bzw. Stadien gesondert betrachtet werden, wie sie in Abb. 3-30 A-C dargestellt sind. Die kleineren adulten Tiere (Männchen und Weibchen der Größenklassen 0,47 bis 0,68 mm) waren ebenso groß wie die meisten juvenilen Tiere.

Die Verteilung der Juvenilen (s. Abb. 3-30 A) wies zwei Peaks der Individuenzahlen auf. Der erste lag bei einer Cephalothoraxbreite von 0,50 mm mit 1038 Tieren pro 1000 m², der zweite bei 0,62 mm mit 551 Individuen. Zehn Juvenile sind wesentlich größer als die Masse der Tiere: zwei Individuen mit einer Cephalothoraxbreite von 0,92 mm. Es könnte sich hier um Weibchen des Zwischenstadiums handeln (s. Diskussion). Die Längenhäufigkeitsverteilung der Männchen (Abb. 3-30 B) basierte auf nur wenigen Individuen und wies scheinbar zwei mehr oder weniger deutliche Einzelverteilungen auf. Die erste reichte von 0,47 bis 0,62 mm Cephalothoraxbreite mit der größten Individuenzahl (21 Tiere) bei 0,53 mm; die zweite Einzelverteilung (0,74 bis 0,98 mm) hatte ein Maximum von 43 Tieren bei 0,80 mm und einen zweiten Peak von 32 Tieren bei 0,86 mm Cephalothoraxbreite. Vereinzelt traten wenige sehr große Männchen mit einer Breite von 1,64 mm bzw. 1,82 mm auf. Grob betrachtet, waren es drei „Größengruppen” von Männchen (kleine, mittlere und große). Ähnliche Verhältnisse zeigte die Längenhäufigkeitsverteilung der Weibchen (Abb. 3-30 C) mit weniger deutlich ausgeprägten Peaks. Die Daten basierten aber auf sehr wenigen Individuen. Der deutlichste Peak war in der mittleren „Größengruppe” bei einer Cephalothoraxbreite von 0,98 mm mit 16 Individuen ausgeprägt. Ebenfalls traten wenige sehr große Individuen (1,64 mm) auf. Weibchen im Kopulationsstadium waren in allen drei „Größengruppen” vertreten. Abb. 3-31 zeigt die Längenhäufigkeitsverteilung der Weibchen inclusive der unsicher bestimmten Individuen und der großen Juvenilen.
Ergebnisse

Abb. 3-29 Allotanais hirsutus Längenhäufigkeitsverteilung der Stationen 1200, 1206 und 1213 als Gesamtpopulation hochgerechnet auf 1000 m² im November 1994 (Sudfloh) mit Darstellung der Zusammensetzung aus den einzelnen Stadien. W/J" = Individuen, deren Stadium wegen fehlerhafter Segmente nicht eindeutig bestimmt werden konnte; es könnte sich um Weibchen oder Juvenile handeln.
3.3.4 Geschlechterverhältnis

Die Anteile der Geschlechter der Tanaideenarten *Apseudes heroae*, *Allotanais hirsutus*, *Synapseudes idios* und *Heterotanoides meridionales* sind in Tab. 3-11 in absoluten und relativen Häufigkeiten angegeben. Bei der Art *Apseudes heroae* ist der Anteil der Männer mit 59% etwas höher als der Anteil der Weibchen (41%). Die *Allotanais hirsutus*-Männer dominierten im November mit 71% etwas stärker gegenüber den Weibchen (29%). Im Mai dominier ten die Männer ebenfalls auf der Station 40/117 mit 60% der geschlechtsreifen Individuen. Auf der Station 40/110 dagegen ist das Verhältnis umgekehrt. Die Angaben der beiden letzten Stationen basieren aber auf nur wenigen Individuen, so dass hier eine definitive Aussage kaum möglich ist. Bei den Arten *Synapseudes idios* und *Heterotanoides meridionales* dominieren jeweils die Weibchen gegenüber den Männchen.

<table>
<thead>
<tr>
<th>Art</th>
<th>Männer (‰)</th>
<th>Weibchen (‰)</th>
<th>Männer (%)</th>
<th>Weibchen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apseudes heroae (Stationen 1200+1206+1213 hochgerechnet auf 1000 m²)</td>
<td>325</td>
<td>227</td>
<td>59</td>
<td>41</td>
</tr>
<tr>
<td>Allotanais hirsutus (Stationen 1200+1206+1213 hochgerechnet auf 1000 m²)</td>
<td>283</td>
<td>114</td>
<td>71</td>
<td>29</td>
</tr>
<tr>
<td>Allotanais hirsutus (Station 40/110, absolute Häufigkeiten)</td>
<td>1</td>
<td>2</td>
<td>33</td>
<td>67</td>
</tr>
<tr>
<td>Heterotanoides meridionales (Station 40/117, absolute Häufigkeiten)</td>
<td>3</td>
<td>2</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Synapseudes idios (Station 40/117, absolute Häufigkeiten)</td>
<td>1</td>
<td>2</td>
<td>33</td>
<td>67</td>
</tr>
<tr>
<td>Heterotanoides meridionales (Station 1178, absolute Häufigkeiten)</td>
<td>6</td>
<td>21</td>
<td>22</td>
<td>78</td>
</tr>
</tbody>
</table>
3.3.5 Fekundität

In Tab. 3-12 sind die Cephalothoraxbreiten, Anzahl und Stadien der Brut der Weibchen im Kopulationsstadium jeweils für *Apseudes heroae* und *Allotanais hirsutus* zusammengestellt. Es handelt sich hierbei um die absoluten Zahlen der Stationen 1200 (*Apseudes heroae*) bzw. 1206 (*Allotanais hirsutus*), da nur auf diesen Stationen Weibchen der jeweiligen Art im Kopulationsstadium gesammelt worden waren. Weibchen mit BPEs oder Manca-1 Stadien waren in den Fängen nur bei der Art *Apseudes heroae*, nicht aber bei *Allotanais hirsutus* vorhanden.

3.3.6 Relation zwischen Cephalothoraxbreite und Eizahl der Weibchen im Kopulationsstadium

Tab. 3-12: *Apseudes heroeae* und *Allotanais hirsutus*: Anzahl der Eier, BPE (= Brouzd-pouch-embryos) oder Manca-1 Stadien im Marsupium der Weibchen im Kopulationsstadium und Cephalothoraxbreite dieser Weibchen. Bei *Allotanais hirsutus* ist zusätzlich Anzahl der Eier im linken und rechten Brutsack angegeben.

<table>
<thead>
<tr>
<th>Cephalothoraxbreite (mm)</th>
<th>Apseudes heroae</th>
<th>Allotanais hirsutus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Eier im linken Brutsack</td>
<td>Cephalothoraxbreite (mm)</td>
<td>Eierzahl</td>
</tr>
<tr>
<td>Anzahl Eier im rechten Brutsack</td>
<td>Gesamteizahl</td>
<td></td>
</tr>
<tr>
<td>0,67</td>
<td>0,55</td>
<td>15</td>
</tr>
<tr>
<td>0,67</td>
<td>0,56</td>
<td>13</td>
</tr>
<tr>
<td>0,69</td>
<td>0,90</td>
<td>15</td>
</tr>
<tr>
<td>0,69</td>
<td>0,91</td>
<td>16</td>
</tr>
<tr>
<td>0,69</td>
<td>0,91</td>
<td>14</td>
</tr>
<tr>
<td>0,69</td>
<td>0,94</td>
<td>15</td>
</tr>
<tr>
<td>0,74</td>
<td>0,94</td>
<td>10</td>
</tr>
<tr>
<td>0,78</td>
<td>0,99</td>
<td>14</td>
</tr>
<tr>
<td>0,82</td>
<td>0,99</td>
<td>14</td>
</tr>
<tr>
<td>0,62</td>
<td>0,99</td>
<td>10</td>
</tr>
<tr>
<td>0,72</td>
<td>1,01</td>
<td>12</td>
</tr>
<tr>
<td>0,67</td>
<td>1,01</td>
<td>fehlt</td>
</tr>
<tr>
<td>0,59</td>
<td>1,65</td>
<td>6</td>
</tr>
<tr>
<td>0,69</td>
<td>Cephalothorax fehlt</td>
<td>10</td>
</tr>
</tbody>
</table>

Abb. 3-34: *Apseudes heroeae*: Relation zwischen der Eierzahlen eiertragender Weibchen und der Cephalothoraxbreite.

Die eiertragenden Weibchen von *Allotanais hirsutus* zeigen kaum einen erkennbaren Zusammenhang zwischen ihrer Cephalothoraxbreite und Anzahl der Eier (vgl. Abb. 3-35 und Tab. 3-12).

Setzt man jeweils nur die Eierzahlen des volleren Brutsackes eines Weibchens mit der Cephalothoraxbreite in Beziehung, wird der negative Trend etwas deutlicher: die Eierzahlen der Eier pro
Ergebnisse

Brutsack nimmt mit der Cephalothoraxbreite des Weibchens ab (Abb.3-36). Trotzdem ist die Datenzahl sehr gering. Auf eine statistische Absicherung wurde deshalb verzichtet.

Abb. 3-35: *Allotanaïs hirsutus*: Relation zwischen der Gesamteizahl eiertragender Weibchen und der Cephalothoraxbreite.

Abb. 3-36: *Allotanaïs hirsutus*: Relation zwischen der Eizahl des jeweils vollsten Brutsackes der eiertragende Weibchen und der Cephalothoraxbreite.
4 Diskussion

4.1 Methoden

Der Epibenthosschlitten eignet sich besonders zum Sammeln von vagiler Fauna und sehr kleinen epibenthischen Tieren, die von sonst üblichen Greifern durch den Staudruck weggeschwemmt werden (LINSE, 1997). Der Schlitten fängt diese „aufgeschwemmte“ Fauna sowie die suprabenthische Fauna, wenn er über den Grund gezogen wird. Mit diesem Schlitten liegt ein Gerät für die Benthosforschung vor, das zwar keine quantitativen jedoch repräsentative Probenahmen erlaubt (LINSE, 1997). Wenn die EBS-Hols unter standardisierten Bedingungen (z.B. Schleppgeschwindigkeit, Schleppzeit) erfolgen, ist es möglich sie auf 1000 m² Schleppfläche zu standardisieren und untereinander zu vergleichen (BRANDT & BARTHEL, 1995; LINSE, 1997).

Bei der Probenahme mit dem EBS kann es zu Fehlern kommen, wenn der Untergrund uneben ist, und der Schlitten zeitweise vom Boden abhebt. Fehlerhafte Proben erhält man auch, wenn Risse im Netzbecher oder im Netz entstehen.

Eine weitere Fehlerquelle stellt die Teilstück der Probe der Station 4011 dar. Hier wurde nur die Hälfte der sehr umfangreichen Probe ausgewertet, die erhaltenen Daten wurden verdoppelt. Da Benthosproben i.a. schlecht gleichmäßig zu teilen sind (BRANDT, pers. Mitt.), bergen die Angaben ein gewisses Fehlerpotential in sich und können nur unter Vorbehalt berücksichtigt werden.
4.2 Taxonomische Bestandsaufnahme

Elf der im Beagle-Kanal nachgewiesenen Arten sind neu für die Magellan-Region. Davon sind zweiGattungen, Araphura und Stenotana, ebenfalls neu für diese Region. Die Gattung Stenotana, die sonst nur aus der nordostatlantischen Tiefsee bekannt ist, ist sogar das erste mal in der südlichen Hemisphäre am Kontinentalabhang gefunden worden. Bis auf diese Gattung sind alle neu nachgewiesenen Taxa auch auf dem antarktischen Festlandsockel bzw. in der antarktischen Tiefsee vertreten.

Es muß noch geklärt werden, um wieviele Arten es sich bei den sechs Morphotypen Leptochelidae sp. 1 bis 6 handelt. Ein Individuum gehört möglicherweise zu Paraleptognathia antarctica, die für diese Region schon bekannt ist. Da es bei dieser Familie zur Ausbildung mehrerer Männchentypen kommt, wäre es möglich, daß es sich bei dem anderen männlichen Tier um dieselbe Art handelt.

Für sechs Arten bzw. eine Gattung (Stenotana) konnte die Tiefenverbreitung hauptsächlich zum Flacheren hin erweitert werden.
4.3 Systematik der Tanaidacea

5 Männchen mit einem Geschlechtskegel
6 Männchen mit zwei Geschlechtspapillen

4.4 Die Magellan-Region

4.5 Die Tanaidaceenfauna im Vergleich

4.5.1 Vergleich der Tanaidaceenfauna des Beagle-Kanals mit der übrigen Magellan-Region

Tab. 4-1: Zusammenstellung aller in der Magellan-Region vorkommender Tanaidaceen mit ihren Fundorten innerhalb dieser Region. Die hier neu nachgewiesenen Arten sind durch Fettdruck hervorgehoben.

<table>
<thead>
<tr>
<th>Art</th>
<th>Magellankenstr.</th>
<th>Beagle-Kanal</th>
<th>Patagonischer Schelf (Atlantik ca. 42° S)</th>
<th>Schelfbereich des Magellansaumes*</th>
<th>atlantischer Kontinentalschelf</th>
<th>Falkland-Inseln</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apseudes heroae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Apseudes spectabilis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saltipolitus paulinus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saltipolitus polaris</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Synaptodes affligens</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Synaptodes idios</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Allotanais hirsuta</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pernotanalais laticeps</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zeuxo phyllakis</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zeuxoides ohlim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heterotanoides meridionalis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pseudolophopseudes antarctica</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pseudolophopseudes bulbis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paratanais sp. 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paratanais ovatus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nototanais dimorphus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nototanais sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paratanais macrocephala</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pseudotanais guillei</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pseudotanais nordenskioldi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maromonomachia macrocephala</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Persephonophorus adelphic</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Typhlotanais greenwichensis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Typhlotanais serratus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Typhlotanais montagnulæ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alainanthophorus australis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arthropore sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sterotanais sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Libernius mossomontis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Termesella verita</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siphonolabrum fastigerum</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimorphognathia herae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leptognathia breviremis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Miramorionella varia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ten.•esis antarcticus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leptognathia armata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Ostspitze Feuerlands u. Islas de los Estados, Isla Navarino, Isla Barnevelt, vor dem östlichen Ausgang des Beagle-Kanals.

Die Umgebung der Islas de los Estados weist mit achtzehn Arten die höchste Artenzahl auf, ist aber auch am intensivsten beprobt worden durch SIEG (1986 a). Die Artenzusammenset-
zung der zusammengefaßten Vergleichsstationen im Atlantik 40/110, 1200 und 1206 weist große Übereinstimmungen auf mit der Artenzusammensetzung im Bereich der Ostspitze Feuerlands und den Islas de los Estados (vgl. Tab. 4-1).

4.5.2 Vergleich der Tanaidaceenfauna der Magellan-Region mit der Tanaidaceenfauna des antarktischen Festlandsockels

4.5.2.1 Faunentübereinstimmung und Endemismen

Der Nachweis sechs weiterer vor allem westantarktischer Taxa in der Magellan-Region durch die vorliegende Arbeit bestätigt, daß die Westantarktis eine engere Verbindung zur Magellan-Region aufweist als die Ostantarktis. Auch die Arteneinheitbestimmungen zwischen der Magellan-Region und der Westantarktis sind genauso hoch wie zwischen den beiden antarktischen Unterregionen. Dies könnte für SIEG's Hypothese (1988) der Herkunft der westantarktischen Fauna aus der Magellan-Region sprechen. Wenn man aber in Bezug auf seine Hypothese für die ostantarktische Tanaidaceenfauna berücksichtigt, daß Arten der Familie Apsseudidae auch einen nicht zu vernachlässigenden Anteil an der Tanaidaceenfauna der Tiefsee ausmachen und u.a. auch in den der Antarktis angrenzenden Tiefseebecken.
vorkommen (z.B. *Apseudes paragracilis*, *Apseudes spinosus*), stellt sich die Frage, warum keine stenothermen eurybathen Taxa dieser Familie aus der Tiefsee durch polare Emergenz den ostantarktischen Schelf neu besiedelt haben. Immerhin haben die Westantarktis und die antarktische Tiefsee mit einer Anzahl von 14 nur etwas weniger gemeinsame Arten als die Ostantarktis mit der antarktischen Tiefsee (17 gemeinsame Arten).

Tab. 4-3 gibt die auf den Daten der Tab. 4-2 basierenden Endemitenzahlen und -anteile wieder. Den höchsten Endemitenanteil bei den Tanaidaceen besitzt interessanterweise die Kerguelen-Region mit einem Anteil von 55,6 %. Werden die nach HEDGPETH (1969) zur Kerguelen-Subregion dazugehörenden Inseln der Macquarie-Region hinzugezogen, ergibt sich immerhin noch ein Endemitenanteil von 46,9 %. Dieser hohe Endemitenanteil würde eine Betrachtung dieser Inseln als eigene subantarktische Unterregion, wie sie von vielen Autoren (z.B. HEDGPETH, 1969; KNOX, 1960) vorgenommen wird, bestätigen.

<table>
<thead>
<tr>
<th>Region</th>
<th>Artenzahl gesamt</th>
<th>Anzahl Endemiten</th>
<th>regionaler Endemitenanteil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerguelen-Region</td>
<td>27</td>
<td>15</td>
<td>55,6</td>
</tr>
<tr>
<td>Region subantarktischer Inseln (Kerguelen-Region + Macquarie-Region + Bouvet-Insel)</td>
<td>32</td>
<td>15</td>
<td>46,9</td>
</tr>
<tr>
<td>Magellan-Region</td>
<td>34</td>
<td>9</td>
<td>26,5</td>
</tr>
<tr>
<td>Antarktische Tiefseebecken</td>
<td>48</td>
<td>9</td>
<td>18,8</td>
</tr>
<tr>
<td>Westantarktis</td>
<td>34</td>
<td>8</td>
<td>23,5</td>
</tr>
<tr>
<td>Antarktischer Festlandsockel gesamt</td>
<td>50</td>
<td>15</td>
<td>30,0</td>
</tr>
</tbody>
</table>

die mögliche Erscheinung der polaren Emergenz z.B. bei *Araphuroides parabreviremis* nicht weiter nur auf die ostantarktische Subregion beschränkt.

Die Magellan-Region ist durch relativ hohe Endemismenraten der unterschiedlichen Taxa gekennzeichnet, jedoch sind die Werte für die antarktischen Endemismen der Taxa jeweils höher (vgl. Tab. 4-4). Südamerika ist der Kontinent mit der geringsten Entfernung zur Antarktis (ca. 1000 km). Vor ca. 22 Mio Jahren postuliert man die sukzessive Bildung einer Tiefenwasserzone zwischen der Antarktis und Südamerika, wodurch der Zirkumantarktisstrom vollständig wirksam wurde und die beiden Kontinente getrennt wurden. Die klimatische Barriere nach Norden bildet der ausgeprägte Temperaturgradient, die antarktische Konvergenz, zwischen polaren und tropischen Wassermassen (MENZIES et al., 1973). Ein Einwandern nördlicher Arten wird erschwert und die Isolation der Magellan-Region verstärkt. Ein Faunenaustausch wird von einigen Autoren (z.B. SIEG, 1988; DELL, 1972) angenommen. Die in Tab. 4-3 für die Magellan-Region erhaltenen Endemismenrate der Tanaidaceenfauna von 26,5 % erscheint im Vergleich mit denen anderer Taxa in Tab. 4-4 relativ niedrig. Dies könnte vermutlich darin begründet sein, daß bisher fast ausschließlich der südliche und damit der Westantarktis am nächsten gelegene Teil dieser Region in bezug auf diese Tanaidacea untersucht worden ist. Es wäre vielleicht denkbar, daß sich durch eine intensivere Untersuchung der Magellanstraße und der nördlichen Magellan-Region mehr endemische Arten für die Magellan-Region ergäben.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Endemismen in der Magellan-Region (%)</th>
<th>Autor</th>
<th>Endemismen in der Antarktis (%)</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polychaeta</td>
<td>9</td>
<td>Hartmann-Schröder & Hartmann (1962)</td>
<td>38</td>
<td>Hartmann (1966)</td>
</tr>
<tr>
<td>Isopoda</td>
<td>45</td>
<td>Mendies (1962)</td>
<td>87</td>
<td>Brandt (1991)</td>
</tr>
<tr>
<td>Decapoda</td>
<td>33</td>
<td>Haag (1955)</td>
<td>64</td>
<td>Dell (1984)</td>
</tr>
<tr>
<td>Pelecypoda</td>
<td>52</td>
<td>Soot-Prsten (1959)</td>
<td>64</td>
<td>Dell (1984)</td>
</tr>
<tr>
<td>Echinodermata (ohne Asteroidea)</td>
<td>52</td>
<td>Ekman (1953)</td>
<td>64</td>
<td>Dell (1984)</td>
</tr>
<tr>
<td>Asteroidea</td>
<td>45</td>
<td>Madison (1963)</td>
<td>69</td>
<td>Pawson (1969 b)</td>
</tr>
<tr>
<td>Holothuroidea</td>
<td>50</td>
<td>Pawson (1969 a)</td>
<td>85</td>
<td>Pawson (1969 a)</td>
</tr>
<tr>
<td>Places</td>
<td>52</td>
<td>Norman (1937)</td>
<td>90</td>
<td>Andriashev (1958)</td>
</tr>
</tbody>
</table>
4.6 Zonierung der Tanaidacea im Beagle-Kanal

Die horizontale Zonierung und vertikale Zonierung der Tanaidacea sind abhängig von abiotischen und biotischen Faktoren. In diesem Kapitel soll diskutiert werden, welche möglichen Einflüsse die Faktoren Salinität, Tiefe, Sedimentkomposition und Nahrungsverfügbarkeit auf die Abundanzen und den Artenreichtum haben. Generell waren die Abundanz und die Artenzahl der Tanaidacea im Beagle-Kanal verglichen mit anderen Peracaridentaxa (Amphipoda, Cumacea, Isopoda) aus denselben EBS-Fängen neben den Mysidacea am geringsten BRANDT et al. (im Druck).

4.6.1 Horizontale Zonierung der Tanaidacea

Auf den künstlichen Vergleichsstationen (1200, 1206) kamen nach BRANDT et al. (im Druck) alle Peracaridentaxa in sehr großen Dichten vor. Die Tanaidacea in der vorliegenden Arbeit für sich betrachtet, hatten hier ihre größte Dichte mit 2264 bzw. 4758 Individuen pro 1000 m²,
die aber hauptsächlich von nur den beiden dominanten Arten *Apseudes heroe* und *Allotanaïs hirsutus* bestimmt wurde. Auch die Mollusca hatten hier hohe Abundanzen, wiesen aber die höchsten Abundanzen im Beagle-Kanal auf (LINSE & BRANDT, 1998). Die höchste Artenzahl an Tanaidaceen im Beagle-Kanal wies die Station 1213 mit sechs Arten in der östlichen Mündungsregion auf. Hier hatten von den anderen Peracarida ebenfalls die Isopoda (BRANDT et al., im Druck) sowie die Mollusca (LINSE, 1997) die meisten Arten. Die Station 1253 ist die einzige, die sowohl eine hohe Peracaridendichte als auch eine große Anzahl an Peracaridenarten besitzt, woran die Tanaidacea aber nur einen sehr geringen Anteil ausmachen. BRANDT et al. (im Druck) führen als möglichen Grund den Einfluß von pazifischen Wassermassen zwischen Isla Hoste und Isla Gordon (Brazo del Suroeste) an, die zu einer Erhöhung der Salinität führen.

BRANDT et al. (im Druck) konnten keinen direkten Zusammenhang zwischen der Abundanz von Peracaridentaxa und der Konzentration von Phaeophytin oder Chlorophyll nachweisen. Die Autoren gaben aber an, daß eine Erklärungsmöglichkeit für das Absinken der Konzentration der Chlorophylläquivalente in den obersten 2 cm der Sedimente auf Station 1200 und 1206 die hohen Abundanzen detritivor Peracarida sein könnte.

4.6.2 Tiefenzonierung der Tanaidacea

Im Vergleich zu den Isopoden, deren Artenzahlen auf den flacheren Stationen höher sind (BRANDT et al. im Druck), läßt sich bei den Tanaidacea kaum ein deutlicher Trend ausmachen. Zumindest wurden aber die meisten Arten auf den flacheren Stationen zwischen 25 und 104 m gesammelt. Auf der Station vom Kontinentalabhang waren dagegen wieder vier Arten
präsent, jedoch war die Artenzusammensetzung hier eine ganz andere. Die Abundanzen zeigten einen deutlicheren Trend mit höheren Werten in geringeren Tiefen.

Die gefundenen Abundanzen der Peracarida im Beagle-Kanal selbst sind aber zu gering, um deutliche hydrographische Einflüsse abzuleiten (BRANDT et al., im Druck).

4.6.3 Sedimentabhängigkeit

Zusammenfassend läßt sich an dieser Stelle sagen, daß wahrscheinlich nicht nur einzelne Faktoren wie Tiefe, Untergrund, Nahrungsverfügbarkeit oder Salinität die Abundanzen und den Artenreichtum der Tanaidacea wie auch der anderen benthischen Peracarida bestimmen, sondern eine Komposition aus vielen verschiedenen abiotischen und biotischen Faktoren. Die für die Tanaidacea wahrscheinlich wichtigsten Faktoren scheinen die Beschaffenheit des Untergrundes und die Verfügbarkeit von Nahrung zu sein.
4.7 Morphometrie und postmarsupiale Entwicklung

4.7.1 Zusammensetzung der Population von Apseudes heroeae

Interessanterweise treten schon in der ersten Normalverteilung ab der Größenklasse 0,38 mm auch Apseudes heroeae Männer auf, die den ersten Peak der Längenhäufigkeitsverteilung
Diskussion

Weibchen im Vorbereitungsstadium traten bei *A. heroae* erst ab einer Cephalothoraxbreite von 0,56 mm auf. Sowohl in MESSINGS (1983) als auch in anderen Untersuchungen (z.B. von BOCKLE RAMÍREZ, 1965; JOHNSON & ATTRAMADAL, 1982; MASUNARI, 1983) entwickelten

⁷ *Pagurolangis* lebt wie ein Einsiedlerkrebs in GastropodenSchalen.

4.7.2 Zusammensetzung der Population von Allotanaïs hirsutus

Bei den nichtklassifizierbaren Individuen der vorliegenden Arbeit mit einer Cephalothoraxbreite zwischen 0,44 und 0,71 mm handelt es sich aufgrund der Größe höchstwahrscheinlich um Juvenile, bei denjenigen mit 0,90-1,98 mm Breite um Weibchen mit unbekanntem Reifestadium (V♀, K♀ oder Z♀).
4.1.1 MIX-Analyse zusammengesetzter Längenhäufigkeitsverteilungen nach MACDONALD & PITCHER (1979)

Die Proben, in denen Apseudes herouae enthalten war, wurden in einem relativ kurzen Zeitraum über nur zwei Tage gesammelt, weshalb man davon ausgehen kann, daß es durch das Wachstum der Art kaum zu Artefakten in den Längenverteilungen kommt, die eine Auflösung der Normalverteilungsstrukturen bewirkt und eine Analyse unmöglich macht. Auch liegen diese drei Stationen alle im Atlantik (1200, 1206, 1213) mit ozeanischen Salinitäts- und Temperaturgradienten, so daß die Zusammenfassung zu einer Population zu vertreten ist.

Im ersten Versuch wurde die Gesamtverteilung der Art Apseudes herouae auf ihre „Einzelkomponenten“ (Geschlechter bzw. Entwicklungsstadien) hin untersucht. Dieses schloß bei den größeren Tieren sowohl Männchen als auch Weibchen ein. Die MIX-Analyse führte zu keinem signifikanten Ergebnis, weil bei den adulten Weibchen eine einzelne Längengruppe (0,68 mm) so deutlich aus der Verteilung herausragte, daß eine Anpassung an eine aus Normalverteilungen zusammengesetzte Verteilung nicht gelang. Da die benachbarten Längengruppen deutlich unterhalb der zu erwartenden Verteilung lagen, wurde geschlossen, daß es sich bei der stark überrepräsentierten Längengruppe um ein Artefakt aus den Messungen handelt. Daraufhin wurde die Längenhäufigkeitsverteilung der Art ohne Berücksichtigung der
adulten Weibchen analysiert. Die MIX-Analyse zeigte, daß die Gesamtverteilung (ohne Weibchen) aus drei Normalverteilungen zusammengesetzt ist (vgl. Tab. 3-10).

4.7.4 Geschlechterverhältnis und Hermaphroditismus

4.7.5 Fekundität

<table>
<thead>
<tr>
<th>Familie</th>
<th>Art</th>
<th>Literatur</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apsesulidae</td>
<td>Apsesulida latifolia (AUDOUIN, 1826)</td>
<td>SALVAT, 1967</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>A. heroae (SIEG, 1986)</td>
<td>diese Untersuchung</td>
<td>9-15 (δ 12)</td>
</tr>
<tr>
<td>Metapseudidae</td>
<td>Synapseudus idios GARDINER, 1973</td>
<td>GARDINER, 1973</td>
<td>5-11</td>
</tr>
<tr>
<td>Metapseudidae</td>
<td>Metapseudus aucklandiae GARDINER, 1973</td>
<td>GARDINER, 1973</td>
<td>9</td>
</tr>
<tr>
<td>Pagurus pseudidae</td>
<td>Pagurus largoensis (McSWEENY)</td>
<td>MESSING, 1983</td>
<td>4-17</td>
</tr>
<tr>
<td>Leptochelidae</td>
<td>Heterotanaus carteri (KROYER, 1842)</td>
<td>BUCKLE RAMIREZ, 1965</td>
<td>6-16</td>
</tr>
<tr>
<td>Tanaidae</td>
<td>Tanais duboni (AUDOUIN, 1826)</td>
<td>JOHNSON & ATTRAMADAL, 1982</td>
<td>bis 46</td>
</tr>
<tr>
<td>Afotanaus hirsutus (BEDDARD, 1886)</td>
<td>diese Untersuchung</td>
<td>19-31 (δ 27)</td>
<td></td>
</tr>
<tr>
<td>Pseudotanaidae</td>
<td>Cryptocope abbreviata G.O. SARS, 1958</td>
<td>GREVE, 1965</td>
<td>7</td>
</tr>
<tr>
<td>Anarthuridae</td>
<td>Leptognathia breviremis LILJEBORG, 1954</td>
<td>GREVE, 1965</td>
<td>3-8</td>
</tr>
</tbody>
</table>

4.7.6 Dauer der Lebenszyklen

gen in der Magellan-Region sowohl Ende Oktober als auch im April/Mai sowie auch in
GARDINERS (1973) Proben aus dem Februar Weibchen mit Embryos der Art Synapseudes
idios auftraten.

Andererseits könnte man annehmen, daß die einzelnen Perioden zwischen den Häutungen
sehr lang sind, so daß nicht während eines Jahres der gesamte Entwicklungszyklus zum ge-
schlechtsreifen Tier durchlaufen wird. Hier könnte man vermuten, daß die Manca-1 Stadien
tzu einem Zeitpunkt das Marsupium verlassen, an dem die Nahrungsverhältnisse besonders
günstig sind, im Südfrühjahr oder Sommer. Da besonders die südliche Magellan-Region
durch niedrige subantarktische Temperaturen und eine ausgeprägte Saisonalität der Umwelt-
bedingungen gekennzeichnet ist (HARTMANN-SCHRÖDER & HARTMANN, 1962; BRATTSTRÖM
& JOHANSSON, 1983), halte ich es für wahrscheinlicher, daß es sich um einen verlängerten,
saisonal angepaßten Lebenszyklus handelt (vgl. Kap. 4.7.7). Untersuchungen zur Reprodukti-
onsbiologie und postmarsupialen Entwicklung von antarktischen Isopoden von WAGELE
(1987; 1988; 1990) zeigen, daß deren Lebenszyklen im Vergleich zu verwandten Arten ge-
mäßigerer Breiten um ein Vielfaches verlängert sind. Auch arktische Cumacea zeigen eine
(1994) scheinen die meisten Arten des antarktischen Zoobenthos der traditionellen Ansicht
von langsamen jährlichen Wachstumsraten und großer Endgröße und verlängelter Lebens-
dauer zu entsprechen, aber mit einigen Ausnahmen wie z.B. einige Bivalvia, einige Porifera.

Daß im Südherbst im Gegensatz zum Südfrühjahr keine Weibchen von Allotanais hirsutus
mit Eiern, sondern nur solche im Vorbereitungsstadium vorhanden waren, könnte darauf hin-
deuten, daß die Entwicklung zwischen diesen Stadien ein halbes Jahr dauert und erst im
Sommer die Manca-Stadien entlassen werden. Zusätzlich sind aber auch Weibchen im Vorberei-
tungsstadium im Frühjahr vorhanden, so daß eine Interpretation schwierig zu sein scheint.
An allen Längenhäufigkeitsverteilungen der A. hirsutus sowohl im Herbst als auch im Früh-
jahr fällt auf, daß einige sehr große männliche und weibliche Individuen vorhanden sind. Dies
deutet darauf hin, daß diese Art mehrere Jahre alt zu werden scheint.

4.7.7 Hypothetische Rekonstruktion der Entwicklungszyklen von Apseudes heroae und
Allotanais hirsutus

An dieser Stelle soll versucht werden die möglichen Lebenszyklen von Apseudes heroae und
Allotanais hirsutus anhand der Untersuchungsergebnisse und Literaturdaten aus MESSING

Der Entwicklungszyklus für *A. hirsutus* könnte im Prinzip ganz ähnlich aussehen, nur daß die Bildung der Männchen aus dem Manca-2 Stadium und das Juvenilstadium 2 wegfallen, die Weibchen im Kopulationsstadium die Brutbeutel abwerfen und ohne Häutung in das Zwischenstadium übergehen (vgl. Abb. 4-2), bevor sie sich zum Vorbereitungsstadium häuten. Außerdem sind bei den Weibchen im Vorbereitungsstadium zusätzlich drei Häutungsstadien eingeschaltet.
Abb. 4-1 Hypothetischer Lebenszyklus *Apsiodes heroae*. M = Mäoa, Juv = Juvenil, V = Vorbereitungsstadium, K = Kopulationsstadium (geschlechtsreif).
Abb. 4-2: Hypothetischer Lebenszyklus *Alliotana hirsuta*: M = Männchen, Juv = Juvenil, V = Vorbereitungsstadium, K = Kopulationsstadium (geschlechtsreif), Z = Zwischenstadium.
Literaturverzeichnis

Danksagung

Ich danke Frau Prof. Dr. Angelika Brandt für die Erstellung des Erstgutachtens und die Stellung des Themas. Außerdem möchte ich mich bei ihr besonders für die freundliche und hilfsbereite Betreuung meiner Arbeit, für die Diskussionsbereitschaft sowie für die zur Verfügungstellung des Probenmaterials bedanken.

Herrn Prof. Dr. C. Dieter Zander möchte ich für die Übernahme des Zweitgutachtens danken.

Frau Dr. Ute Mühlenhardt-Siegel danke ich für die Hilfestellung und nützlichen Tips bei meinen anfänglichen Präparationsschwierigkeiten und verschiedensten Fragen.

Mein Dank gilt auch Herrn Dr. Volker Siegel für die gemeinsame MIX-Analyse mit seinem Computerprogramm und für die sehr fruchtbaren Diskussionen.

Bei Katrin Linse möchte ich mich für die zur Verfügungstellung von Literatur und Kartenmaterial, für die Hilfe bei vielen Fragen und für ihre moralische Unterstützung bedanken.

Auch Renate Walter gilt mein Dank für die Arbeit am Rasterelektronenmikroskop und die Entwicklung der Fotos.

Bei Hans-Dieter Todzke möchte ich mich herzlich für die nützlichen Literaturtips bedanken.

Ich bedanke mich bei Neri für die Übersetzung eines russischen Textes.

Ebenso möchte ich mich bei Dr. Magdalena Blazewicz und Dr. Richard Heard bedanken für Tips zur Bestimmung und Versorgung mit schwer zugänglicher Literatur sowie auch bei Kim Larsen.

Herzlichen Dank auch an Dr. Heino Fock, der mich in statistischen Fragen beraten hat.

Ein Dankeschön auch an das Team der ABC-Apotheke für sein Verständnis.

Für das unermüdliche Korrekturlesen und die moralische Unterstützung bedanke ich mich ganz besonders bei Sabine Grabbert, Kristina Barz und Dirk Weihrauch.

Meinen Eltern, meinen Geschwistern und meiner Großmutter möchte ich ganz besonders danken für ihren Zuspruch und nicht zuletzt für die finanzielle Unterstützung.

Für das geduldige Vermitteln zwischen mir und meinem Computer, für die liebevolle Umsorgung sowie das Korrekturlesen danke ich meinem Freund Volker.
Folgende Hefte der Reihe „Berichte zur Polarforschung“ sind bisher erschienen:

- **Sonderheft Nr. 1/1981** – „Die Antarktis und ihr Lebensraum“
 Eine Einführung für Besucher – Herausgegeben im Auftrag von SCAR

- **Heft Nr. 1/1982** – „Die Flüchter-Schelfeis-Expedition 1980/81“
 zusammengestellt von Heinz Köhne

- **Heft-Nr. 2/1982** – Deutsche Antarktis-Expedition 1980/81 mit FS „Meteor“
 First International BIOMASS Experiment (FIBEX) – Liste der Zooplankton- und Mikronektontnetzfänge
 zusammengestellt von Norbert Klages.

- **Heft Nr. 3/1982** – „Digitale und analoge Krill-Echolot-Rohdatenerfassung an Bord des Forschungs-
 schiffes „Meteor“ (im Rahmen von FIBEX 1980/81), Fahrtabschnitt ANT III), von Bodo Mürgerstern

- **Heft Nr. 4/1982** – „Flüchter-Schelfeis-Expedition 1980/81“
 Liste der Planktonfänge und Lichtstärkemessungen
 zusammengestellt von Gerd Hubold und H. Eberhard Drescher

- **Heft Nr. 5/1982** – „First Biological Expedition on RRS „John Biscoe“, February 1982“
 by U. Hempel and R. B. Heywood

- **Heft Nr. 6/1982** – „Antarktis-Expedition 1981/82 (Unternehmen „Eiswarte“)“
 zusammengestellt von Gode Gravenhorst

- **Heft Nr. 7/1982** – „Marine-Biologisches Begleitprogramm zur Standorterkundung 1979/80 mit MS „Polar-
 sirkel“ (Pre-Site Survey)“ – Stationlisten der Mikronektont- und Zooplankontnetzfänge sowie der Bodenfischerei
 zusammengestellt von R. Schneppenheim

- **Heft Nr. 8/1983** – „The Post-Fibex Data Interpretation Workshop“
 by D. L. Cram und J.-C. Freytag with the collaboration of W. J. Schmidt, M. Mall, R. Kresse, T. Schwinghammer

- **Heft Nr. 9/1983** – „Distribution of some groups of zooplankton in the inner Weddell Sea in summer 1979/80“
 by I. Hempel, G. Hubold, B. Kaczmarsuk, R. Keiler, R. Wiegmann-Hass

- **Heft Nr. 10/1983** – „Fluor im antarktischen Ökosystem“ – DFG-Symposium November 1982
 zusammengestellt von Dieter Adelung

- **Heft Nr. 11/1983** – „Joint Biological Expedition on RRS „John Biscoe“, February 1982 (II)“
 Data of micronecton and zooplankton hauls, by Uwe Piatkowski

- **Heft Nr. 12/1983** – „Das biologische Programm der ANTARKTIS-I-Expedition 1983 mit FS „Polarstern““
 Stationlisten der Plankton-, Benthos- und Grundschleppnetzfänge und Liste der Probennahme an Robben

- **Heft Nr. 13/1983** – „Die Antarktis-Expedition von MS „Polarboum“ 1982/83“ (Sommerkampagne zur
 Atka-Bucht und zu den Kraul-Bergen), zusammengestellt von Heinz Köhne

 Rio de Janeiro, 25. März 1983“), Bericht des Fahrtleiters Prof. Dr. Gotthilf Hempel

- **Sonderheft Nr. 3/1983** – „Sicherheit und Überleben bei Polarexpeditionen“
 zusammengestellt von Heinz Köhne

 herausgegeben von Gotthilf Hempel

- **Heft Nr. 15/1983** – „German Antarctic Expedition 1980/81 with FRV Walther Herwig and RV „Meteor““ –
 First International BIOMASS Experiment (FIBEX) – Data of micronecton and zooplankton hauls
 by Uwe Piatkowski and Norbert Klages

- **Sonderheft Nr. 5/1984** – „The observatories of the Georg von Neumayer Station“, von Ernst Augstein

- **Heft Nr. 16/1984** – „FIBEX cruise zooplankton data“
 by U. Piatkowski, I. Hempel and S. Rakusa-Suszczewski

- **Heft Nr. 17/1984** – „Fahrtbericht (cruise report) der „Polarstern“-Reise ARKTIS I, 1983“
 von E. Augstein, G. Hempel und J. Thiede

- **Heft Nr. 18/1984** – „Die Expedition ANTARKTIS II mit FS „Polarstern“ 1983/84“, Bench vom Fahrtabschnitt 1, 2 und 3, herausgegeben von D. Fütterer

- **Heft Nr. 20/1984** – „Die Expedition ARKTIS II des FS „Polarstern“ 1984, mit Beiträgen des FS „Valdivia“
 und des Forschungsflugzeuges „Falcon 20“ zum Marginal Ice Zone Experiment 1984 (MiZEX)“

- **Heft Nr. 21/1985** – „Euphausid larvae in plankton samples from the vicinity of the Antarctic Peninsula,
 February 1982“ by Sigrid Marschall and Elke Mizdalski

- **Heft Nr. 22/1985** – „Maps of the geographical distribution of macrozooplankton in the Atlantic sector of the
 Southern Ocean“ by Uwe Piatkowski

- **Heft Nr. 23/1985** – „Untersuchungen zur Funktionsmorphologie und Nahungsaufnahme der Larven
 des Antarktischen Krills Euphausia superba Dana“ von Hans-Peter Marschall
Heft Nr. 24/1985 – „Untersuchungen zum Periglazial auf der König-Georg-Insel Südwestantarktis”

erausgegeben von Gottfried Hempel.

Heft Nr. 27/1986 – „Spätpleistozäne Sedimentationsprozesse am antarktischen Kontinentalfang von Kapp Norvegia, östliche Weddell-See“ von Hannes Grobe

mit Beiträgen der Fahrtteilnehmer, herausgegeben von Rainer Gerzsenke

Zusammengestellt von Gottfried Hempel, Sprecher des Schwerpunktprogramms

by Marianne Gube und Friedrich Obleitner

mit Beiträgen der Fahrtteilnehmer, herausgegeben von Dieter Futterer

von Dieter Karl Futterer

Heft Nr. 34/1987 – „Zoogeographische Untersuchungen und Gemeinschaftsanalysen an antarktischen Makroplankton“ von U. Piatkowski

Heft Nr. 35/1987 – „Zur Verbreitung des Mesos- und Makrozooplanktons in Oberflächenwasser der Weddell See (Antarktis)“ von E. Boysen-Ennen

Heft Nr. 37/1987 – „The Eastern Weddell Sea Drifting Buoy Data Set of the Winter Weddell Sea Project (WWSP)” 1985 by Heinrich Hoepner und Marianne Gube-Lehnhardt

by M. Gube-Lehnhardt

Heft Nr. 39/1987 – „Die Winter-Expedition mit FS „Polarstern“ in die Antarktis (ANT V/1–3)“
erausgegeben von Sigrid Schnack-Schiel

Heft Nr. 41/1988 – „Zur Verbreitung und Ökologie der Seegurken im Weddellmeer (Antarktis)“ von Julian Gutt

Heft Nr. 42/1988 – „The zooplankton community in the deep bathyal and abyssal zones of the eastern North Atlantic“ by Werner Beckmam

Heft Nr. 43/1988 – „Scientific cruise report of Arctic Expedition ARK IV/3“
Wissenschaftlicher Fahrbereit der Arktis-Expedition ARK IV/3, compiled by Jörn Thiede

Heft Nr. 44/1988 – „Data Report for FV „Polarstern“ Cruise ARK IV/1, 1987 to the Arctic and Polar Fronts“
by Hans-Jürgen Hirche

Heft Nr. 45/1988 – „Zoogeographie und Gemeinschaftsanalyse des Makrozoobenthos des Weddellmeeres (Antarktis)“ von Joachim Voß

Heft Nr. 46/1988 – „Meteorologische and Oceanographic Data of the Winter-Weddell-Sea Project 1986 (ANT V/3)“ by Eberhard Fahrbach

Heft Nr. 48/1988 – „Variationen des Erdmagnetfeldes an der GvN-Station“ von Arnold Brodscholl

Heft Nr. 50/1988 – „Die gezeitenbedingte Dynamik des Ekström-Schelfeises, Antarktis“ von Wolfgang Kobarg

Heft Nr. 51/1988 – „Zoogeographische und Gemeinschaftsanalyse des Makrozoobenthos des Weddellmeeres“ von Werner Ebner

Heft Nr. 52/1988 – „Zusammensetzung der Bodenfauna in der westlichen Fram-Straße“
von Dieter Pippentburg

Heft Nr. 55/1988 – „Weight and length data of zooplankton in the Weddell Sea in austral spring 1986 (Ant V/3)“ by Eike Mizalski

Heft Nr. 56/1989 – „Scientific cruise report of Arctic expeditions ARK IV/1, 2 & 3“
by G. Krause, J. Meincke und J. Thiede
Bericht von den Fahrtabschnitten ANT V/4–5 von H. Miller und H. Oester

von D. K. Futterer

Heft Nr. 59/1989 – „Die Expedition ARKTIK V/1a, 1b und 2 mit FS ‘Polarstern’ 1988“
von M. Spindler

Heft Nr. 60/1989 – „Ein zweiimensionales Modell zur thermohalinen Zirkulation unter dem Schelfeis“
von H. H. Hellmer

Heft Nr. 64/1989 – “Meteorological Data of the G.-v.-Neumayer-Station (Antarctica)” by L. Helmes
Heft Nr. 67/1990 – „Identification key and catalogue of larval Antarctic fishes“, edited by Adolf Kellermann
Heft Nr. 68/1990 – „The Expedition Antarktis VII/4 (Epos leg 3) and VII/5 of RV ‘Polarstern’ in 1989“, edited by W. Amtz, W. Ernst, I. Hempel
Heft Nr. 69/1990 – „Abhängigkeiten elastischer und rheologischer Eigenschaften des Meereises vom Eisgelüge“, von Harald Hellmann
Heft Nr. 70/1990 – „Die beschalten benthischen Mollusken (Gastropoda und Bivalva) des Weddellmeeres, Antarktikas“, von Stefan Hain
Heft Nr. 71/1990 – „Sedimentologie und Paläomagnetik an Sedimenten der Maudkuppe (Nordöstliches Weddellmeer)“, von Dieter Conde
Heft Nr. 72/1990 – „Distribution and abundance of planktonic copepods (Crustacea) in the Weddell Sea in summer 1980/81“, by F. Kurtjeweit and S. Ali-Khan
Heft Nr. 73/1990 – „Zur Frühdiagenese von organischem Kohlenstoff und Opal in Sedimenten des südlichen und östlichen Weddellmeeres“, von M. Schütt
Heft Nr. 75/1991 – „Quartäre Sedimentationsprozesse am Kontinentlhang des Süd-Okey-Plateaus im nordwestlichen Weddellmeer (Antarktikas)“, von Sigrun Grüntig
Heft Nr. 76/1990 – „Ergebnisse der faunistischen Arbeiten im Benthal von King George Island (Südheilandinseln, Antarktikas)“, von Martin Rauprecht
Heft Nr. 77/1990 – „Verteilung von Mikroplankton-Organismen nordwestlich der Antarktischen Halbinsel unter dem Einfluss der zyklischen Umwelteinflüsse im Herbst“, von Heinz Klöser
Heft Nr. 78/1991 – „Hochauflösende Magnetostatigraphie spätquartärer Sedimente oekophysiologischer Meresgebiete“, von Norbert R. Nowaczyk
Heft Nr. 79/1991 – „Ökopshysiologische Untersuchungen zur Salinitäts- und Temperaturoptima des arktischen Meeres, Grönland- und Nordspitzbergen“, von Jörg Kheuer

Heft Nr. 81/1991 – „Paläoökologische und Paläoökologiegraphie im Spätquarät am Kontinentlhang des südlichen Weddellmeeres, Antarktikas“, von Martin Meißel
Stefan Hain, and Ulf Karsten
Heft Nr. 88/1991 – „Zur Lebensgeschichte dominanter Copepodarten (Calanus finnarchicus, Calanus glacialis, Calanus hyperboreus, Metridia longa) in der Framstraße“, von Sabine Diel
Heft-Nr. 89/1991 - „Detaillierte seismische Untersuchungen am östlichen Kontinentalrand des Weddell-Meeres vor Kapp Norvegia, Antarktis", von Norbert E. Kaul

Heft-Nr. 91/1991 - „Blood physiology and ecological consequences in Weddell Sea fishes (Antarctica)", von Andreas Kunzmann

Heft-Nr. 94/1991 - „Die Entwicklung des Phytoplanktons im Östlichen Weddellmeer (Antarktis) beim Übergang vom Spätwinter zum Frühjahr", von Renate Scharek

Heft-Nr. 95/1991 - „Radiotopenstratigraphie, Sedimentologie und Geochemie jungquartärer Sedimente des östlichen Arktischen Ozeans", von Horst Bohrmann

Heft-Nr. 96/1991 - „Holozäne Sedimentationsentwicklung im Scoresby Sund, Ost-Grönland", von Peter Märsenfeld

Heft-Nr. 97/1991 - „Strukturelle Entwicklung und Abkühlungsgeschichte der Heimelfrontjella (Westliches Dronning Maud Land/Antarktika)", von Joachim Jancoba

Heft-Nr. 98/1991 - „Zur Besiedlungsgeschichte des antarktischen Schelfes am Beispiel der Isopoda (Crustacea, Malacostraca), von Angelika Brandt

• Heft-Nr. 101/1992 - „Wechselbeziehungen zwischen Schwermetallkonzentrationen (Cd, Cu, Pb, Zn) im Meereswasser und in Zooplanktonorganismen (Copepoda) der Arktis und des Atlantiks", von Christa Pohl

• Heft-Nr. 102/1992 - „Physiologie und Ultrastruktur der antarktischen Grünalge Prasiola crocea ssp. antarctica unter osmotischem Stress und Austrocknung", von Andreas Jacob

• Heft-Nr. 103/1992 - „Zur Ökologie der Fische im Weddellmeer", von Gerd Hubold

• Heft-Nr. 104/1992 - „Mehrkanalige adaptive Filter für die Unterdrückung von multiplen Reflexionen in Verbindung mit der reifen Oberfläche in manchen Seismogrammen", von Andreas Rosenberger

• Heft-Nr. 105/1992 - „Radiation and Eddy Flux Experiment 1991 (REFLEX I)", von Jörg Hartmann, Christoph Kottmeier und Christian Warmer

• Heft-Nr. 110/1992 - „Sedimentfazies und Bodenwasserstrom am Kontinentalfang des nordwestlichen Weddellmeeres", von Isa Brehme

• Heft-Nr. 114/1992 - „Die Gründungsphase deutscher Polarforschung, 1865-1875", von Reinhard A. Krause

• Heft-Nr. 117/1992 - „Petrogenese des metamorphen Grundgebirges der zentralen Heimelfrontjella (westliches Dronning Maud Land / Antarktikas)", von Peter Schütze

• Heft-Nr. 118/1993 - „Die mafischen Gänge der Shackleton Range / Antarktika: Petrographie, Geochemie, Isotopengeochemie und Paläomagnetik", von Rüdiger Hotten

• Heft-Nr. 119/1993 - „Gefrierschutz bei Fischen der Polarmeere", von Andreas P.A. Wöhrmann

Heft-Nr. 133/1993 – „Radiation and Eddy Flux Experiment 1993 (REFLEX II)“, by Christoph Kottmeier, Jorg Hartmann, Christian Warnier, Axel Bochert, Christof Lupkes, Dietmar Freese and Wolfgang Cohrs.

Heft-Nr. 134/1993 – „The Expedition ARKTIS-IX/1“, edited by Hajo Eicken and Jens Meinke.

Heft-Nr. 151/1994 – „Russian-German Cooperation: The Transdrift I Expedition to the Laptev Sea“, edited by Heidemer Kassens and Valery Y. Karpov.

Heft-Nr. 194/1996 – "Ökologie und Populationsdynamik antarktischer Ophiuroiden (Echinodermata)", von Cornelia Dahm.

Heft-Nr. 205/1996 – "Textures and fabrics in the GRIP ice core, in relation to climate history and ice deformation", by Thorstein Thorsteinsson.

Heft-Nr. 218/1996 – "Radiation and Eddy Flux Experiment 1995 (REFLEX III)", by Jörg Hartmann, Axel Bochert, Dietmar Freese, Christoph Kottmeier, Dagmar Nagel and Andreas Reuter.

Heft-Nr. 223/1997 - "Bestimmung der Meeresidicke mit seismischen und elektromagnetisch-induktiven Verfahren", von Christian Haas.

Heft-Nr. 227/1997 - "Der Einfluß kompatibler Substanzen und Kryoprotektoren auf die Enzyme Malatdehydrogenase (MDH) und Glucose-6-phosphat-Dehydrogenase (G6P-DH) aus Acrosiphonia arctica (Chlorophyta) der Arktis", von Katharina Kück.

Heft-Nr. 234/1997 - "Die Expedition ARCTIC '96 des FS 'Polarstern' (ARK XII) mit der Arctic Climate System Study (ACSYS)", von Ernst Auguste und den Fahrteilnehmern.

Heft-Nr. 238/1997 - "Life strategy and ecophysiology of Antarctic macroalgae", by Iván M. Gómez.

Heft-Nr. 239/1997 - "Die Expedition ANTARKTIS XII/4-5 des Forschungsschiffes 'Polarstern' 1996", herausgegeben von Eberhard Fahrbach und Dieter Gerdies.

Heft-Nr. 241/1997 - "Late Quaternary glacial history and paleoceanographic reconstructions along the East Greenland continental margin: Evidence from high-resolution records of stable isotopes and ice-rafted debris", von Seung-il Nam.

Heft-Nr. 242/1997 - "Thermal, hydrological and geochemical dynamics of the active layer at a continuous permafrost site, Taymyr Peninsula, Siberia", by Julia Böke.

Heft-Nr. 243/1997 - "Zur Paläoceanographie hoher Breiten; Stellvertreterdaten aus Foraminiferen", von Andreas Mackensen.

Heft-Nr. 246/1997 - "ökologische Untersuchungen zur Fauna des arktischen Meereises", von Christine Ködeck.

Heft-Nr. 249/1997 - "The Expedition ANTARKTIS XII/3 (EASIZ 1) of RV 'Polarstern' to the eastern Weddell Sea in 1996", edited by Wolf Arntz und Julian Gulth.

Heft-Nr. 323/1999 - "Untersuchung struktureller Elemente des südöstlichen Weddellmeeres / Antarktis auf der Basis marin er Potentialfelddaten", von Uwe F. Meyer.

Heft-Nr. 332/1999 - "Modelling of marine biogeochemical cycles with an emphasis on vertical particle fluxes", by Regina Usbeck.