Russian-German Cooperation SYSTEM LAPTEV-SEA 2000: The Expedition LENA 2001

Edited by Eva-Maria Pfeiffer and Mikhail N. Grigoriev

......

Ber. Polarforsch. Meeresforsch. 426 (2002) ISSN 1618 - 3193

Eva-Maria Pfeiffer, Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, PO Box 60 01 49, D-14401 Potsdam, Germany

Mikhail N. Grigoriev, Permafrost Institute, Russian Academy of Sciences 677018 Yakutsk, Yakutia, Russia

Russian-German Cooperation SYSTEM LAPTEV-SEA 2000: The Expedition LENA 2001

by the participants of the expedition edited by Eva-Maria Pfeiffer and Mikhail N. Grigoriev

1

Figure 1: Participants of the Expedition LENA 2001 (without team 3):

 \sim

front (left to right): C. Wille, G. Stoof, D. Wagner, N. Abramson, S. Kobabe - middle: H.-W. Hubberten, F. Are, E.-M. Pfeiffer, W. Schneider - behind: M. Grigoriev, A. Kurchatova, D. Bolshianov, L. Kutzbach, S. Razumov, M. Tretiakov

Tŀ	The Expedition LENA 2001 Contents		
С	ontents		
Ă	cknowledgement	5	
1	Russian-German Co-operation	5	
2	Expedition Itinerary	8	
	2.1 Working areas8		
	2.2 General logistics and transportation	9	
	2.3 Technical Report of the Station Samoylov	. 10	
	2.4 Time tables of Working group)	. 14	
	2.4.1 Team 1 (Samoylov Island)	. 11	
	2.4.2 Team 2 (Arga Complex)	. 16	
	2.4.3 Team 3 (Bykovsky Peninsula)	. 17	
	2.5 Participants of expedition	20	
	2.6 Participating institutions	.20	
3	Modern Processes in Permafrost Affected Soils	. 21	
	3.1 Objectives	:21	
	3.2 Methods and field experiments	.21	
	3.3 Preliminary results	. 30	
	3.3.1 Recent soil studies	.30	
	3.3.2 Methane emission	. 04 25	
	2.2.4 Permetrost and ice wedge coring	38	
	3.4 Further investigations	40	
	3.5 References	. 41	
		10	
4	4.1 Introduction	.43 43	
	4.2 Zooplankton from Tundra Water Basin the Lena Delta	43	
	4.2 Avifauna of porthwestern Lena Delta	45	
	4.4 Genetics Diversity and Taxonomy of Artic Lemming	.44	
-	Ohana English and Cadimant Flux from English Jalanda	50	
5	5 1 Introduction	. 33	
	5.1 Introduction	. 53	
	5.2 Resulte	.00	
	5.4 Discussion and conclusions	.57	
6	Investigation of Run Off in the Sardakh-Trofimovsky Bifurcation		
	Point of the Lena River Delta	. 58	
	6.1 Objectives	. 58	
	6.2 Previous Research	. 58	
	6.3 Measurements of 2001	. 58	
	6.4 Conclusions	. 62	
	6.5 References	. 63	

Contents	The Expedition LENA 2001

7	Coastal Processes and Methane Dynamics in the Northwestern Part of the Lena Delta
	7.1 Introduction
	7.2 Pecularities of coastal processes and shoreline dynamics of
	the accumulative-erosive coastal system
	7.3 Bathymetric measurements71
	7.4 Methane-related investigations of soils and waters in the Sanga-
	Dzhie region77
	7.5 Bathymetry and biogeochemistry of Sanga-Dzhie lagoon and
	Sanga lake lagoon at the western coast of Arga Complex
	7.6 References
8	Paleoecological and Permafrost Studies of the Ice Complex in
	the Laptev Sea area (Bykovsky Pensinsula)
	8.1 Introduction, objectives and logistiks
	8.2 Methods and field measurements
	8.3 Preliminary results
	8.4 Further investigations
	8.5 References
9	Appendix
	Table A3-1: Soil types of the central Lena Delta
	Table A3-2: Soil profiles descriptions
	Table A3-3: Classification of soils of Samoylov Island 143
	Table A3-4: Characteristics of soil subtypes Table A3-3 144
	Table A3-5: List of soil and plant samples146
	Table A3-6: List of sediment and water samples
	Table A3-7: List of ice wedge samples
	Table A3-8: List of permafrost sediment samples
	Table A3-9: List of gas samples 159
	Table A4-1: List of birds and their status in the study area
	Table A4-2: List of trapped lemmings
	Table A7.1: Water temperature vertical profiles 162
	Table A7-2: Active layer denth in the Arga region 163
	Table A7-3: Investigation sites in the Arga region
	Table A7-4: List of samples from Arga region
	Table A8-1: Description of sedimentary units and samples
	Table A8-2: List of macrofossil samples
	Table A8-3: List of sediment samples 177
	Table A8-4: Description of ice in the ice wedges transects
	Table A8-5: List of ice wedge samples for isotope study 179
	Table A8-6: List of mammal bones on Bykovsky Peninsula

4

Acknowledgments

The Russian-German expedition LENA 2001 was a successful and memorable field working time in the artic Siberia. We have had the chance to be the guests in the fascinating landscape of the Lena Delta where we could continue our research on permafrost related processes. LENA 2001 brought forward new ideas and we are still busy to conclude all investigations for the common synthesis of all obtained data.

The expedition LENA 2001 would not have been possible without the help and support of all our colleagues and friends in Moscow, St. Petersburg, Yakutia and Tiksi. Our special thank goes to D. Melnichenko, V.N. Gorokhov and all people from Tiksi – they gave us the feeling to leave not only as interested scientists but as friends.

We thank several Russian, Yakutian and German institutions and authorities for their interest and support. In particular, we reciprocate the Tiksi Hydrobase, the Lena Delta Reserve and the crew of the vessel "Neptun".

We thank the Federal Ministry of Education and Research of Germany, the Russian Ministry for Science and Technical Policy of the Russian Federation and the Directorate of the Alfred Wegener Institute of Polar and Marine Research in Bremerhaven, which enabled the LENA 2001.

1 Russian-German Co-operation

(E.- M. Pfeiffer and M. N. Grigoriev)

The Laptev Sea and its hinterland – especially the Lena Delta - is one key region for the understanding of the dynamic of the Arctic climate system.

On the basis of previous, multi-disciplinary investigations of Russian-German projects (The Laptev Sea System, Taymyr, 1994-1997) many important results for the climatic reconstructions of the late Quaternary and the understanding of the recent permafrost system in the Siberian Arctic were obtained and are presented in a collection of papers published by Kassens et al. (1999). The investigations indicate the close interaction of the coupled land-ocean system of the Laptev Sea with the East Siberian hinterland. The present knowledge shows that environmental changes in this area do not only affect the Arctic Ocean but also contribute to variations in the global climate system.

The investigations of the Russian-German Cooperation SYSTEM LAPTEV SEA 2000 (1998-2001) concentrated on the following topics:

- Seasonal variability of modern trace gas fluxes in permafrost areas
- Environmental reactions of the terrestrial-marine system of the Siberian Arctic during the last 100 years
- Land-ocean interactions and the influence on the sediment budget of the Laptev Sea

Russian-German Co-operation

- Terrestrial system: short- and medium-term climatic trends in the Siberian Arctic
- Marine system: long-term climatic trends in the Siberian Arctic

Within the framework of the project SYSTEM LAPTEV SEA 2000 three terrestrial expeditions to the Lena Delta and the Laptev Sea coastal region were performed during spring/summer periods 1998 to 2000 (Rachold and Grigoriev, 1999, 2000 and 2001). Based on the experiences and results of these expeditions, the fourth expedition LENA 2001 was carried out from July 16th July to August 28th, 2001. The multi-disciplinary teams of 11 Russian and 8 German scientists worked in the Lena Delta and on the Bykovsky Peninsula (Figure 1-1 and Figure 2-1).

The scientific working program of the expedition LENA 2001 was focused on the following terrestrial research objectives:

• Seasonal variability of modern trace fluxes in permafrost areas (*Chapter* 3: Modern Processes in Permafrost Affected Soils)

• Ecosystem studies and biological monitoring in the Lena Delta and Siberian Arctic (*Chapter 4: Biological Research in the Lena Delta*)

• Shore erosion, accumulation processes and run off studies in the Lena Delta (*Chapter 5: Shore Erosion and Sediment Fluxes from Eroded Islands and Chapter 6: Water and Sediment Run Off in large Bifurcation Points of the Lena River Delta*)

• Land-ocean interactions and the influence on the sediment budget of the Laptev Sea (*Chapter 7: Coastal Processes and Methane Dynamics in the Northwestern Part of the Lena Delta*)

• Terrestrial system: short- and medium-term climatic trends in the Siberian Arctic (*Chapter 8: Paleoecological and Permafrost Studies of Ice Complex in the Laptev Sea - Bykovsky Peninsula*)

References

- Kassens, H., Bauch, H., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J. and Timokhov, L. (1999), Land-Ocean systems in the Siberian Arctic: dynamics and history. Springer, Berlin, 711pp.
- Rachold, V. and Grigoriev, M. N. (1999): Russian-German Cooperation SYSTEM LAPTEV SEA 2000: The Lena Delta 1998 Expedition. Rep. Polar Res. 316, 1-259.
- Rachold, V. and Grigoriev, M. N. (2000): Russian-German Cooperation SYSTEM LAPTEV SEA 2000: The Expedition Lena 1999 Expedition. Rep. Polar Res. 354, 1-269.

Rachold, V. and Grigoriev, M. N. (2001): Russian-German Cooperation SYSTEM LAPTEV SEA 2000: The Expedition Lena 2000 Expedition. Rep. Polar Res. 388, 1-135.

Expedition Itinerary

Figure 1-1: Working area of the Expedition Lena 2001

2 Expedition Itinerary

(E.-M. Pfeiffer and M. N. Grigoriev)

2.1 Working areas

Concerning the scientific working program, the expedition LENA 2001 worked in three teams and in three different working areas, which are shown in Figure 2-1:

Team 1 (Samoylov Island)

The group was based on the Island Samoylov in the central part of the Lena Delta (72°22'N, 126°28'E). The interdisciplinary team worked in two sub-groups and their research was concentrated on modern processes in the Lena Delta:

Team 1a:

Modern Processes in Permatrost Affected Soils (\rightarrow Chapter 3): Within the 2001 field campaign, the measurements of trace gas emission (CH₄ and CO₂), which are needed to establish the balance of greenhouse gases in the Lena Delta,

7

were continued for this summer season. The microbial process studies on in situ CH₄ fluxes were carried out. The measurements of the water and energy balance in the permafrost-affected soils were continued. These investigations were complemented by the drilling of deeper permafrost sediments and ice wedges on Samoylov and on comparable sites on the Islands Sardhah and Kurunghnah. For the drilling work the vessel "Neptun" was used as basis.

Biological Research in the Lena Delta (\rightarrow Chapter 4): The State Lena Delta Reserve carried out several investigations on important ecosystem parts of the Lena Delta. In the frame of the Expedition Lena 2001 the zooplankton of different lakes and the birds' distribution in the Lena Delta was monitored. Additionally, in co-operation with the university of Moscow the lemming distribution in the central Lena Delta could be investigated.

Shore erosion and accumulation processes in the central Lena Delta (\rightarrow Chapter 5): Accumulation and erosion processes are of major importance for the sediment budget of the Lena Delta. Active shore erosion was investigated in order to estimate the range of shore retreating and the amount of accumulated sediments. For this work the motor boat and the vessel "Neptun" were used.

Team 1b:

Team 1b studied the water and sediment runoff in second-order bifurcation points in the rivers and channels of the delta. One of the largest bifurcation points in the delta, Sardakh-Trofimovsky was investigated to understand the river bed deformations and the runoff redistribution during the last decades. Team 1b worked most of the time with motor boots and lived in different field camps. For the investigations on Sardakh and its surroundings the vessel "Neptun" was used as research basis (\rightarrow Chapter 6: Investigation of Run off in the Sardakh-Trofimovsky Bifurcation Point of Lena River Delta, East Siberia, Russia, and related River Bed Deformations).

Team 2 (Arga Island):

During the expedition LENA 2001 team 2 worked in the region of Babaryna Island/Sanga-Dzhie which is located in the northwestern part of the Lena Delta (73°30-35'N, 123°10-30'E). The team lived in a field camp and used a motor boot for daily excursions and field measurements. The major scientific objectives were to investigate the very specific coastal erosion processes and shoreline dynamics in this area and to acquire first insights into the CH₄ dynamics of the wide landscape of Arga Island (\rightarrow Chapter 7: Coastal processes and methane dynamics in the northwestern part of the Lena Delta).

Team 3 (Bykovsky Pensinsula)

Based on the previous research of the Late Pleistocene Ice Complex in the Lena Delta under the Russian-German project "Laptev Sea System 2000" the paleoecological and permafrost studies could be continued in 2001. The

The Expedition LENA 2001 Ex

Expedition Itinerary

Russian team worked on Bykovsky Peninsula (71°41'N, 129°25'E) and their geocryological investigation were focused on the understanding of the cyclic character of Ice Complex deposits and their development. The studies on fossil insects and mammal bones as important archives could be extended. Additional ice wedges were sampled for the reconstruction of the past winter temperatures (\rightarrow Chapter 8: Paleoecological and permafrost studies of Ice Complex in the Laptev Sea area).

Figure 2-1: The working areas of the expedition LENA 2001.

2.2 General logistics and transport

The general logistics of the LENA 2001 Expedition were jointly organized by the Permafrost Institute (Yakutsk), the Arctic and Antarctic Research Institute (St. Petersburg) and the Research Unit Potsdam of the Alfred Wegener Institute. Logistic operations in Moscow were organized by the Company "Nadeshda" (food, cooling and transportation of frozen samples) and in Tiksi by the Hydrobase (renting of buses, trucks, helicopters etc.). The Lena Delta Reservat (LDR) in Tiksi provided the small base on the Island of Samoylov for cooking, working, GC-laboratory and lodging for 2-3 people. Most of the team members had to sleep in tents. Additional working and lodging space could be used in a removal shack (balock). The total cargo accounted 3,5 tons thereof 2 tons for catering.

Expedition Itinerary

imetable of the expedition Lena 2001:

June 22, 2001	Transportation of all expedition charges Potsdam – St. Petersburg-Moscow-Tiksi		
July 14, 2001	Flight Berlin-Moscow for all teams		
July 15-16, 2001	Flight Moscow-Tiksi		
July 17, 2001	Preparation of fieldwork in Tiksi		
July 18, 2001	Helicopter transfer from Tiksi to the field all teams		
July 18 - August 26	Fieldwork of team 1 and 3		
July 18 – August 3	Fieldwork of team 2		
August 3, 2001	Helicopter transfer of team 2 back to Tiksi		
August 6-8, 2001	Flight back Tiksi-Yakutks-Moscow for team 2		
August 27, 2001	Transfer of team 1 and 3 back to Tiksi		
August 28-29, 2001	Preparation for departure in Tiksi		
August 30	Flight Tiksi-Moscow for team 1 and 3		
August 31, 2001	Flight Moscow-Berlin for team 1		
September 2001	Transport of all expedition charges and samples to Potsdam		

The whole duration of the expedition have been 49 days (incl. 41 field working days) for team 1 (Samoylov) and team 3 (Bykovosky) and 22 days (incl. 17 field working days) for team 2 (Arga Islands).

2.3 Technical Report of the Station Samoylov

(G. Stoof and C. Wille)

2.3.1 Status of the station

In 2001 the Samoylov station presented itself in a newly renovated condition. The rooms were painted and workbenches had been built along the walls. By this, the working conditions in the station building had been considerably improved compared to previous years.

A two-storied shack (Balock) which had been moved to Samoylov during the winter improved the situation further. The upper floor accommodates 6 beds, the lower floor was used for work and for sample storage and -drying.

With the space it presently offers, the station was used to full capacity during this year's expedition. For bigger expedition groups, as well as for expeditions in winter, the expansion of the station should be considered. During winter months accommodation in tents is not advisable; moreover, the existing sanitary facilities cannot be used - or at least only to a very restricted degree. For this reason, an extension of the station building including sanitary facilities becomes necessary. Also, the water supply would have to be reorganised accordingly. The following illustration shows the existing station building together with a suggestion for an extension.

The Expedition LENA 2001 Expedition Itinerary

Fig. 2-2: Samoylov station building with extension proposal (values in cm)

The extension should be orientated at an angle of 90° with respect to the axis of the existing building. Like the existing station-building, it should be a plastered framehouse. However, the isolation of the outside-walls should be improved.

2.3.2 Power supply

The smooth running of the scientific work on Samoylov was highly dependent on a stable power supply to the various equipment, especially the gas chromatograph. Since the existing electricity installation was not adequate for the power requirements and did not correspond to the current security standards, most of it had to be rebuild. The circuits were equipped with fuses and protective switches, new cables were laid, and new sockets and lamps installed in the laboratories.

For the power supply a new 6 KVA diesel generator was used. The generator proved to be reliable and user friendly. A damage in the electronic control unit which caused a power failure of several hours could be repaired on the spot. The absence of an electric starter proved to be disadvantageous since not every member of the expedition was able to start the generator.

Expedition Itinerary The Expedition LENA 2001

The power rating of the generator was sufficient for the supply of the equipment used and still holds reserves for the future. However, peak loads, for example during the use of the electric welding apparatus, have to be co-ordinated accordingly.

Problems were caused by the high content of water in the diesel fuel. However, these problems could be avoided by careful refuelling procedures. A special 130 litres auxiliary tank which had been bought in Tiksi could not be used because of a leaky hose adapter. Because of this, the generator had to be refuelled at intervals of approximately 4 hours. During approximately 300 hours of operation, the generator used 265 litres of fuel which corresponds to an average consumption of 0,9 litres per hour. Necessary maintenance work was restricted to the changing of the engine oil; all in all 5 litres of oil were used.

In order to have a power supply independent from the diesel-generator during periods of low power consumption, a wind generator AIR 403 (12V, 400W), a set of lead batteries (12V, 390Ah), and an AC converter (12V/220V, 400W) were installed. This system allows the operation of the laboratory lights, as well as laptops, satellite-telephone, chargers and other small devices. Additionally, a 12V - power supply was installed in the station leader apartment and the Letnik (cave in the frozen ground for storing food). After the experiences collected with the wind generator system during the this year's expedition, the extension of the battery capacity is planned for the next year.

2.3.3 Soil and climate stations

The measuring stations for soil and climate data have worked since 1998 and were still in a good condition in 2001. The climate station had collected data during the period 17.08.-22.10.00 and from 18.03.01 onwards, the soil station from the period 11.08.-13.11.00 and from 29.01.01 onwards. The interruption in the data results from the insufficient power supply of the stations by the solar panel during winter months. To avoid this problem in future, a wind generator was installed to support the solar panel, and the battery capacity was increased by an additional lead battery. These measures should enable a stable 12V power supply the whole year through.

All components of the climate station were checked. The cables of both moisture and temperature sensors were damaged by animal bites; as a result one of the sensors (at 0,5m height) had to be exchanged. The data logger was exchanged because of a call back from the manufacturer. A second net radiation sensor (Q7) was installed for comparison measurements.

The rain gauge was cleaned; its calibration was checked. The guy wires and anchors of the measuring tower were rebuilt. A new measuring program was installed and tested.

All systems of the soil station were thoroughly checked. A new base for the enclosure was built, the running of the outside cables was reorganised. The TDR - and soil temperature systems were rearranged for better accessibility. A Coax-Multiplexer had to be exchanged because of corroded contacts. All electric connections were checked and renewed if necessary. The existing storage module (4 MB) was replaced by a new module with 16MB storage capacity. A new measuring program was installed and tested.

The whole measurement equipment, which was installed in the investigation site (reference plot 2), is shown in Figure 3-3.

2.3.4 Equipment

Altogether the Lena 2001 expedition was well equipped. Several tools which have been taken on an expedition for the first time, like welding apparatus and angle grinder, extended the range of possible construction and repair works. Tools like the chainsaw and the hammer drill which had been used in previous years proved to be very useful again.

The tents used this year did not prove suitable for this expedition. They were too small, not sufficiently waterproof, and did not have any mosquito nets. More suitable tents should be made available.

Expedition Itinerary The Expedition LENA 2001

For field work like drilling a suitable wind and weather protection (tent or the like) should be available.

Up to now, the water supply of the station building is realised by carrying the water over a distance of 250m from a lake. For future expeditions, the installation of a simple pumping system should be considered.

2.4 Timetables of individual working groups

2.4.1 Team 1 (Samoylov Island)

- July 16-17 Tiksi: organizing and preparation of equipment, logistic coordination with local partners
- July 18 transfer to Samoylov Island with helicopter and installation of the camp and arrangement of the base, installation of a 6KVA generator,
- July 19 installation of the GC-laboratory and working places, first inspection of the climate and soil stations (measuring plot), begin of lake monitoring
- July 21 GC-calibration and instruction, beginning of the daily emission measurements, choosing a reference site for soil microbial studies and permafrost drilling, beginning of the daily lemming collection
- July 22 analysis of gas samples, checking of the automatic climate station, continuation of lake investigations
- July 23 work scheduling for the first week, preparation of an ice-wedge-crosssection, installation of the pin wheel and wind generator (12V, 400W) at the station
- July 24 continuation of profile preparation, description and sampling of the ice wedge profile (soil samples), rebuilding of the electricity installation in the whole station building
- July 25 starting of the first 6-days boat trip of team 1b to the Sardakh-Trofimovsky bifurcation, continuation of soil and gas sampling
- July 26 continuation of profile work and gas sampling, first drilling of ice samples of the ice wedge polygon, studies on in situ CH, oxidation
- July 27 data collection and check of the automatic soil station, installation and test of a new measuring program, emission measurements and gas sampling
- July 28 description and sampling of an ice wedge exposure at the southern coast site, degasification of ice samples and preparation for FISH analysis
- July 29 continuation of emission measurements, gas sampling for isotope analysis, first collection of lemmings.
- July 30 continuation of sampling and studies on the CH₄-oxidation, first evaluation of the field data, lake sampling

The	Expedition	LENA	2001

July 31	beginning with the permafrost drilling of the polygon site (core 1/2001), up to 2,70 m depth, problems with penetrating surface water; return of team 1b
August 1	continuation of permafrost drilling, new bore hole (core 2/2001) up to 5,75 m depth
August 2	continuation and finishing the permafrost drilling (7,50 m depth) at the polygon site (core 2/2001), in situ studies on methane oxidation
August 3	first analysis of field data, arrival team 2, transfer HW. Hubberten, F. Are, S. Rasumov, N. Abramson und D. Wagner back to Tiksi
August 4	Start with the permafrost drilling at the southern coast of Samoylov (core 3/2002)-, drilling depth 4,75m. Team 1b leave for the second boat trip to Sardakh region
August 5	continuation of permafrost drilling up to a depth of 7m, problem with the motor of drilling machine. Continuation of in situ CH ₄ oxidation experiment
August 6	Repair of the drilling machine, determination of biomass production (Carex concolor) in centre of the reference polygon (plot 3)
August 7	Finishing the permafrost drilling at bore hole 3 (core 3/2001: drilling depth 8,28m)
August 8	Preparation of the litter bags (minicontainer) for the determination of C- decomposition in the polygon centre at plot 3, soil monitoring in the western part of Samoylov
August 9	continuation of soil monitoring and additional sampling for C- und N- Pools; arriving of vessel "Neptun" and return of team 1b
August 10	soil description and sampling of additional CH_4 emission sites
August 11	installation of the wind generator at the soil station, continuation of checking the soil map
August-12	whole-time excursion with vessel "Neptun" to settlement Titari in the Lena River, sampling of Larix wood
August 13-16	6 with "Neptun" to Sardakh Island and beginning with the drilling of permafrost sediments at the high floodplain (core 4/2001: 4,60m depth) and ice wedges, soil description and sampling of the active layer of a low centre polygon
August 17	Trip with "Neptun" to Kurungnakh Island for drilling in the ice rich permafrost sediments. A first borehole (core 5/2001) had to be given up after 3,10 m depth because water had penetrated into the well

August 18-20 Daily trip with "Neptun" to Kurungnakh, installation a new drilling place (core 6/2001) and continuation of the drilling of ice rich permafrost sediments up to 5,20m depth; additional soil description and sampling; ice sampling of an ice wedge exposure next to core 6 Expedition Itinerary The Expedition LENA 2001

- August 21 Continuation of soil and emission investigation on Samoylov, "Neptun" leave with team 1b for recent sedimentation studies in Sardakh region
- August 22 Additional soil sampling for determination of the C- und N-Pools
- August 23 Sediment and water sampling of a polygon lake for gas analysis and FISH studies, return of "Neptun", last soil sampling
- August 24 "Neptun" is leaving to Tiksi with A. Kurchatova and with the heavy expedition equipment, beginning with packing
- August 25 removing of field instruments, busy with packing
- August 26 organisation of the return transport of all expedition equipment and samples
- August 27 transfer to Tiksi with helicopter

August 28-29 preparing and organisations of the charge- transportation to Moscow

2.4.2 Team 2 (Arga Islands)

- July 18 transfer Tiksi Babaryna Island by helicopter
- July 19 installation of the camp. First excursion to the Island
- July 20 first excursion to the Sanga-Dzhie area with the Ochchugun-Nerpalakh Lake, the main area of studies concerning CH₄ dynamics. Excursion to the barrier
- July 21 bathymetric study of the Sanga Lake lagoon. Temperature profiles and water sampling. Work at the Ochchugun-Nerpalakh Lake
- July 22 Continuation of the Methane-related investigations of soils and waters in the Sanga-Dzhie region
- July 22 23 geodetic measurements at the west coast of Babaryna Island. Measurements on the barrier west of Babaryna island
- July 24 geodetic measurements at Sanga-Dzhie Cape
- July 25 geodetic measurements at Cape Babaryna-Tumsa. Sampling of a peat profile at that location
- July 26 bathymetric measurements of shore face profiles west of the barrier (profile "Babaryna"). Water and bottom sediment sampling
- July 27 bathymetric measurements of shore face profiles "Sargalach", "Sanga". Water and sediment sampling
- July 28 bathymetric measurement of depth profiles at Sanga lake lagoon. Temperature measurements. Sampling of water and surface sediment cores. Measurement of driftwood heights
- July 29 bathymetric measurements of shore face profile "Kanal". Sediment and water sampling. Geodetic measurements of the 10 km long barrier south of Babaryna Island. Bathymetric measurement of depth profiles at Sanga Dzie lagoon. Water samples

Expedition Itinerary

- July 30 geomorphologic studies on Babaryna Island
- July 31 geodetic measurements at Sargylakh Island
- August 1 geodetic measurements at both sides of the Channel of Sanga-Dzhie Lagoon
- August 2 sampling of a peat profile at Cape Babaryna-Tumsa for microbiological studies. Transport of all equipment (boat , motor, etc.) to the camp
- August 3 dismantling of the camp. Transfer via Samoylov Island to Tiksi by helicopter in the evening

2.4.3 Team 3 (Bykovsky Pensinsula)

- July 16-18 in Tiksi: contacts with the Lena Delta Reserve personal, who was supposed to curate the Bykovsky team, planning of transportation to the site, preparation of equipment, purchasing food supply for the team
- July 19 transportation from Tiksi to the Mamontovy Khayata (MKH) former camp site on Bykovsky Peninsula by cross-country vehicle
- July 20 camp construction; first reconnaissance to the main outcrop
- July 21 beginning of work at the MKh exposure: selection of the main working area, geodesic survey of the site to correlate with the earlier landmarks (1998-99), description of the section, sampling of baydzherakh (bdzkh.) "O" for insect and other macrofossils (MKh-01-1, MKh-01-2, MKh-01-3), preparing the pond for mass screening on the thermo-terrace surface
- July 22 screening of insect samples, collection of large mammal bones within the outcrop and on the shore, beginning of permafrost studies
- July 23 description of the upper (Holocene) part of the section in bdzkh. "P", macrofossil sampling of bdzkh. "S" (MKh-01-04, MKh-01-09)
- July 24 description of bdzkh. "O", additional sampling of MKh-01-04a, screening of insect samples
- July 25 macrofossil sampling of MKh-01-09a from bdzkh. "S", collection of recent insects, permafrost study of bdzkh. "O"
- July 26 macrofossil sampling of bdzkh. "S" (MKh-01-08, additional MKh-01-09a), finding of horse bone in permafrost, screening of insect samples
- July 27 preparing a new pond for screening (on the yedoma surface), additional macrofossil sampling of MKh-01-08
- July 28-29 macrofossil sampling of bdzkh. "S" (MKh-01-05, MKh-01-07, MKh-01-06)
- July 28-31 geocryological description of bdzkh. "S", screening of insect samples
- July 29 additional measurements (landmark survey) in the bdzkh. "S" area and collecting general (sediment) samples from this bdzkh.
- July 30 early morning session of photographic documentation of the section, screening of insect samples

Expedition Itinerary The Expedition LENA 2001

July 31 sampling of the first ice wedge transect for ice/water isotope composition; macrofossil sampling of bdzkh. "S" (MKh-01-10); excursion to Cape Mamont and collection of large mammal bones

August 1-4 geocryological description of bdzkh. "I"

August 1 macrofossil sampling of bdzkh. "S" (MKh-01-11)

August 2 laboratory work with insect and ice/water samples

- August 3 additional measurements (landmark survey) in the bdzkh. "S" area with photo documentation; additional macrofossil sampling of bdzkh. "S" (MKh-01-8a, MKh-01-9b); finding and collection of bones in permafrost (two locations, horse and hare bones)
- August 4-5. macrofossil sampling of the lower part of bdzkh. "I" (MKh-01-12, MKh-01-13)

August 5 sampling of the second ice wedge transect for ice/water isotope composition

August 6 travel to Tiksi for additional food purchase (by cross-country vehicle

August 7-8 laboratory work with ice and insect samples and bone collection

August 9 geocryological description of bdzkhs. "I" "KS"; and laboratory work, visit of "Dunay" (M. Grigoriev and V. Schneider)

August 10 macrofossil sampling of bdzkh. "I" (MKh-01-14)

August 11-12 screening of insect samples, preparing a new place for screening; laboratory work on ice and insect samples; preparation of original field notes of the permafrost group by O. Lisitsyna

- August 13 two team members (I. Parmuzin and O. Lisitsyna) had to quit the field work for medical reasons and left the camp to Tiksi.
- August 14 laboratory work on insect and bone samples
- August 15-17 macrofossil sampling of the upper part of bdzkh. "I" (MKh-01-15, 15a) and of the "twig horizon" of bdzkh. "W" MKh-01-16, MKh-01-17); screening of insect samples
- August 16 excursion to the SE part of the MKh cliff
- August 18-19 screening of insect samples
- August 19 additional measurements (landmark survey) in the whole studied part of the MKh cliff, general description of the section
- August 20-21 laboratory work on various samples
- August 22 macrofossil sampling of bdzkh. "Z" (MKh-01-18) and of the lowermost part of bdzkh. "J" (MKh-01-19, MKh-01-20)
- August 23 collecting general (sediment) samples from bdzkh "O"; screening of insect samples

The	Expedition	LENA	2001

August 24	the seco	nd early mo	orning ses	sion of photo	ographic d	ocumer	ntation o	f, the
	section;	collecting	general	(sediment)	samples	from	bdzkh	"P";
	macrofos	sil sampling	g of bdzkh	s. "P" (MKh-0)1-21) and	"O" (M	Kh-01-22	2)

- August 25 macrofossil sampling of bdzkh. "P" (MKh-01-21a and MKh-01-23); preparation of sediment samples (for pollen analysis, etc).
- August 26 sampling of three ice wedge transects for ice/water isotope composition of the Holocene and recent ice wedges; screening of insect samples
- August 27 laboratory work with ice and insect samples
- August 28 research of the fossil moose carcass in the SE part of the MKh area (with A.Gukov and the Lena Delta Reserve technicians), collecting of most of the carcass and of accompanying wood fossils; camp deconstruction and packing; transfer from Bykovsky Peninsula to Tiksi by cross-country vehicle.

2.5 List of participants

Name	email	Institution	<u>Team</u>
Felix Are	but@peterlink.ru	PSUMOC	2
Nataliya Abramson	nataliya@asv.mail.iephb.ru	ZI	1
Ekaterina Abramova	abramova-katya@mail.ru	LDR	1
Dmitry Bolshiyanov	bolshiyanov@aari.nw.ru	AARI	1
Sergey Demyankov	•	SIEE/MGU-P	3
Mikhail Grigoriev	grigoriev@mpi.ysn.ru	PIY	1/2
Hans-Wolfgang Hubberten	hubbert@awi-potsdam.de	AWI	2
Svenja Kobabe	skobabe@awi-potsdam.de	AWI	1
Anya Kurchatova	kurchatova@mpi.ysn.ru	PIY	1/2
Lars Kutzbach	lkutzbach@awi-potsdam.de	AWI	. 1
Svetlana Kuzmina	skuz@orc.ru	SIEE/PIN	3
Olga Lisitsyna	olis@orc.ru	SIEE/MGU-G	З
Ivan Parmuzin	olis@orc.ru	SIEE/MGU-G	3
Eva-Maria Pfeiffer	empfeiffer@awi-potsdam.de	AWI	1
Sergey Rasumov	grigoriev@mpi.ysn.ru	PIY	2
Waldemar Schneider	wschneider@awi-potsdam.de	AWI	1/2
Andre Sher	asher@orc.ru	SIEE	3
Yura Sofronov		LDR	2
Günter Stoof	gstoof@awi-potsdam.de	AWI	1
Mikhail Tretiakov	tretiakov@aari.nw.ru	AARI	1
Dirk Wagner	dwagner@awi-potsdam.de	AWI	1.
Christian Wille	cwille@awi-potsdam.de	AWI	1

2.6 List of participating institutions

AARI AWI	Arctic and Antarctic Research Institute Bering St. 38 199397 St. Petersburg, Russia Alfred Wegener Institute
	Research Unit Potsdam PO Box 60 0149 D-14401 Potsdam, Germany
LDR	Lena Delta Reserve Academician Fyodrorov St. 28 678400 Tiksi Yakutia, Russia
MSU-G	Moscow State University Faculty of Geology Department of Geocryology 119899 Moscow, Russia
MSU-P	Moscow State University Faculty of Geology Department of Paleontology 119899 Moscow, Russia
PIN	Paleontological Institute Russian Academy of Science Profsoyuznaya ul. 123 117647 Moscow, Russia
ΡΙΥ	Permafrost Institute Russian Academy of Science 677018 Yakutsk Yakutia, Russia
PSUMOC	St. Petersburg State University of Means of Communications 9 Moskovskii 190031 St. Petersburg Russia
SIEE	Severtsov Institute of Ecology and Evolution Russian Academy of Sciences 33 Leninskiy Prospect 119071Moscow, Russia
ZI	Zoological Institute Laboratory of Theriology Russian Academy of Sciences Universitetskaya nab. 1 199034 St. Petersburg, Russia

3 Modern processes in permafrost affected soils

(E.-M. Pfeiffer, D. Wagner, S. Kobabe, L. Kutzbach, A. Kurchatova, G. Stoof, C. Wille)

3.1 Objectives

Permafrost-affected soils, which cover nearly one fourth of the terrestrial surfaces in the northern hemisphere (Zhang et al. 1999), play a major role in the global carbon cycle. About 14 % of the global organic carbon is stored in permafrost soils and sediments (Post et al. 1982). The importance of these regions are discussed regarding an expected climate warming. Especially, the carbon fixation in permafrost soils and the release of climate relevant trace gases like CH_4 and CO_2 due to the carbon decomposition are important for the global carbon budget.

The interdisciplinary soil and microbiological studies are focused on the seasonal variability of the modern carbon fluxes (CH_4, CO_2) , the quantification of microbial processes as well as the thermal and hydrological dynamics of permafrost affected soils of the Lena Delta.

Anticipating global warming by an enhanced greenhouse effect, high-latitude ecosystems are expected to warm more rapidly and to a greater extent than the rest of the biosphere (Schlesinger et al. 1987). To assess the effects of climatic change on arctic ecosystems with regard to the carbon cycle and possible feedbacks to the atmospheric system, it is important to improve the knowledge about permafrost-affected soils. The main questions are: How much organic matter is stored in tundra soils and in which horizons? How does the decomposition of organic matter work in the arctic temperature regime and how is it controlled by ecological factors? How is the release of CO_2 and CH_4 from permafrost landscapes related to soil properties? How are the CH_4 fluxes forced by the microbial communities? Will the permafrost regions turn from global carbon sinks to carbon sources due to global warming?

3.2 Methods and Field Experiments

Soil Research:

In August 2001, 25 reference soil profiles were investigated in the central Lena Delta (see Figure 3-1). 19 profiles were located on Samoylov Island (72°23' N, 126°29' E), 9 profiles on the first terrace and 10 profiles on the modern floodplain. 2 profiles were located on Sardakh Island (first terrace, 72°34' N, 127°1' E) and 4 profiles on Kurungnakh Island (third terrace, 72°21' N, 126°13' E). The distribution of the terraces in the Lena Delta is shown in figure 3-2. Soils were described and classified according to the 8th edition of the *Soil Taxonomy* (Soil Survey Staff 1998) and the 4th edition of the German field book for describing soils *Bodenkundliche Kartieranleitung* (AG Boden 1994).

3 Modern Processes in Permafrost Affected Soils

Additionally, soils were classified according to the *World Reference Base for Soil Resources* (FAO 1998) and the Russian system of Jelovskaya (1987). Thus, the four classification systems could be compared and correlated. Airdried soil samples as well as cooled moist samples were taken from reference soil profiles to investigate soil chemistry and soil microbiology, respectively. To derive mean values of organic matter content in a spatial context, additional soil samples were taken by a ground auger at evenly distributed points in the area covered by the particular soil type. Soil cores were subdivided into organic, aerobic mineral, and anaerobic mineral material to determine the quantity and type of organic matter in the different soil horizons separately. A detailed sample list is provided in Table A3-1

Figure 3-1: Location of working sites in the central Lena (satellite image provided by Statens Kartverk, UNEP/GRID-Arendal and Landsat 2000)

Additionally the above ground biomass was determined by harvesting the plant material (Carex concolor) of a typical low centre polygon site (next reference plot 2). The fresh and dry weight had been determined in the field laboratory. Samples were taken and dried at 60°C for further plant analysis.

Part of the harvested plants was used for the determination of decomposition rates in the soil of the polygon centre. Special litter bags (minicontainer according to Eisenbeis et al. 1995) with the meshsize of 0,73 mm and 2 mm

were installed. The fresh plant material in 11 minicontainer was buried in 4 depths (2, 4, 10 and 21 cm) in the reference plot 2. The excavation is planned after 1 and 2 years. All installed research tools of the soil station (reference plot 2) are shown in Figure 3-3.

Figure 3-2: Geomorphological units (terraces) in the Lena Delta (according to Grigorivev 1993)

Trace Gas Studies:

The investigation of methane and carbon dioxid emission as well as microbiological process studies of methane fluxes were carried out on Samoylov, a representative island in the central part of the Lena Delta. Daily measurements of trace gas emission (CH_4 , CO_2), thaw depth, water level and soil temperature were determined from July 19 to August 24, 2001 at a low centre polygon site. The used method and the main investigation sites were described previously (Pfeiffer et al. 1999).

Figure 3-3: Soil measurement station with installed research tools on Samoylov Island (N 72°22,186' / E 126°28,826')

3 Modern Processes in Permafrost Affected Soils

Figure 3-4: Investigation site of the long term methane and carbon dioxide emission measurements at the low centre polygon site on Samoylov Island. The chambers are placed on the polygon border.

Microbiological Investigations:

The microbial CH₄ production and oxidation was investigated considering the natural soil temperature gradient. To determine the *in situ* CH₄ production fresh soil material (30 g) from different layers of the polygon centre was weight into 100-ml glass jars, closed gas-tight with a screw cap with septum and flushed with N₂. The potential CH₄ production activity was investigated after addition of acetate (20 mM) or hydrogen (H₂/CO₂ ~ 80:20, v:v) as methanogenic substrates. In the case of *in situ* CH₄ oxidation the samples (5 g fresh weight, 50-ml glass jars) were incubated under a methane/air atmosphere (approx. 2000, 7000, 22000 ppm CH₄). The prepared soil samples were re-installed in the same layers of the soil profile from which the samples had been taken. Gas samples were taken from the headspace with a gas-tight syringe and analysed for the concentration of methane by gas chromatography in the field laboratory.

Dissolved organic carbon was extracted from soil samples of two vertical profiles (polygon centre and border). The used method has been described by Wagner et al. (2000).

 CH_4 and CO_2 concentrations were determined with a Chrompack (GC 9003) gas chromatograph in the field laboratory. The detailed configuration was described previously (Wagner et al. 2000).

Lake Investigations:

In an effort to improve our understanding of the lakes as a source of atmospheric CH_4 , we made some investigations at one of the common polygon lakes on Samoylov Island (N 72 °, E 126 °), which was monitored by our Russian colleague K. Abramova (see chapter 4).

The floated chamber method was used to measure methane emissions from the lake. The chambers were made of PVC; the size of the chamber was 50*50*15. The system was the same we used for the soil and was described by Pfeiffer et al. 1999. The chambers were placed directly on the water surface. They got their buoyancy by two floating bodies, which were installed at two sides of the chamber. The chamber sank into the water with the lower 4 cm of the wall. A headspace of 27, 5 I was left above the surface. The chamber remained at each spot for half an hour to collect the emitted gas.

The emissions were measured at three different spots of the lake. First, on the shore, where the grass vegetation from the sediment reached the water surface. Second, in three metre distance from the shoreline where some *Hippuris vulgaris* shoots reached the surface. And third, in the middle of the lake, where no vegetation reached the surface. An additional chamber was lowered to the bottom, to measure the emission directly out of the sediment. This chamber was left on the ground for 48 h.

Figure 3-5: The polygon lake with the floating chamber in the middle of the lake.

3 Modern Processes in Permafrost Affected Soils

Figure 3-6: Floating chamber at spot 1 (shore of the polygon lake).

Figure 3-7: Lowering the chamber to the ground

Water sampling:

Water samples for the gas analysis were taken from just below the surface. 50 ml of water were sampled in glass jars. After filling them wirh 50ml water and adding 18 g of NaCl the jars were hermetically sealed. In the laboratory the samples were shaken for 1 minute and the methane concentrations in the headspace were measured with the gas chromatograph.

Additionally water sample of 500 ml for the FISH was taken and filled in a sterile PE-bottle. Three aliquots of 100 ml of this water were filtered through white polycarbonate filters (diameter, 47 mm; pore size, $0.2 \mu m$) by applying a vacuum. The concentrated cells were subsequently fixed by covering the filter

3 Modern Processes in Permafrost Affected Soils

with a 4% paraformaldehyde solution at room temperature for 30 minutes. The fixative was removed by applying vacuum. After 3 ml phosphate-buffered saline and 3 ml distilled water was added and removed by vacuum the filters were stored and transported at room temperature.

Lake sediment sampling:

Sediment cores were taken with a sediment corer. Several cores were taken: for geochemical analysis, micro- and molecular biological studies, and in-situ methane-concentration measurement. The sediment cores were divided into subsamples which were filled in plastic jars. The sediment for the micro- and molecular biological analyses was stored and transported in frozen state. The subsamples for the determination of the in-situ methane concentration were filled in gas-tight glass jars.

Figure 3-8: Getting the sediment out of the corer

Permafrost sediment and ice wedge sampling:

For the first time ice wedges were sampled with the ice core drill "Giffy" of Fa. Niederreiter (see Figure 3-10). Horizontal drilling proceeded successfully; but during vertical drilling problems occurred because the chipping was not led away properly. Melting and re-freezing of the chipping complicated the drilling and impaired the quality of the sample core. The problem could be solved by drilling a support hole so that during the subsequent, overlapping sample drilling the chipping could be led away into the support hole. By this, sample cores of good quality of up to 0,5 m length could be obtained.

The sediment corer ("Kleinbohrgerät", AWI Potsdam) was used for altogether 5 drillings in permafrost (see Figure 3-9). On several occasions problems occurred with the motor driving the drilling station, which, however, could be solved on the spot. The motor iwas taken back to Germany for maintenance.

Three different drilling heads were tested; only one proved to be usable under the prevalent conditions. However, also this drilling head needs to be improved. The main problem turned out to be the controlled leading away of the chipping; frequently the sample core was broken because of jammed chipping in the drilling head. Cores could practically not be taken from sediments with high ice content. Already before the end of the drillings, clear signs of wear became visible on the drilling head. For further drillings, replacement drilling heads are needed. Additionally, it is desirable to use drilling heads of different diameter, so that drillings without additional widening of the drilling hole can be made. This would clearly decrease the time and effort needed for drilling. The maximum depth reached was 8,5m; with additional stakes, drilling down to two or three times this depth seems possible. Another permafrost drilling was carried out with a Russian drilling station. Due to technical problems, only one drilling of 4,5m depth could be made.

Figure 3-9: Drilling in permafrost sediments

Figure 3-10: Ice wedge drilling

3 Modern Processes in Permafrost Affected Soils The Expedition LENA 2001

The storage of permafrost- as well as ice core samples in the field proved to be problematic. For this, "cellars" needed to be dug in ice wedges, in which the samples were to be kept at about 0°C. However, this way of storage was not optimal, because due to high temperatures (> 20°C) and strong precipitation water collected in the ice cellars and increased the temperature.

For the future it should be thought about whether ice wedge and permafrost drilling should better be carried out during winter months (April, May). During this time of the year proper cooling could easily be guarantied, and many other problems connected with outside temperatures above 0°C could be avoided.

3.3 Preliminary Results

A main objective of the soil related studies in the Lena Delta is the quantification of trace gas emission from permafrost-affected landscapes. Ecosystem fluxes of CO_2 and CH_4 are primarily controlled by spatial variability of soil properties. During the expedition Lena Delta 2001, we investigated variability, spatial distribution and genesis of soil types in the central Lena Delta to provide a basis for the studies on trace gas fluxes. A focus was set on quantity and quality of organic matter in soils.

3.3.1 Recent soil studies

Soils of Samoylov Island:

A reversed map of the soil of Samoylov Island is given in figure 3-11. The first terrace above floodplains in the eastern part of Samoylov Island is covered rather homogenously by the soil complex *Glacic Aquiturbels / Typic Historthels*. The *Typic Historthels* (LD01-E04, LD01-L08) are situated in the depressed centre of low-centred ice-wedge polygons characterised by a water level directly at the soil surface and predominant anaerobic accumulation of organic matter. The *Glacic Aquiturbels* (LD01-E05, LD01-L07) are situated at the elevated borders of the polygons and are characterized by a distinctly deeper water level, lower accumulation of organic matter, and pronounced cryoturbation properties. A typical cross-section of a low-centred polygon is shown in figure 3-12.

Only close to the erosion cliffs various drier soil types can be observed. The soil complex *Psammentic Aquorthels / Psammentic Aquiturbels* (LD01-E06, LD01-E07) is typical where due to thermoerosion high-centred polygons are developed. *Typic Psammorthels* (LD01-E03) can be found on surfaces where recent accumulation of eolian sands takes place.

The floodplain in the western part of Samoylov Island is characterised by very diverse soil types. On elevated sand ridges and near to the shoreline, *Typic Psammorthels* (LD01-L02, LD01-L05) were found. In former river channels and depressed areas, Psammentic Aquorthels (LD01-E01), *Typic Aquorthels* (LD01-

LD01), *Ruptic-Histic Aquorthels* (LD01-L05) or *Fluvaquentic Fibristels* (LD01-L03) are situated depending on soil moisture conditions.

Soils of Sardakh Island:

On the first terrace of Sardakh Island, like on Samoylov Island low-centred polygons are situated. However, the soils contain more organic matter. *Glacic Histoturbels* (LD01-S01) are situated at the polygon rims and *Fluvaquentic Fibristels* (LD01-S02) in the polygon centres.

Soils of Kurungnakh Island:

The soils on Kurungnakh Island, which is built up by sediments of the third terrace above floodplains, are characterised by a silty-loamy texture, a high content of well-decomposed organic matter, and wet conditions. Low-centred polygons with a weak microrelief are developed. *Typic Hemistels* (LD01-K02, LD01-K04) are situated in the polygon centres, *Glacic Historthels* (LD01-K03, LD01-K05) are situated at the weakly elevated polygon rims. On top of a pingo, semi-gleyic *Typic Aquorthels* (LD01-K01) can be observed.

An overview of all observed soil types is presented in Table A3-6. Detailed soil profile descriptions are provided in the table collection Table A3-7. All samples are listed in Table A3-1. Soil-chemical and microbiological studies as well as the preparation of a revised soil map are in progress. Additionally, the experiences from our study will be used to develop an instruction for correlation of the different soil classification systems.

Biomass and C-decomposition

In the wet centre f the polygon (reference plot 2) 210 g fresh biomass per square meter was produced by Carex concolor, which is the dominant vascular plant. The mean value for the aboveground biomass amounts to 82 g/m² (dry weight) at the end of the vegetation period 2001.

- Figure 3-11: Soil map of Samoylov Island. Photograph was produced in July 1964 by a Corona satellite. In the south-east of the island, intense erosion of the first terrace above floodplains during the last 37 years can be recognized. Stars: locations of reference profiles. Black numbers: soil types. Legend:
 - non-soil (beach) 1
 - 2 Typic Psammorthel
 - 3 Psammentic Aquorthel
 - 4 Typic Aquorthel
 - 4b Silty Typic Aquorthel
- 5 Ruptic-Histic Aquorthel
- 6 Fluvaquentic Fibristel
- Complex Typic Historthel / 7 Glacic Aquiturbel
- 8 Complex Typic Aquorthel / Typic Aquiturbel

33

3.3.2 Methane emission

The closed chamber measurements of methane emission from the centre of a wet polygon tundra showed a relatively high methane release between 19 to 104 mg CH₄ d⁻¹ m⁻² (average 51 mg CH₄ d⁻¹ m⁻²). Although the season 2001 was extremely warm and dry compared to 1999 (11.2 °C) and 2000 (8.8 °C) with an average temperature of 12 °C, the average methane emission (50 mg CH₄ d⁻¹ m⁻²) was in the same order of magnitude as during the years before (1999: 37 mg CH₄ d⁻¹ m⁻²/2000: 69 mg CH₄ d⁻¹ m⁻²). In contrast to the polygon centre the emission rate of the polygon border was about 2.5 to 3 times higher than in 1999 (3.2 mg CH₄ d⁻¹ m⁻²) and 2000 (4.0 mg CH₄ d⁻¹ m⁻²) (Figure 3-13).

The maximum thaw depth was reached in August just like the years before, but the absolute depth was larger: The thaw depth of the centre was in average 39 cm and the border had a depth of about 49 cm (Figure 3-13).

Figure 3-14: Thaw depth of the low-centred polygon site in July and August 2001.

3.3.3 In situ studies on CH₄ fluxes

The investigation of *in situ* methane production showed for the whole profile (Typic Historthel) of the polygon centre activity of methanogens (Figure 3-15). Without any additional substrate the methane production varied between 0.1 to 1.3 nmol CH₄ h⁻¹ g⁻¹. The highest activity could be determined in the peat layer of the top soil. After addition of methanogenic substrates (acetate, H₂), the activity drastically increased. The CH₄ production in the peat layer with H₂ as substrate was about 1.5 times higher (11.3 nmol h⁻¹ g⁻¹) compared with acetate (7.8 nmol h⁻¹ g⁻¹) as substrate, while above the permafrost table at temperatures between 0°C and 3°C the activity were in the same order of magnitude (approx. 1.2 nmol h⁻¹ g⁻¹) with both substrates. This result indicated a methanogenic microflora adapted to low temperatures in the cold permafrost habitat.

The CH₄ oxidation is controlled, among other factors, by soil moisture, which was reflected by the seasonal variability of the CH₄ emission. If the soil was water-saturated like at the beginning of the season, CH₄ oxidation was only detectable in the top soil (0,6 nmol h⁻¹ g⁻¹). This resulted in a high CH₄ emission rate (approx. 50 mg d⁻¹ m⁻², compare Wagner et al. 2000). In the course of a seasonally sinking water level, the top horizons of the soil became drier and changed to oxic conditions like in August 2001. Under these conditions, CH₄ oxidation activity was observed for almost the whole vertical profile (Figure 3-16). The CH₄ oxidation reached an activity of 2.8 nmol h⁻¹ g⁻¹, which was in the same range as the CH₄ production. Nevertheless, CH₄ emission occurred in the

order of 50 mg CH₄ d⁻¹ m⁻², because of the low CH₄ turnover rate at *in situ* concentrations of the CH₄ oxidizing bacteria (results are not shown in this report). Additionally, parts of CH₄ are released to the atmosphere via the vegetation, so that the CH₄ oxidation in the top soil is bypassed (compare Wagner et al. 2000).

The Expedition LENA 2000

Figure 3-16: Vertical profile of methane oxidation at *in situ* CH₄ concentrations and temperature

3.3.4 CH₄ fluxes in polygon lakes

For the water of the Polygon Lake we measured a temperature of 5.8 °C and a pH-Value of 7. The CH₄-content of the surface water was 0.3 μ mol l⁻¹.

Figure 3-17: Methane content in different depths in the sediment of the polygon lake on Samoylov Island

The CH₄ emission of the water surface seemed to depend on the region of the lake. At the shore of the lake we calculated CH₄ emissions of 5.13 mg m⁻¹ d⁻¹. In the middle of the lake, where no vegetation reached the surface, we measured a CH₄ emission of only 0.32 mg m⁻¹ d⁻¹.

In the sediment the temperature decreased from 5.2 C in the upper first centimetres to 3.6 C in 15 cm depth. Permafrost began at 46 cm soil depth. The CH_4 -content in the sediment increased from 21.4 µmol l⁻¹ in the upper two centimetres to 530.3 µmol l⁻¹ in the depth from 16 to 18 cm (Figure 3-17).

3.3.5 Permafrost and ice wedge coring

In order to obtain a better estimation of the total carbon budget for the Lena Delta region, it was also necessary to take into account the amounts of methane which are stored in the huge reservoirs of the ice rich permafrost sediments and ice wedges. Therefore, a first permafrost drilling on Samoylov, on Sardakh and on Kurungnakh has been carried out.

Fig. 3-18 Sample core of good quality from permafrost

Fig. 3-19: Destroyed sample core from sediment with high ice content

The Expedition LENA 2000

Due to the ice content the quality of the drilled core was very different: The higher the ice content the more destroyed was the core material. Compare Figures 3-18 and Figure 3-19.

The main characteristics of drilling sites on Samoylov and Kurungnakh are shown in the exposure schemes (Figure 3-20 and Figure 3-21). The data from site Kurungnakh will be correlated with the results of previous expeditions of Lena 2000 (Schirrmeister et al. 2001). The temperature measurements of the bore holes were made the Russian colleagues.

Figure 3-20: Exposure and drilling sites on Samoylov Island, Lena Delta

The determination of the gas amount and the gas concentration in the permafrost samples and the ice wedges started in the field and have to be finished in Germany. All permafrost and ice wedge samples (see Table A3-8 and A3-9) were transported under frozen conditions to Germany for further geochemical, microbial and molecular ecological analysis.

Figure 3-21: Exposure and drilling sites on Kurungnakh Island, Lena Delta

3.4 Further investigations

The soil related investigations contribute to the understanding of the modern processes of the sensitive ecosystems. They are the base for estimating the impact on possible global climate changes. The investigations of the regional methane emission from the arctic tundra in the Lena Delta will be continued in the next year by using an eddy correlation system.

The studies will be continued in Germany with the fresh soil material and the water samples from the Expedition Lena 2001. Especially the geochemical and microbial analysis and characterization of the soil core material from Samoylov, Kurungnakh and Sadakh is going to start on arrival of the frozen material. In addition, the analyses of dissolved organic carbon, the isotopic composition of methane gas samples and soil organic matter as well as the phospholipid fatty acid profiles are still in progress. Furthermore, the isolation and characterization of methanotrophic and methanogenic microorganisms which are adapted to the low in situ temperature is a time-consuming process, that has to go on in the future.

Since substantial parts of the carbon conversion are catalyzed exclusively by microorganisms, the search for key-organisms as well as the identification and diversity studies of the microbial community is an essential future task for the understanding of carbon fluxes in permafrost soils under changing climate conditions. The expected results represent the necessary data base for further

investigations like studies on permafrost associated gas hydrates or special research about the adaptation strategies and long-term survival of microorganisms in extreme habitats.

3.5 References

- AG Boden (1994) Bodenkundliche Kartieranleitung. 4th edition. Stuttgart. E. Schweizerbartsche Verlagsbuchhandlung. 392 pp.
- Cicerone, R.J.; Oremland, R.S.(1988) Biogeochemical aspects of atmospheric methane; Giobal Biogeochem. Cycles 2, 299-327
- Eisenbeis, G., Dogan, H., Heiber, T., Kerber, A., Lenz, R., Paulus, F. (1995)Das Minicontainer-system – ein bodenökologisches Werkzeug für Forschung und Praxis. Mitteilgn. Dtsch. Bodenkundl. Gesellschaft.,76,1: 585-588.
- Grigoriev, M.N. (1993) Cryomorphogenesis of the Lena River mouth. Permafrost Institute Press Yakutsk 176 pp. (in Russian).
- FAO (Food and Agriculture Organization of the United nations) (1998) World Reference base for Soil ecourses. World Soil Recources Reports 84. Rom: FAO. 88 pp.
- Jelovskaya L.G. (1987). Classification and diagnostics of Yakutian permafrost soils. Yakutsk, 172 pp.
- Schirrmeister, L., Kunitzsky, Grosse, G., Kuznetsova, T: (2001) Study area of the Eastern Olenyok-Channel – Kurungnakh Island (Buor Khaya). In: Rachold V. and M.N. Grigoriev (ed.) The Expeditions Lena 2000. Reports on Polar Research 388. pp 94-96.
- Schlesinger ME, Mitchell JFB (1987) Climate model simulations of the equilibrium climatic response to increased carbon dioxide. Rev Geophys 25: 760-798.
- Soil Survey Staff (1998) Keys to Soil Taxonomy. 8th edition. Lincoln, Nebraska: USDA-The National Recources Conservation Sevice. 599 pp.
- Pfeiffer, E.-M., Akhmadeeva, I., Becker, H., Friedrich, K., Wagner, D., Quass, W., Zhurbenko, M., Zöllner, E., Boike, J. (1999) Modern Processes in Permafrost Affected Soils. In: Rachold V. and M.N. Grigoriev (ed.) Expeditions in Siberia 1998. Reports on Polar Research 315. pp 19-80
- Post, W.M., Emanuel, W.R., Zinke, P.J., Stangenberger, A.G. (1982) Soil carbon pools and world life zones. Nature 298, 156-159.
- Wagner, D., Kutzbach, L., Becker, H., Vlasenko, A. and Pfeiffer, E.-M. (2000) Seasonal variability of trace gas emission (CH₄, CO₂) and in situ process studies In: Rachold V. and M.N. Grigoriev (ed.) The Expeditions Lena 1999. Reports on Polar Research 354. pp 28-36.
- Zhang T, Barry RG, Knowles K, Heginbotton JA, Brown J (1999) Statistics and characteristics of permafrost and ground-ice distribution in the northern hemisphere. Polar Geography 23, 2:132-154.

4 Biological Research in the Lena Delta

(E. N. Abramova, Yu. N. Sofronov, N. Abramson)

4.1 Introduction

The State Lena Delta Reserve in Tiksi carried out several investigations on important ecosystem parts of the whole Lena Delta. In the frame work of the Expedition Lena 2002, the zooplankton of different lakes and the bird distribution in the Lena Delta was monitored. Additionally, the lemming distribution in the central Lena Delta was investigated.

4.2 Investigation of zooplankton from tundra water basins in the Lena Delta

(E. N. Abramova)

4.2.1 Objective

Zooplankton plays a key role in the transformation of energy and biotic cycles determining productivity of water basins. During the joint Russian-German expedition "Lena-2001", we studied zooplankton composition, its density and biomass distribution, age structure and seasonal dynamics of zooplankton populations inhabiting freshwater tundra basins in the Lena River delta. Additionally, we planned to obtain the data on seasonal zooplankton production in tundra water basins and determine the input of organic matter produced by planktic organisms.

4.2.2 Material and Methods

During the summer of 2001, from July 23 till August 25, we collected and analiezed 24 zooplankton samples from three water basins on the Samoilovskii Island: polygon lake, terrace lake and Olenekskaya channel. The sampling was carried out with a periodicity from 3-4 days. Besides, 6 samples were collected in the lakes of the Amerika-Khaya and Buor-Khaya islands. Sampling was performed by filtering 100 liters of water through a 100 •m meshsize net and fixation with 70% alcohol. The whole sample or parts were studied in the Bogorov's camera, and the abundance of organisms was calculated. We determined species, sex and moulting stages. The data were recalculated to 1 m³ of water. To identify individual weights of organisms, we used the formula: $W=ql^b$, where W is body weight, I – body length (mm), q – weight at 1 mm body length, b – index.

4.2.3 Preliminary results

The pelagic fauna of freshwater basins on the Samoilovskii Island consists of 51 species, including Rotatoria – 23 species, Copepoda – 17 species, Cladocera – 11 species together with Nauplii Copepoda and representatives of Ostracoda

and Anostraca, which were not determined to species level. Planktic assemblage from the Olenekskaya channel is represented by 38 species, 20 of which belong to Rotatoria. The latter were also found to dominate the terrace lake planktic assemblage (18 among 35 identified species). Copepoda (14 species) are the most abundant in polygon lake assemblage represented by 30 species.

In the Olenekskaya channel, maximum zooplankton abundance (18-20 thousand ind./m³) and biomass (0.3-0.4 g/m³) were recorded in late July – early August at 20°C water temperature. Rotatoria predominated there comprising about 80% of the total abundance, while Cladocera had a 90%-share in the total zooplankton biomass. The average abundance and biomass in the Olenekskaya channel equaled 11 thousand ind./m³ and 0.2 g/m³, respectively.

Two peaks of zooplankton abundance and biomass were recorded in the terrace lake. The first peak was observed in the last decade of June at 13° C water temperature – 15 thousand ind./m³ and 0.6 g/m³, respectively. The second peak was recorded in the last decade of August at 8°C water temperature – 17 thousand ind./m³ and 1.1 g/m³, respectively. In both cases, growth of zooplankton abundance is related to intensive reproduction of Copepoda (Eurytemora genus), that comprised 80% of the total abundance and 95% of the total biomass of plankton in the samples. During the whole period of observation, the average zooplankton abundance and biomass in the terrace lake were 10 thousand ind./m³ and 0.6 g/m³, respectively.

The highest zooplankton abundance was observed in polygon lakes. At the beginning of August, when water temperature was 16°C, it reached 42 thousand ind./m³. Zooplankton biomass was 6.0 g/m³. The average zooplankton abundance was 19 thousand ind./m³, and biomass - 2.5 g/m³. Copepoda were the most abundant (more than 80% of zooplankton in the samples), of these different stages of Diaptomidae were dominant. Cladocera had the highest biomass, and female *Daphnia pulex* comprised 90% of the total plankton biomass.

4.2.4 Further Investigations

Zooplankton of the Olenekskaya channel and terrace lake on the Samoylov Island is taxonomically more diverse than zooplankton of the small polygon lakes. Zooplankton abundance in polygon lakes on Samoylovi Island is twice as high as in the other studied water basins, while biomass is 4-12 times higher. Besides the data on zooplankton abundance, biomass, and age structure of population, we are going to analyze productivity and lifetime of different moulting stages in order to estimate seasonal zooplankton production in different tundra water basins of the Lena delta.

4.3 The avifauna of the northwestern Lena Delta

(Yu. N. Sofronov)

4.3.1 Methods

Field work was carried out from July, 18 until August, 1 in the northwestern Lena-Delta. The islands under-foot-survey were as follows, Babaryna-Belk'ey, Syargalakh-Belkee and northwestern part of Arga-Muora-Sise. Visual observations were done using 10-fold Bristol binoculars. The surveyed distance was 28 km. We used the method of average location range, which is based on the registration of birds together with distance from the observer synchronously. The survey strip was corrected according to local relief. Survey strip was not wider than 100 m for passerines, 200 m for middle sized waders, 400 m for large waders, and 800 m for divers, ducks and gulls. A bird list is given according to Stepanyan (1990), see appendix Table A4-1.

4.3.2 Results and Discussion

Species composition

Totally 22 species were noted which belonged to 5 ordo as follows Gaviiformes – 2 species; Anseriformes – 3 species; Galliformes – 1 species; Charadriformes – 14; Passeriformes – 2. Twelve species, or 54,55% nested in the area among them. They are Gavia stellata, G. arctica, Somateria spectabilis, Lagopus mutus, Larus argentatus, L. hyperboreus, Xema sabini, Sterna paradisaea, Pluvialis squatarola, Calidris minuta, Calcarius Iapponicus, Plectrophenax nivalis. Two more species Arenaria interpres and Charadrius hiaticula (9,09%) were probably nesters according to their defending behaviour. Oversummering species were Clangula hyemalis, Polysticta stelleri, Stercorarius parasiticus (13.62%), they were present in the area, but did not show express breeding behaviour. Calidris alba was recorded as a flying species. Four more species (18.18%) were not distinguished by their status, like Phalaropus fulicarius, Phylomachus pugnax, Calidris ferruginea, C. alpina.

Waterfowl and waders dominated the bird complex. Gaviiformes, Anserformes and Charadriformes provide 86.36% from the number of birds found. Other groups (Galliformes and Passeriformes) provide 13.64%. In late July Calidris minuta and Larus argentatus were the most abundant, making 28.95 and 18.29% from the number of birds recorded. Regular species were Xema sabini, Somateria spectabilis, Lagopus mutus and Pluvialis squatarola, they provided 6.48, 5.90, 5.90 and 4%, accordingly. Other species received a share of 0.19 to 3.24% of recorded birds. Bird population composition was influenced by mass staging of pre-migrating Calidris minuta, which have been observed on the sandy beach of south-west Babaryna-Belk'ey Island.

Number and Distribution

Babaryna-Belk'eye Island

It is the most detailed surveyed island. The avifauna numbers 13 species. We located 48 nests of Larus argentatus, 4 - Larus hyperboreus, 6 - Xema sabini (totally 12 pairs were registered in the small gulls colony), 1 - Sterna paradisaea (four pairs presented), 2 - Somateria spectabilis and 1 nest of Lagopus mutus. Additionally, 2 pairs of Arenaria interpres and 2-3 pairs of Charadrius hiaticula presented on the island with features of breeding behaviour. Flocks of Calidris minuta and Calidris alba were observed feeding on the sandy beach on the south-west side of the island. One to two individuals Calidris alpina joined them sometimes.

Non-breeding pair of Stercorarius parasiticus stayed on the island during the entire period of our work. We observed fledged offspring Plectrophenax nivalis in small number. Calidris minuta dominated on the island (40.6% from population) due to aggregation of pre-migrating flocks, although they did not breed there. The number of migrating flocks of Calidris alba was also significant (8.36%). Among breeders, Larus argentatus was the most numerous (28.66%), Xema sabini (7.16%) made a significant proportion. Charadrius hiaticula, Larus hyperboreus, Sterna paradisaea and Lagopus mutus were common and provide 3.88, 2.39, 2.69 and 2.09% of the total population number.

Arga-Muora-Sise Island

Fifteen species were recorded in the northwestern part of Arga-Muora-Sise Island. Gavia stellata, Gavia arctica, Larus hyperboreus, Xema sabini, Sterna paradisaea, Charadrius hiaticula, Calidris minuta, Lagopus mutus nested there. Brood rearing Pluvialis squatarola were common according to our observation over defending adults. Somateria spectabilis, Clangula hyemalis and, probably, Polysticta stelleri oversummered there. We recorded Calidris alpina, C.

ferruginea and Calcarius lapponicus with unknown status. Gavia stellata, G. arctica, L. hyperboreus inhabited of sandy parts of permafrost lakes. Their densities were 0.54, 0.23 and 0.33 ind./km², accordingly. Non-breeding females of Somateria spectabilis and Clangula hyemalis were present on the same lakes with densities of 1.72 and 2.03 ind/km². Xema sabini had a density of 1.92 ind/km². Pluvialis squatarola were common (1.9 - 2 ind/km²) on dry slopes with Dryas-lichen vegetation. Calidris alpina, C. ferruginea μ Calcarius lapponicus inhabited sandy parts of the second terrace above flood-plains covered with moss-grass vegetation, with densities of 3.75, 2.5 and 1.0 ind/km², accordingly. Brood rearing pairs of Sterna paradisaea were found on the side of Sanga-Djie Bay. Two pairs of Sanga-Djie Bay.

Syargalakh-Belk'ey Island

Ten species were recorded. Gavia stelleri, G. arctica, Somateria spectabilis, Pluvialis squatarola, Calidris minuta and Calcarius lapponicus breed among

them. Stercorarius parasiticus was found oversummering. We also observed females of Phylomachus pugnax and flying young Phalaropus fulicarius of the adult size with uncertain status. Bird population was dominated by Pluvialis squatarola with adensity of 3.13 ind/km². Somateria spectabilis females were common (density 1.72 ind/km²).

Breeding

A colony of 44 nests of Larus argentatus was situated on the hill of 2 m in the mouth of ravine on the south-west side of Babaryna-Belk'ey Island. Single nests (n=4) were located south in the delta. The average nest bowl diameter (n=11) was 468.64 mm (lim 390 - 615); nest diameter (n=11) - 218.64 (lim 205 - 240); height (n=5) - 95 (lim 75 - 115); depth (n=11) - 64.18 MM (lim 46 - 75). The nest distance was from 1.5 to 15 m and averaged 5.7 m. Nests were lined with different parts of cereals with moss and grass as an admixture. Some nests had downs and feathers in lining. Clutches consisted of 1 - 3, on average of 2.36 eggs. Egg dimensions were (n=98) 77.2-66.3 x 54.2-46.3 and averaged 72.13 x 49.97 mm. First pipping was registered on July 25th, the hatching onset started July 28th. Chicks left 14 nests (31.82%) by the 1 of August, on this day 21 nests (47.73%) hatched (early chicks were near the nests while the last ones continued to dry), six more nests (13.64%) were in hatching process. The fate of 3 clutches (6.82%) is unknown: two had 2 cold eggs, one had dead chicks and cold eggs The chick mortality was 7.35%, excluding the last 3 clutches.

A stretched colony of the small gulls Xema sabini and Sterna paradisaea was situated on the southern part of the island. The average nest bowl diameter was (n=5) 127 mm (lim 120 - 135) in Xema sabini. Hatching started on July 18th. On July 19th, one nest had 2 dry chicks 1 day old and 1 egg (infertile). Hatching occurred in other nests this date. Hatching was completed by July 21th, all nests were left by July 23th. The broods stayed on the territory of colony until our departure. Two different age chicks had the following sizes on the July 25th: bill length 14.4 and 15.1 mm; tarsus length 27.8 and 26.4 mm; brushes of primaries 0 and 2.9 mm; primaries length 18.3 and 16.7 mm; secondaries length 10.8 and 8.1 mm. One had egg tooth, while the other had none. Three breeding pairs were observed in northwestern part of Arga-Muora-Sise Island on the July 26th. The birds stayed on the middle size lake of irregular form. The lake has lower sides and is situated in a wet depression. Two young brood swam on the lake. One chick from this brood had the following sizes: bill length 17.2mm; tarsus length 28.6 mm; brushes of primaries 14.6 mm; brushes of secondaries 14.4 mm; brushes of tail 7.6 mm.

A newly hatched young of Sterna paradisaea was found on the territory of a small gull colony on July 19th. On August 1th, we caught a chick with a bill length of 17 mm; tarsus length of 15.7 mm; brushes of primaries of 20.2 mm; brushes of secondaries of 15.8 mm; and brushes of tail of 12 mm.

Nests of Larus hyperboreus on the Babaryna-Belk'ey Island were situated along the coast close to the southern side of the island. One nest on the sandy hillock represented a bowl with a diameter of 280 mm and a depth of 58. The nest

lining was absent. The clutch consisted of two eggs with dimensions of 78.6x51.9 and 76.3x53.9 mm. Single nests were located also in the northwestern part of the Arga-Muora-Sise Island. They were situated on the islets of permafrost lakes on sandy parts of the second terrace above flood-plain.

Two nests of Somateria spectabilis with complete clutches of 4 and 5 eggs were located on the Babaryna-Belk'ey Island. A nest with 5 eggs was situated on gently slope with less abundant vegetation on the foot of the southern side of the island. The nest bowl diameter was 210 mm, the nest diameter 150 mm, the depth 49 mm. The nest was built from steams and leaves of grass, lined by delicate steams of grass. It contained moderate amounts of downs. The egg size had followingvalues: (π =5) 66.0x45.2, 65.9x45.2, 66.6x45.2, 65.8x45.0 and 64.9x44.1 mm. There were no eggs and ducklings in this nest on July 28th. Successful hatching was determined by the presence of membranes. Another nest with 4 eggs was found in the central part of the island. Two eggs were pipping on July 28th. The female was still attendant to the nest on July 30th, but brood left the nest by July 31th. Membranes were found in the nest.

On July 31th we registered a brood with one 2-3 days old duckling on Syargalakh-Belk'ey Island. Two additional females stayed together with brood, but left with the observer approach. Another brood of 6 youngs was older. The ducklings were larger and reached a bit less than half of adult size. The nesting of eiders was influenced by gull Larus and Stercorarius parasiticus predation. During the survey we located two avians destroying eggs of Somateria spectabilis.

Breeding pairs of Gavia stellata were observed on the Syargalakh-Belk'ey Island and in the northwestern part of the Arga-Muora-Sise Island. They prefer small lakes with a diameter not more than 50 m on sandy parts of the second terrace above flood-plain. Two located nests had the following dimensions: nest bowl diamater 380 and 330 mm; nest diameter in both 220 mm, depth of one 47 mm, second one was flat. The first nest had a clutch of 2 eggs (74.0x44.8 and 75.2x44.6 mm). The second clutch hatched on July 26th. A dry chick was found within 0.7 m from the nest, second chick had hatched.

Gavia arctica was distributed similarly to G. stellata, but preferred larger lakes with diameters not less than 700-800 m. The only nest with 2 eggs was located on the Syargalakh-Belk'ey Island on July 31th. The nest was flat, nest bowl diameter was 350 mm, nest diameter 225 mm. The nest was situated on the moss bed within 50 cm from water. The egg size was 82.2x 51.3 and 81.5x50.8 mm. Both species of divers flew to feed on the sea shallow in 3-5 km from nests.

In the third ten-day period of July, chicks of Calidris minuta 3 - 4 days old were registered on Arga-Muora-Sise Island. The chick, which was caught on the Syargalakh-Belk'ey Island on July 31th, had the bill length of 15.0 mm; tarsus length 21.4 mm; brushes of primaries 34.2 mm; brushes of secondaries 21.8 mm; brushes of tail 13.7 mm.

4.3.3 Conclusions

Lower population estimations and numbers were seemingly related to the absence of suitable habitat types for waterfowl. However, nesting success occurred in gulls Larus (Larus argentatus, L. hyperboreus), which nested with normal density. Successful hatching also took place in small gull nests (Xema sabini, Sterna paradisaea). Divers (Gavia stelleri, G. arctica) nested on suitable lakes with normal density.

Breeding conditions were unfavourable for some waders. Pluvialis squatarola was the most common in suitable biotopes. Calidris minuta also was not that numerous, although it made the main part in bird population. Other waders like Phalaropus fulicarius, Phylomachus pugnax, Calidris ferruginea, Calidris alpina were recorded without breeding features.

The role of mammalian predators and miofagial birds was insignificant due to their lower number. Destroyed by gulls or squas, eggs of Somateria spectabilis (shell from 2 eggs) were found on the Syargalakh-Belk'ey Island only. This was also confirmed by the observation of the brood of one here on July 31th.

Stercorarius parasiticus did not nest in this season because of low lemming density (after peak in 2000), but was present on Babaryna-Belk'ey Island and Syargalakh-Belk'ey Island. Another possible reason for the poor breeding season might be the cold spell in early June, when a dense snow cover remained after the birds had arrived in the breeding grounds.

4.3.4 Reference

Stepanyan L.S. 1990. Conspectus of the ornithological fauna of the USSR. Moscow, Nauka. (in Russian)

4.4. Genetics Diversity, Phylogeography and Taxonomy of the Arctic Lemmings

(N.I. Abramson)

4.4.1 Introduction

True or brown (Lemminae) and collared (Dicrostonychini) lemmings are the most common rodents of the recent tundra both in the Old and New World. They occupy a central place in the ecosystem of the tundra. During the so-called "lemming years", which occur every 4-5 years, the ground cover and vegetation are greatly influenced by their tunnels and food intake and eating habits. On the other hand, lemmings themselves provide food for predators like the Arctic fox, weasels, snowy owl, rough-legged buzzard and various species of skuas. However, until now researchers have not reached agreement about the number of lemming species, inhabiting the current tundra landscape, the limits of their ranges, the origin and relationship between species, little is known

of their distribution history and whether their population follows the same or different cycles.

Concerning the taxonomy of brown lemmings (genus *Lemmus*) one of the issues that require clarification is the taxonomic status of lemmings from the Lena River delta (*terra typica* of *L. s. bungei*). As to collared lemmings (genus *Dicrostonyx*), any data on mtDNA structure from this region until now were also unavailable. One of the goals of the current project was to fill these gaps in the knowledge of the lemming biodiversity.

Latest studies, particularly with the use of molecular markers, showed that glacial cycles have impacted the evolutionary trajectories of many extant polar species. Studies performed on organisms found across the Holocene Arctic help to examine the importance of dispersal, vicariance and selection in shaping the distribution of arctic biota, particularly the importance of Pleistocene glacial cycles in influencing the population genetic differentiation and speciation. From this viewpoint both lemming genera represent an excellent model for this kind of study alongside with recent material an excellent fossil record from Late Pliocene to recent is available for both genera. In addition, to afore mentioned taxonomy questions the aim of this project also was to collect material for future analyses using DNA molecular markers to test the hypothesis on how isolation of lineages in separate glacial refugia during the late Pleistocene influenced the present patterns of genetic and morphological variation in collared and brown lemmings and whether these patterns coincide among different taxa.

4.4.2 Background studies

Recent studies on Lemmus taxonomy and zoogeography (Abramson, 1999a, b, Fredga et al., 1999, Fedorov et al., 1999) with application of molecular-genetic and morphological methods to one and the same material has revealed genetic separation of continental Paleocene Arctic populations of L.sibiricus into western and eastern groups with the boundary most likely to be along the Lena River. This separation was not reflected in lemming taxonomy, and recalled the subspecies L.sibiricus bungei, 1925, described from a small sample on the Lena River delta, which failed to receive recognition. Currently the main debate exists about the rank and status of the bungei race. Fredga et al. (1999) assign most importance to differences obtained by analyses of mtDNA and consider bungei to be a separate species. In our viewpoint morphological characteristics favor its status only as a subspecies, while making inferences directly from a quantitative evaluation of divergence obtained during sequencing separate fragments of mtDNA is bound to serious bias (Hendry et al., 2000). Anyway, because material from the Lena River delta directly was not studied with molecular markers, no clear answer can be given as to the status and precise western distribution border of bungei. Moreover, if we accept the hypothesis that the found split into western and eastern groups along the Lena River was caused by isolation in the past by the ice sheet (Fedorov et al., 1999) we may expect to find similar phylogeographic patterns in other species from this region and, if so, palaegeographic reconstruction will be more plausible.

4.4.3 Trapping of lemmings and collection of material in the field

Field work was carried out on Samoylov island from July 20 till August 2, 2001. Lemmings were caught with snap traps, which were set selectively for *Lemmus* and *Dicrostonyx*. The two types of lemmings occupy different habitats; *Lemmus* prefer wet lowlands with Carex, Eriophorum and mosses, *Dicrostonyx* prefer dry and sandy hills with short Salix species and dryas. At the site where the field work was carried out only two kinds of lemmings occur, there are no habitats suitable for voles. Most of the island constitute habitats more suitable for *Lemmus*, no wonder that it is more common than *Dicrostonyx* and easier to catch.

4.4.4 Preliminary results

In the previous summer season (2000) a peak number of both kinds of lemmings occurred in the region. The whole ground cover was dug by lemming pathways and holes. A lot of owl pellets and weasel's and Arctic fox excrements contained remains of lemmings with a predominance of Lemmus. Consequently, as it usually happens in a season following a peak, the number of lemmings was extremely low during the summer of 2001. The author managed to catch 7 brown lemmings and one collared lemming. The data on the age/sex composition of the lemmings caught are given in the table below. Proceeding from the state of the reproductive system and age of trapped brown lemmings we cannot say that we observed the depression stage in the lemming cycle, more likely it was a stage of decline as there were subadult individuals with embryos, a phenomenon typical for the population being at the stage of increase. Each individual trapped was weighed, measured, its reproductive status registered - testis size in males, number of fetuses and fetus scars in females, liver, kidney, heart and thigh muscle were taken and stored in absolute alcohol for future genetic studies.

In the laboratory of molecular systematics "Taxon" in the Zoological Institute RAS, St.Petersburg the total genomic DNA was extracted from liver tissues by overnight incubation at 37°C with proteinase K digestion in extraction buffer (10 mM TrisHCL, pH 8,0, 10 mM EDTA, 50 mM NaCL (phenol/ chloroform/ isoamylacohol, 25:24:1) followed by precipitations with 1/10 vol. 3M NaCl, 3x Polymerase chain reaction (PCR) was carried out with Robocycler in a volume of 25μ l, containing 1 unit DNA polymerase, 0,7 μ l of primer, and 0.2 mM of dNTP.

4.4.5 Further Aspects

It is too early to give a definite answer to any issues listed above, but the quality of the electrophoretic gels is satisfactory, which means that the collection and storage of samples were successful. However, it is more likely that instead of the concept of Lena River delta as a demarcation line between species we would have to recognize a broad hybridization zone in this region. The Expedition LENA 2001

4 Biological Research in the Lena Delta

Figure 4-1: UP-PCR banding profiles, primer L45, numbers correspond to the lemming sampling according to the table1, M- marker

4.4.6 Acknowledgements

The author is extremely grateful to all German and Russian colleagues with whom I worked in the field on Samoylov island and is much indebted to a number of people, especially to Eva-Maria Pfeiffer, Dmitriy Bolshiyanov and others for making this project function. This project was partly supported by the grant 00-04-48849 of the Russian Foundation for Basic Research.

4.4.7 References

- Abramson, N.I. 1999a. Morphometric variation in true lemmings (Lemmus) from the Eurasian tundra. Ambio, 28 (3): 256 –260.
- Abramson, N.I. 1999b. Taxonomy and zoogeography of true lemmings (lemmus): evidence from classical morphology and mtDNA variation data. Proc.of Zool.Inst.RAS (St.Petersburg, Russia), 281:9-14.
- Fredga, K., Fedorov, V., Jarell, G. & Jonsson, L. 1999. Genetic diversity in Arctic Lemmings. Ambio, 28 (3): 261 –269.
- Fedorov, V.B., Goropashnaya, A.V., Jarell, G.H. & Fredga, K. 1999. Phylogeographic structure and mitochondrial DNA variation in true lemmings (Lemmus) from the Eurasian Arctic. J. Evol. Biol., 12: 134 –145.
- Hendry, A.P., Vamosi, S.M., Latham, S.J., Heilbuth, J.C. & Day, T. 2000. Questioning species realities. Conservation Genetics, 1: 67 – 76.

5 Shore erosion processes and sediment flux from eroded islands in the apex of the Lena Delta

(M. N. Grigoriev and W. Schneider)

5.1 Introduction

Accumulation and erosion in the coastal zone and deltas are of major importance for the sediment budget of the Laptev Sea. Sediment balance within the Lena Delta is an open question still. The portion of sediment that is deposited in the Lena Delta and sediment flux from eroded delta's islands is not known. Admittedly, up-to-date sediment flux from the Lena Delta is some more than amount of accumulated deposits in that area.

One of goals of the coastal team was to conduct reconnoitering studies of shore retreat dynamics in the apex of the Lena Delta. In August 2001 27 key sites (Figure 5-1) which are characterized by active shore erosion were investigated in order to estimate a range of shore retreat and the amount of sediment income into the water due to shore erosion. Most studied sites belong to the islands composing the first terrace above flood-lands because the first terrace is a dominating geomorphological level in the studied area. Totally about 50 km of shore cliffs were studied in respect to the rate of erosion processes.

The first part of studies was to evaluate dynamics of only eroded shore sections. In 2001 we did not measure shore transformation in the accumulative or accretive shore sections. That will be our next step.

5.2 Methods

Methods of estimating the shore dynamics are simple in principle. Measurements of the distance between shoreline and some natural landmarks, which can be identified on an aerial photographs or big scale maps, have been carried out with a special tape-line. As natural landmarks mostly small lakes with stable shores were used. Mostly we measured a distance just to the edge of a cliff top excluding the width of the beach. They following analyses of remote sensing material were taken in past decades, and comparisons with our own up-to-date measurements allow us to calculate the average annual retreat rates of selected shores. Aerial photographs (scale 1:40.000 - 1:70.000), topographic maps (scale 1:25.000 -1:100.000) and satellite images were used during field works and office studies. Sediment flux coming from eroded shores was evaluated taking into account an average ice content and a specific density of the deposits composing the shore in the apex of the Lena Delta.

Figure 5-1: Key sites for the measurement of shore retreat rates in the Lena Delta Apex (see Table 5-1).

Table 5-1: Average retreat rates of	f actively eroded shores at the key sites in t	he
apex of the Lena Delta.		

Key sites	Period of shore	Land loss, m	Average
	retreating		retreat rate,
			m/yr
1. Sardakh-Aryta Island	1962-2001	187	4.8
2. Gogolevsky Island	1972-2001	61	2.1
3. Gogolevsky Island	1972-2001	55	1.9
4. Gogolevsky Island	1972-2001	354	12.2
5. Gogolevsky Island	1972-2001	412	14.2
6. Gogolevsky Island	1972-2001	389	13.4
7. Gogolevsky Island	1972-2001	131	4.5
8. Gogolevsky Island	1972-2001	67	2.3
9. Trofimovsky Island	1972-2001	244	8.4
10. Trofimovsky Island	1972-2001	194	6.7
11. Baron Island	1972-2001	267	9.2
12. Baron Island	1972-2001	104	3.6
13. Small Baron Island	1972-2001	157	5.4
14. Small Baron Island	1972-2001	107	3.7
15. Matvey-Aryta Island	1972-2001	136	4.7
16. Matvey-Aryta Island	1972-2001	177	6.1
17. Yrbylakh-Aryta Ialand	1972-2001	78	2.7
18. Samoylovsky Island	1980-2001	29	1.4
19. Samoylovsky Island	1980-2001	34	1.6
20. Samoylovsky Island	1980-2001	61	2.9
21. Samoylovsky Island	1980-2001	71	3.4
22. Samoylovsky Island	1980-2001	40	1.9
23. Samoylovsky Island	1980-2001	40	1.9
24. Samoylovsky Island	1980-2001	32	1.5
25. Samoylovsky Island	1998-2001	44	2.1
26. Sordokh-Aryta Island	1972-2001	46	1.6
27. Matvey-Aryta Usland	1972-2001	96	3.3
Average retreat ra	4.72		

5.3 Results

The main the results of the shore retreat rate studies are placed in Table 5-1. All stations were fixed on the shore of the first terrace and flood-lands in the delta's apex. The average height of the cliffs is about 6 m (3-11 m). The average retreat rate of the actively eroded coast is about 4-5 m/yr. The shores located in front of current of the channels are being destroyed much faster: for example the stations 4-6 (Gogolevsky Island) and station 20-21 (Samoylovsky Island). The maximum retreat rate of the shoreline in the apex of the Lena Delta belongs to Gogolevsky Island (station 5, south-western cape), which divides the two largest channels: Trofimovsky and Sardakhsky. A comparison of the shoreline on aerial photograph of Samoilovsky Island taken in September 1980

The Expedition LENA 2001

with a shoreline taken from satellite image (July 2000) shows that there is a considerable modification of the margins of island for the last 20 years (Figure 5-2). At the same time, the western and northern shorelines on this picture are not so informative because in that case the contour of these low and flooded shores depends mainly on the river-water-level, which can change in wide range.

We cannot yet evaluate the volume of sediments from eroded shores for the whole delta. But such a sediment flux should be quite large. An estimation of sediment flux from studied eroded 50 km shores in the Delta Apex was based on the following parameters: average retreat rates - 4.7 m/yr; length of shoreline - 50 km; average cliff height - 6 m; average ice content - 20%; average specific density of deposits - 1,6 g/cm³. In that way, we can calculate a sediment flux from studied sections:

4.7 m/yr (R) x 50 000 m (L) x 6 m (H) x 0,8 (Ice coefficient) x 1,6 t/m³ (SD) =

1.804.800 t/yr.

taken in September 1980 and shoreline position (white line) taken from satellite image in July 2000.

Figure 5-2: Aerial photograph of Samoilovsky Island (shoreline marked by dotted line)

5 Shore erosion processes and sediment flux The Expedition LENA 2000

5.4 Discussion and conclusion

There is a number of problems concerning sediment balance of the Lena Delta: it is not yet known how much sediment is deposited inside the delta, on the surface of flood-lands, on the delta margins and within near-delta shallows; it is very difficult to estimate the sediment input from eroded sand banks, the volume of bed-load sediment discharge and the spring-flood sediment budget. Nevertheless, the fact that only local sections (50 km length) of the eroded delta's shore can supply about 1,8 m million tons of sediments per year, shows the great importance to erosion processes in the sediment balance of the delta.

We have studied only actively eroded cliffs in the area where water streams are characterized by fastest currents and the highest water levels. Evidently, it is impossible to disseminate obtained sediment flux parameters for the whole Lena Delta. But in any case preliminary studies give the ground to suggest that the sediment flux from eroded shores of the Lena Delta plays an important role in the sediment budget of the Laptev Sea. The Expedition LENA 2001 6 Investigations of run off in Sardakh-Trofimovsky bifurcation point

6 Investigation of Run off in the Sardakh-Trofimovsky Bifurcation Point of the Lena River Delta, East Siberia, Russia, and related River Bed Deformations

(D.Yu. Bolshiyanov, M.V. Tretiakov)

6.1 Objective

One of the tasks of Russian-German expedition "Lena-2001" was the study of water and sediment runoff in second-order bifurcation points in the river's delta. However, it became obvious in the course of the study that one of the largest bifurcation points in the delta, Sardakh-Trofimovsky (72°36'N, 127°07'E), major attention should be paid to understand the river bed deformations and the runoff redistribution within the last decades.

6.2 Previous Research

Not much research work has been carried out in the Sardakh-Trofimovsky bifurcation point (STBP). In 1949, a navigation manual was written for Sardakh Channel of the Lena River delta. In this manual, of prime interest are the results of depth measurements made near the Sardakh-Khaya Island /0/. Though not accompanied by the data on water level, these results show generally small depths in the channel here (not more than 10-11 m) and give an idea of location of the channel's southern bank throughout the channel down to the sea.

Only in the 70s and the 80s the area was re-visited by scientists. These studies improved our understanding of water and sediment runoff redistribution in the STBP. They revealed a depth of as much as 27 meters near the same island. Hence, the channel must have notably increased its depth (from 10-11 to 27 m) within the period of 1949-late 1970s. This can be referred to the headwater erosion that followed the runoff redistribution in favour of Sardakh Channel. Yet in the reports /0, 0/ an active flow in Bolshaya Trofimovskaya Channel along the Bulgun'akhtakh-Aryyta island is mentioned. According to the data of Hydrographic Team of the Tiksi local division of Hydrometeorological Service of the USSR /0/, the runoff in Bolshaya Trofimovskaya Channel in summer low level period was as much as 43 - 52% of the total outflow in both channels. The measurements were carried out at the gauge line no. 5 (see Figure 6-1).

6.3 Measurements of 2001

We made a complex hydrometric study, depth measurements and river bed deformation assessment in the STBP within the framework of the "Lena-2001" scientific program. Flow speed, sediment concentration and depth were measured twice: on July, 29, at the termination of the flood wave, and on August, 22, at the high water period that followed the mid-summer season of low water. Flow speed measurements at selected hydrometric profiles and depth measurements at the profiles were accomplished as required by the

6 Investigations of run off in Sardakh-Trofimovsky bifurcation point The Expedition LENA 2001

Russian Manual for Hydrometric Stations and Posts. The location of profiles, all distances and positions of the boat at velocity verticals were determined by theodolite and GPS. We made four gauge lines (see Figure 6-1). The main one (no.1) runs from the high erosional cliff of the Sardakh-Khaya Island to the sandy shallows Trofim Kumaga. The main flow of the river proceeds here. Profile no. 2 was made in Bolshaya Trofimovskaya Channel, which had played a greater role in the outflow of the Lena River than now. Formerly, this channel was very close to the Bulgun'akhtakh-Aryyta Island near the Trofimovsk settlement. The profile no. 3 is located in Bolshaya Trofimovskaya Channel and begins at Gogolevsky (former Bezymianny) Island. The purpose of the profile no. 4 was to account for the flow that goes eastward by Mastaakh-Uese Channel. The main income of water to the STBP by Bolshaya Trofimovskaya Channel after the junction of the current near the Stolb Island was calculated based on the dependence of discharge on the water levels observed at the observation site "Khabarovo" (formerly known as "Stolb" and "Sokol").

Figure 6-1: Situation map of Sardakh-Trofimovsky bifurcation point

The Expedition LENA 2001 6 Investigations of run off in Sardakh-Trofimovsky bifurcation point

Measurements at the gauge lines and along the beds of Bolshaya Trofimovskaya and Sardakh Channels were made with the sonic depth-finder. By these data, the bed of Sardakh Channel near the Sardakh-Khaya island (profile no. 1) has a pit-like (U-shaped) cross-section, depth up to 28 m. The bottom of the eastern half of the channel is a surface of bedrock covered by coarse-grained alluvium. Judging by the behavior of the anchor, while fixing the boat at the profile, sand must have been deposited in the western half. The bed of the Bolshaya Trofimovskaya Channel after its bifurcation from Sardakh Channel, at the upstream edge of the Gogolevsky island also is pit-shaped (U-shaped) but is worked out in earlier alluvium deposits.

Another set of measurements was carried out along the bed of Sardakh Channel downstream to the seaside. Unfortunately, the data on earlier measurements here were not accompanied by exact location of the measurement sites and water level marks, so that we cannot compare our data with those of previous studies. Nevertheless, obviously the southern bank of the channel is prone to intensive erosion that is definitely seen by the location of erosional cliffs on maps drawn decades ago compared to their contemporary location. Most clear evidence of erosion can be seen in former settlements, e.g., Bouor-Khaya in the Sardakh Channel mouth, where almost all buildings and cemeteries are ruined. The banks of the Sobo-Sise Island are vigorously eroded as well. In its cliffs the deposits of ice complex crop out.

Figure 6-2: Situation map of Sardakh-Trofimovsky bifurcation point at 29.07.2001, water discharge m³/sec (%)

6 Investigations of run off in Sardakh-Trofimovsky bifurcation point The Expedition LENA 2001

Flow speed measurements and water discharge calculation on 29 July show that the sum of measured discharge rates differs by 1.9% (see Figure 6-2) from that in Bolshaya Trofimovskaya Channel calculated based on the relation between water level and discharge. This discrepancy may have arisen from measurement errors of water discharge and measurement error in determination of the said relation. Also, some small flow in almost closed channels north of the main bed of Bolshaya Trofimovskaya Channel (where it turns to the east) could have contributed to it.

The water discharge in Sardakh Channel at the gouge line no. 5 can be derived as

 $Q_5 = Q_1 + Q_2 - Q_3$

where Q_1 , Q_2 , Q_3 , Q_5 are the flows at the profiles nos. 1, 2, 3 and 5, correspondingly.

This calculation made it possible to plot the distribution of 29 July outflow in the STBP on a graph as shown at Figure 6-2.

The second survey (August, 22-23) focused on discharge rates at the gouge lines 3 and 4 only. For this reason, we cannot use in this case the relation applied for calculation of discharge at the gouge line no. 5 on July, 29. Nevertheless, assuming the discrepancy remains the same (1.9% of the discharge in Bolshaya Trofimovskaya Channel), the discharge at the gouge line no. 5 can be obtained as follows:

 $\mathsf{Q}_{5} = \mathsf{Q}_{\mathsf{BTC}} - \mathsf{Q}_{3} - \mathsf{Q}_{4} - \bullet,$

where Q_{BTC} , Q_3 and Q_4 are the discharge rates in Bolshaya Trofimovskaya Channel calculated based on the mentioned relation "level/ discharge" and at the gouge lines nos.3 and 4, correspondingly; •= 0.019• Q_{BTC} . Figure 6-3 shows the discharge distribution in the STBP on 22nd and 23rd of August, 2001.

The observations and measurements of 2001 show considerable changes in runoff and river bed deformations in the STBP. Obtained discharge rates evidence for a decrease of the rate of Bolshaya Trofimovskaya Channel from 43-52% in the 80s to 37-40% now. Sardakh Channel has become deeper. It was being worked out throughout the entire period between the investigations (see Figure 6-4). The depth of its pit-shaped bed near the Sardakh-Khaya Island is as much as 28 m. Particularly spectacular are the changes compared to the data of 1948 /0/. The depth of the channel increased drastically from 10 to 28 m, and so did the width. Bolshaya Trofimovskaya Channel was navigable near the Bulgun'akhtakh-Aryyta island yet in the early 80s (with depth up to 4 m) /0/. Now it has completely degraded and represents a narrow stream with an average depth of 2-4 m and the rate of total flow of not more than 4,3%. The sand bed, called by locals Trofimovskiye Peski, or Trofim-Kumaga, has migrated downstream and formed large shallows in front of the Gogolevsky Island. The main flow now utilizes the Sardakh Channel. In addition, we observed that some small part of it runs from this channel to another one, Bykovskaya, by Mastakh-Uesya.

The Expedition LENA 2001 6 Investigations of run off in Sardakh-Trofimovsky bifurcation point

Figure 6-3: Situation map of Sardakh-Trofimovsky bifurcation point at 22.08.2001, water discharge m³/sec (%)

Clear evidence of bank erosion can be seen throughout the entire Sardakh Channel. This also points to a more rapid flow than before.

6.4 Conclusions

The new data on erosion and runoff redistribution in the STBP show an increasing runoff southward and south-eastward in the Lena River delta. The reason for this phenomenon can be understood by analysis of a regional geographic map. Differentiated tectonic dislocations in this area occurring through Holocene have generally shifted the river flow to the east and then to the south. Previous investigations also did not exclude the tectonic origin of runoff redistribution /0,0/. At present, the delta is being most rapidly augmented in its south-eastern part.

6 Investigations of run off in Sardakh-Trofimovsky bifurcation point The Expedition LENA 2001

Still, the main reason for the changes in the STBP is provided by river bed transformations. The catastrophic events in Sardakh Channel took place because of migration of the Trofim-Kumaga sand bed downstream and consequent plugging of the channel by sand. This led to formation of a narrow but deep erosional trench near the Sardakh-Khaya Island.

Figure 6-4: Dynamics of the Sardakh Channel

6.5 References

- Atlas of Sardakh Channel of 1949// Navigation manual. Tiksi Hydrographic Division.
- Hydrologic Investigation in the Lena River delta in 1985// Technical report. Hydrographic crew (chief P.V.Seleznev), Hydrometeorological Administration, Tiksi, 1986, 88p.
- Study of River Bed and Water Regimes in the Lena River Mouth and Proof for Actions Aimed at Maintenance of Deep-Water Fairway in Navigable Channels of the Lena River Delta and at the Exit to the Open Sea. (Summary of Research Done in 1979-1981) //Technical Report, Moscow State University (chief V.N.Korotayev), Hydrometeorological Administration, Tiksi, 1984, 68 p.
- Korotayev,V.N. Formation of Hydrographic Pattern of the Lena River Delta in the Holocene// Vestnik MGU (Moscow State University Reports), series 5 (Geography), 1984, no. 6, pp. 39-44.
- Grigoriev, M.N. Kriomorphogenesis in the Lena River Delta. Siberian Division of Russian Academy of Sciences, Yakutsk, 1993, 176 p.
- Buinevich, A.G., Rusanov, V.P., Smagin, V.M. Penetration of river water in Laptev Sea by the rates of hydrochemical elements. AANII Proceedings, vol. 358, 1980, pp116-125.
- Ivanov, V.V., Piskun, A.A., Korabel, R.A. Distribution of outflow by principal channels of the Lena River delta. AANII Proceedings, vol. 378, 1983, pp 59-71.

The Expedition LENA 2001 7 Coastal processes and methane dynamics

7 Coastal processes and methane dynamics in the northwestern part of the Lena Delta

7.1 Introduction

(M.N. Grigoriev, H.-W. Hubberten, L. Kutzbach)

During the expedition LENA 2001 team 2 worked in the region of Babaryna Island/Sanga-Dzhie, which is located in the northwestern part of the Lena Delta (73°30-35'N, 123°10-30'E; Figure 7-1) from July 18 to August 3, 2001. The group consisted of three German and five Russian scientists of different disciplines, with two major objectives:

- (1.) to investigate the very specific coastal erosion processes and shoreline dynamics in this area and
- (2.) to acquire the first insights into the CH₄ dynamics of the wide landscapes of Arga Island.

The vast area of the Lena Delta of approximately 28.000km² is by no means uniform in its genesis and its ecological conditions, but can be subdivided geomorphologically into three major terraces plus various modern floodplain levels (Figure 3-2, page 23, Grigoriev 1993). The north-western sector of the delta, about 23 % of the total delta area, is covered by sediments of the second terrace. These sandy sediments build up several big islands, from which Arga Island is by far the largest with an area of 4800km². Arga Island is bounded by the Malaya-Tumatskaya branch in the east, the Tyobyulege branch in the south and the Laptev Sea in the north and west. It shows a very specific landscape structure, which differs substantially from the more western and southern parts of the delta and whose genesis is not definitively explained up to now (Schwamborn et al., 2002).

For the transportation of equipment and scientists to the field and back to Tiks, a helicopter MI-8 was used. The main camp, consisting of several small tents and a larger tent for cooking and work, was established on Babaryna Island, which lies about 2 km west to the coastline of Arga Island (Figure 7-1 and 7-9). A small lake located close to the camp served as a reservoir for drinking water.

The investigations of coastal processes were carried out at several key sites (Babaryna island, Sanga-Dzhie Cape, Babaryna-Tumsa Cape, Sargylakh Island, Channel of Sanga-Dzhie Lagoon, Barrier Islands). Shoreline profiles were measured from the Barrier Islands to the open Laptev Sea combined with sediment and suspension load sampling. In addition, submerged lake basins in the lagoon were studied. For the transportation to the sites, a rubber boat was used starting from the "New Harbor" at the east shore of Babaryna Island.

The studies concerning the CH₄ dynamics were conducted in the region Sanga-Dzhie, which is located on the mainland of Arga Island, close to the coast. This region was chosen as investigation site because it shows all the major landscape elements typical for the second terrace and was attainable from the main camp on Babaryna Island. An auxiliary camp was established at the border of the Lake Ochchugun-Nerpalakh (Figure 7-9, Figure 7-13), and the members of the "methane subgroup" travelled every morning by boat and on foot from Babaryna Island to their investigation site.

7.2 Pecularities of coastal processes and shoreline dynamics of the accumulative-erosive coastal system in the northwest of the Lena Delta

(*M.* N. Grigoriev, F. E. Are, H.-W. Hubberten, S. O. Razumov and W. Schneider)

7.2.1 Introduction

Accumulation and erosion in the coastal zone are of major importance for the modern and ancient sediment budget of the Laptev Sea. The amount of sediment transported by Siberian rivers is relatively well quantified. However, the portion of sediment that is supplied to the shelf from each type of erosive coast sections of the Laptev Sea is only insufficiently known. During the last decade the Laptev Sea coastline dynamics were investigated in detail at a number of erosion coastal sites, mainly along ice-rich coasts. In 1998-2000 coastal investigations were carried out at about 40 key sites in the western central and eastern parts of the Laptev Sea. Nevertheless, there are some gaps in respect to the evolution of the accumulation coastal forms and retreating erosion banks and sandy cliffs in the Lena Delta. Previous studies of northern erosion sandy coasts and eastern banks of the delta (Rachold and Grigoriev, 2000) have shown that the rate of retreat of such shores is quite high - up to several meters per year (average retreat rate is 1.5-2.5 m per year). Such rates are comparable with the rate of retreat of the eroded Laptev Sea coast consisting of an Ice Complex (Are, 1999; Grigoriev, Kunitsky, 2000). However, there was no reliable information about shoreline dynamics in the area where accumulation and erosion processes proceed jointly. Such a section, some 100 km long, which is characterized by active sedimentation in the near-shore zone, was selected on the west coast of the Lena Delta (Figure 7-1).

Preliminary investigations on this coastal section were undertaken in August 2000 (Are et al., 2001, Grigoriev et al., 2001). In July-August 2001, within the framework of the "Laptev Sea System 2000" project, the field studies of the chosen section have been conducted by the coastal team of the Russian-German expedition "Lena 2001". Seven key sites, including retreating erosion sandy shores with low ice content and accretion longshore sandbars (barrier

islands), were investigated in order to define the long-term (about 30 years) rates of shoreline changes.

Figure 7-1: Studied "Babaryna" area, August, 2001: 1 – Barrier Islands (banks);
2 – Surface of the Second sandy terrace (Arga Islands, including small Islands-remnants); 3 – shallows; 4 – Bathymetric profiles; 5 – Up-to-date shoreline position measured by different methods at the key sites; 6 - absolute altitude; 7 – key sites for coastal erosion observations (1-Babaryna Island, 2-Sanga-Dzhie Cape, 3-

Babaryna-Tumsa Cape, 4-Sargylakh Island, 5-Channel of Sanga-Dzhie Lagoon); 8 - Camp

The main goal of investigations during the expedition "Lena 2001" was a quantitative evaluation of the main parameters of the coastal dynamics:

- retreat rates of erosive sandy cliffs of the second delta terrace including adjacent islands,
- motions of beach shoreline,
- displacements of banks and barrier islands.

In 2001 the field coastal processes observations were carried out in the following seven key sites (Figure 7-1):

Station 1: Western coast of Babaryna Island, Second terrace, late Pleistocene-Early Holocene sandy deposits with ice wedges ("Arga Complex"), 8-15 m high coast (Figure 7-2)

Station 2: Sanga-Dzhie Cape, Second terrace, late Pleistocene-Early Holocene sandy deposits, 8-12 m high coast (Figure 7-3)

Station 3: Babaryna-Tumsa Cape, Second terrace, late Pleistocene-Early Holocene sandy deposits with ice wedges ("Arga Complex"), 8-15 m high coast

Station 4: Western coast of Sargylakh Island, Second terrace, late Pleistocene-Early Holocene sandy deposits with ice wedges ("Arga Complex"), 7-13 m high coast

Station 5: Channel of Sanga-Dzhie Lagoon, Second terrace, late Pleistocene-Early Holocene sandy deposits with ice wedges ("Arga Complex"), 8-15 m high coast

Stations 6-7: Low elongated Barrier Islands (banks), recent silty-sandy marine sediments (see Figure7-2).

7.2.2 Methods

Geodetic measurements have been carried out at the key sites, using a laser theodolite Elta 50 R, to obtain the modern areal, horizontal and altitudinal position of the shores. Theodolite profiles and bench marks recorded in the field were identified and compared with the aerial photographs and maps. On erosional shores the position of the cliff base and the cliff upper edge was measured. On accretional shores the subject of measurements was the shoreline. Characteristic terrestrial features, which could be identified on aerial photographs as well, such as sharp turns of small streams, small water bodies, boundaries of different types of vegetation etc., served as natural marks. The Expedition LENA 2001

About 30 aerial photographs (scale 1:50,000) and 10 topographic maps (scale 1:25,000-200,000) were analysed for the study of the north-western coast of the Lena Delta. The remote material was produced in 1969 and covers all key sites listed above. Theodolite profiles and bench marks recorded in the field could be identified in the remote material.

Figure 7-2: Theodolite survey of the Northern Cape of Babaryna Island and vast wind affected mud flat (barrier islands are on the remote edge of the flat), August, 2001.

Figure 7-3: Erosive cliff of the second sandy terrace, Sanga-Dzhie Cape, Arga Island, July, 2001

7 Coastal processes and methane dynamics The Expedition LENA 2001

Furthermore, aerial photos and maps are used for long-term analyses of coastal dynamics of the key sites by computer techniques, which allow to estimate quite precisely an average rate of shoreline retreat and long-term trends of the Laptev Sea coast. Additionally, temperature profiles in the sea-lagoon water column were recorded at several stations. A thermal cable with temperature sensors and mercury thermometer were used for measurements of water temperature on a vertical water profile. Detailed information concerning general goals and methods of multi-stage coastal studies of the joint German-Russian expedition is presented in previous Reports of Polar Research (Rachold and Grigoriev, 1999, 2000, 2001).

7.2.3 Preliminary results

During field work a laser theodolite survey was the main method to determine erosion retreat and accretion rates of the coast. A geodetic survey of 35 km shores lines and cliff top edges has been carried out. The results of our geodetic survey and comparison with aerial photographs allow us to estimate average retreat rates of the coast and trends in the development of barrier islands (July, 1969 – July, August, 2001) at the key sites:

Station 1: Western coast of Babaryna Island – 0.5 m year⁻¹

Station 2: Sanga-Dzhie Cape - 0.9 m year⁻¹ (Figure 7-4)

Station 3: Babaryna-Tumsa Cape - 0.8 m year⁻¹

Station 4: Western coast of Sargylakh Island – 0.7 m year¹

Station 5: Channel of Sanga-Dzhie Lagoon – 0.3 m year⁻¹

Stations 6-7: Low elongated Barrier Islands (banks) - almost 0 m year⁻¹.

Preliminary analyses of our field data show that the rates of shore accretion and retreat are quite moderate in this area. The average rate of cliff retreat is 0.6 m year⁻¹ (0.2-1.5 m year⁻¹). The lowest rates of retreat refer to cliffs blocked by vast shallows, whereas the highest rates refer to sites adjacent to a relatively deep shoreface. We expected to discover a considerable motion of barrier islands towards the land but only marginal parts of barrier islands show a distinct movement to the land. Sandbars are very low and have long accumulative forms, blocking almost the whole western coast of the Delta. Displacements of the crest of the long and narrow barrier islands were measured in both offshore and onshore directions as large as 2.5 m/year during 32 years in several sections. But these islands remain relatively stable. On the whole, the investigated area represents a complicated erosive-accumulative coastal system dominated by shoreline motions towards the land (Figure 7-5).

Sand sediments of the second terrace belong to the Late Pleistocene-Holocene epoch and contain small ice wedges. The average ice content of ground ice is

The Expedition LENA 2001

about 20%. The surface of the second terrace of the Delta is rich in large and deep lakes. Widespread deep lagoons were formed during Late Holocene due to shore erosion and penetration of the see water into the lakes. The morphology of the lagoons completely corresponds to contours and depths of the typical large lakes. The cliffs and surface in near-shore zones are very poor in vegetation due to permanent wind erosion. Sometimes it is not so easy to understand what is more important for the retreat rates of the cliffs in this area: sea erosion or wind erosion, because so much fine sand sediments are reworked by strong wind. As usual, the foot of a cliff is characterized by a very wide beach, which is flooded by sea water from time to time.

Figure 7-4: Aerial photograph of Sanga-Dzhie Cape (Arga Island) taken in June 1969 and the up-to-date position of the cliff top and cliff base recorded in July 2001.

7 Coastal processes and methane dynamics

Figure 7-5: Aerial photograph of "Babaryna" area taken in June 1969 and the up-to-date position of the crest of Barrier Islands recorded in August 2001.
7.3 Bathymetric measurements

(F.E. Are, M.N. Grigoriev, H.-W. Hubberten, S.O.Rasumov and W. Schneider)

7.3.1 Introduction

The field work of the coastal group was concerned with the west coast of Arga-Muora-Sise Island in the Lena River delta (Arga for brevity). A very complicated coastal system unique for the Eurasia Arctic divides land and sea in this area. It plays an important role in the sediment budget of the adjacent Laptev Sea.

About 100 km of the Arga Island west coast is built up of a vast 10-20 m high sand plain with a large number of deep thermokarst lakes. The lake bottoms are situated below sea level. The submergence of these lakes during the last marine transgression has created an extremely embayed coast divided from the sea by a 4-7 km wide lagoon (Figure 7-6). The lagoon is separated from the sea by a chain of long-shore sand bars (barrier islands) about 1 m high. Some parts of these bars are composed of quicksand. Emerged shoals and shallows occupy at least 50% of the lagoon area. The emerged shoals and barrier islands undergo regular flooding. Some remnants of the coastal plain are preserved in the lagoon in the shape of islands as high as 18 m. The geomorphology of the area testifies that the coasts are profoundly altered by coastal erosion in the past (Are and Reimnitz, 2000). Apparently wind surges in Olenek Bay as high as 1.9-2.3 m (Ashik at al., 1999) are a strong driving force of coastal erosion. The area of Babaryna Island (Figure 7-6) was chosen as a key section for the field investigations.

The goals of the bathymetric measurements consisted in the study of geomorphology and bottom sediments of the

- (1) Barrier islands shoreface and
- (2) Submerged lake basins in the lagoon.

7.3.2 Methods

Bathimetryc measurements were carried out by a portable echosounder, installed on a motor boat. The measurements of depth and distance from the starting point were implemented with a 10-second interval. The boat speed was set in a way to get the distance measurement step of about 10 m. The results of the measurements were put into computer in cm for depth, and in metres for distances. The sea floor profile and the boat route could be observed during measurements on a computer display. A grab sampler was used to take bottom sediment samples.

7 Coastal processes and methane dynamics The Expedition LENA 2001

7.3.3 Preliminary results

(1) Barrier island shoreface

Three shoreface profiles were measured (2, 3, and 4 in Figure 7-6). Two profiles (1, and 5), were taken in 1999 from a bathymetric map of 1:100 000 scale, based on data from 1968. Our measurements started from the shore and were carried out until 10 m depth and backward. The sediment sampling was carried out along the back route with 2-m depth interval.

Figure 7-6: Field measurement area. 1-5 – shoreface profile locations and directions.

The geodetic measurements of barrier island position and comparison with topomaps and aerial photographs did not show any considerable displacements during the last 20 (?) years. This means that the modern shape of the shoreface corresponds with the state of the ultimate dynamic equilibrium.

The 10-m isobath shown on the topomaps recedes from the coast in northern direction. The channels connecting the lagoon with the sea turn to the north near their mouth (Figure 7-6). Both these features and existence of longshore bars (Figure 7-7) testify that sediment transport occurs in the northern direction. Accordingly, the slope of the upper part of measured shoreface profiles diminishes in northern direction (Figure 7-7).

Figure 7-7: West coast shoreface profiles of Arga Island

The existence of sediment transport along the stable shore puts a question on the sediment source. Thereby the large disagreements in 10 m isobath position on the measured profiles and on the topomap turn attention (Table 7-1). These disagreements suggest intensive shoreface erosion during the last 15-20 years. For the present it is a preliminary conclusion, because only a topomap was used for comparison. The measured profiles should be compared with more accurate bathymetric maps. Profile 5 in Figure 7-6 is taken from a navigation map, but this profile is located 2.1 km south from profile 4.

Table 7-1: Distance between the shore and 10 m isobath.

Profile		Distance between the shore and 10 m isobath, m			
No. in Fig. 7-7	Name	Measured with echosounder	On the 1:200 000 scale topographic map published in 1987		
2	Sardalakh	3000	4800		
3	Babaryna	1000	4100		
4	Sanga	2000	2400		
5	Sanga	-	2350 ^{*)}		

*) This distance is measured on a navigation map of 1:100 000 scale based on 1968 data.

Kluev measurements (1967, 1970) support indirectly the possibility of shoreface erosion. According to Kluev data 2 and 4 m isobaths along a section of Anabar-Olenyok coast 157 km long moved onshore for 0.5-1.2 km within 20 years from 1942 till 1962. The shore retreated only 80-100 m during the same time.

Mathematical approximation of the measured shoreface profiles is being planned to compare their shape with the shape of similar erosional profiles in the middle and low latitudes. As an example a preliminary approximation of the Babaryna profile is shown in Figure 7-8. The widely used power function $h = A \cdot x^m$ (Bruun, 1954) and

exponential function $h = B(1 - e^{-kx})$ proposed by Bodge (1992)

were applied for approximation. In these expressions h is the depth, x is the distance from the shore, and other parameters are empirical coefficients. Coefficient A reflects the sediment grain size, and m corresponds with the mode of wave energy dissipation along the shoreface.

Looking at Figure 7-8, the fit curve deviations from the measured profile are caused largely by the presence of a 2-m high longshore bar. The values of the coefficient of determination \mathbf{R}^2 testify that the exponential function fits the Babaryna profile somewhat better than the power function does. Outside of the Arctic, according to Bruun (1954) and Dean (1977), the mean value \mathbf{m} equals 0.67 m^{1/3}, and \mathbf{A} along the sandy shores varies in the range 0.06 – 0.2. Thus, the value of hydrodynamic coefficient \mathbf{m} for the Babaryna profile is somewhat higher than its mean value outside the Arctic, and the parameter \mathbf{A} outsteps the limits for sandy shores.

The bathymetric measurements in the mouth of the channel, connecting the lagoon with the sea south from Babaryna Island, have revealed prevailing depth within the range 3-4 m.

Figure 7-8: Babaryna profile (No. 3 in Figure 7-6) with fit curves of two kinds

7.4 Methane-related investigations of soils and waters in the Sanga-Dzhie region

(L. Kutzbach and A. Kurchatova)

7.4.1 Objectives

One of the main aims of our studies on modern processes in permafrostaffected landscapes is to evaluate the CH_4 budget of the Lena Delta on a regional scale. Up to now, studies on CH_4 dynamics were conducted only in the central part of the Lena Delta, on the island Samoylov and its surroundings, where the third terrace, the first terrace, and the modern floodplain levels could be investigated (e.g. Pfeiffer et al., 1999). However, information about CH_4 dynamics in the landscapes of the second terrace, which cover nearly one fourth of the area of the Lena Delta, was absolutely lacking. Major questions were:

Are the landscapes of the second terrace sources or sinks of CH₄?

Which soil types occur on the sandy sediments of the second terrace, and are their properties favourable to CH₄ production?

What is the impact of the different water bodies of the second terrace, especially the large and deep thermoerosional lakes, on the CH_4 budget of these landscapes?

7.4.2 Working plan and methods

a) The landscape of Sanga-Dzhie was described carefully with regard to topography, soils, vegetation, thaw depth, lake occurrence, and CH_4 emission during short inspection tours.

b) Representative investigation sites were chosen for the significant landscape elements (Figure 7-9). Four sites were located on low rises: Site SDS1 at the summit surface of a rise, Site SDS2 at the slope shoulder of a rise, Site SDS3 at a low deflation section on a slope, and Site SDS4 at a coastal cliff. At site SDS1 four sub-sites (a...d) were investigated. Another two sites were located in a deep thermoerosional lake (Ochchugun-Nerpalakh Lake, Figure 7-9, Figure 7-13): Site ONL1 at the vegetated and shallow lake rim, Site ONL2 in the deep lake centre. The geographic position of sites, investigations conducted in the field, type of samples, and planned analyses in the laboratory are listed in Table A7-3. A detailed sample list is provided in Table A7-4.

c) Sites were investigated in terms of CH₄ emission and the controlling ecological factors by different biogeochemical methods depending on the ecosystem type. For the characterisation of soils, reference pits were dug. Soils were described and classified according to the eighth edition of the Soil

Taxonomy (Soil Survey Staff 1998) and the 4th edition of the German field book for describing soils "Bodenkundliche Kartieranleitung" (AG Boden 1994). Airdried soil samples as well as cooled moist samples were taken to investigate soil chemistry and soil microbiology, respectively. At site SDS4, samples of permafrost sediments were taken additionally for radio-carbon dating and pollen analysis. Lakes were characterised by sampling the water column and the underlying lake sediments. The water column was sampled at regular depth intervals to determine water temperature, pH, electric conductivity, concentrations of anions and cations, and content of dissolved CH₄. Three sediment cores were taken by a small gravity corer to analyse sediment chemistry, sediment micromorphology, and the methanogenic microbial community.

 CH_4 emission was determined by a closed chamber technique as described by Pfeiffer et al. (1999) with slight modifications for different purposes. For determining CH_4 emissions from soils, PVC chambers were set on PVC frames, which were inserted into the soil, thus closing the headspace. For determining CH_4 emissions from lakes, floating chambers were used. Headspace samples were preserved by injecting them into glass tubes filled with saturated sodium chloride solution and sealed with rubber stoppers and twisted caps. The saturated sodium chloride solution prevented microbial activity and solution processes of gases. Samples were analysed after 10 days by gas chromatography in the field laboratory on Samoylov Island.

7.4.3 Description of the landscape of Sanga-Dzhie with regard to CH₄ dynamics

The landscape of Sanga-Dzhie is characterized by undulating rises with gentle slopes and maximal elevations of 25 m. The rises are pervaded by narrow erosion channels and alternate with wide depressions, in which extensive and deep thermoerosional lakes are situated. Regarding the potential for CH₄ emission, three significant landscape elements can be recognised:

- 1. level to gently inclined summit surfaces of the rises,
- 2. steeper sloped surfaces at the shoulders and backslopes of the rises,
- 3. deep and large thermoerosional lakes in the depressions.

(1.) On the summits of the rises, surfaces are only very gently inclined (< 3 %). Frost cracks, ice wedges and low-centred rectangular polygons are developed, but the polygonal microrelief is weakly pronounced compared to the younger surfaces of the modern delta (Figure 7-10, Figure 7-11). The main frost cracks and correspondingly the polygons are aligned parallel to the contour lines of the rises giving the slopes a complex, step-like shape. Because the uplifted rims of the polygons are orientated across the slope gradient, water cannot drain freely downhill and accumulates in the polygon centres. In most of the polygon

centres, the water level is below the soil surface, but in others there is water standing above the soil surface, or even polygonal mires have developed. In the areas with the least inclination, shallow thermokarst mires with depths of 0,5 m and diameters up to 30 m are common. Where the water level is below the soil surface, vegetation is dominated by sedges (e.g. *Carex aquatilis, Eriophorum scheuchzeri*) and mosses (e.g. *Oncophorus wahlenbergii, Andreaea rupestris*) with minor shares of lichens and dwarf shrubs. Where the water level is above the soil surface, vegetation consists almost solely of sedges and hydrophytic grasses (e.g. *Carex aquatilis, Arctophila fulva, Dupontia fisheri*). The hydrological conditions as described above suggest soil properties favourable for methanogenic microorganisms. Site SDS1 (sub-sites a...d) represents this landscape unit.

(2.) On the shoulders and backslopes of the rises, surfaces are more steeply inclined (5...8 %) than on the summits. No ice-wedges are developed, but nonsorted nets with cell diameters of about 0,5 m are characteristic (Figure 7-12). The cells of the net are outlined by polygonal cracks, but also weak signs of cryostatic soil mixture and outflow of mud can be seen on the surface. The vegetation is obviously different from that on the rise summits. It is sparse and consists mainly of lichens (e.g. *Ochrolechia frigida*) and dwarf shrubs (e.g. *Cassiope tetragona, Salix nummularia*) showing dry soil conditions. The drier hydrological conditions suggest soil properties which are not optimal for methanogenesis. Site SDS2 represents this landscape unit.

(3.) Along the watershed of Arga Island, numerous large and deep thermoerosional lakes have developed, which show a characteristic shape and a specific bathymetry (Schwamborn et al. 2002). They are elliptical, prolonged, and their long axes are regularly orientated approximately in North-South direction. In the central part of these lakes, deep lake basins are located with water depths in the range of 10 to 30 m. These deep basins are surrounded by extensive shallow rims with water depths of less than 2 m. From the shallow rims to the deep basins, the lake bottom drops down abruptly with a very steep slope. Beneath the lake basins, profound taliks (unfrozen sections of ground within permafrost) with depths of up to 100 m are formed (Schwamborn et al. 2002). Investigating CH₄ dynamics in permafrost landscapes, the deep lakes of Arga Island are of particular interest because it is suspected that CH₄ produced and stored in deeper layers of permafrost or even thermogenic CH₄ could be released to the atmosphere via the taliks beneath these lakes. One of these lakes was studied during our expedition: the Lake Ochchugun-Nerpalakh (Figure 7-13), which is located closely to the coast and was best attainable from our main camp on Babaryna-Belkee Island (Figure 7-9). With a length of 3 km and an area of 3,6 km², Lake Ochchugun-Nerpalakh is one of the smaller deep thermoerosional lakes of Arga Island. Sites ONL1 and ONL2 represent this lake.

Figure 7-9: Map of the region Sanga-Dzhie / Babaryna-Belkee with investigation sites. Geographic position of sites, investigations conducted in the field, type of samples, and planned analyses in the laboratory are listed in Table A7-3.

7 Coastal processes and methane dynamics

Figure 7-10: The tundra of Sanga-Dzhie viewed from helicopter; the orthogonal network of frost cracks can be seen.

Figure 7-11: Typical tundra surface on the summits of the rises in the Sanga-Dzhie region. A pattern of rectangular ice-wedge polygons can be observed, but the microrelief is only weakly pronounced. In the background, Lake Ochchugun-Nerpalakh can be seen.

Figure 7-12: Typical tundra surface on the steeper slopes of the rises in the Sanga-Dzhie region. Non-sorted nets with cell diameters of about 0,5 m are characteristic.

Figure 7-13: The northern part of Lake Ochchugun-Nerpalakh, one of the smaller typical deep and large thermoerosional lakes of Arga Island – view toward east north east from helicopter.

7.4.4 First Results

7.4.4.1 Soils of the Sanga-Dzhie region and their relevance to CH₄ dynamics

All investigated soils had in common a fine-sandy parent material and more or less strong marks of cryoturbation. Thus, they all were classified as Turbels. However, they differed clearly with regard to water balance and content of organic matter due to the diversified relief of Sanga-Dzhie. On the weakly inclined summit surfaces (site SDS1), Typic Histoturbels were found (Table A3-2 part 27). Here, water could not drain freely, so that soils were moist to wet, and organic material was accumulated forming peat horizons. Cryoturbation marks were observed, but only to a minor degree. At steeper slopes (site SDS2), where drainage was more intense, Psammentic Aquiturbels were found (Table A3-2, part 26). These soils were dry in the upper soil but showed glevic characteristics in the lower soil. Organic content in these soils was low, and no histic horizons had developed. Marks of cryoturbation were prominent. These soils were influenced both by frost-creeping and cryostatic mixing. At a deflation cliff (site SDS3), a Typic Psammoturbel was described (Table A3-2, part 28; Figure 7-14). This soil was well drained and had a very low organic content. A former soil surface was buried by recent aeolian sedimentation of fine sands. Ice-wedges were thawed to a depth of 1.2 m. The position of the former ice-wedge could be recognised by a band of intensive iron oxide accumulation (pseudomorphosis), which was noted as cryoturbation.

At a coastal cliff at Cape Babaryna-Tumsa (Site SDS4), a cliff section of 3.2 m depth from soil surface was studied (Table 7-2 and Table A3-2, part 29). At the top of the section a poorly-developed *Typic Psammorthel* was found in fine-sandy eolian sediments. These sediments buried an autochthonous peat horizon, that was now situated below the permafrost table (1.6 - 1,4 m). The peat horizon was ice-rich and contained the remains of a former ice-wedge. Additionally to standard geochemical analyses, the peat samples will be studied by radio-carbon dating and pollen analysis.

The active layer depths in the Sanga-Dzhie region were between 35 and 120 cm at the end of July 2001. The large melting depth on the second terrace unlike on the other geomorphological levels is due to the sandy sediments. Differences of active layer parameters are caused by site location, moisture regime and vegetation characteristics (Table A7-2). The minimal melting depth was found in the center of a polygon, and maximal depth was discovered on the sandy slope ridge of a lake depression.

Hydrological conditions were reflected in CH₄ emissions from particular soils (Table 7-3). The CH₄ emission from the *Typic Histoturbel* at the moist tundra site (SDS1a) was moderately high with $25.32 \pm 7.1 \text{ mg m}^{-2} \text{ d}^{-1}$. At a wet, swampy tundra site (SDS1b, 5 m distant from site SDS1a), the CH₄ emission amounted to $63.8 \pm 17.8 \text{ mg m}^{-2} \text{ d}^{-1}$.

In contrast, the CH₄ emission from the *Psammentic Aquiturbel* at the drier site SDS2 was very low with 0.4 \pm 0.3 mg m⁻² d⁻¹.

Figure 7-14: Soil profile of *Typic Psammoturbel* at a deflation cliff at a slope of a rise, Sanga-Dzhie (Site SDS3).

Date	2.08.01
Location	Arga N 73°34,51′; E 123°21,82′
Elevation	8 m a.s.l.
Soil type	Typic Psammorthel (poorly-developed)
Depth, m	Description
0-0,3	fine sands, density: <1, organic content: 1-2%, weakly rooted (5-10%).
0,3-0,9	alternation of peat and sandy layers (1-2 cm), density: 3, organic content: 5-10%, very weakly rooted (2-5%)
0,9-1,6	the same horizon, but frozen, massive structure, close to young ice vein, ice and organic content are increased (10%)
1,6-1,7	autochthon slightly decomposed moss peat with fine sands, organic content: >30%

Table 7-2: Description of coastal cliff section at Cape Babaryna-Tumsa, site SDS4

7 Coastal processes and methane dynamics The Expedition LENA 2001

1,7-1,9	alternation of sandy peat and fine sands, organic content: 15-30%
1,9-2,4	deformed layer of sandy peat with high ice content, organic content: 15-30%
2,4-3,2	grey fine sands with 30% of iron-oxide spots, old ice wedge, organic content 0,5-1%

7.4.4.2 Hydrochemistry and CH₄ emission of different waterbodies of Sanga-Dzhie

The large thermoerosional Lake Ochchugun-Nerpalakh was well-mixed by strong winds at the time of investigation. Values of pH, electric conductivity and water temperature were very homogenous in the whole water column (Figure 7-15). pH was slightly acid with 6.3 ± 0.04 . Electric conductivity was very low with $83.3 \pm 0.26 \ \mu\text{S} \ \text{cm}^{-1}$ indicating a low nutrient status. The CH₄ content was low with $0.77 \pm 0.13 \ \mu\text{g} \ \text{L}^{-1}$ between 1 m and 11 m depth. Only directly at the water surface, CH₄ content was slightly higher ranging from 4,12 $\ \mu\text{g} \ \text{L}^{-1}$ at 0,5 m depth to 98,64 $\ \mu\text{g} \ \text{L}^{-1}$ at 0,1 m depth suggesting an uptake of atmospheric CH₄ via the water surface (Figure 7-16). Lacustrine deposits were composed of fine sands with low organic content. The cores (30cm) could be divided into three horizons: the lower part – grey gley sand, a transitional horizon – greyish-orange sediment, and the upper part of the core – rusty organic sandy silt. Cold water enriched by dissolved oxygen caused oxidation of the upper lacustrine sediments and evidently leads to the accumulation of iron oxide.

On the whole, CH₄ emission from Lake Ochchugun-Nerpalakh was low (Table 7-3): In the deep centre (site ONL2), no emission was observed (Table 7-3, Figure 7-17). Only at the narrow vegetated rims (site ONL1), a low emission rate of $8,7 \pm 4,6$ mg m⁻² d⁻¹ could be measured.

The water of a small thermokarst lake (\emptyset 15 m, depth 0,5 m) at Site SDS1 was medium acid (pH: 5,81) and had a low electric conductivity of 113,7 μ S cm⁻¹. CH₄ emission was high with 44,8 ± 7,7 mg m⁻² d⁻¹ at a vegetated site (SDS1c). At an unvegetated site (SDS1d), CH₄ emission was much lower with 4,0 ± 3,1 mg m⁻² d⁻¹ (Table 7-3).

Table	7-3:	CH₄	emission	from	different	landscape	elements	of	Sanga-Dzhie,
		each	1 3 paralle	ls.					

Site	Description	Date	CH ₄ flux (mg m ⁻² d ⁻¹)		
SDS1a	moist tundra, Typic Histoturbel	26.07.01	25,32 ± 7,1		
SDS1b	wet, swampy tundra	24.07.01	63,8 ± 17,8		
SDS1c	small thermokarst mire vegetated	26.07.01	44,8 ± 7,7		
SDS1d	small thermokarst mire unvegetated	25.07.01	4,0 ± 3,1		
SDS2	dry tundra, Psammentic Aquiturbel	29.07.01	0,4 ± 0,3		
SDS3	dry tundra, deflation cliff, Typic Psammoturbel	-	-		
ONL1	large thermokarst lake, vegetated rim, 0,2 m water depth	23.07.01	8,7 ± 4,6		
ONL2	large thermokarst lake, unvegetated centre, 11m water depth	27.07.01	0,1 ± 0,01		

Figure 7-15: pH, electric conductivity and water temperature plotted against water depth, Lake Ochugun-Nerpalakh (Site ONL2), 25 July 2001.

Figure 7-16: CH₄ content plotted against water depth, Lake Ochchugun-Nerpalakh (Site ONL2), 25 July 2001.

Figure 7-17: Measurement of CH_4 emissions in the centre of the Lake Ochchugun-Nerpalakh (Site ONL2) on 27 July 2001. CH_4 emission rate was calculated from the change of CH_4 concentration inside the floating chambers over a time span of 24 hours: No CH_4 emission was observed!

The Expedition LENA 2001 7 Coastal processes and methane dynamics

7.4.5 Conclusions and prospects

The conducted investigations show clearly that the landscapes of the second terrace are relevant sources of CH₄ and have to be considered in CH₄ emission assessments on the regional scale. Large parts of the landscape are characterised by poor drainage. Moist to wet soils with histic properties and shallow thermokarst mires are common providing favourable conditions to methanogenic microorganisms. Consequently, CH₄ emission rates are high, in the same magnitude as reported from the central Lena Delta. Only at steep slopes, dry soils are situated with low or no CH₄ emission. The interesting pattern of soil and vegetation types, which depends on relief position and controls spatial variability of CH₄ emission, should be investigated more intensively in the future.

The assumption that the large and deep thermoerosional lakes of the second terrace are major sources of biogenic or even thermogenic CH_4 could not be verified. Our studies suggest that these nutrient-poor lakes are no sources of CH_4 but rather sinks of atmospheric CH_4 . This unexpected result should be rechecked in the future by investigating a second lake of this type over longer time periods.

The sediments of the second terrace were described in literature as extremely organic-poor, thus complicating age determination. In the region Sanga-Dzhie, buried peat horizons could be observed at several shore cliffs in frozen sediments. The investigation of these horizons by radio-carbon dating and pollen analysis will probably give new insights in to the puzzling landscape history of the second terrace.

7.5 Bathymetry and biogeochemistry of "Sanga-Dzhie Lagoon" and "Sanga Lake Lagoon" at the western coast of Arga Island

7.5.1 Objectives

The coast of Arga Island is subject to intense erosion processes (cf. Chapter 7.2). Due to these processes, several large and deep thermoerosional lakes, which are close to the coastline, have gained direct contact to the sea and have been transformed into brackish lagoons. These lagoons are obviously very specific ecosystems with an interesting genesis and biogeochemistry. We examined two lagoons, the Sanga-Dzhie Lagoon south-west of Babaryna Island, and the Sanga-Lake Lagoon close to Ochchugun-Nerpalakh Lake. The second lagoon was called "Ugly Laguna" in the field (Site UL, Figure 7-7, Table A7-3, Figure 7-18), because a substantial outgassing of hydrogen sulfide could be observed by intense smell.

7 Coastal processes and methane dynamics The Expedition LENA 2001

Our goal was to characterise the bathymetry and biogeochemistry of these lagoons as specific landscape elements of the transition zone between marine and terrestrial permafrost geosystems.

Figure 7-18: The eastern part of Sanga-Lake Lagoon, Site UL.

7.5.2 Methods

<u>Bathymetry</u>: For the study of the underwater topography of the lagoons, depth profiles were taken using a portable echosounder fixed to the rubber boat. Depth and travel time were recorded every 10 seconds, and the obtained data were transferred to a computer for later processing.

<u>Temperature measurements</u>: Temperature profiles in the water column of the lagoons were recorded at several stations. A thermal cable with temperature sensors and a mercury thermometer were used for the measurements of water temperature on a vertical water profile. Additionally, three temperature data loggers were fixed at depths of 1.0, 8.5 and 10.3 m in the Sanga-Lake lagoon for the time period July 21 to August 1.

The <u>biogeochemistry</u> of the lagoon was investigated by sampling the water column and the underlying sediments. The water column was sampled at regular depth intervals to determine water temperature, pH, electric conductivity, concentrations of anions and cations, and content of dissolved CH_4 . Three sediment cores were taken by a small gravity corer to analyse sediment chemistry, sediment micromorphology and the community of methanogenic and sulfate-reducing microorganisms. A detailed sample list is provided in Table A7-4.

7.5.3 First results

<u>Bathymetry</u>: The bathymetric profiles were processed and plotted as depth counter maps and threedimensional underwater topographic pictures (Figure 7-19). From this figure, the former elongated structure of the typical Arga lakes is obvious and explains the formation of these lagoons from flooding of older lakes due to coastal erosion. A similar picture was obtained for the Sanga-Dzhie lagoon, which reaches a maximum depth of about 20 m.

<u>Sediments cores</u> of the Sanga-Lake lagoon were 50 cm in depth and were characterised by black colour, a high content of organic matter, and a strong smell of hydrogen sulfide (sample ID LD01 8211-8213).

Profiles of water temperature, pH, electric conductivity and dissolved CH₄ showed a very stable stratification of the lagoon at the time of investigation (Figure 7-20, Figure 7-21).

The pH value was neutral to weakly basic. Electric conductivity was in the upper part of the water column about 12 mS cm⁻¹ and increased with depth to 95 mS cm⁻¹. The heavier saline water was at the bottom, and the freshwater stayed on top with only weak mixing.

The temperature profiles recorded in both lagoons are shown in Table A7-1. The most interesting observation was made in the deepest part of Sanga-Lake lagoon where a layer of positive temperatures occurred, probably due to bacterial activity in the uppermost layers of the bottom sediments. The temperatures recorded over the time of 10 days in Sanga-Lake lagoon showed a gradual increase from 6 to 14°C at 1 m depth and a constant temperature for the two lower loggers of -2.3°C.

The content of dissolved CH₄ was very high in the deep part of the water column with up to 7,7 mg L⁻¹. In this lagoon high concentrations of CH₄ and hydrogen sulfide exist in parallel. This is surprising because in marine environments the production of hydrogen sulfide by sulfate-reducing microorganisms typically inhibits the production of CH₄ in great quantities. The question comes up, whether the observed high CH₄ content was produced only recently in the lagoon sediments or is released from deeper permafrost or talik sediments. Laboratory experiments will be conducted to investigate if methanogenic microorganisms can be active under these very special conditions of the lagoons of the Sanga-Dzhie / Babaryna-Belkee region.

Figure 7-19: Course and depth plot for the bathymetric profiling of Sanga-Lake lagoon and three dimensional picture of the underwater topography.

Figure 7-20: pH, electric conductivity and water temperature plotted against water depth, Ugly Laguna (Site UL), 28 July 2001.

Figure 7-21: CH₄ content plotted against water depth, Ugly Laguna (Site UL), 28 July 2001.

7.6 References

- AG Boden (1994) Bodenkundliche Kartieranleitung. 4th edition. Stuttgart: E. Schweizerbartsche Verlagsbuchhandlung. 392 pp.
- Are, F. E. (1999): The role of coastal retreat for sedimentation of the Laptev Sea. – In: Kassens H. et al. (ed.), Land-Ocean Systems in the Siberian Arctic. Dynamics and History. Springer-Verlag, 287-295.
- Are, F.E. and Reimnitz, E. (2000) An overwiev of the Lena River delta setting: Geology, Tectonics, Geomorphology, and Hydrology. J. of Coastal Research, Vol. 16, No. 4, 1083-1093.
- Are, F. E., Grigoriev, M. N., Rachold, V., Hubberten, H.-W., Rasumov, S. O. and Schneider, W. (2001): Shoreface profiles of the central and western Laptev Sea coast. – In: Russian-German Cooperation SYSTEM LAPTEV SEA 2000: The Expedition LENA 2000. Reports on Polar and Marine Research, Bremerhaven, Germany, 388: p. 60-64.
- Ashik, I., Dvorkin, Y. and Vanda, Y. (1999) Extreme oscillations of the sea level in the Laptev Sea. In: Kassens, H. et al., (eds.), Land-Ocean systems in the Siberian Arctic: dynamics and history, Springer-Verlag, 37-41.
- Bodge, K.R. (1992) Representing equilibrium beach profiles with an exponential expression. J. Coastal Research, Vol. 8, No. 1, 47-55.
- Bruun, P. (1954) Use of small-scale experiments with equilibrium profiles in studying actual problems and developing plans for coastal protection. Trans. Amer. Geophys. Union, 35, 445-452.
- Dean, R.G. (1977) Equilibrium beach profiles: U.S. Atlantic and Gulf coasts. Department of Civil Engineering, Ocean Engineering Report No. 12, University of Delaware, Newark, Delaware.
- FAO (Food and Agriculture Organization of the United nations) (1998) World Reference base for Soil Recourses. World Soil Recources Reports 84. Rom: FAO. 88 pp.
- Grigoriev (1993) Cryomorphogenesis of the Lena River mouth area. Yakutsk, SO AN SSSR, 176 pp. (in Russian.)
- Grigoriev, M. N., Are, F. E., Rachold, V., Hubberten, H.-W., Rasumov, S. O. and Schneider, W. (2001): Coastal dynamics in the western Laptev Sea. – In: Russian-German Cooperation SYSTEM LAPTEV SEA 2000: The Expedition LENA 2000. Reports on Polar and Marine Research, Bremerhaven, Germany, 388: p. 54-59.

- Grigoriev, M. N. and Kunitsky, V. V. (2000): The Ice Complex of the Yakutian Arctic coasts as a source of sediments on the shelf. - In: Hydrometeorological and biogeochemical research in the Arctic. Proceedings of Arctic Regional Center (Vladivostok), Vol 2/1: 109-116 (in Russian).
- Jelovskaya L.G. (1987). Classification and diagnostics of Yakutian permafrost soils. Yakutsk, 172 pp.
- Kluev, E.V. (1967) The role of permafrost factors in the dynamics of Polar sea bottom relief. Abstract of dissertation. Leningrad University, 12 p.
- Kluev, E.V. (1970) Thermal abrasion of Polar sea coastal zone. Transactions of All-Union Geographic Society, Vol. 102, No. 2, 129-135.
- Pfeiffer, E.-M., Akhmadeeva, I., Becker, H., Friedrich, K., Wagner, D., Quass, W., Zhurbenko, M., Zöllner, E. and Boike, J. (1999) Modern Processes in Permafrost Affected Soils. In: Rachold V. and M.N. Grigoriev (ed.) Expeditions in Siberia 1998. Reports on Polar Research 315, 19-80
- Rachold, V. and Grigoriev, M. N. (ed.) (1999): Russian-German Cooperation SYSTEM LAPTEV SEA 2000: The Lena Delta 1998 Expedition. Reports on Polar Research, Bremerhaven, Germany, 315: p.1-259.
- Rachold, V. and Grigoriev, M. N. (ed.) (2000): Russian-German Cooperation SYSTEM LAPTEV SEA 2000: The Expedition LENA 1999. Reports on Polar Research, Bremerhaven, Germany, 354: p.1-269.
- Rachold, V. and Grigoriev, M. N. (ed.) (2001): Russian-German Cooperation SYSTEM LAPTEV SEA 2000: The Expedition LENA 2000. Reports on Polar and Marine Research, Bremerhaven, Germany, 388: p.1-135.
- Schwamborn G., Rachold V. and Grigoriev M.N. (2002) Late Quaternary sedimentation history of the Lena Delta. Quaternary International 89, 119-134.
- Soil Survey Staff (1998) Keys to Soil Taxonomy. 8th edition. Lincoln, Nebraska: USDA-The National Recources Conservation Service. 599 pp.

8 Paleoecological and permafrost studies of Ice Complex

8 Paleoecological and permafrost studies of Ice Complex in the Laptev Sea area (Bykovsky Peninsula)

(A. Sher, S. Kuzmina, O. Lisitsyna, I. Parmuzin, S. Demyankov)

8.1 Introduction, objectives and logistics

Multidisciplinary research of the Late Pleistocene Ice Complex in the Lena Delta (Bykovsky Peninsula, Mamontovy Khayata Cliff) under the Russian-German project "Laptev Sea System 2000" in 1998-99 provided the most detailed, continuous and well dated record of the past environment of the Laptev Shelf Land during the last 50 ka (Schirrmeister et al., 2002). An important component of that study was a unique succession of fossil insect assemblages, which allowed recognizing the trends and stages in the development of landscape and climate in the Late Pleistocene and Early Holocene (Kuzmina, 2001). It was for the first time revealed that the early Karginian and late Sartanian environment had much in common, as the corresponding insect assemblages included a large number of steppe species. That implied a relatively warm and arid tundrasteppe environment that existed under extremely continental climate with summers warmer than today, especially during the latter interval. The late Karginian (35-25 ka) and especially early Sartanian (corresponding to the LGM) were marked by lower summer temperature, but retained essential aridity (Sher et al., 2001).

The previously obtained record, however, included some gaps, and required a finer sampling resolution, especially during the critical periods of environmental changes. Among those periods were the transition from the Last Glacial Maximum (LGM) to the "warm" stage in the Late Sartanian (previously estimated as about 18,000 ¹⁴C years BP), the beginning of the LGM, and the Pleistocene/Holocene transition. Also, an additional characteristics of faunas of the LGM itself (first time discovered in 1999 and based on three samples only) was vitally important. There were also some gaps in the ice wedge sampling for ¹⁸O isotope analysis, which was important to estimate past winter temperature. The earlier obtained geocryological description of the upper part of the Ice Complex sediment was not sufficient enough. Some important geological and permafrost problems, raised by the previous research, remained unsolved. In particular, such questions were insufficiently understood as the observed cyclic character of the Ice Complex deposits, the origin of "paleosol" horizons, the nature of stratified units in the section (sedimentary or purely cryological ?), and the processes, which occurred during the termination of the Ice Complex accumulation and beginning of the early Holocene thermokarst outburst. Finally, it was important to find more mammal bones in situ in permafrost, both for the dating purposes, and for various analyses, such as the oxygen isotope and DNA studies currently in progress.

The Expedition LENA 2001 8 Paleoecological and permafrost studies of Ice Complex

With all those aims and tasks, a Russian team continued the study of Mamontovy Khayata in 2001. The Bykovsky expedition team was organized by the Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences (SIEE RAS) as a part of the research project "Mammoth evolution and environmental changes in northern Eurasia" supported by the Russian Foundation for Basic Research (RFBR grants 01-04-48930 and 01-04-63073). As the planned investigation was directly related to the previous Russian-German work at this site, it was agreed that the Bykovsky team, though logistically and financially independent, would be considered under the umbrella of the Russian-German program "Laptev Sea System 2000".

Besides its leader, representing the organizing institution, the Bykovsky team included four scientists and students from the Paleontological Institute of the Russian Academy of Sciences (PIN RAS), and the Departments of Geocryology and Paleontology of the Moscow State University, all of them being for that period associates of the SIEE RAS. Essential logistic and financial support was rendered by the partner expedition of the Institute of Fundamental Problems of Biology RAS (Pushchino), led by Dr. David Gilichinsky and managed by Victor Sorokovikov. We highly appreciate this support, without which the Bykovsky team work would be hardly possible. We also thank the Lena Delta Reserve, and Mr. Ivan Vorobyov and Dr. Alexander Gukov in particular, for their permanent assistance, and our German colleagues (AWI-Potsdam) for lending some very useful working equipment.

8.2 Methods and field measurements

In the general investigation of the section, we followed the same method, which was successfully used in 1999: the tracing of continuous section through a "chain" of closely positioned baydzherakhs, with some overlap at their tops and bottoms. In 2001, we were able to build such a "chain" from the very top of the section (39 m above sea level, a.s.l.), at its almost highest point, to the depth of about 22 m (Fig. 8-1), which earlier yielded ¹⁴C dates around 35-36 ka (below this level, the radiocarbon dates show some dispersion, and individual layers can be dated with some approximation only). Instrumental survey helped to reconstruct the earlier landmarks, most of which were not preserved since 1998-99, and to correlate with the previous altitude/depth estimates. During the 2001 summer, the thawing of the cliff was quite active, so we had to repeat the depth survey several times and to reconstruct the markers (which were drilled-in sticks along the ice wedges).

The main problem of sampling for macrofossil screening (to obtain insect, plant, bone and other fossils larger than 0.5 mm mesh) was common for the study of permafrost sediments. To obtain a representative number of fossils, which can be used for statistical analysis, a large volume of sediment is required (more than 50 kg). Earlier, such samples were taken from a thawed crust of a layer to be sampled, still preserved in its original place. Normally, to get the necessary volume at once is impossible, even if we are able to take the thawed sediment

Figure 8-1: Position of baydzherakhs and the studied profiles in the upper part of the Mamontovy Khayata cliff (sketch by photo taken on 30.07.2001).

The Expedition LENA 2001 8 Paleoecological and permafrost studies of Ice Complex

from 2-3 m strike of the same layer. Besides the need to come back to the same layer several times for the collecting its newly thawed portion, such a technique has a number of other disadvantages. Some cryolithological varieties do not form such a crust during the thaw, but turn into liquid mud immediately after melting; being confined in sampling to the thawed spots, you often cannot take the sample exactly in the place, where you need it for stratigraphy, etc. That means that large-volume samples should be taken from frozen, undisturbed sediment, which would allow more precise stratigraphic control and minimize possible contamination. We tried several techniques to take such samples, including the chain-saw, chisel and hammer, etc, but none of the instruments was effective. Finally, we came to the usage of a big axe, with which we tried to make a few grooves on a frozen surface, deep enough to eventually chop off a more or less large block of frozen rock (20-30 cm). By this primitive technique it was possible to take one or two samples during the whole day, but some of them turned still insufficient after melting (because of high ice content), and needed additional sediment to be taken later.

Thus, for the first time, most samples were taken not from the thawed sediment on the slope, but chopped from permafrost. In total, 23 samples were taken and screened for fossil insects, mostly from the upper part of the section (Fig. 8-2, Table A8-1, A8-2, A8-3). At the same time, 35 general sediment samples (for pollen, ¹⁴C dating, etc.) were taken (also chopped from permafrost).

For oxygen isotope analysis, ice samples were taken from several ice wedge transects, following the instructions, given by Dr. H. Meyer (AWI-Potsdam). We used a chain saw to cut a transverse step across the ice wedge, and to cut sample blocks every 10 cm from the step. The ice blocks were finally separated by chisel and hammer and put in the pre-labeled zip-bags. After melting under normal temperature and precipitation of most of the sediment, a part of water was poured into sealable sampling bottles. The rest of the sample, after stirring up, was filtered through the 0,5 mm mesh, and the residual dried and put in plastic bags for further study. In total, 110 ice/water samples were taken from 5 transects (see details in the next section).

In course of the cryolithological description of the section, frozen samples were taken to define full moisture content by standard technique (weighing-drying-weighing).

8.3 **Preliminary results**

The geological and geocryological investigation in the top part of the MKh section in 2001 agrees quite well with the observations made in 1999. Although we worked in 2001 only a little aside from the 1999 profiles, we definitely observed different baydzherakhs (bdzkhs), as the rate of thermo-denudation and retreat of the top part of the cliff is very high. Only bdzkh "S" probably represented the remains (the lower part) of the '99's bdzkh "E".

98

The Expedition LENA 2001 8 Paleoecological and permafrost studies of Ice Complex

Figure 8-3: Mamontovy Khayata, 30.07.2001. Side view of baydzherakh "I". Two "marker" units are well visible because of their stratified appearance and steep part in the profile. Behind it - then still preserved - dome of bdzkh "S" with its upper "marker" unit.

Figure 8-4: Mamontovy Khayata, 03.08.2001. The lower "steep" part of baydzherakh "I" with the "marker" unit 11 at 12,2-12,8 m depth.

Nevertheless, the exposure of new bdzkhs revealed the same features of geology and cryolithology of the section that were described in 1999, thus corroborating our earlier observations (Sher et al., 2000). The following regularities were noticed in 1999 and confirmed in 2000:

There are a few levels of baydzherakhs in the upper half of the MKh cliff, and they all have essentially the same construction, reflecting the cyclic character of cryogenic sedimentation. This construction gives similar appearance to most of the baydzherakhs which is explained by the fact that the pattern of exposing and further denudation of each of them is predefined with the same sequence of cryolithological units with peculiar properties. The most noticeable unit (B) forms very steep or vertical step on the bdzkh's seaside front; it has generally darker color and a stratified appearance, and includes abundant grass roots (Fig. 8-3, 8-4). In 1999, we provisionally labeled it as "paleosol", but we were not able to get any strong confirmation either of the soil origin of this unit, or of lithological nature of its stratification. On the contrary, it was concluded that the visually observed stratification was caused mostly by intercalation of horizontal layers with different cryogenic structure (see Unit 6 in "O", Unit 8 in "S", Unit 12 in "I", Table A8.1). Although neither lithological base of this cryogenic stratification, nor the soil origin of this unit cannot be excluded, we prefer now to use more prudent term "the marker unit". The latter is always underlain by silt layer (A) with generally higher ice content, without visible stratification, and forming radiating "ridges" below the "marker unit", i.e. in the lower part of the bdzkh. The "ridges" are formed by exposed frozen sediment, while along the "valleys" between them mud flows creep down. This feature gives the baydzerakhs in the upper part of the MKh cliff their peculiar "octopus"-like appearance (Fig. 8-5, 8-6). The unit (C) above the "marker", forming the upper part of a more or less steep step, normally is enriched with sand particles (sandy silt or silty sand) and sometimes demonstrates horizontal lens-like -wavy lamination. All three units include more or less abundant organic material - grass roots, woody roots and twigs, sometimes peaty spots, but its distribution is uneven, and may have some regularities. For instance, although the grass roots are present in all types of layers, the units of the B-type are most rich for grass roots, which form long furcating systems. Woody roots are common both for the type A and C units, but their maximum concentration was more often observed in C. So, each bdzkh basically includes one cycle of these three units (from the bottom): A, B, and C, about 4-5 m in total thickness. Some of them, however, may cover two cycles (as "S" and "I" in our case) and provide a continuous section 7-10 m long (measured by vertical).

Interesting observations were made on the units of A-type. It turned out that the "ridges" have a slightly different cryostructure from the "valleys" separating them, or they may even have a slightly different lithology. That shows, that the "ridges" and "valleys" are not just random erosional features, but their shape is somehow predefined by their structure. This observation has even raised the suggestion that the ridges include some "xenoliths" of the sediment from the layers above, that was melted, dropped or slid down, and then was refrozen.

The Expedition LENA 2001 8 Paleoecological and permafrost studies of Ice Complex

That is, however, hardly possible to happen in the second half of summer, when thawing and denudation are very fast, the frozen surfaces are "refreshed" every day by loosing several centimeters of frozen ground, and the appearance of some bdzkhs can be hardly recognized after a week. Unfortunately, this phenomenon could not been fully understood, as it requires special subtle studies.

Very informative were the observations on the dynamics of the bdzkh development in course of the cliff denudation, especially in the upper level. Originally, they appear on the upper wall of the cliff as shallow synclinal troughs (up to 2 m deep) in the middle of long ice walls. They all include the Holocene "peat hummock" unit, and look like the insertions into the Pleistocene polygonal system from the top of the Yedoma (Fig. 8-7). With time, however; they gradually come forward from the ice wall, broaden at the base (due to fast melting of ice beneath them). Now they look as very broad trapezoid-shaped baydzerakhs, still mainly attached to the Yedoma surface, with relatively narrow ice wedges between them. Since that time, the process of their separation from the Yedoma starts: for a week or two they look like the capes, still attached to the main surface and covered with tundra sod. The adjoining ice wedges melt very fast, and the more the bdzkh protrudes from the wall, the faster denudation on its sides goes, so at this stage it acquires a typical conic shape and starts to look much narrower than the adjoining ice wedges. By the end of this stage (even before the complete separation from the Yedoma), the bydzkh commonly already has a sub-vertical step in the middle (Unit B) and the "ridges" at the bottom (Unit A) are becoming more and more clear. When the bydzkh finally looses the connection with the Yedoma surface (a longitudinal ice wedge appears between it and the Yedoma), its denudation goes still faster, as it is now exposed from the back side as well. At the same time, more and more frozen sediments are getting exposed at the bottom, and the base of the now "octopus"-like bdzkh becomes very broad, much broader than the adjoining ice wedges. Behind it, the latitudinal ice wedge now forms the upper part of the cliff, and the latter now looks as a continuous ice wall, giving the erroneous impression of extremely wide ice wedges, while a few meters down they look normal (narrower than the bdzkhs are).

Due to the essential similarity of the 2001 exposure appearance to the 1999 one, we were able to provide a provisional correlation with the earlier described units, and thus to estimate preliminarily the age of the new units and the observed sedimentation cycles from the earlier dating. The top level of bdzkhs – "P" and "O" – correlate with "H" and "E" of 1999. They include the Early Holocene "peat hummock" unit, which is dated around 8000 y BP, and the Pleistocene sequence from about 18 to 12 ka. Bdzkh "S" also belonged to that level, but its upper part has already been destroyed, and the increment at its bottom incorporated the sediments of the earlier cycle. Its studied part correlates with the downward extension of "E" (with the date of 19340 y BP) and with the bdzkh "V" of the second level that was dated from 23800 to 20600 y BP. Bdzkh "I" of the second level also covers at least two cycles: one is the

Figure 8-5: Mamontovy Khayata, 24.08.2001. View of baydzherakh "O" in the top level of bdzhks. The "marker" unit at the bottom of the steep part and the "ridges" further down, built by ice silt, suggest the "octopus"-like appearance.

Figure 8-6: Mamontovy Khayata, 30.07.2001. View of baydzherakh "I" from the sea side. The same "marker" unit as in Fig. 8-4.

The Expedition LENA 2001 8 Paleoecological and permafrost studies of Ice Complex

same as the lower in "S" and as "V", the other correlates with the '99 bdzkh "L" and possibly "M" (26-24 ka). An insufficiently studied bdzkh "KS" possibly correlates with "F" (28110 y BP), while the lowermost bdzkhs "W" and "Z" are built with the sediment that most likely was formed within the span of 30-35 ka.

Following the program of our field work, we sampled with greater detail the top of the section and the interval, approximately covering the time span between 20 and 12 ka (taking both macrofossil and sediment samples) (Fig. 8-2, Table A8-1). Samples for screening were also taken with about 1 m interval in the middle part of the cliff (ca 28 to 20 ka). Three samples were also taken from remarkable "twig horizons" in bdzkhs "W" and "Z".

The main conclusion of the preliminary analysis of the 2001 insect assemblages is that the new sampling confirms the earlier recognized pattern of environmental change (Sher et al., 2001), which is a good indication of the high reliability of the method, and adds some additional details to it. The late Karginian insect assemblages, in line with the previous results, indicate a relatively cold and dry climate with low summer temperature. They are usually dominated by xerophilous tundra species, such as ground beetles *Curtonotus alpinus, Pterostichus (Lyperopherus) sublaevis,* weevils *Mesotrichapion wrangelianum, Hemitrichapion tschernovi,* and *Sitona borealis*; very important is the share of arctic insects (weevil *Isochnus arcticus*).

Fully confirmed is the earlier suggested recognition of two different climatic intervals within the Sartanian stage: the earlier, with the sharp dominance of the arctic weevil *Isochnus arcticus,* indicating a very cold environment, and the later, characterized by typical tundra-steppe conditions (evidenced by the presence of steppe species and dominated by the pill-beetle *Morychus viridis*). However, the beginning of the late Sartanian "warm" interval should most likely be shifted to a later time (from previously suggested 18 ka to about 14 ka). A very short-termed episode of warmer summers was found inside the "cold" Sartanian interval (corresponding to the Last Glacial Maximum). The section interval from which this anomalous sample comes requires further study.

The Early Holocene insect assemblages are sharply different from the late Sartanian ones. In 2001, we traced the boundary between the Pleistocene and Holocene deposits in the Mamontovy Khayata main section to a greater detail. It runs at the depth about 2 m. The gray silt member below it, like the Sartanian sands further down, turned out to be dominated by *Morychus viridis* and to include fossils of meadow-steppe (*Coniocleonus cinerascens, C. astragali*) and steppe (*Stephanocleonus eruditus*) species, thus portraying a typical tundra-steppe environment. The brownish-gray silt with peat inclusions above 2 m is dominated by the mesic tundra ground beetles *Pterostichus (Cryobius) brevicornis* and includes thermophilic species, such as the ground beetles *Blethisa catenaria, Diacheila polita, Elaphrus sp., Trichocellus mannerheimi*, the carrion beetle *Blitophaga opaca*, the rove beetle *Philonthus sp.*, the leaf beetles *Chrysomela blaisdelli*, the ant *Camponotus herculeanus*. The assemblage indicates an environment similar to the modern southern shrub tundra or forest-

tundra, and a climate warmer than the present one. Such a striking change in faunal composition confirms the existence of a break in sedimentation, earlier suggested by radiocarbon dating as 3-4 thousand years long. Our previous statement on the smooth transition between the Pleistocene and Holocene beetle fauna should be abandoned as it was based on a single sample B-4, which was taken in 1998 at the boundary between the Pleistocene and Holocene and most likely included fossils from both above and below it.

In the previous sampling for the oxygen isotopes of ice wedges there was a gap between about 18 and 12 ka (Schirrmeister et al., 2002). We were supposed to sample additional ice wedge transects, corresponding to this interval (approx. 9 to 4 m depth). Most of the ice wedges in this interval, however, were too wide, and in fact represented crossing wedges of various directions, so it was not possible to select a normal cross-section of one ice wedge. Finally, we managed to make the transect of one well-exposed ice wedge between the bdzkh "S" and the next to NW at the depth of about 10 m (Transect MKh01-1), and the other between the bdzkh "O" and the next to SE at the depth of 7 m (Transect MKh01-2, Table A8-4, A8-5) (Fig. 8-1).

Trying to understand the geological features of the very top of the Ice Complex section (e.g., why the early Holocene "peat-hummock" layer seems to be rather deeply inserted into the big ice wedges obviously of the Pleistocene age), we made some observations over the ice wedges in this interval. Although the time limitation did not allow us to do any special study of these wedges, we could suppose that there were at least two generations of ice wedges, younger than big (Pleistocene) ice wedges (Type 1). The first (Type 2) had the bodies almost completely inside the big wedges, but their tops protruded a little (ca 20-30 cm) above the upper edge of the big wedge, so that their "shoulders" were clearly related to a younger sediment layer than immediately overlying the big ice wedge. At the same time, they did not seem modern (growing). The second generation (Type C) were the modern and growing ice wedges of smaller size, with clear shoots (stocks) reaching the bottom of the active layer. The best examples of the second were found inside the peat "sinclines", which, as we know, had mostly early Holocene age. The third kind (Type 4 ?) were the wedges, up to 1.5 m width at the top, narrowing downwards, but then broadening and entering the continuous ice wall. They are probably related to the type B, but their upper parts are not within the Pleistocene wedges, but within the ground blocks (later forming baydzerakhs). Besides all that, the upper edge of the big wedges (Type 1) shows many small shoots, intruding the overlying sediment, but hardly reaching the bottom of active layer. So we made two transects and sampled across one ice wedge of Type 4 - at its narrow waist (Transect MKh01-3a), and the broader lower part (Transect MKh01-3b), and one transect of a modern wedge of Type C (Transect MKh01-4) (Table A8.4, A8-5). All the samples are currently being analyzed by Dr. Hanno Meyer in AWI-Potsdam.

An almost permanent search for in situ fossil bones of mammals was not very successful. However, two bones of horses were found in the baydzherakhs of

The Expedition LENA 2001 8 Paleoecological and permafrost studies of Ice Complex

Figure 8-7a,b: Mamontovy Khayata, 30.07.2001. Initial stage of exposing of a baydzherakh of the top level. Currently only the Early Holocene "peat hummock" unit is visible. In a few weeks this ground block will separate from the upper wall as the baydzherakh "P", and soon after will look as "O".

the third level (at the depth about 15-17 m) and three locations of hare bones *in situ* in the upper part of the section (depth 5-7 m) and in its middle part (17 m) (Fig. 8-2). Some samples of these *in situ* bones were kept frozen for further DNA and isotope analyses. Collecting of fossil mammals on the shore and bars (both of Mamontovy Khayata and the Came Mamont) yielded some interesting specimens of mammoth, musk-ox and some other mammals (Table A8-6).

One more result of the summer work was our participation in the description and collection of an Early Holocene moose carcass in the SW part of the general Mamontovy Khayata area, initiated and carried out by the Lena Delta Reserve scientists (Sher et al, in press).

8.4 Further investigations

We believe that the results of our field work will contribute to a better understanding of some questions of the Late Pleistocene and Early Holocene environment. So far, a good progress has been reached in the study of fossil insect assemblages from the new samples, which offer a higher resolution of the record of insect fauna and other natural conditions. As mentioned above, we can estimate an approximate age of fossil assemblages from the previous dating. However, without new additional dates, directly related to the new samples, the value of this detailed record would be much lower. As a minimum program, the following important natural events, revealed by the insect record, require precise dating: the last steppe-like fauna and the earliest Holocene sediment above it (after the break); the transition from the "cold" faunas of the LGM to the first fauna, enriched with steppe components in the Late Sartanian; the beginning of the LGM-correlated cold stage. No funds for the dating are available in our institutions, so we must apply to the Laptev Sea System program or other sources to look for funding for 8-10 AMS dates.

Of the other materials obtained in the course of our field work, only ice isotope samples are currently in work. The future of the other materials, collected in 2001, such as the samples for pollen and other analyses, should be discussed with our German colleagues.

8.5 References

- Kuzmina, S.A. (2001). Quaternary Insects of the Coastal Lowlands of Yakutia. PhD (Candidate) Thesis in Biology. Paleontological Institute, RAS, Moscow,.
- Schirrmeister, L., Siegert, C., Kuznetsova, T., et al. (2002). Paleoenvironmental and paleoclimatic records from permafrost deposits in the Arctic region of Northern Siberia. Quat. Intern. 89, 97-118.
- Sher, A. Gukov, A., Sofronov, Yu., Kuzmina, S., Sulerzhitsky, L. (2002) Moose and tall shrubs: new evidence on the Early Holocene climatic optimum in the Lena Delta. Climate Drivers of the North, Kiel, May 2002 (in press).
The Expedition LENA 2001
 8 Paleoecological and permafrost studies of Ice Complex

- Sher, A.V., Kuzmina, S.A., Kuznetsova, T.V., et al. (2001). The Last Glacial Environment in the Unglaciated Arctic Shelf Land – New Evidence from the Laptev Sea Coast. XI Meeting of the EUG, Strasbourg, April 2001, Symposium EVO6 (QUEEN) <u>http://www.campublic.co.uk/EUGXI/abstracts.html</u>, p. 207
- Sher, A., Parmuzin, I., Bortsov, A. (2000). Ice Complex on Bykovsky Peninsula. In: Russian-German Cooperation: "System Laptev Sea 2000". The Expedition Lena 1999. Edited by V.Rachold and M.N. Grigoryev. Berichte zur Polarforschung, 354, 169-182.

9 Appendix

9 Appendix

Contents:

Table A3-1: Soil types of the central Lena Delta	109
Table A3-2: Soil profile descriptions	114
Table A3-3: Classification of soils of Samoylov Island	143
Table A3-4: Characteristics of soil subtypes in Table A3-3	144
Table A3-5: List of soil and plant samples	146
Table A3-6: List of sediment and water samples	151
Table A3-7: List of ice wedge samples	152
Table A3-8: List of permafrost sediment samples	154
Table A3-9: List of gas samples	159
Table A4-1: List of birds and their status in the study area	
Table A4-2: List of trapped lemmings	
Table A7-1: Water temperature vertical profiles	
Table A7-2: Active layer depth in the Arga region	163
Table A7-3: Investigation sites in the Arga region	164
Table A7-4: List of samples from Arga region	165
Table A8-1: Description of sedimentary units and samples	
Table A8-2: List of macrofossil samples	176
Table A8-3: List of sediment samples	
Table A8-4: Description of ice in the ice wedges transects	
Table A8-5: List of ice wedge samples for isotope study	179
Table A8-6: List of mammal bones on Bykovsky Peninsula	

		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	,				
profile ID	location	altitude a. s. l. (m)	relief	microrelief	water level (cm)	perma- frost depth (cm)	vegetation	substrate	Soil Taxonomy ¹	World Reverence Base ²	Bodenk. Kartier- anleitung ³	Jelovskaya ⁴
LD01- E-01	Samoylov	5	floodplain, level	-		73	Deschampsia caespitosa, Equisetum arvense, Poa viviparum	layered fluviatile sands, mud- layers	Psammentic Aquorthel	Fluvi-Gleyic Cryosol (Arenic)	(Permafrost) Gley-Rambla	Permafrost Alluvial Layered Poorly Developed (Primitive) Sandy
LD01- E-02	Samoylov	11	1. main terrace, delta terrace, gently inclined	centre of low-centred polygon, weak microrelief		21	moss-lichen-tundra; Carex aquatilis, Carex spec., Salix glauca, Dryas octopetala, Arctous erythrocarpa, Saxifraga spec.	shallow autochthonous moss peat above fluviatile sands	Typic Aquorthel	Gleyi-Histic Cryosol (Areni- Fluvic)	(Tundra) Moorgley	Permafrost Peatish Gley
LD01- E-03	Samoylov	11	1. main terrace, delta terrace, gently inclined	low rises: dunes?		99	moss-lichen-tundra, covered by sand	fluviatile und eolian sands	Typic Psammorthel	Areni-Fluvic Cryosol	übersandete Permafrost- Paternia	Permafrost Alluvial Turfness
LD01- E-04	Samoylov	13	1. main terrace, delta terrace, level	centre of low-centred polygon	8	28	Carex aquatilis, Potentilla palustris, Salix glauca, mosses, lichens	shallow autochthonous moss peat above layered fluviatile sands/loams	Typic Historthel	Gleyi-Histic Cryosol (Fluvic)	(Tundra) Moorgley	Permafrost Peatish Gley
LD01- E-05	Samoylov	13	1. main terrace, delta terrace, level	rim of low- centred polygon		29	Carex aquatilis, Salix glauca, Dryas octopetala, Arctous erythrocarpa	shallow autochthonous moss peat above fluviatile sands	Glacic Aquiturbel	Gleyi-Turbic Cryosol (Fluvi- Glacic)	(Tundra) Moorgley	Permafrost Peatish Gley
LD01- E-06	Samoylov	13	1. main terrace, delta terrace, level, close to bluff	centre of high-centred polygon		30	moss-lichen-sedge- tundra	fluviatile sands	Typic Aquorthel	Gleyi-Histic Cryosol (Areni- Fluvic)	(Tundra) Moorgley	Permafrost Peatish Gley
LD01- E-07	Samoylov	13	1. main terrace, delta terrace, level, close to bluff	rim of high- centred polygon		38	sedge-moss-tundra	shallow autochthonous moss peat above fluviatile sands	Psammentic Aquiturbel	Gleyi-Turbic Cryosol (Areni- Fluvic)	(Tundra) Moorgley	Permafrost Peatish Gley

Table A3-1 (page 1): Soil types of the central Lena Delta. August 2001. US-American, international, German, and Russian classification.

109

profile ID	location	altitude a. s. l. (m)	relief	microrelief	water level (cm)	perma- frost depth (cm)	vegetation	substrate	Soil Taxonomy ¹	World Reverence Base ²	Bodenk. Kartier- anleitung ³	Jelovskaya ⁴
LD01- E-08	Samoylov	10	floodplain: "High- Floodplain",, level, close to bluff		58	62	Carex spec., Salix spec.	fluviatile sands	Psammentic Aquorthel	Fluvi-Gleyic Cryosol (Arenic)	(Permafrost) Auengley	Permafrost Alluvial Turfness Gley
LD01- K-01	Kurungnakh	50	at the summit of a pingo, steep slope, alas on the 3. main terrace (ice complex)			70	Salix glauca, Astragalus umbellatus	fluviatile silts, alas deposits	Typic Aquiturbel	Gleyi-Turbic Cryosol	(Permafrost) Hang-Oxigley	Permafrost Tundra Kryoturbit ?
LD01- K-02	Kurungnakh	25	alas depression on the 3. main terrace (ice complex)	centre of low-centred polygon	1	40	Potentilla palustris, Carex aquatilis, Aulacomnium spec., Sphagnum spec.	autochthonous moss peat above fluviatile silts (alas)	Typic Hemistel	Gleyi-Cryic Histosol	(Tundra) Moor	Permafrost Peat-Gley
LD01- K-03	Kurungnakh	25	alas depression on the 3. main terrace (ice complex)	rim of low- centred polygon	20	24	Carex aquatilis, Salix spec., Betula nana, mosses, lichens	autochthonous moss peat above fluviatile silts (alas)	Glacic Histoturbel	Gleyi-Histic Cryosol (Glacic)	(Tundra) Moorgley	Permafrost Peatish-Gley
LD01- K-04	Kurungnakh	40	3. main terrace (ice complex), gently inclined	centre of low-centred polygon, weak microrelief	2	27	Carex aquatilis, Potentilla palustris, mosses	moss- and sedge peat	Typic Hemistel	Gleyi-Cryic Histosol	(Tundra) Moor	Permafrost Peat-Gley
LD01- K-05	Kurungnakh	40	3. main terrace (ice complex), gently inclined	rim of low- centred polygon, weak microrelief	20	25	Carex aquatilis, Salix reptans, Betula nana, Poa spec., Hylocomium splendens	shallow moss peat abov fluviatile silts	Glacic Histoturbel	Gleyi-Histic Cryosol (Glacic)	(Tundra) Moorgley	Permafrost Peatish-Gley

Table A3-1 (page 2): Soil types of the central Lena Delta. August 2001. US-American, international, German, and Russian classification.

110

The Expedition LENA 2001

						perma-	<u> </u>	Ţ				
profile ID	location	aititude a. s. l. (m)	relief	microrelief	water level (cm)	frost depth (cm)	vegetation	substrate	Soil Taxonomy ¹	World Reverence Base ²	Bodenk. Kartier- anleitung ³	Jelovskaya⁴
LD01- L-01	Samoylov	7,5	floodplain, depression, level		65	80	Carex caespitosa, Alopecurus alpinus, Eriophorum sp., Salix glauca, Deschampsia caespitosa, Equisetum arvense, Agrostis stolonifera	layered fluviatile sands, mud- layers	Typic Aquorthel	Fluvi-Gleyic Cryosol	(Permafrost) Auengley	Permafrost Alluvial Turfness Gley
LD01- L-02	Samoylov	8	floodplain, low rise			87	Hedysyarum alp., Oxytropis sp., Polygonum vivip., Castilleja septentr., Koeleria asiati., Armeria maritima, Rumex sp., Parnassia palustris, Salix glauca, Saxifraga hirculus, Dryas punct., Sanguisorba offic., Actous erythroc., Luzula sp., flache Moose	layered fluviatile sands, mud- layers, eolian sands?	Typic Psammorthel	Areni-Fluvic Cryosol	(Permafrost) Paternia	Permafrost Alluvial Turfness
LD01- L-03	Samoylov	7	floodplain, depression in front of bluff of 1. main terrace	- · ·	7	30	Carex caespitosa, Eriophorum angustifolium, Agrostis stolonifera, mosses	moss- and sedge peat	Fluvaquentic Fibristel	Gleyi-Cryic Histosol (Fibri-Fluvic)	(Tundra) Moor	Permafrost Alluvial Muddy- Peat-Gley
LD01- L-04	Samoylov	7,5	floodplain, depression in front of bluff of 1. main terrace	low moss- hillocks	15	45	Salix glauca, Equisetum arvense, Equisetum variegatum, Carex aquatilis, mosses	layered fluviatile sands and silts peat layers	Ruptic-Histic Aquorthel	Gleyi-Histic Cryosol (Fluvi-Fibric)	(Tundra) Moorgley	Permafrost Alluvial Muddy- Peatish-Gley
LD01- L-05	Samoylov	7,5 (1997)	floodplain, gentle slope floodplain to beach		91	98	Alopecurus alpinus, Poa vivipara, Deschampsia caespitosa, Festuca rubra, Tanacetum bipinnatum	layered fluviatile sands, mud- layers	Typic Psammorthel	Fluvi-Gleyic Cryosol (Arenic)	(Permafrost) Gley-Rambla	Permafrost Alluvial Layered Poorly Developed (Primitive) Sandy
		United and the second s			1.	·					• •	

Table A3-1 (page 3): Soil types of the central Lena Delta. August 2001. US-American, international, German, and Russian classification.

Table	A3-1 (page	:4): Soil	types of the co	entral Lena	Delta.	August	2001. US-American,	international, (erman, and	Russian cla	assification.	
profile ID	location	altitude a. s. l. (m)	relief	microrelief	water level (cm)	perma- frost depth (cm)	vegetation	substrate	Soil Taxonomy ¹	World Reverence Base ²	Bodenk. Kartier- anleitung ³	Jelovskaya ⁴
L-06-L-06	Samoylov	9,5	floodplain: "High- floodplain", depression	centre of low-centred polygon, weak microrelief	~	28	mosses, Carex aquatilis	moss- and sedge peat	Typic Fibristel	Gleyi-Cryic Histosol (Fibric)	(Tundra) Moor	Permafrost Peat-Gley
L-001-	Samoylov	Ŧ	 main terrace, delta terrace, gentty inclined, slope step-like due to polygonal ground 	rim of low- centred polygon	55	35	Hylocomium splendens, Carex aquatilis, Dryas punctata, Salix glauca	shallow autochthonous moss peat above fluviatile sands above peat	Glacic Aquturbel	Gleyi-Histic Cryosol (Fibri- Glacic)	(Tundra) Moorgley	Permafrost Peatish Gley
L-001- L-08	Samoylov	F	1. main terrace, delta terrace, gentty inclined, slope step-like due to polygonal ground	centre of low-centred polygon	5	37	mosses, Carex aquatilis, Pedicularis sp., Caltha palustris	moss peat	Typic Historthel	Gleyi-Cryic Histosol (Fibric)	(Tundra) Moor	Permafrost Peat-Gley
LD01-	Samoylov	ى ع	floodplain, depression in front of bluff of 1. main terrace		46	63	Carex caespitosa, Poa vivipara, Eriophorum angustifolium	fluviatile silts	Typic Aquorthel	Fluvi-Gleyic Cryosol	(Permafrost) Auengley	Permafrost Alluvial ayered Poorly Developed (Primitive) Muddy
LD01- L-10	Samoylov	9	floodplain: "High- floodplain", close to slope	centre of low-centred polygon, weak microrelief	40	47	Carex aquatilis, Dryas punctata, Astragalus umbellatus, Salix glauca, Lagotis glauca, Luzula sp., Polygonum viviparum, Arctous erythrocarpus, mosses, lichens	fluviatile sands	Psammentic Aquorthel	Fluvi-Gleyic Cryosol (Arenic)	(Permafrost) Hangoxigley	Permafrost Alluviai Turfness Gley
										+		

9 Appendix

The Expedition LENA 2001

Labic	no-i (page	5). SOI	types of the G	cintrat Lena	Della.	Augusi	2001. US-American,	mernauonai, v	rerman, ano	Kussian cia	assincation.	
profile ID	location	altitude a. s. l. (m)	relief	microrelief	water level (cm)	perma- frost depth (cm)	vegetation	substrate	Soil Taxonomy ¹	World Reverence Base ²	Bodenk. Kartier- anleitung ³	Jelovskaya ⁴
LD01- S-01	Sardakh	10	1. main terrace, delta terrace, level	rim of low- centred polygon		35	moss-sedge-tundra: Dryas punctata, Salix polaris, Salix glauca, Pedicularis spec., Carex spec., and a lot more	shallow autochthonous moss peat above fluviatile sands above peat	Glacic Histoturbel	Turbi-Histic Cryosol (Glaci- Gleyic)	(Tundra) Moorgley	Permafrost Peatish Gley
LD01-	Sardakh	10	1. main terrace,	centre of		22	moss-sedge-tundra	moss- and sedge	Fluvaquentic	Gleyi-Cryic	(Tundra)	Permafrost

peat

Table A3-1 (page 5): Soil types of the central Lena Delta. August 2001. US-American, international, German, and Russian classification.

¹ Soil Taxonomy 8th edition (Soil Survey Staff 1998), ² World Reference Base for Soil Recources (FAO 1998), ³ Bodenkundliche Kartieranleitung 4th edition, ⁴ Jelovskaya, L.G. (1987)

delta terrace,

level

low-centred

polygon

S-02

Histosol

(Fibri-Fluvic)

Fibristel

Moor

Peat Gley

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 1 of 29

serial no.:	1	geogr. latitude:	72°23.280' N	profile type: small pit	permafrost depth (cm): 73	date:	11.08.01		
profile ID:	LD01-E-01	geogr. longitude:	126°28.763' E	profile depth (cm): 75	water level (cm):	editor:	Pfeiffer		
location:	Samoylov	elevation a.s.l. (m) 5		relief: floodplain, level					
substrate:	layered fluviatile sands	s, mud-layers		microrelief: -					
vegetation:	Deschampsia caespitos	sa, Equisetum arvense, P	'oa viviparum						

Soil Tax.: Psammentic Aquorthel WRB: Fluvi-Gleyic Cryosol (Arenic) fv-gl CR (ar)

Jelovskaya: Permafrost Alluvial Layered Poorly Developed (Primitive) Sandy

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test 1	sample number
1	0	2	C1	Ufs	ein	l	10YR3/1	2		0	0	*	
2	2	9	C2	fS	ein	I	10YR4/2	1		3	0	-	LD01-8100
3	9	28	AB	fSu2	koh	2+1	10YR3/1+10YR4/1	2		2	0	-	LD01-8101
• 4	28	47	C3	fS	ein	1	10YR4/2	0		0	0	-	LD01-8102
5	47	75	BgAb	fSl2	koh	2	10YR2/1	3	iiii	3	7-10	+	LD01-8103
6	75		Bgf	fS12	koh	vertee ^{ren en e}	10YR2/1	3			>10	+	
										~		÷	

114

=

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 2 of 29

serial no.:	2	geogr. latitude:	72°23.242' N	profile type: small pit	permafrost depth (cm): 21	date:	11.08.01				
profile ID:	LD01-E-02	geogr. longitude:	126°29.548' E	profile depth (cm): 21	water level (cm):	editor:	Pfeiffer				
location:	Samoylov	elevation a.s.l. (m) 11		relief: 1. main terrace, delta terrace, gently inclined							
substrate:	shallow autochthonous	s moss peat above fluviat	tile sands	microrelief: centre of low-centred poly	gon, weak microrelief						
vegetation:	moss-lichen-tundra; C	arex aquatilis, Carex spe	c., Salix glauca, Dryas	octopetala, Arctous erythrocarpa, Saxifrag	ga spec.						

Soil Tax.: Typic Aquorthel WRB: Gleyi-Histic Cryosol (Areni-Fluvic) gl-hi CR (ar-fv) Jelovskaya: Permafrost Peatish Gley

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax '	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
I	0	8	Oel				10YR3/1	7	2-3	6	0		LD01-8106
							13 a	1					•
2	8	10	Oe2				10YR2/1	7	4	5	0	-	
		1.14						5					
. 3	10	21	ABg	mSu2	koh-s ub	1	10YR3/1	31 3 1 -		3	-5	(+)	LD01-8107
4	21		Bgf	mSu2			10YR3/2	1		0	5-10	+	

and the second second

115

and the second secon

· "是你们的你们,你们们就是你们的你们,你们们的你们,你们们就是你能够做你?""你们的你们,你们们就是你们的你们。""你们,你们们们不是你们的你们,你们们不是你

an an an an ann an Arrainn an Arrainn an Arrainn an Arrainn an Arrainn an Arrainn an Arrainn. An Arrainn a

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 3 of 29

serial no.:	3	geogr. latitude:	72°23.113' N	profile type: small pit	permafrost depth (cm): 99	date: 11.08.01				
profile ID:	LD01-E-03	geogr. longitude:	126°29.971' E	profile depth (cm): 99	water level (cm):	editor: Pfeiffer				
location:	Samoylov	elevation a.s.l. (m)	delta terrace, gently inclined							
substrate: fluviatile und eolian sands microrelief: low rises: dunes?										
vegetation:	moss-lichen-tundra, co	overed by sand								
Soil Tax.: Typic Psammorthel WRB: Areni-Fluvic Cryosol ar-fv CR Jelovskaya: Permafrost Alluvial Turfness										

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil densîty ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
i	0	5	Cl	mSfs	ein	1	10YR6/2	1		1	0	-	LD01-8110
2	5	25	A(b)	fSu2	ein-koh	2	10YR4/2	4		3	0	-	LD01-8111
3	25	43	C2	mSl2	ein	1	10YR6/3	2		1	0	· _	LD01-8112
4	43	99	C3	mSu3	koh-ein	1	10YR4/2	0		0	0	-	LD01-8113
5	99		Cf										

116

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 4 of 29

serial no.:	4	geogr. latitude:	72°22.532' N	profile type: small pit	permafrost depth (cm):	28	date:	22.08.01
profile ID:	LD01-E-04	geogr. longitude:	126°30.253' E	profile depth (cm): 28	water level (cm):	8	editor:	Pfeiffer
location:	Samoylov	elevation a.s.l. (m) 13	l .	relief: 1. main terrace, delta terrace, lev	el			
substrate:	shallow autochthonou	s moss peat above layere	d fluviatile sands/loam	smicrorelief: centre of low-centred poly	gon			

Jelovskaya: Permafrost Peatish Gley

vegetation: Carex aquatilis, Potentilla palustris, Salix glauca, mosses, lichens

117

Soil Tax.: Typic Historthel WRB: Gleyi-Histic Cryosol (Fluvic) gl-hi CR (fl)

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax '	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	15	Oil			1	10YR2/2	7	2	6	0	-	LD01-8116
2	15	21	Oi2			1	10YR2/1	7	1	5	-7		LD01-8117
3	21	28	AB	Siu		1	10YR4/1	5	1	2	-15	+	LD01-8118
4	28		Bf	Slu			10YR3/1	3		0	0		

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 5 of 29

serial no.:	5	geogr. latitude:	72°22.532' N	profile type: small pit	permafrost depth (cm): 29	date:	22.08.01
profile ID:	LD01-E-05	geogr. longitude:	126°30.253' E	profile depth (cm): 29	water level (cm):	editor:	Pfeiffer
location:	Samoylov	elevation a.s.l. (m)	5	relief: 1. main terrace, delta terrace, leve	el		
substrate:	shallow autochthonou:	s moss peat above fluvia	tile sands	microrelief: rim of low-centred polygor	1		
vegetation:	Carex aquatilis, Salix	glauca, Dryas octopetala	, Arctous erythrocarpa				

Soil Tax.: Glacic Aquiturbel WRB: Gleyi-Turbic Cryosol (Fluvi-Glacic) gl-tu CR (fv-gc) Jelovskaya: Permafrost Peatish Gley

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax '	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	8	Oi			1	7.5YR3/1	7		5	0	-	LD01-8121
2	8	17	ABg	fSu3	koh	1	7,5YR3/1	6		5	-7	(+)	LD01-8122
3	17	28	Bjjg	fS1?	koh	2	10YR3/1	3		3	-15	+	LD01-8123
4	28		Bjjf	fS1?			10YR3/2			0			

118

_

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 6 of 29

serial no.:	6	geogr. latitude:	72°22.200' N	profile type: small pit	permafrost depth (cm): 30	date:	23.08.01
profile ID:	LD01-E-06	geogr. longitude:	126°13.341' E	profile depth (cm): 30	water level (cm):	editor:	Pfeiffer
location:	Samoylov	elevation a.s.l. (m) 13	3	relief: 1. main terrace, delta terrace, lev	rel, close to bluff		
substrate:	fluviatile sands			microrelief: centre of high-centred poly	ygon		
vegetation:	moss-lichen-sedge-tun	ndra					

Soil Tax.: Typic Aquorthel WRB: Gleyi-Histic Cryosol (Areni-Fluvic) gl-hi CR (ar-fv) Jelovskaya: Permafrost Peatish Gley

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	6	Oi			1	7, 5YR 2,5/3	7	Al	5	0	-	LD01-8126
2	6	9	BC	fSu3	koh-ein	1	7,5YR4/3	2		3	0	-	LD01-8127
3	9	16	B/Oe	fSl2+ (-)	koh-sub	1	7,5YR3/3	3		1+3	0	-	LD01-8128
4	16	30	Bg	fSu2	koh	2	7,5 YR 4/2	2		1+2	0	-	LD01-8129
5	30		Bgf									<u> </u>	

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 7 of 29

7	geogr. latitude:	72°22.200' N	profile type: small pit	permafrost depth (cm):	38	date:	23.08.01
LD01-E-07	geogr. longitude:	126°13.341' E	profile depth (cm): 38	water level (cm):		editor:	Pfeiffer
Samoylov	elevation a.s.l. (m) 13		relief: 1. main terrace, delta terrace, leve	el, close to bluff			
shallow autochthonous	moss peat above fluviati	le sands	microrelief: rim of high-centred polygo	n ·			
sedge-moss-tundra							
7 [.D01-E-07 amoylov nallow autochthonous edge-moss-tundra	geogr. latitude: .D01-E-07 geogr. longitude: amoylov elevation a.s.l. (m) 13 hallow autochthonous moss peat above fluviation edge-moss-tundra	geogr. latitude:72°22.200' ND01-E-07geogr. longitude:126°13.341' Eamoylovelevation a.s.l. (m)13hallow autochthonous moss peat above fluviatile sandsedge-moss-tundra	geogr. latitude: 72°22.200' N profile type: small pit .D01-E-07 geogr. longitude: 126°13.341' E profile depth (cm): 38 amoylov elevation a.s.l. (m) 13 relief: 1. main terrace, delta terrace, level nallow autochthonous moss peat above fluviatile sands microrelief: rim of high-centred polygo	geogr. latitude: 72°22.200' N profile type: small pit permafrost depth (cm): D01-E-07 geogr. longitude: 126°13.341' E profile depth (cm): 38 water level (cm): amoylov elevation a.s.l. (m) 13 relief: 1. main terrace, delta terrace, level, close to bluff nallow autochthonous moss peat above fluxist microrelief: rim of high-centred polyzon	geogr. latitude: 72°22.200' N profile type: small pit permafrost depth (cm): 38 D01-E-07 geogr. longitude: 126°13.341' E profile depth (cm): 38 water level (cm): 38 amoylov elevation a.s.l. (m) 13 relief: 1. main terrace, delta terrace, level, close to bluff 1 nallow autochthorous: moss peat above fluvie: sands microrelief: rim of high-centred polycome 1	geogr. latitude: 72°22.200' N profile type: small pit permafrost depth (cm): 38 date: D01-E-07 geogr. longitude: 126°13.341' E profile depth (cm): 38 water level (cm): 38 editor: amoylov elevation a.s.l. (m) 1 relief: 1. main terrace, delta terrace, level, close to bluff editor: anlow autochthors: microrelief: rim of high-centred polycentred terrace, level, close to bluff editor:

Soil Tax.: Typic Aquiturbel WRB:

WRB: Gleyi-Turbic Cryosol (Areni-Fluvic) gl-tu CR (ar-fv) Jelovskaya: Permafrost Peatish Gley

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	bumus content ² (b_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	12	Oi				7,5YR3/2	7		· 6	0	-	LD01-8132
2	12	20	AB	fSu2	koh-ein	1	7,5YR3/1	5		3	0	_	LD01-8133
3	20	26	Bg	fSu2	ein	1	7,5YR4/3 + 7,5YR3/2	1		2	20		LD01-8134
4	26	38	Bjjg	fSu2	ein	3	7,5YR4/1	1	·	0	0	(+)	LD01-8135
5	38		Bjjf	fSu2			7,5YR4/1	3		0	0		

120

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 8 of 29

serial no.:	8	geogr. latitude:	72°20.217' N	profile type: small pit	permafrost depth (cm):	62	date:	23.08.01
profile ID:	LD01-E-08	geogr. longitude:	126°29.515' E	profile depth (cm): 62	water level (cm):	58	editor:	Pfeiffer
location:	Samoylov	elevation a.s.l. (m) 10)	relief: floodplain: "High-Floodplain",,	level, close to bluff			
substrate:	fluviatile sands			microrelief:				
vegetation:	Carex spec., Salix spec	с.						

Soil Tax.: Psammentic Aquorthel WRB: Fluvi-Gleyic Cryosol (Arenic) (fv-gl) CR (ar)

121

ar) Jelovskaya: Permafrost Alluvial Turfness Gley

,

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	5	Α	fS	kru-ein	1	10YR3/2	3		5	0	-	LD01-8138
2	5	15	BC	fSms	ein	1	10YR5/3	1		3	0	-	LD01-8139
3	15	20	A(b)	fSu3	koh-ein	1	10YR3/1	3		4	0	-	LD01-8140
4	20	29	BC	mS	ein	ł	10YR4/2	1		1	0		LD01-8141
5	29	45	BgA(b)	fSms	koh-ein	2	10YR4/1 + 7,5YR3/3	2		3	25	(+)	LD01-8142
6	45	62	Bg	mSu2	ein	2	10YR4/1	0		(1)	7	+	LD01-8143
7	62		Bf	mSu2			10YR5/1			0		+	

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 9 of 29

122

			,			
serial no.:	9	geogr. latitude:	72°33.459' N	profile type: small pit	permafrost depth (cm): 35	date: 14.08.01
profile ID:	LD01-S-01	geogr. longitude:	127°10.016' E	profile depth (cm): 35	water level (cm):	editor: Pfeiffer
location:	Sardakh	elevation a.s.l. (m)	10	relief: 1. main terrace, delta ter	rrace, level	
substrate:	shallow autochthono	us moss peat above fluv	viatile sands above peat	microrelief: rim of low-centre	d polygon	
vegetation:	moss-sedge-tundra: I	Oryas punctata, Salix po	olaris, Salix glauca, Pedi	cularis spec., Carex spec., and a lo	et more	

Soil Tax.: Glacic Histoturbel WRB: Turbi-Histic Cryosol (Glaci-Gleyic) tu-hi CR (gc-gl) Jelovskaya: Permafrost Peatish Gley

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax 1	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	3	Oi/C	()+fSu2		1	10YR3/1 + 10YR3/1	7	1-2	5	0	_	LD01-8018
2	3	9	Oil			1	10YR3/2	7	1	4	<15	-	LD01-8019
3	9	10	Oi2	(fSu)		1	7,5YR4/6	7	1	1	-80	-	LD01-8020
4	10	20	Bjjg/Oi	fSu2		2-3	10YR3/2	6	1	0	-7	-	LD01-8021
5	20	35	Bjjg	fSu2		3	10YR2/2	4		0	0	+	LD01-8022
6	35		Oif				10YR2/1	7	1	0			

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 10 of 29

123

serial no.:	10	geogr. latitude:	72°33.459' N	profile type: small pit	permafrost depth (cm): 22	date:	14.08.01		
profile ID:	LD01-S-02	geogr. longitude:	127°10.016' E	profile depth (cm): 22	water level (cm):	editor:	Pfeiffer		
location:	Sardakh	elevation a.s.l. (m) 10)	relief: 1. main terrace, delta terrace, level					
substrate:	moss- and sedge peat			microrelief: centre of low-centred polygon					
vegetation:	moss-sedge-tundra								

Soil Tax.: Fluvaquentic Fibristel WRB: Gleyi-Cryic Histosol (Fibri-Fluvic) gl-cy HS (fi-fv) Jelovskaya: Permafrost Peat Gley

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	2	С	fSu2		1	10YR3/1	3		3	0	-	LD01-8025
2	2	18	Oi1			1	7.5YR4/6	7	2	5	0	-	LD01-8026
3	18	22	Oi2			1-2	7.5YR2.5/2	7	1	4	0		LD01-8027
4	22		Oif				7.5YR2.5/3	7	1	0	0		

serial no.:	11		geogr.	latitude:	72°22.550' N	profi	le type: small p	it	permafros	t depth (cm):	98	date:	13.08.01
profile ID:	: LDO	01-L-05	geogr.	longitude:	126°27.644' E	profi	le depth (cm): 9	98	water leve	l (cm):	91	editor:	Kutzbach
location:	Sam	oylov	elevati	on a.s.l. (m)	7,5	relie	floodplain, ge	ntle slope flood	plain to beach				
substrate:	layer	red fluviatil	e sands, mud-l	ayers		micro	orelief:						
vegetation	: Alop	pecurus alpi	inus, Poa vivip	ara, Deschamp	osia caespitosa, Fe	stuca rubra, T	anacetum bipinr	natum					
Soil Tax.:	Туріс Р	sammorthe	d WRB:	Fluvi-Gleyic	Cryosol (Arenic)	fv-gl	CR (ar)	Jelovskaya:	Permafrost A	lluvial Layered	d Poorly Deve	loped (Primit	ive) Sandy
horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test 1	sample number
1	0	11	A	fSl2	ein+koh	1	10YR4/2	2+3		4	10, weak	-	LD01-8077
2	11	21	Ab/C	fSu2+mS	koh+ein	1	10YR5/3	1		4	0	-	LD01-8078
3	21	29	Ab1	fSu2	koh	1	10YR3/1	3		4	0	-	LD01-8079
4	29	36	Cl	mS	ein	1	10YR6/3	1		3	0	-	LD01-808(
5	36	41	Ab2	fSu2	kob	1	10YR4/1	3		3	0	-	LD01-808
6	41	75	C2	mS	ein	1	10YR5/3	1		0	0	-	LD01-808
7	75	98	Cg	mS	ein	1	2,5 Y4 /1	1		0	30	-	LD01-808
	98		Cgf	-						-			

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 11 of 29

124

-

The Expedition LENA 2001

Table Collection A3-2: Soil Profile Descript	ions, Expedition Lena Delta 2001; page 12 of 29

serial no.: profile ID:	12 LD01-L-01	geogr. latitude: geogr. longitude:	72°22.538' N 126°27.898' E	profile type: small pit profile depth (cm): 80	permafrost depth (cm): water level (cm):	80 65	date: editor:	10.08.01 Kutzbach
location:	Samoylov	elevation a.s.l. (m) 7,	5	relief: floodplain, depression, level				
substrate:	layered fluviatile sand	sands, mud-layers		microrelief:				

fv-gl CR

vegetation: Carex caespitosa, Alopecurus alpinus, Eriophorum spec., Salix glauca, Deschampsia caespitosa, Equisetum arvense, Agrostis stolonifera

Soil Tax.: Ty	pic Aquorthel	WRB:	Fluvi-Gleyic Cryosol	
---------------	---------------	------	----------------------	--

Jelovskaya: Permafrost Alluvial Turfness Gley

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	9	Α	fSlu	koh	1-2	10YR3/1	4		5	0	-	LD01-8054
2	9	17	Cl	fSms	ein	1	10YR4/2	1		2-3	0	-	LD01-8055
3	17	31	Ab	SI3	koh	2	10YR3/1	3		3	0	-	LD01-8056
4	31	40	Cg2	fSms	ein	1	10YR5/3	1		1	10-15	-	LD01-8057
5	40	80	Cg3	fSms	ein-koh	1	10YR3/1	1		0	0	+	LD01-8058
6	80		Cgf				<u></u>						

125

_

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 13 of 29

serial no.:	13	geogr. latitude:	72°22.530' N	profile type: small pit	permafrost depth (cm): 87	date:	10.08.01
profile ID:	LD01-L-02	geogr. longitude:	126°28.187' E	profile depth (cm): 87	water level (cm):	editor:	Kutzbach
location:	Samoylov	elevation a.s.l. (m) 8		relief: floodplain, low rise			
substrate:	layered fluviatile sands	s, mud-layers, eolian san	ds?	microrelief:			

vegetation: Hedysyarum alp., Oxytropis sp., Polygonum vivip., Castilleja septentr., Koeleria asiati., Armeria maritima, Rumex sp., Parnassia palustris, Salix glauca, Saxifraga hirculus, Drya

Soil Tax.: Typic Psammorthel WRB: Areni-Fluvic Cryosol

126

ar-fv CR

Jelovskaya: Permafrost Alluvial Turfness

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
0	87		Cf	fSms			10YR4/2						1
1	0	7	A	fS12	(kru) (sods)	1	10YR3/2	3-4	······	5	0	<u>.</u>	LD01-8061
2	7	25	C/Ab1	fSms+fSu2	ein+sub	1	10YR5/2+10YR4/2	1+3		4	0	_	LD01-8062
3	25	63	C/Ab2	fSms+fSu2	ein+sub	1	10YR6/3	1+3		1	0		LD01-8063
4	63	87	C/Ab3	fSms+fSu2	ein+sub	2	10YR3/2	2		0	0	-	LD01-8064

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 14 of 29

serial no.:	14	geogr. latitude:	72°22.924' N	profile type: small pit	permafrost depth (cm):	30	date:	11.08.01
profile ID:	LD01-L-03	geogr. longitude:	126°28.370' E	profile depth (cm): 30	water level (cm):	7	editor:	Kutzbach
location:	Samoylov	elevation a.s.l. (m) 7		relief: floodplain, depression in front of	f bluff of 1. main terrace			
substrate:	moss- and sedge peat			microrelief:				
	~							

vegetation: Carex caespitosa, Eriophorum angustifolium, Agrostis stolonifera, mosses

Soil Tax.: Fluvaquentic Fibristel WRB: Gleyi-Cryic Histosol (Fibri-Fluvic) gl-cy HS (fi-fv) Jelovskaya: Permafrost Alluvial Muddy-Peat-Gley

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	_root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	15	Oi	- (U)	-	-	10YR2/2	7	2	6	0	-	LD01-8067
2	15	30	Oi	-	-		10YR2/2	.7	1	5	0	+	LD01-8068
· 1			1.2										
3	30		Of			-1							

where the second sec

127

an an ann an Anna an Anna ann an Anna. A' ann a' An An Anna an Anna an Anna ann an Anna. A'

and the second secon

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 15 of 29

128

serial no.:	15	geogr. latitude:	72°22.733' N	profile type: small pit	permafrost depth (cm):	45	date:	11.08.01	
profile ID:	LD01-L-04	geogr. longitude:	126°28.369' E	profile depth (cm): 45	water level (cm):	15	editor:	Kutzbach	
location:	Samoylov	elevation a.s.l. (m) 7,4	5	relief: floodplain, depression in front of bluff of 1. main terrace					
substrate:	layered fluviatile sands	s and silts peat layers		microrelief: low moss-hillocks					
vegetation:	Salix glauca, Equisetu	m arvense, Equisetum va	ariegatum, Carex aquati	ilis, mosses					

Soil Tax.: Ruptic-Histic Aquorthel WRB: Gleyi-Histic Cryosol (Fluvi-Fibric) gl-hi CR (fv-fi) Jelovskaya: Permafrost Alluvial Muddy-Peatish-Gley

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	8	Oi	- (U)	-	1	10YR4/1	7	2	1	0	-	LD01-8071
2	,8	20	Bgl	fS+U	koh	1	10Yr3/2	6		5	15	-	LD01-8072
3	20	33	Bg2	fS+U	koh	1	10YR4/1	6		2	0	+	LD01-8073
4	33	45	Bg3	mSfs	koh	1	2,5YR2/1	4		0	0	+	LD01-8074
5	45		Bgf										

The Expedition LENA 2001

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 16 of 29

129

serial no.:	16	geogr. latitude:	72°2 2 .535' N	profile type: small pit	permafrost depth (cm):	47	date:	26.08.01			
profile ID:	LD01-L-10	geogr. longitude:	126°28.679' E	profile depth (cm): 47	water level (cm):	40	editor:	Kutzbach			
location:	Samoylov	elevation a.s.l. (m) 10)	relief: floodplain: "High-floodplain", cl	ose to slope						
substrate:	fluviatile sands			microrelief: centre of low-centred polygon, weak microrelief							
vegetation:	Carex aquatilis, Dryas	s punctata, Astragalus un	nbellatus, Salix glauca,	Lagotis glauca, Luzula sp., Polygonum vi	viparum, Arctous erythroc	arpus, mosses, lich	iens				

Soil Tax.: Psammentic Aquorthel WRB: Fluvi-Gleyic Cryosol (Arenic) fv-gl CR (ar) Jelovskaya: Permafrost Alluvial Turfness Gley

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax '	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	2	Oi			1	en e	7	1	0	0	-	LD01-8223
2	2	9	A	fSl2	ein-kru	1		4		4	0	-	LD01-8224
3	9	33	Bg/Ab1	mSfs+fSl2	cin+sub	1		1+3		3	10	-	LD01-8225
4	33	47	Bg/Ab2	mSfs+fS12	ein+sub	1		1+3		1	10	-	LD01-8227
5	47		Bgf										

Table Colle	ction A3-2: Soil Profile	e Descriptions, Expedit	tion Lena Delta 2001;	page 17 of 29		
serial no.:	17	geogr. latitude:	72°22.535' N	profile type: small pit	Dermafrost denth (cm). 28	
profile ID:	LD01-L-06	geogr. longitude:	126°28.876' E	profile depth (cm): 28	water level (cm): 7	date: 14.05.01
location:	Samoylov	elevation a.s.l. (m) 5	5.6	relief: floodplain: "High-floodplain	", depression	collor: Auzoach
substrate:	moss- and sedge peat			microrelief: centre of low-centred p	polygon, weak microrelief	
vegetation:	mosses, Carex aquati	lis				
Soil Tax.: F	¹ uvaquentic Fibristel	WRB: Gleyi-Cryic I	Histosol (Fibric)	gl-cy HS (fi) Jelovskaya:	Permafrost Peat-Gley	

						gi-cy r	(II) (I	Jelovskaya:	Permafrost Pe	at-Gley			
izon nber	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ¹	structure 2	soil density ²	colour ²	humus content ² (h.)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	12	Oil			-	7.5YR2/2	L	2	5	0	¥	LD01-8086
2	12	28	0i2			1	7,5YR4-2	Ĺ	_	5	0	+	LD01-8087
	28	-	Of								-		

9 Appendix

The Expedition LENA 2001

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 18 of 29

serial no.:	18	geogr. latitude:	72°22.537' N	profile type: small pit	permafrost depth (cm):	32	date:	14.08.01			
profile ID:	LD01-L-07	geogr. longitude:	126°29.021 E	profile depth (cm): 32	water level (cm):	25	editor:	Kutzbach			
location:	Samoylov	elevation a.s.l. (m)		relief: 1. main terrace, delta terrace, ger	ntly inclined, slope step-lik	e due to polygona	l ground				
substrate:	shallow autochthonous	s moss peat above fluviat	ile sands above peat	microrelief: rim of low-centred polygon							
vegetation:	Hylocomium splenden	omium splendens, Carex aquatilis, Dryas punctata, Salix glau									

Soil Tax.: Glacic Aquturbel WRB: Gleyi-Histic Cryosol (Fibri-Glacic) gl-hi CR (fi-gc) Jelovskaya: Permafrost Peatish Gley

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax '	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test 1	sample number
1	0	10	Oi			l	5YR2/2	7	2	5	0	-	LD01-8088
2	Ц	14	Bgl	fS12	koh	1	10YR3/1	3		4	40	-	LD01-8089
3	14	24	BgŹ	fSIŻ	koh	1	10YR3/1	2		4	0	+	LD01-8090
4	24	32	Bg3	Slu	koh	1	10YR3/1	2		2	0	+	LD01-8091
	22		D of										

5 32 Bgf

131

and the second second

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 19 of 29

serial no.: profile ID location: substrate: vegetation	19 : LD0 Sam mos:	11-L-08 oylov 5 peat ses, Carex a	geogr.) geogr.) elevatio aquatilis, Pedicu	latitude: longitude: on a.s.l. (m) ilaris sp., Calt	72°22.540' N 126°29.015' E 1 1 ha palustris	profil profil relief micro	le type: small pi le depth (cm): 3 : 1. main terrac prelief: centre c	it 37 e, delta terrace, j of low-centred po	permafrost water level gently inclined olygon	t depth (cm): (cm): , slope step-lik	37 5 se due to polyg	date: editor: gonal ground	14.08.01 Kutzbach
Soil Tax.:	Typic F	listorthel	WRB:	Gleyi-Cryic	Histosol (Fibric)	gl-cy	HS (fi)	Jelovskaya:	Permafrost Pe	eat-Gley			
horizon number	npper border (cm)	lower border (cm)	symbol Soil Tax '	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (₩_)	redox concentr. ² (%)	dipyridil test '	sample number
1	0	12	Oi1				2,5YR2/1	7	2	· 5	0	-	LD01-8092
2	12	37	Oi2				2,5YR6/8	7	1	5	0	+	LD01-8093
3	37		Oif										

132

The Expedition LENA 2001

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 20 of 29

serial no.:	20	geogr. latitude:	72°23.100' N	profile type: small pit	permafrost depth (cm):	63	date:	22.08.01			
profile ID:	LD01-L-09	geogr. longitude:	126°28.935' E	profile depth (cm): 63	water level (cm):	46	editor:	Kutzbach			
location:	Samoylov	elevation a.s.l. (m) 5		relief: floodplain, depression in front of	bluff of 1. main terrace						
substrate:	fluviatile silts			microrelief:							
vegetation:	Carex caespitosa, Poa vivipara, Eriophorum angustifolium										

Soil Tax.: Typic Aquorthel WRB: Fluvi-Gleyic Cryosol fv-gl CR

Jelovskaya: Permafrost Alluvial Layered Poorly Developed (Primitive) Muddy

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ¹ (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	15	A	Lu	koh	1	10YR3/2	5-6		5	0	-	LD01-8094
2	15	29	В	Lu	koh	1	10YR3/2	5		4	0	-	LD01-8095
3	29	32	Bgl	gS	ein	1	2,5¥4/2	1		3	50	-	
4	32	45	Bg2	Lu	koh	1	5¥4/1	3		3	40	+	LD01-8096
5	45	63	Bg3	fSu4	koh	1	5Y4/1	3		3	40	+	LD01-8097
6	63		Bgf							_			

133

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 21 of 29

serial no.:	21	geogr. latitude:	72°21.306' N	profile type: small pit	permafrost depth (cm): 70	date:	17.08.01
profile ID:	LD01-K-01	geogr. longitude:	126°12.825' E	profile depth (cm): 70	water level (cm):	editor:	Kutzbach
location:	Kurungnakh	elevation a.s.l. (m) 50		relief: at the summit of a pingo, steep sl	ope, alas on the 3. main terrace (ice complex)	
substrate:	fluviatile silts, alas deposits			microrelief:			
vegetation:	Salix glauca, Astragalus umbellatus						

Soil Tax.: Typic Aquiturbel WRB: Gleyi-Turbic Cryosol

134

yosol gl-tu CR

Jelovskaya: Permafrost Tundra Kryoturbit ?

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	7	A	Uls	kru	1	10YR3/2	3		4	0		LD01-8000
2	7	28	Bjjg	Uls	sub-kru	2	10YR4/2	2		3	70	-	LD01-8001
3	28	45	Bgl	Uls	sub-platelike(2- 5mm)	3	10YR3/2	2		2	50	-	LD01-8002
4	45	59	Bg2	Uls	sub-platelike(5- 20mm)	3	2,5Y3/2	· 2		. 1	5	-	LD01-8003
5	59	67	Bg3	Uls	sub-platelike(5- 20mm)	3	2,5YR3/2	2	11	1	50	-	LD01-8004
6	67	70	Bgh	Uls	koh	3	10YR2/1	3-4	-	1	50	-	LD01-8005
7	70		Bgf						7				:
					I	. e ¹ · · ·	· • • .		· 1 :				· ·

A start of the sta

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 22 of 29

serial no.:	22	geogr. latitude:	72°21.216' N	profile type: small pit	permafrost depth (cm):	40	date:	17.08.01			
profile ID:	LD01-K-02	geogr. longitude:	126°13.333' E	profile depth (cm): 40	water level (cm):	1	editor:	Kutzbach			
location:	Kurungnakh	elevation a.s.l. (m) 25		relief: alas depression on the 3. main terrace (ice complex)							
substrate:	autochthonous moss pe	eat above fluviatile silts	(alas)	microrelief: centre of low-centred polygon							

gl-cy HS

vegetation: Potentilla palustris, Carex aquatilis, Aulacomnium spec., Sphagnum spec.

Soli lax.: Typic Hemister WKB: Gleyi-Cryic Histosol	nistel WRB: Gleyi-Cryic	ic Histosol
---	-------------------------	-------------

135

Jelovskaya: Permafrost Peat-Gley

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test '	sample number
1	0	5	Oi				7,5¥2,5/1	7	2	6	0	•	LD01-8006
2	5	25	Oe				10YR3/3	7	3	5	0	(+)	LD01-8007
3	25	40	Bg	Lu (-Lt3?)			5GY4/1	1		1	0	+	LD01-8008
4	40		Bgf			<u> </u>							

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 23 of 29

serial no.:	23		geogr.	latitude:	72°21.216' N	profil	e type: small p	it	permafros	t depth (cm):	24	date:	17.08.01
profile ID	: LD0	1-K-03	geogr.	longitude:	126°13.333' E	profi	e depth (cm): 🤅	24	water level	l (cm):	20	editor:	Kutzbach
location:	Kuru	ingnakh	elevatio	on a.s.l. (m)	25	relief	alas depressio	on on the 3. main	terrace (ice co	mplex)			
substrate:	autoo	chthonous	moss peat abov	e fluviatile sil	ts (alas)	micro	relief: rim of l	low-centred poly	gon				
vegetation	a: Care	x aquatilis,	. Salix spec., Be	tula nana, mo	sses, lichens								
Soil Tax.:	Glacic I	listorthel	WRB:	Gleyi-Histic	Cryosol (Glacic)	gl-hi	CR (gc)	Jelovskaya:	Permafrost Pe	eatish-Gley			
horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	9	Oi				10YR2/1	7	2	2-3	0	-	LD01-8009
2	9	19	Oe			1	10YR2/2	7	3-4	3	0		LD01-8010
3	19	24	Bg	Tu3	koh-platelike	2	2,5Y4/1	1		0	15	-	LD01-8011
4			Wf										

Table Co	llection A	.3-2: Soil I	Profile Descript	tions, Expedit	ion Lena Delta 2	001; page 24	of 29		r				
serial no.	: 24		geogr.	latitude:	72°20.102' N	profil	le type: small pi	t	permafros	t depth (cm):	27	date:	20.08.01
profile II): LD0	11-K-04	geogr.	longitude:	126°16.927' E	profi	le depth (cm): 2	7	water leve	l (cm):	2	editor:	Kutzbach
location:	Kun	ungnakh	elevati	on a.s.l. (m)	40	relief	3. main terrac	e (ice complex),	gently incline	đ			
substrate	: moss	s- and sedg	e peat			micro	orelief: centre o	f low-centred po	olygon, weak n	nicrorelief			
vegetatio	n: Care	ex aquatilis	, Potentilla palu	istris, mosses									
Soil Tax.	: Typic H	lemistel	WRB:	Gleyi-Cryic	Histosol	gl-cy	HS	Jelovskaya:	Permafrost Pe	eat-Gley			
horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	12	Oi			<u> </u>	5YR2,5/1	7	2	5	0	-	LD01-8012
2	12	27	Oe				10YR3/2	7	3-4	3	0	-	LD01-8013
3	27		Oef										

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 25 of 29

serial no.:	25	geogr. latitude:	72°20.102' N	profile type: small pit	permafrost depth (cm):	25	date:	20.08.01
profile ID:	LD01-K-05	geogr. longitude:	126°16.927' E	profile depth (cm): 32	water level (cm):	20	editor:	Kutzbach
location:	Kurungnakh	elevation a.s.l. (m) 40		relief: 3. main terrace (ice complex), ge	ently inclined			
substrate:	shallow moss peat abo	v fluviatile silts		microrelief: rim of low-centred polygo	n, weak microrelief			
vegetation:	Carex aquatilis, Salix	reptans, Betula nana, Po	a spec., Hylocomium sj	plendens				

138

Soil Tax.: Glacic Historthel WRB: Gleyi-Histic Cryosol (Glacic) gl-hi CR (gc)

) Jelovskaya: Permafrost Peatish-Gley

horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
1	0	6	Oi				5YR2,5/2	7	2	2	0	-	LD01-8014
2	6	12	Oe			1	2,5YR3/3	7	4	5	0	-	LD01-8015
3	12	21	Oe			1	7,5YR3/1	7	4	2	90	-	LD01-8016
4	21	25	Bg	Lt3	koh	I	5GY5/1	1		0	5	+	LD01-8017
5	25	32	Wf										

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 26 of 29

serial no.:	26	geogr. latitude:	73°31.766' N	profile type: small pit	permafrost depth (cm): 70	date:	29.07.01
profile ID:	LD01-A-01	geogr. longitude:	123°25.309 E	profile depth (cm): 70	water level (cm):	editor:	Kutzbach
location:	Sanga-Dzhie SDS2	elevation a.s.l. (m) 20		relief: 2. main terrace, shoulder of a low	v rise, slope in direction erosional channel, i	nclinatio	1 about. 6 %
substrate:	eolian sands, kryoturba	ated		microrelief: polygonal unsorted net			
vegetation:	Cassiope tetragona, Sa	lix nummularia, Ochrole	chia frigida, Andreaea	rupestris			

Jelovskaya: Permafrost Tundra Brown Soil, Kryoturbit

Soil Tax.: Psammentic Aquiturbel WRB: Gleyi-Turbic Cryosol (Arenic) gl-tu CR (ar)

-----____ symbol Soil colour ² horizon upper lower texture ² structure ² soil humus peat root redox dipyridil sample number border border Tax ¹ density ² content² decomp.² density ² concentr.² test 1 number (cm) (cm) (h_) (z_) (%) (w__) 1 0 7 Ajj fSms kru-sub 1 10YR3/3 3 5 0 LD01-8029 -2 7 29 Bjjl fSms 2 10YR4/6 l 4 0 LD01-8030 sub-ein -29 3 3 3 10 3 47 10YR3/3 AbBgjj fSms sub -LD01-8032 47 70 Bjj2 fSms koh 2 10YR4/3 1 0 30 LD01-8033 4 + 5 70 Bjjgf

9 Appendix

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 27 of 29

serial no.:	27	geogr. latitude:	73°31.735' N	profile type: small pit permafrost depth (cm): 35 date: 31.07							
profile ID:	LD01-A-02	geogr. longitude:	123°25.606' E	profile depth (cm): 35 water level (cm): 10 editor: Kutz							
location:	Sanga-Dzhie SDS1	elevation a.s.l. (m) 18	;	relief: 2. main terrace, summit surface of	of low rise, very gently inc	lined					
substrate:	shallow moss- and sed	ge peat above eolian sar	ids, kryoturbated	microrelief: centre of low-centred polygon, weak microrelief							
vegetation:	Carex aquatilis, Erioph	norum scheuchzeri, Dup	ontia fisheri, Cassiope	tetragona, Siphula ceratites, Oncophorus v	wahlenbergii, Andreaea ru	pestris					

Jelovskaya: Permafrost Humus Gley

Soil Tax.: Typic Histoturbel WRB: Gleyi-Histic Cryosol (Turbic) gl-hi CR (tu)

140

horizon symbol Soil иррег lower texture² structure ² soil colour ² humus peat root redox dipyridil sample number border border Tax ¹ density² content² decomp.² density ² concentr.² test 1 number (cm) (h_) (%) (cm) (z_) (w_) _____ 0 5 Oel -(fS) 7,5YR2/2 1 1 7 3 6 0 LD01-8035 ~ 2 7 0 2 5 13 Oe2 -(fS) 7,5YR4/4 3 6 + LD01-8036 2 0 LD01-8037 3 13 20 Bg fS koh 7,5YR4/2 6 3 5 + 3+2 7,5YR2/2+7,5YR2/3 6+3 5+3 0 LD01-8038 20 35 Ajjb/Bjjg fS+fSms koh + 4 5 35 Bgf

serial no.: profile ID:													
profile ID:	28		geogr. la	ititude:	73°32.077' N	profile	e type: low blut	Ŧ	permafros	t depth (cm):	120	date:	01.08.01
	LD01	- A-0 3	geogr. lo	ngitude:	123°26.392' E	profile	e depth (cm): 1	20	water leve	l (cm):		editor:	Kutzbach
location:	Sanga	a-Dzhie SDS	3 elevatior	1 a.s.l. (m) 20		relief:	: 2. main terraci	e, summit surface	e of low risee,	low bluff (ae	olian erosion)		
substrate:	eolian	sands				micro	relief:						
vegetation:	: Salix	spec., sparse	vegetation										
Soil Tax.:	Typic Ps	ammoturbel	WRB:	Areni-Turbic C	ryosol	gl-tu (CR (ar)	Jelovskaya:	Permafrost T	Indra Brown	Soil, Podzol-lil	e	
horizon number	upper border (cm)	lower sj border (cm)	ymbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. 2 (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test ¹	sample number
-	0	10	CAi	ß	cin	2	10YR4/4			3	0	1	LD01-8040
2	10	33	υ	£	cin	2	10YR4/4	I		3	0	ı	LD01-8041
ε	33	37	Bjj-Ajjbl	x	ein-sub	1-2	10YR3/3	2		1	5-10	1	LD01-8042
4	37	46	Bjj-Ajjb2	£	ein-sub	1-2	10YR4/4	-		1	5-10		LD01-8043
5	4 6	76	Bjj	x	sub-ein	-	10YR4/4	-		0	30		LD01-8044
6	76	120	ပ	S	ein-sub	-	10YR5/4			0	0	t	LD01-8045
L	120		Wf										

Table Collection A3-2: Soil Profile Descriptions, Expedition Lena Delta 2001; page 28 of 29

The Expedition LENA 2001 9 Appendix

Table Collection	A 3-2: Soil Profi	le Descriptions	Evnedition	Lena Delta	2001 · nage	70 of 70
A doie Concellon	110-m 000 1 100	ac Descriptions,	Expedition.	ucha Dena	AVVI, DAVE	47 VI 47

serial no.: profile ID location: substrate: vegetatior	29 : LD0 Sang eolia	II-A-04 ga-Dzhie SE an sands abc	geogr. geogr. DS4 elevatio ove fluviatile sa	latitude: longitude: on a.s.l. (m) 10 unds	73°34.512' N 123°21.815' E	prof prof relie micr	ile type: bluff ile depth (cm): 3 f: 2. main terrac orelief:	20 e, summit surface	permafrost water level of low risee,	depth (cm): (cm): high bluff (m	90 arine erosion)	date: editor:	02.08.01 Kutzbach
Soil Tax.:	Туріс Р	sammorthel	WRB:	Arenic Cryosol		ar C	R	Jelovskaya:	?				
horizon number	upper border (cm)	lower border (cm)	symbol Soil Tax ¹	texture ²	structure ²	soil density ²	colour ²	humus content ² (h_)	peat decomp. ² (z_)	root density ² (w_)	redox concentr. ² (%)	dipyridil test 1	sample number
1	0	30	Ai/C	fS	ein	1		2	2	3	0	-	LD01-8047
2	30	60	C/Ab	fS	ein-sub	2		4	3	2	0	-	LD01-8048
3	60	90	Bg-Ab	fS	ein-sub	0		4	3	1	0	+	
4	90	160	Bgf	fS				. 4 :	3		0	+	LD01-8049
5	160	170	OebBgf	fS				7	3		0	+	LD01-8050
. 6	170	190	Abf/Wf	fS				6	3		0	+	LD01-8051
7	190	240	AbBgf	fS				6	3		0	+	LD01-8052
8	240	320	Bgf	fS	n.	· .	* * :	1			30-50	+	LD01-8053

142

The Expedition LENA 2001
Section	Subsection	Туре	Subtype	Main Horizons
Poorly	Primitive	Permafrost	Permafrost Alluvial Layered	(A)-C1-C2-⊥C3
Developed	Alluvial	Alluvial Layered	Primitive Sandy	
(Primitive)		Poorly Developed	Permafrost Alluvial Layered	(A)-C1-C2-⊥C3
		(Primitive)	Primitive Muddy	
Alluvial	Alluvial	Permafrost	Permafrost Alluvial Muddy	Tv-T2-T3-Cn-⊥G
	Typical	Alluvial Peat Gley	Peat Gley	
			Permafrost Alluvial Muddy	Tv-AT-Bg-Cn-⊥Cg
			Peatish Gley	
		Permafrost	Permafrost Alluvial Turfness	Av-AB-B-⊥Cg
		Alluvial Turfness	Gley	
			Permafrost Alluvial Turfness	Av-AB-B-⊥C
Permafrost	Permafrost	Tundra	Tundra Suprapermafrost	Ov-A-Bkr-B
Kryoturbit	Kryoturbit	Suprapermafrost	Gley	
	Deformated	Gley	Tundra Peatish Decay Gley	Otv-T2h-Bkrg-BCgkr-
	Profile			TC
		Permafrost	Permafrost Tundra	A(AO)-BOkr-BCkr-⊥BC
		Tundra Kryoturbit	Kryoturbit	
Gley	Humus Gley	Permafrost Peat	Permafrost Peat Gley	TvT2(T3)-BgC-⊥G
		Gley	Permafrost Peatish Gley	TvT1(T3)-BgG-⊥G
		Permafrost	Permafrost Turfness Gley	Aov-A-Bg-Cg-⊥Cg
		Turfness Gley		

Table A3-3: Classification of soils of Samoylov Island. According to L.G. Jelovskaya, 1987. Compiled and modified by Anna Kurchatova in August 2001.

A = humus

B = Illuvial

G = Gley

C = Mineral base

Organic horizons:

 \geq 70 % by volume \geq 35 % by weight differently decomposed organic matter

O = organic layer accumulated for a short time of wet conditions

T = organic layer accumulated in wet conditions

T1 = poorly decomposed peat

T2 = middle decomposed peat

T3 = strongly/ completely decomposed peat

AO = coarse humus horizon / humus 10-35 % / mixture with mineral part easily separated from mineral horizons

Other symbols:

v = alive precees of plants, roots, moos , lichens ${\geq}50\%$ by volume

kr = kryoturbation

g = traces of gley influence

 $\perp = permafrost$

h = illuvial humus / + traces of FeO-accumulation

9 Appendix

Table A3-4: Characteristics of soil subtypes in Table A3-3 (according to Jelovskaya 1987).

- 1. Permafrost Alluvial Layered Primitive
 - 1. Geomorphological position: low flooding plain (every year flooding)
 - 2. Mineral composition: sandy
 - 3. (A)-C1-C2-⊥C3
 - 4. humus: 0,3 0,5 %
 - 5. pH: 6-7
- 2. Permafrost Alluvial Muddy-Peat Gley
 - 1. Depressions of high flood plain (episodic flooding)
 - 2. peat: 20 50 cm thickness
 - 3. Tv-T2-T3-Gn-⊥C
 - 4. not completely decomposed peat
 - 5. pH: 5-6
 - 6. active layer < 40-50 cm
- 3. Permafrost Alluvial Muddy Peatish Gley
 - 1. Depressions of the flood plain
 - 2. peat < 20 cm / 8-12 cm
 - 3. Tv-AT-Bg-Gn-⊥Cg
 - 4. decomposed peat
 - 5. pH: 5-6
 - 6. active layer: 40-50 cm
- 4. Permafrost Alluvial Turfness Gley
 - 1. Depressions of the middle and high flood plain
 - 2. loam
 - 3. Av-AB-B-⊥Cg
 - 4. humus: 10-12% 5-6%; C/N=10-18
 - 5. ph: 6-7
 - 6. active layer: 50-60cm
- 5. Permafrost Alluvial Turfness
 - 1. Dry areas of high flood plain (episodic flooding)
 - 2. Ioam
 - 3. Av-AB-B-⊥C
 - 4. density : 18-20 kg/cm
 - 5. humus: 4-10% (top) to 0,4-0,7% (3-4%) (bottom)

 - 6. pH: <6 7. active layer: 1,3-1,4 m
- 6. Tundra suprapermafrost gley
 - 1. wet centre of polygon
 - 2. loam
 - 3. Ov-A-Bkr-Bgkr-⊥Bg
 - 4. humus: 3-4% (1,5-8%)
 - 5. ph: 4-5
 - 6. active layer: 30-40 cm (up to 50-75 cm)

9 Appendix

Table A3-4: Continuation

- 7. Tundra Peatish Decay Gley
 - 1. edges of polygons
 - 2. Ioam
 - 3. Otv-T2n-Bkrg-BC-⊥C
 - 4. humus: 1,5-4,8%
 - 5. pH: 4-5
 - 6. active layer: 50 cm

8. Permafrost Tundra Kryoturbit

- 1. Drained slopes
- 2. loam
- 3. A(AO)-BOkr-BCkr-⊥BC
- 4. humus: 4-10% (top) to 2-2,5% (bottom)
- 5. pH 4-6; 6-7
- 6. active layer: 50-70 cm

9. Permafrost Peat Gley

- 1. wet polygons, thermokarst depressions
- 2. peat: 20-50 cm
- Tv-T2(T3)-G-⊥C
 humus: 4,5-6,8 %
- 5. pH 5,1-5,6
- 6. active layer: 40-60 cm
- 10. Permafrost Peatish Gley
 - 1. moist polygons
 - 2. peat < 20 cm
 - 3. Tv-T2(T3)-BgG-⊥G
 - 4. decomposed peat < 25%
 - 5. pH:6-7
 - 6. active layer 40-60cm
- 11. Permafrost Turfness Gley
 - 1. episodic moist conditions
 - 2. turf
 - 3. Aov-A-Bg-Cg-⊥Cg
 - 4. humus: Aov: 12-18%
 - A: 7%
 - Bg: 3-4%
 - Cg: 1-2%
 - 5. pH: top: 7, bottom 8
 - 6. active layer: 90-95 cm

no. sai	mple ID day	fe	location	description	depth (cm)	planned analyses
۲Č	01-6653 23.07	10.7	Samoylov 72° 22.2' N 129° 28.5' E	soli sample, polygoncentre, P-03	0-5	soil physics' soil chemistry? microhiological? molecularhiotogic
2 LD	01-6654 23.07	7.01	Samoyiov 72° 22.2' N 129° 28.5' E	soll sample, polygoncentre, P-03	5-10	soil shuster son chemistry microsonogical more and son
З С Г С	01-6655 23.07	10.7	Samoyiov 72° 22.2' N 129° 28.5' E	soil sample, polygoncentre, P-03	10-17	soil physics soil chemistry, microbiological moleculariological
4 LD	01-6656 23.07	10.7	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, polygoncentre, P-03	17-20	soil physics soil chemistry microbiological, molecularilogical
5 LD(01-6657 23.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, polygoncentre, P-03	20-23	soli physics soil chemistry microhiological molecularinogical
9 LD	01-6658 23.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soit sample, polygoncentre, P-03	23-30	soil physics soil chemistry microbiological moleculation optical
7 LDK	01-6659 23.07	10.7	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, polygoncentre, P-03	30-35	soil physics. soil chemistry, microhiotopical, molecularhiotomical
8 LDC	01-6660 23.07	10.7	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, polygoncentre, P-03	35-40	soil physics, soil chemistry, microbiological, molecularhiological
8 FD	01-6661 23.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, polygoncentre, P-03	40-45	soli physics, soil chemistry, microbiological, molecularbiological
10 LD(01-6662 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, polygonborder, P-02	0-7	soil physics, soil chemistry, microbiological, molecularbiological
11 LD	01-6663 24.07	7.01	Samoyiov 72° 22.2' N 129° 28.5' E	soil sample, polygoncentre, P-02	7-13	soil physics, soil chemistry, microbiological, molecularbiological
12 LD(01-6664 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, polygonborder, P-02	13-18	soil physics, soil chemistry, microbiological, molecularbiological
13 LDC	01-6665 24.07	10.7	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, polygoncentre, P-02	18-32	soil physics, soil chemistry, microbiological, molecularbiological
14 LDC	01-6666 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, polygonborder, P-02	32-38	soil physics, soil chemistry, microbiological, molecularhiological
15 LD	01-6667 24.0;	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, polygoncentre, P-02	38-45	soli physics, soil chemistry, microbiological, molecularbiologica
16 LD(01-6668 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, top of polygonborder, P-01	0-5	soil physics, soil chemistry, microbiological, molecularbiological
17 LD(01-6669 24.07	7.01	Samoytov 72° 22.2' N 129° 28.5' E	soil sample, top of polygonborder, P-01	5-12	soil physics, soil chemistry, microbiological, molecularbiologica
18 LD(01-6670 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, top of polygonborder, P-01	12-20	soil physics, soil chemistry, microbiological, molecularbiological
19 LD(01-6671 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, top of polygonborder, P-01	20-27	soil physics, soil chemistry, microbiological, molecularbiologica
20 LD(01-6672 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, top of polygonborder, P-01	27-36	soli physics, soil chemistry, microbiological, molecularbiologica
21 LD(01-6673 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, top of polygonborder, P-01	35-42	soli physics, soil chemistry, microbiological, molecularbiologica
22 LD	01-6674 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, top of polygonborder, P-01	42-49	soil physics, soil chemistry, microbiological, molecularbiologica
23 LD(01-6675 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, frost crack	0-5	microbiological
24 LD(01-6676 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample. 50 cm beneath the frost crack	0-5	microbiological
25 LD(01-6677 24.07	10.7	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, 100 cm beneath the frost crack	0-5	microbiological
26 LDC	01-6678 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, 150 cm beneath the frost crack	0-5	microbiological
27 LDC	01-6679 24.07	10.7	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, 200 cm beneath the frost crack	0-5	microbiotogical
28 LD(01-6680 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, 250 cm beneath the frost crack	0-5	microbiological
29 LD(01-6681 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, 300 cm beneath the frost crack	0-5	microbiological
30 LD(01-6682 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, 400 cm beneath the frost crack	0-5	microbiological
31 LD(01-6683 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, 500cm beneath the frost crack	0-5	microbiological
32 LD(01-6684 24.07	7.01	Samoylov 72° 22.2' N 129° 28.5' E	soil sample, tayer of Fe-mineral	13	microbiological
33 LD(01-8000 17.05	8.01	Kurungnakh 72°21.306' N 126°12.825' E	soil sample, pingo, K-01	0-7	soil physics, soil chemistry
34 LD	01-8001 17.05	8.01	Kurungnakh 72°21.306' N 126°12.825' E	soil sample, pingo, K-01	7-28	soil physics, soil chemistry
35 LD(01-8002 17.05	8.01	Kurungnakh 72°21.306' N 126°12.825' E	soil sample, pingo, K-01	28-45	soil physics, soil chemistry
36 LD(01-8003 17.05	8.01	Kurungnakh 72°21.306' N 126°12.825' E	soil sample, pingo, K-01	45-59	soil physics, soil chemistry
37 LD(01-8004 17.05	8.01	Kurungnakh 72°21.306' N 126°12.825' E	soil sample, pingo, K-01	59-67	soil physics, soil chemistry
38 LD(01-8005 17.05	8.01	Kurungnakh 72°21.306' N 126°12.825' E	soil sample, pingo, K-01	67-70	soil physics, soil chemistry
39 LD(01-8006 17.05	8.01	Kurungnakh 72°21.216' N 126°13.333' E	soil sample, polygoncentre, K-02	0-5	soil physics, soil chemistry, microbiological, molecularbiologica
40 LD(01-8007 17.06	8.01	Kurungnakh 72°21.216' N 126°13.333' E	soil sample, polygoncentre, K-02	5-25	soil physics, soil chemistry, microbiological, molecularbiologica
41 LD(01-8008 17.05	8.01	Kurungnakh 72°21.216' N 126°13.333' E	soil sampte, polygoncentre, K-02	25-40	soil physics, soit chemistry, microbiological, molecularbiologica
42 LD(01-8009 17.05	8.01	Kurungnakh 72°21.216' N 126°13.333' E	soil sample, polygonborder, K-03	6-0	soil physics, soil chemistry, microbiological, molecularbiologica
43 LD(01-8010 17.05	8.01	Kurungnakh 72°21.216' N 126°13.333' E	soil sample, polygonborder, K-03	9-19	soil physics, soil chemistry, microbiological, molecularbiological
44 LD(01-8011 17.06	8.01	Kurungnakh 72°21.216' N 126°13.333' E	soil sample, polygonborder, K-03	19-24	soil physics, soil chemistry, microbiological, molecularbiological
45 LD(91-8012 20.05	8.01	Kurungnakh 72°20,102' N 126°16.927' E	soil sample, polygoncentre, K-04	0-12	soil physics, soil chemistry, microbiological, molecularbiologica
46 LD(91-8013 20.05	8.01	Kurungnakh 72°20.102' N 126°16.927' E	soil sample, polygoncentre, K-04	19-97	-oit which and chamistry microbiological molecularhiological
					1	SOIL DITVSICS, SOIL CITCITIISTY, THECHOOLOGICATION, THEOROGUMAN STOCK

9 Appendix

The Expedition LENA 2001

Table A2 E (none 0), List of goil and start semi-lag (table semi-lag) (400), a flasted at a start of the second title of the s	
- Table Ap-5 (bage 2). List of soli and plant, samples (total amount = 196), collected at central Lena Delta During the expedition Lena Delta 2	001

no.	sample ID	date	location	description	denth (cm)	nlanned analyses
48	LD01-8015	20.08.01	Kurungaakh 72°20 102' N 126°16 027' E	soil comple polycophorder K 05	E 10	and abundance and abundance and a bundance in the first sector in
40	LD01-8016	20.08.01	Kurungnakh 72°20 102' N 126°16 027' E	soil sample, polygphorder, K-05	0-12	soli physics, soli chemistry, microbiological, molecularbiological
50	LD01-8017	20.08.01	Kurungnakh 72°20 102' N 126°16 927' E	soil sample, polygpibblider, K-05	12-21	soli physics, soli chemistry, microbiological, molecularbiological
51	1 001-8018	14 08 01	Sardakh 72°22 450' N 127°10 016' E	soil sample, polygpholider, r-co	21-25	soli privsics, soli criemistry, microbiological, molecularbiological
62	1.001.9010	14.08.01	Sardaki 72 33.459 N 127 10.010 E	soli sample, polygonbolder, S-01	0-3	soli physics, soli chemistry
52	1001-8019	14.00.01	Saldakii 72-33.459 N 127-10.016 E	soli sample, polygonborder, S-01	3-9	soil physics, soil chemistry
53	LD01-8020	14.08.01	Sardakh 72*33.459 N 127*10.016 E	soil sample, polygonborder, S-01	9-10	soll physics, soil chemistry
1 54	LD01-8021	14.08.01	Sardakh 72-33.459 N 127-10.016 E	soli sample, polygonborder, S-01	10-20	soil physics, soil chemistry
55	LD01-8022	14.08.01	Sardakh 72°33.459° N 127°10.016° E	soil sample, polygonborder, S-01	20-35	soil physics, soil chemistry
50	LD01-8023	14.08.01	Sardakh 72°33.459' N 127°10.016' E	soil sample, polygonborder, pooled sample, S-01	0-10	soil organic matter
57	LD01-8024	14.00.01	Sardaki 72-33.439 N 127-10.016 E	soli sample, polygonborder, pooled sample, S-01	10-35	soil organic matter
58	L001-8025	14.08.01	Sardakh 72°33.459' N 127°10.016' E	soil sample, polygoncentre, S-02	0-2	soil physics, soil chemistry
59	LD01-8026	14.08.01	Sardakh 72-33.459' N 127-10.016' E	soil sample, polygoncentre, S-02	2-18	soil physics, soil chemistry
60	LD01-8027	14.08.01	Sardakh 72-33.459 N 127-10.016 E	soil sample, polygoncentre, S-02	18-22	soil physics, soil chemistry
01	LU01-8028	14.08.01	Sardakh 72°33.459' N 127°10.016' E	soil sample, polygoncentre, pooled sample, S-02	0-20	soil organic matter
62	LD01-8054	10.08.01	Samoylov 72°22.538' N 126°27.898' E	soil sample, vegetation area 4, L-01	0-9	soil physics, soil chemistry, microbiological, molecularbiological
63	LD01-8055	10.08.01	Samoylov 72°22.538' N 126°27.898' E	soil sample, vegetation area 4, L-01	9-17	soil physics, soil chemistry, microbiological, molecularbiological
64	LD01-8056	10.08.01	Samoylov 72°22.538' N 126°27.898' E	soil sample, vegetation area 4, L-01	17-31	soil physics, soil chemistry, microbiological, molecularbiological
65	LD01-8057	10.08.01	Samoylov 72°22.538' N 126°27.898' E	soil sample, vegetation area 4, L-01	31-40	soil physics, soil chemistry, microbiological, molecularbiological
66	LD01-8058	10.08.01	Samoylov 72°22.538' N 126°27.898' E	soil sample, vegetation area 4, L-01	40-80	soil physics, soil chemistry, microbiological, molecularbiological
67	LD01-8059	10.08.01	Samoylov 72°22.538' N 126°27.898' E	soil sample, vegetation area 4, pooled sample, A-Go, L-01		soil organic matter
68	LD01-8060	10.08.01	Samoylov 72°22.538' N 126°27.898' E	soil sample, vegetation area 4, pooled sample, Gr, L-01		soil organic matter
69	LD01-8061	10.08.01	Samoylov 72°22.530' N 126°28.187' E	soil sample, vegetation area 6, L-02	0-7	soil physics, soil chemistry, microbiological, molecularbiological
70	LD01-8062	10.08.01	Samoylov 72°22.530' N 126°28.187' E	soil sample, vegetation area 6, L-02	7-25	soil physics, soil chemistry, microbiological, molecularbiological
71	LD01-8063	10.08.01	Samoylov 72°22.530' N 126°28.187' E	soil sample, vegetation area 6, L-02	25-63	soil physics, soil chemistry, microbiological, molecularbiological
72	LD01-8064	10.08.01	Samoylov 72°22.530' N 126°28.187' E	soil sample, vegetation area 6, L-02	63-87	soil physics, soil chemistry, microbiological, molecularbiological
73	LD01-8065	10.08.01	Samoylov 72°22.530' N 126°28.187' E	soil sample, vegetation area 6, pooled sample, Ah, L-02		soil organic matter
74	LD01-8066	10.08.01	Samoylov 72°22.530' N 126°28.187' E	soil sample, vegetation area 6, pooled sample, Go, L-02		soil organic matter
75	LD01-8067	11.08.01	Samoylov 72°22.924' N 126°28.370' E	soil sample, vegetation area 8, L-03	0-15	soil physics, soil chemistry, microbiological, molecularbiological
76	LD01-8068	11.08.01	Samoylov 72°22.924' N 126°28.370' E	soil sample, vegetation area 8, L-03	15-30	soil physics, soil chemistry, microbiological, molecularbiological
77	LD01-8069	11.08.01	Samoylov 72°22.924' N 126°28.370' E	soil sample, vegetation area 8, pooled sample, upper peat layer, L03		soil organic matter
78	LD01-8070	11.08.01	Samoylov 72°22.924' N 126°28.370' E	soil sample, vegetation area 8, pooled sample, lower peat layer, L-03		soil organic matter
79	LD01-8071	11.08.01	Samoylov 72°22.733' N 126°28.369' E	soil sample, vegetation area 9, L-04	0-8	soil physics, soil chemistry, microbiological, molecularbiological
80	LD01-8072	11.08.01	Samoylov 72°22.733' N 126°28.369' E	soil sample, vegetation area 9, L-04	8-20	soil physics, soil chemistry, microbiological, molecularbiological
81	LD01-8073	11.08.01	Samoylov 72°22.733' N 126°28.369' E	soil sample, vegetation area 9, L-04	20-33	soil physics, soil chemistry, microbiological, molecularbiological
82	LD01-8074	11.08.01	Samoylov 72°22.733' N 126°28.369' E	soil sample, vegetation area 9, L-04	33-45	soil physics, soil chemistry, microbiological, molecularbiological
83	LD01-8075	22.08.01	Samoylov 72°22.733' N 126°28.369' E	soil sample, vegetation area 9, pooled sample, O, L-04		soil organic matter
84	LD01-8076 a	22.08.01	Samoylov 72°22.733' N 126°28.369' E	soil sample, vegetation area 9, pooled sample, aerobic layer, L-04		soil organic matter
85	LD01-8076 b	22.08.01	Samoylov 72°22.733' N 126°28.369' E	soil sample, vegetation area 9, pooled sample, anaerobic layer, L-04		soil organic matter
86	LD01-8077	13.08.01	Samoylov 72°22.550' N 126°27.644' E	soil sample, vegetation area 2, L-05	0-11	soil physics, soil chemistry, microbiological, molecularbiological
87	ID01-8078	13.08.01	Samoylov 72°22.550' N 126°27.644' E	soil sample, vegetation area 2, L-05	11-21	soil physics, soil chemistry, microbiological, molecularbiological
88	LD01-8079	13.08.01	Samoylov 72°22.550' N 126°27.644' E	soil sample, vegetation area 2, L-05	21-29	soil physics, soil chemistry, microbiological, molecularbiological
89	LD01-8080	13.08.01	Samoylov 72°22.550' N 126°27.644' E	soil sample, vegetation area 2, L-05	29-36	soil physics, soil chemistry, microbiological, molecularbiological
90	LD01-8081	22.08.01	Samoylov 72°22.550' N 126°27.644' E	soil sample, vegetation area 2, L-05	36-41	soil physics, soil chemistry, microbiological, molecularbiological
91	LD01-8082	22.08.01	Samoylov 72°22.550' N 126°27.644' E	soil sample, vegetation area 2, L-05	41-75	soil physics, soil chemistry, microbiological, molecularbiological
92	LD01-8083	22.08.01	Samoylov 72°22.550' N 126°27.644' E	soil sample, vegetation area 2, L-05	75-98	soil physics, soil chemistry, microbiological, molecularbiological
93	LD01-8084	22.08.01	Samoylov 72°22.550' N 126°27.644' E	soil sample, vegetation area 2, pooled sample, aerobic layer, L-05		soil organic matter
94	LD01-8085	22.08.01	Samoylov 72°22.550' N 126°27.644' E	soil sample, vegetation area 2, pooled sample, anaerobic layer, L-05		soil organic matter

Table A3-5 (page 3): List of soil and plant s	amples (total amount = 196)	. collected at central Lena Delta during	the expedition Lena Delta 2001

no. sa	mple ID	date	location	description	depth (cm)	planned analyses
95 LE	01-8086	14.08.01	Samovlov 72°22.535' N 126°28.876' E	soil sample vegetation area 21 1-06	0-12	soil obusics, soil oborsistay, microbiological, malogulartialogical
96 LE	01-8087	14.08.01	Samoylov 72°22.535' N 126°28.876' E	soil sample, vegetation area 21, L-06	12-28	soil physics, soil chemistry, microbiological, molecularbiological
97 LE	01-8088	14.08.01	Samovlov 72°22,537' N 126°29 021' F	soli sample vegetation area 22 1-07	0-11	coll physics, coll chemistry, microbiological, molecularbiological
98 LC	01-8089	14.08.01	Samovlov 72°22 537' N 126°29 021' F	soil sample, vegetation area 22 (207	11 14	soli physics, soli chemistry, microbiological, molecularbiological
99 LE	01-8090	14.08.01	Samovlov 72°22 537' N 126°29 021' E	soil sample, vegetation area 22 1-07	14-20	soil physics, soil chemistry, microbiological, molecularbiological
100 LC	001-8091	14.08.01	Samovlov 72°22,537' N 126°29,021' E	soil sample, vegetation area 22, 1-07	20-32	soil physics, soil chemistry, microbiological, molecularbiological
101 LC	01-8092	14.08.01	Samoylov 72°22,540' N 126°29,015' F	soil sample, regetation area 23 1-08	0.12	soil physics, soil chemistry, microbiological, molecularBiological
102 LC	01-8093	14.08.01	Samovlov 72°22,540' N 126°29 015' F	soil sample, vegetation area 23 1-08	12-37	soil physics, soil chemistry, microbiological, molecularbiological
103 11	001-8094	22.08.01	Samovlov 72°23 100' N 126°28 935' E	soil sample, vegetation area 24 1-09	0.15	soil physics, soil chemistry, microbiological, molecularbiological
104 1	01-8095	22.08.01	Samovlov 72°23 100' N 126°28 935' E	soil sample, vegetation area 24, L-09	15.20	soil physics, soil chemistry, microbiological, molecularbiological
105 1	3001-8096	22.08.01	Samoylov 72°23 100' N 126°28 035' E	soil sample, vegetation area 24, L-00	13-29	sol physics, sol chemistry, microolological, molecularbiological
106 1	101-8097	22.08.01	Samoylov 72 20,100 N 120 20,305 L	soil sample, vegetation area 24, L-05	32-43	soli physics, soli chemistry, microbiological, molecularbiological
107 10	01-8009	22.00.01	Samoylov 72 23,100 N 120 28,935 E	soli sample, vegetation area 24, c-09	45-63	soli physics, soli chemistry, microbiological, molecularbiological
108 1	01-8090	22.08.01	Samoylov 72 23 100 N 120 28.935 E	soil sample, vegetation area 24, pooled sample accordin layer, L-09		son organic matter
100 10	01-8100	11.09.01	Samoylov 72 23,100 N 120 20.933 E	son sample, vegetation area 24, poored sample, anaeropic layer, L-U9	0.7	son organic matter
110 15	01-8101	11.00.01	Samoylov 72 23.200 N 120 28.763 E	soli sample, vegetation area 7, E-01	7.06	soil physics, soil chemistry
111 15	01-0101	11.08.01	Samoylov 72* 23.280 N 126* 28.763 E	soli sample, vegetation area 7, E-01	7-26	soil physics, soil chemistry
112 17	01-0102	+1.00.01	Samoyov 72: 23,280 N 120: 28,763 E	son sample, vegetation area 7, E-01	26-45	SOII DRYSKS, SOII CREMISTRY
112 11	01 9104	11.08.01	Samoylov 72° 23.280 N 126° 28.763 E	soi sample, vegetation area 7, 2-01	45-73	soil physics, soil chemistry
114 10	01.9106	11.08.01	Samoylov 72 23.280 N 126 28.763 E	soil sample, vegetation area 7, pooled sample, aerodic layer, E-01		soli organic matter
115 10	01.0105	11.00.01	Campiday 70922 240 N 126920 540 5	soli sample, vegetation area 7, pooled sample, anaelooid layer, 2-01	0.10	son organic matter
116 1	01-0100	11.00.01	Samoylov 72 23.242 N 120-29.348 E	soli sample, vegetation area 11, E-02	10.01	soli physics, soli chemistry
117 1	01-8109	11.00.01	Samoylov 72 23.242 N 120 29.548 E	soli sample, vegetation area 11, E-02	10-21	soil privacs, soil chemistry
	01-8108	11.08.01	Samoyov 72 23.242 N 120 29.348 E Samoyov 72°23 242' N 126°20 548' E	soil sample, vegetation area 11, pooled sample, organic sonace, E-02		soli organic matter
110 1	01-8110	11.08.01	Samoylov 72 20,242 11 120 23,048 E	coll comple, vegetation area 12, E-09	0.5	
120 10	01-9111	11.00.01	Samoylov 72 23.113 N 120 29.971 E	soi sampe, vegetation area 12, EVS	5-25	soil physics, soil chemistry
121 17	201-0111	11.08.01	Samoylov 72 23.113 N 120 29.971 E	soil sample, vegetation area 12, E-03	25-42	soil physics, soil chemistry
122 1	01-0112	11.00.01	Samoylov 72 23.113 N 126 29.971 E	soil comple, vegetation area 12, E-03	42.00	soli physics, soli chemistry
122 11	01 9114	25.09.01	Samoylov 72 23.113 N 120 29.971 E	soil sample, vegetation area 12, E-05	43-99	soil provice, soil chemistry
123 LL	01-0114	25.08.01	Samoylov 72 23,113 N 126 29,971 E	soil sample, vegetation area 12, pooled sample, All, 2-03		soil organic matter
105 10	01 9116	23.00.01	Campiday 7020 500 N 10520 059 E	soil sample, vegetation area 12, police sample, 0, 2-00	0.15	soil shupist, soil chemistry
125 11	01-0110	22.00.01	Samoyov 72 22.332 N 120 30.253 E	soil sample, vegetation area 13, polygoncentre, E-04	15-21	soli physics, soli chemistry
107	01.0110	22.08.01	Samoyov 72*22.532 N 120*30.253*E	son sample, vegetation area 13, polygoncentre, E-04	01-28	soli physics, soli chemistry
120 1	01.0110	22.00.01	Samoyov 72 22,552 N 120 30,253 E	soli comple, vegotation area 19, polygonicenire, L-04	£1-20	enil organic matter
120 LL	01-8119	22.08.01	Samoyov 72*22.532 N 126*20 252* E	soil sample, vegetation area 13, polygoncentre, poded sample, organic sunace, E-04		soil organic matter
129 11	201-0120	22.00.01	Campidou 70200 500 N 120 30.233 E	soli sample, vegenatori area 13, porgonicente, porco sample, actorici lagor, 2-04	0.8	coll physics soil chemistry
130 LL	JUI-8121	22.08.01	Samoyov /2-22.532 N 120-30.253 E	son sample, vegetation area 13, polygonooroer, E-05	9-17	coll physics, suit Chemistry
	JUI-8122	22.08.01	Samoyov 72*22.532 N 120*30.253 E	soli sample, vegetation area 13, polygonborder, E-05	17-28	eal animize soil chemistry
132 11	201-8123	22.08.01	Samoyiov 72*22.532 N 126*30.253*E	soli sample, vegetation area 10, polygonoorder, E-05	17-20	soli priyska, soli o ratter
133 11	201-8124	22.08.01	Samoyiov /2"22.532" N 126"30.253" E	soir sample, vegenation area 13, polygonborder, pooled sample, organic surface, E-05		soil organic matter
134 10	301-8125	22.08.01	SamoyioV 72*22.532 N 126*30.253 E	son sample, vegetation area 13, polygonoorder, poded sample, aerodic layer, E-05	0.6	sol organic matter
135 LL	001-8126	23.08.01	Samoyiov 72°22.200° N 126°13.341' E	soli sample, vegetation area 14, polygoncerare, E-06	6.0	soil physics, soil chemistry
136 LC	201-8127	23.08.01	Samoylov 72°22.200' N 126°13.341' E	soil sample, vegetation area 14, polygoricentre, E-06	0-9	Son physics, son chemistry
137 LC	201-8128	23.08.01	Samoytov 72°22.200' N 126°13.341' E	soil sample, vegetation area 14, polygoncentre, E-06	9-16	soil physics, soil chemistry
138 LC	001-8129	23.08.01	Samoylov 72°22.200' N 126°13.341' E	soil sample, vegetation area 14, polygoncentre, E-06	16-30	soil physics, soil chemistry
139 LC	01-8130	23.08.01	Samoylov 72°22.200' N 126°13.341' E	soil sample, vegetation area 14, polygoncentre, pooled sample, organic surface, E-06		soil organic matter
140 LL	201-8131	23.08.01	Samoyiov 72°22.200' N 126°13.341' E	soil sample, vegetation area 14, polygoncentre, pooled sample, aerobic layer, E-06		son organic matter
[141] LC	201-8132	23.08.01	Samoylov 72°22.200' N 126°13.341' E	soil sample, vegetation area 14, polygonborder, E-07	0-12	soli physics, soli chemistry

Table A3-5 (page 4):	List of soil and plant	samples (total amount	= 196).	. collected at central Lena Delta durine	a the expedition Lena Delta 2001.

no. sample ID	date	location	description	depth (cm)	planned analyses
142 1 001-8133	23.08.01	Samovlov 72°22 200' N 126°13 341' E	soil sample vegetation area 14 polygonborder E-07	12-20	soil physics soil chemistry
143 I D01-8134	23 08 01	Samoylov 72°22 200' N 126°13 341' E	soil sample, regetation area 14, polygonborder, E-07	20-26	soil physics, soil chemistry
144 LD01-8135	23.08.01	Samoviov 72°22 200' N 126°13 341' E	soil sample, regelation area 14, polygonborder, E-07	26-38	soil physics, soil chemistry
145 1.001-8136	23.08.01	Samoylov 72 22.200 N 120 13.341 E	soil sample, vegetation area 14, polygonborder, poded sample, organic surface, E-07	20-00	soil priysics, soil criefinishy
146 LD01-8137	23.08.01	Samovlov 72°22,200' N 126°13 341' F	soil sample, regetation area 14, polygonoborder, pooled sample, organic surface, E-07		soil organic matter
147 1 001-8138	23.08.01	Samovlov 72°20 217' N 126°29 515' E	soil sample, regetation area 15 E-08	0-5	soil physics soil chemistry
148 1.001-8139	23.08.01	Samoylov 72°20 217' N 126°29 515' E	soil sample, regetation area 15 E-08	5-15	soil physics, soil chemistry
149 1 001-8140	23.08.01	Samoylov 72 20217 N 126 25:515 L	soil sample, vegetation area 15, E-08	15-20	soil physics soil chemistry
150 1.001-8141	23.08.01	Samoylov 72°20 217' N 126°29 515' E	soil sample, regetation area 15 E-08	20-29	soil physics, soil chemistry
151 1.001-8142	23.08.01	Samoylov 72 20.217 N 126 23.515 E	soil sample, regetation area 15 E-08	29-45	soil physics, soil chemistry
152 1 001-8143	23.08.01	Samoylov 72°20 217' N 126°29 515' E	soil sample, vegetation area 15 E-08	45-62	soil physics soil chemistry
153 1001-8144	23.08.01	Samoylov 72 20.217 N 126 29.515 E	soil sample, regenation area 15, pooled sample, organic surface F-08		soil organic matter
154 1 001-8145	23.08.01	Samoylov 72 20.217 N 126 29.515 E	soil sample, regelation area 15, pooled sample, ergbin samole, 2-00	<u> </u>	soil organic matter
155 LD01-0145	23.08.01	Samoylov 72 20.217 N 120 29.313 E Samoylov 72°20 217' N 126°29 515' F	soil sample, vegetation area 15, pooled sample, activitie layer, E-06		soil organic matter
156 1.001-8147	13.08.01	Samoylov 72°22 550' N 126°27 644' E	plant sample, regelation area 2		biomass determination
157 1001-8148	10.08.01	Samoylov 72 22.550 N 120 27.044 E	plant sample, regention area 4		biomass determination
158 1 001-8140	10.08.01	Samoylov 72 22,536 N 120 27.056 E Samoylov 72°22 530' N 126°29 187' E	plant sample, registration area 6	 	biomass determination
150 LD01-0149	11.08.01	Samoylov 72° 23 280' N 126° 28 763' E	niant sample, vegetation area 7		biomass determination
160 1.001-8151	26.08.01	Samoylov 72°22 924' N 126°28 370' F	plant sample, regelation area 8		biomass determination
161 1.001-8152	11.08.01	Samoylov 72°22 733' N 126°28 369' F	niant sample, vegetation area 9		biomass determination
162 1 001-8152	08.08.01	Samoylov 72°22 535' N 126°28 679' F	plant sample, regetation area 10		biomass determination
163 1 D01-8154	11 08 01	Samoviov 72°23 242' N 126°29 548' F	plant sample, regetation area 11		biomass determination
164 1 D01-8155	11 08 01	Samoylov 72°23 113' N 126°29 971' F	plant sample, regetation area 12		biomass determination
165 LD01-8156	22.08.01	Samoylov 72 23 F13 N 126 23 371 E	plant sample, vegetation area 13 polygonborder		biomass determination
166 LD01-8157	22.00.01	Samoylov 72 22.302 14 120 30.233 E	plant sample, regetation area 14 polygonborder		biomass determination
167 1 D01-8159	23.00.01	Samoylov 72 22.200 N 126 13.341 E	plant sample, regetation area 14, polygonoreatre		biomass determination
107 1001-0150	09.09.01	Samoylov 72 22.200 N 120 13.041 E	plant sample, regetation area 15	1	biomass determination
100 LD01-0159	14.09.01	Samoyov 72 20.217 N 120 29.313 E	plant sample, regelation area 10		biomass determination
1701 LD01 8161	14.00.01	Samoylov 72 22.353 N 120 28.878 E	plant sample, regention area 22		biomass determination
170 LD01-8161	14.08.01	Samoylov 72 22.337 N 120 29.021 E	plant sample, vegetation area 23		biomass determination
171 LD01-8162	14.08.01	Campidov 72*22.540 N 126*29.015 E	plant sample, regelation area 24	1	biomass determination
172 LD01-8163	23.08.01	Samoylov 72*23.100 N 120*28.935 E	plant cample, vegetation area 13 nolvroncentre		biomass determination
173 LD01-8164	22.09.01	Samoyiov /2-22.552 N (20-30.253 E	plant cample, vegetation area 10, polygonomic	1	biomass determination
1/4 LD01-8165	17.08.01	Kurungriakh 72°21.236 N 126°13.333 E	plan sample, vegetation area, K-03	1	biomass determination
1/5 LU01-8166	17.08.01	Kurungnakh 72°21.216 N 126°13.333 E	plant sample, vegetation area, K-04	1	biomass determination
1/6 LD01-8167	20.08.01	Kurunghakn 72-20.102 N 126*16.927 E	plant sample, vegetation area, K-05		biomass determination
177 LD01-8168	20.08.01	Nurunghakh 72°20,102° N 126°16,927° E	plant sample, vegetation area, S-01		biomass determination
180 LD01-8171	14.08.01	Sardakh 72°33,459 N 127°10,016 E	plant sample, vegetation area, S-01		biomass determination
101 LD01-01/2	14.00.01	Garuanii /2 33,433 N 12/ 10,016 E	plant cample, regenation area, o or	1	biomass determination
182 LD01-8221	08.08.01	Samoylov 72° 22.2' N 129° 26.5' E	plant sample, carex concolor, an oneo		biomass determination
1031 LD01-0222	00.00.01	Campulay 7090 E2E'N 10890 E70'E	coll comple venetation area 10 1-10	+2-0	soil physics, soil chemistry
184 LU01-8223	20.08.01	Samoyov 72-22.535 N 120-28.679 E	soil sample, vegetation area 10, L-10	0-7	soil physics, soil chemistry
105 LD01-8224	26.08.01	Samoujov 72°22,535 N 126°29 570' E	soil sample, vegetation area 10, L-10	7-31	soil physics, soil chemistry
1001 LD01-8225	20.00.01	Samoyov 72 22.333 N 120 20.079 E	soil sample, vegetation area 10 1-10	7-31	soil physics, soil chemistry
10/ LUUI-0220	26.09.01	Samoyov 72 22.000 N 120 20.079 E	soil sample, vegetation area 10 I-10	31-45	soil physics, soil chemistry
100 1001-0227	20.00.01	Gamoyov 72 22.333 H 120 20.079 E	more vegetation area 12	+	nolen
189 LD01-8228	25.08.01	Samoyiov 72*22.532 N 126*30.253* E		1	nollen
190F LD01-8229	1 26.08.01	Samoviov /2°22,/33 N 126°28,369 E	moss, vegetation area 9	1	Policit

Table A3-5 (page 5): List of soil and plant samples (total amount = 196), collected at central Lena Delta during the expedition Lena Delta 2001.

no.	sample ID	date	location	description	depth (cm)	planned analyses	1
191	LD01-8230	26.08.01	Samoylov 72°22.535' N 126°28.679' E	moss, vegetation area 10		pollen	1
192	LD01-8231	26.08.01	Samoylov 72°22.535' N 126°28.876' E	moss, vegetation area 21		pollen	
193	LD01-8232	26.08.01	Samoylov 72°22.537' N 126°29.021' E	moss, vegetation area 22		pollen	
194	LD01-8233	26.08.01	Samoylov 72°22.540' N 126°29.015' E	moss, vegetation area 23		pollen	
195	LD01-8239	14.08.01	Sardakh 72°33.459' N 127°10.016' E	Carex (Lake 1)		biomass determination	
196	LD01-8240	14.08.01	Sardakh 72°33.459' N 127°10.016' E	Carex (Lake 2)		biomass determination	1

grain size analysis /nitrogen ratio, cations, pH, C_{org}

150

vity, enrichment and charcterization of microbe:

luorescence in situ hybridization C_{org}, carbon/nitrogen ratio

•

Table A3-6: List of sediment and water samples (total amount = 31)	, collected at Samoylov during the expedition Lena Delta 2001.

io.	sample ID	date	location	description	depth (cm)	planned analyses
1	LD01-8174	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 3	0-2	geochemical
2	LD01-8175	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 3	2-4	geochemical
3	LD01-8176	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 3	4-6	geochemical
4	LD01-8177	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 3	6-8	geochemical
5	LD01-8178	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 3	8-10	geochemical
6	LD01-8179	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 3	10-12	geochemical
7	LD01-8180	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 3	12-14	geochemical
8	LD01-8181	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 3	14-16	geochemical
9	LD01-8182	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 3	16-18	geochemical
10	LD01-8183	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 3	18-20	geochemical
11	LD01-8184	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 1	0-2	microbiological, molecularbiological
12	LD01-8185	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 1	2-4	microbiological, molecularbiological
13	LD01-8186	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 1	4-8	microbiological, molecularbiological
14	LD01-8187	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 1	8-12	microbiological, molecularbiological
15	LD01-8188	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 1	12-16	microbiological, molecularbiological
16	LD01-8189	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 1	16-18	microbiological, molecularbiological
17	LD01-8190	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 2	0-2	microbiological
18	LD01-8191	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 2	2-4	microbiological
19	LD01-8192	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 2	4-8	microbiological
20	LD01-8193	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 2	8-12	microbiological
21	LD01-8194	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 2	12-16	microbiological
22	LD01-8195	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 2	16-20	microbiological
23	LD01-8196	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample, core 2	20-23	microbiological
24	LD01-8197	23.08.01	Sameylov 72° 22 066' N 126° 29 209' E	water sample	water surface	gas
25	LD01-8198	23.08.02	Samoylov 72° 22 066' N 126° 29 209' E	water sample	water surface	gas
26	LD01-8199	23.08.03	Samoylov 72° 22 066' N 126° 29 209' E	water sample	water surface	gas
27	LD01-8200	23.08.04	Samoylov 72° 22 066' N 126° 29 209' E	water sample	water surface	hydrochemical
28	LD01-8203	23.08.06	Samoylov 72° 22 066' N 126° 29 209' E	water sample	80	ostracodes
29	LD01-8204	23.08.07	Samoylov, lake close to the sauna	water sample	80	ostracodes
30	LD01-8202	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	sediment sample	0-3	ostracodes
31	I D01-8207	24.08.01	Samoviov 72° 22 066' N 126° 29 209' E	sediment sample	0-25	micromorphological

-4446 (10)	Table A3-7 (page 1): List of ice wede	ue samples (total amount = 64)	. collected in central Lena Delta	during the expedition Lena Delta 2001
--	---------------------------------------	--------------------------------	-----------------------------------	---------------------------------------

no.	sample ID	date	location	description	depth (cm)	planned analyses
1	LD01-6693	27.07.02	Samoylov 72°21.995' N 126°29.333' E	ice sample, 20 cm distance from right end of ice wedge 1	350	gas ¹ , hydro chemical ⁶ , microbiological ⁹ , molecularbiological ⁶ , Isotope ⁶
2	LD01-6694	27.07.02	Samoylov 72°21.995' N 126°29.333' E	ice sample, 40 cm distance from right end of ice wedge 1	350	gas, hydro chemical, microbiological, molecularbiological, Isotope
3	LD01-6695	27.07.02	Samoylov 72°21.995' N 126°29.333' E	ice sample, 60 cm distance from right end of ice wedge 1	350	gas, hydro chemical, microbiological, molecularbiological, Isotope
4	LD01-6696	27.07.02	Samoylov 72°21.995' N 126°29.333' E	ice sample, 80 cm distance from right end of ice wedge 1	350	gas, hydro chemical, microbiological, molecularbiological, isotope
5	LD01-6697	27.07.02	Samoylov 72°21.995' N 126°29.333' E	ice sample, 140 cm distance from right end of ice wedge 1	350	gas, hydro chemical, microbiological, molecularbiological, Isotope
6	LD01-6698	28.07.02	Samoylov 72°21.995' N 126°29.333' E	ice sample, 30 cm distance from right end of ice wedge 2	300	gas, hydro chemical, microbiological, molecularbiological, Isotope
7	LD01-6699	28.07.01	Samoylov 72°21.995' N 126°29.333' E	ice sample, 60 cm distance from right end of ice wedge 2	300	gas, hydro chemical, microbiological, molecularbiological, Isotope
8	LD01-6700	28.07.00	Samoylov 72°21.995' N 126°29.333' E	ice sample, 90 cm distance from right end of ice wedge 2	300	gas, hydro chemical, microbiological, molecularbiological, Isotope
9	LD01-6701	28.07.99	Samoylov 72°21.995' N 126°29.333' E	ice sample, 120 cm distance from right end of ice wedge 2	300	gas, hydro chemical, microbiological, molecularbiological, Isotope
10	LD01-6702	28.07.98	Samoylov 72°21.995' N 126°29.333' E	ice sample, 150 cm distance from right end of ice wedge 2	300	gas, hydro chemical, microbiological, molecularbiological, Isotope
11	LD01-6703	28.07.97	Samoylov 72°21.995' N 126°29.333' E	ice sample, 180 cm distance from right end of ice wedge 2	300	gas, hydro chemical, microbiological, molecularbiological, Isotope
12	LD01-6704	28.07.96	Samoylov 72°21.995' N 126°29.333' E	ice sample, 210 cm distance from right end of ice wedge 2	300	gas, hydro chemical, microbiological, molecularbiological, isotope
13	LD01-6705	28.07.95	Samoylov 72°21.995' N 126°29.333' E	ice sample, 240 cm distance from right end of ice wedge 2	300	gas, hydro chemical, microbiological, molecularbiological, isotope
14	LD01-6706	28.07.94	Samoylov 72°21.995' N 126°29.333' E	ice sample, 270 cm distance from right end of ice wedge 2	300	gas, hydro chemical, microbiological, molecularbiological, Isotope
5	LD01-6707	28.07.93	Samoylov 72°21.995' N 126°29.333' E	ice sample, 300 cm distance from right end of ice wedge 2	300	gas, hydro chemical, microbiological, molecularbiological, Isotope
16	LD01-6708	28.07.92	Samoylov 72°21.995' N 126°29.333' E	ice sample, middle of ice wedge 2	270	gas, hydro chemical, microbiological, molecularbiological. Isotope
17	LD01-6709	28.07.91	Samoylov 72°21.995' N 126°29.333' E	ice sample, middle of ice wedge 2	240	gas, hydro chemical, microbiological, molecularbiological, Isotope
8	LD01-6710	28.07.90	Samoylov 72°21.995' N 126°29.333' E	ice sample, middle of ice wedge 2	210	gas, hydro chemical, microbiological, molecularbiological, Isotope
19	LD01-6711	28.07.89	Samovlov 72°21.995' N 126°29.333' E	ice sample, middle of ice wedge 2	180	gas, hydro chemical, microbiological, molecularbiological, Isotope
:0	LD01-6712	28.07.88	Samoylov 72°21.995' N 126°29.333' E	ice sample, middle of ice wedge 2	150	gas, hydro chemical, microbiological, molecularbiological, Isotope
1	LD01-6713	28.07.87	Samovlov 72°21.995' N 126°29.333' E	ice sample, middle of ice wedge 2	120	gas, hydro chemical, microbiological, molecularbiological, Isotope
22	LD01-6714	28.07.86	Samoylov 72°21.995' N 126°29.333' E	ice sample, 20 cm right from middle of ice wedge 2	120	gas, hydro chemical, microbiological, molecularbiological, Isotope
23	LD01-6715	28.07.85	Samoylov 72°21.995' N 126°29.333' E	ice sample, 40 cm right from middle of ice wedge 2	120	gas, hydro chemical, microbiological, molecularbiological, Isotope
24	LD01-6716	28.07.84	Samoylov 72°21.995' N 126°29.333' E	ice sample, 60 cm right from middle of ice wedge 2	120	gas, hydro chemical, microbiological, molecularbiological, Isotope
25	LD01-6717	28.07.83	Samoylov 72°21.995' N 126°29.333' E	ice sample, 80 cm right from middle of ice wedge 2	120	gas, hydro chemical, microbiological, molecularbiological, Isotope
26	LD01-6718	28.07.82	Samovlov 72°21.995' N 126°29.333' E	ice sample, 20 cm left from middle of ice wedge 2	120	gas, hydro chemical, microbiological, molecularbiological, Isotope
27	LD01-6719	28.07.81	Samovlov 72°21.995' N 126°29.333' E	ice sample, 40 cm left from middle of ice wedge 2	120	gas, hydro chemical, microbiological, molecularbiological, Isotope
28	LD01-6720	28.07.80	Samovlov 72°21.995' N 126°29.333' E	ice sample, 60 cm left from middle of ice wedge 2	120	gas, hydro chemical, microbiological, molecularbiological, Isotope
29	LD01-6721	28.07.79	Samovlov 72°21.995' N 126°29.333' E	ice sample, middle of ice wedge 2	90	gas, hydro chemical, microbiological, molecularbiological, Isotope
30	LD01-6722	28,07,78	Samovlov 72°21.995' N 126°29.333' E	ice sample, middle of ice wedge 2	60	gas, hydro chemical, microbiological, molecularbiological, Isotope
31	LD01-6723	28.07.77	Samovlov 72°21,995' N 126°29,333' E	ice sample, middle of ice wedge 2	30	gas, hydro chemical, microbiological, molecularbiological, isotope
32	LD01-6724	22.07.76	Samovlov 72°22.2' N 129° 28.5' E	ice sample, ice wedge at P-01, centre of the crack	0-5	gas
33	LD01-6725	22.07.75	Samovlov 72°22.2' N 129° 28.5' E	ice sample, ice wedge at P-01, centre of the crack	5-10	gas
34	LD01-6726	22.07.74	Samovlov 72°22.2' N 129° 28.5' E	ice sample, ice wedge at P-01, centre of the crack	10-15	gas
35	LD01-6727	22.07.73	Samovlov 72°22.2' N 129° 28.5' E	ice sample, ice wedge at P-01, centre of the crack	15-20	gas
36	LD01-6728	22.07.72	Samovlov 72°22.2' N 129° 28.5' E	ice sample, ice wedge at P-01, centre of the crack	20-25	gas
37	LD01-6729	22.07.71	Samoylov 72°22.2' N 129° 28.5' E	ice sample, ice wedge at P-01, border of the ice wedge	0-20	gas
38	LD01-6879	13.08.01	Sardakh 72° 33.465' N 127° 10.007' E	ice sample	0-20	hydro chemical, Isotope, sediment quantity
39	LD01-6880	13.08.01	Sardakh 72° 33.465' N 127° 10.007' E	ice sample	20-37	hydro chemical, Isotope, sediment quantity
40	LD01-6881	13.08.01	Sardakh 72° 33.465' N 127° 10.007' E	ice sample	37-52	hydro chemical, Isotope, sediment quantity
41	LD01-6882	13.08.01	Sardakh 72° 33.465' N 127° 10.007' E	ice sample	52-66	hydro chemical, isotope, sediment quantity
42	LD01-6883	13.08.01	Sardakh 72° 33,465' N 127° 10,007' E	ice sample	66-76	hydro chemical, Isotope, sediment quantity
43	LD01-6884	13.08.01	Sardakh 72° 33.465' N 127° 10.007' E	ice sample	78-94	hydro chemical, Isotope, sediment quantity
44	1.001-6885	13.08.01	Sardakh 72° 33.465' N 127° 10.007' E	ice sample	95-121	hydro chemical, Isotope, sediment quantity
45	LD01-6886	13.08.01	Sardakh 72° 33.465' N 127° 10.007' F	ice sample	122-137	hydro chemical, isotope, sediment quantity
					-	

152

Table A3-7 (page 2): List of ice wedge samples (total amount = 64), collected in central Lena Delta during the expedition Lena Delta 2001.

no.	sample ID	date	location	description	depth (cm)	planned analyses
46	LD01-6887	13.08.01	Sardakh 72° 33.465' N 127° 10.007' E	ice sample	137-152	hydro chemical, Isotope, sediment quantity
47	LD01-6888	13.08.01	Sardakh 72° 33.465' N 127° 10.007' E	ice sample	152-168	hydro chemical, Isotope, sediment quantity
48	LD01-6889	13.08.01	Sardakh 72° 33.465' N 127° 10.007' E	ice sample	168-190	hydro chemical, Isotope, sediment quantity
49	LD01-6890	13.08.01	Sardakh 72° 33.465' N 127° 10.007' E	ice sample	20-100	gas, hydro chemical, microbiological, molecularbiological, isotope
50	LD01-6891	13.08.01	Sardakh 72° 33.465' N 127° 10.007' E	ice sample	100-190	gas, hydro chemical, microbiological, molecularbiological, Isotope
51	LD01-6892	13.08.01	Sardakh 72° 33.465' N 127° 10.007' E	ice sample	0-20	gas, hydro chemical, microbiological, molecularbiological, Isotope
52	LD01-6928	20.08.01	Kurungnakh 72° 20.314' E 126° 17.079'	ice sample, core S-01	28-38	gas, hydro chemical, microbiological, molecularbiological, Isotope
53	LD01-6929	20.08.01	Kurungnakh 72° 20.314' E 126° 17.079'	ice sample, core S-02/1	38-141	gas, hydro chemical, microbiological, molecularbiological, Isotope
54	LD01-6930	20.08.01	Kurungnakh 72° 20.314' E 126° 17.079'	ice sample, core S-02/2	141-231	gas, hydro chemical, microbiological, molecularbiological, isotope
55	LD01-6931	20.08.01	Kurungnakh 72° 20.314' E 126° 17.079'	ice sample, core S-03/1.1	800	gas, hydro chemical, microbiological, molecularbiological, isotope
56	LD01-6932	20.08.01	Kurungnakh 72° 20.314' E 126° 17.079'	ice sample, core S-03/1.2	800	sediment quantity
57	LD01-6 <u>933</u>	20.08.01	Kurungnakh 72° 20.314' E 126° 17.079'	ice sample, core S-03/2.1	800	sediment quantity
58	LD01-6934	20.08.01	Kurungnakh 72° 20.314' E 126° 17.079'	ice sample, core S-03/2.2	800	gas, hydro chemical, microbiological, molecularbiological, isotope
59	LD01-6935	20.08.01	Kurungnakh 72° 20.314' E 126° 17.079'	ice sample, core S-03/3.1	800	sediment quantity
60	LD01-6936	20.08.01	Kurungnakh 72° 20.314' E 126° 17.079'	ice sample, core S-03/3.2	800	gas, hydro chemical, microbiological, molecularbiological, isotope
61	LD01-6937	20.08.01	Kurungnakh 72° 20.314' E 126° 17.079'	ice sample, core S-03/4.1	800	sediment quantity
62	LD01-6938	20.08.01	Kurungnakh 72° 20.314' E 126° 17.079'	ice sample, core S-03/4.2	800	gas, hydro chemical, microbiological, molecularbiological, Isotope
63	LD01-6939	20.08.01	Kurungnakh 72° 20.314' E 126° 17.079'	ice sample, core S-03/5.1	800	gas, hydro chemical, microbiological, molecularbiological, Isotope
64	LD01-6940	20.08.01	Kurungnakh 72° 20.314' E 126° 17.079'	ice sample, core S-03/5.2	800	sediment quantity

rbon dioxide content analysis ations, anions, conductivity, pH

ent and characterization of microbe

iorescence in situ hybridizatior O Isotope analysis

153

ity: amount of sediment

Table A3-8 (page 1): List of permafrost sediment samples (total amount = 182), collected at central Lena Delta	during the expedition Lena Delta 2001

no.	sample ID	date	location	description	depth (cm)	planned analyses
1	LD01-6730	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	35-46	geochemical, microbiological, molecularbiological
2	LD01-6731	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	46-61	geochemical, microbiological, molecularbiological
3	LD01-6732	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	61-78	geochemical, microbiological, molecularbiological
4	LD01-6733	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	78-102	geochemical, microbiological, molecularbiological
5	LD01-6734	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	102-114	geochemical, microbiological, molecularbiological
6	LD01-6735	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	114-122	geochemical, microbiological, molecularbiological
7	LD01-6736	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	122-141	geochemical, microbiological, molecularbiological
8	LD01-6737	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	141-156	geochemical, microbiological, molecularbiological
9	LD01-6738	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	156-164	geochemical, microbiological, molecularbiological
10	LD01-6739	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	164-175	geochemical, microbiological, molecularbiological
11	LD01-6740	31.07.01	Samoylov 72°22,184' N 126° 28.833' E	permafrost sample, core 1	175-183	geochemical, microbiological, molecularbiological
12	LD01-6741	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	183-191	geochemical, microbiological, molecularbiological
13	LD01-6742	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	191-198	geochemical, microbiological, molecularbiological
14	LD01-6743	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	198-218	geochemical, microbiological, molecularbiological
15	LD01-6744	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	218-233	geochemical, microbiological, molecularbiological
16	LD01-6745	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	233-249	geochemical, microbiological, molecularbiological
17	LD01-6746	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	249-255	geochemical, microbiological, molecularbiological
18	LD01-6747	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	255-263	geochemical, microbiological, molecularbiological
19	LD01-6748	31.07.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 1	263-269	geochemical, microbiological, molecularbiological
20	LD01-6749	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	32-55	geochemical, microbiological, molecularbiological
21	LD01-6750	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	55-65	geochemical, microbiological, molecularbiological
22	LD01-6751	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	65-82	geochemical, microbiological, molecularbiological
23	LD01-6752	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	82-94	geochemical, microbiological, molecularbiological
24	LD01-6753	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	94-111	geochemical, microbiological, molecularbiological
25	LD01-6754	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	111-138	geochemical, microbiological, molecularbiological
26	LD01-6755	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	138-150	geochemical, microbiological, molecularbiological
27	LD01-6756	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	150-164	geochemical, microbiological, molecularbiological
28	LD01-6757	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	164-184	geochemical, microbiological, molecularbiological
29	LD01-6758	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	184-195	geochemical, microbiological, molecularbiological
30	LD01-6759	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	195-216	geochemical, microbiological, molecularbiological
31	LD01-6760	02.08.01	Samoyiov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	216-232	geochemical, microbiological, molecularbiological
32	LD01-6761	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	232-247	geochemical, microbiological, molecularbiological
33	LD01-6762	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	247-262	geochemical, microbiological, molecularbiological
34	LD01-6763	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	262-265	geochemical, microbiological, molecularbiological
35	LD01-6764	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	265-274	geochemical, microbiological, molecularbiological
36	LD01-6765	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	274-292	geochemical, microbiological, molecularbiological
37	LD01-6766	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	292-304	geochemical, microbiological, molecularbiological
38	LD01-6767	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	304-310	geochemical, microbiological, molecularbiological
39	LD01-6768	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	310-327	geochemical, microbiological, molecularbiological
40	LD01-6769	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	327-331	geochemical, microbiological, molecularbiological
41	LD01-6770	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	331-336	geochemical, microbiological, molecularbiological

.

Table A3-8 (page 2): List of permafrost sediment samples (total amount = 182), collected at central Lena Delta during the expedition Lena Delta 2001.

no.	sample ID	date	location	description	depth (cm)	planned analyses
42	LD01-6771	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	336-346	geochemical microbiological molecularbiological
43	LD01-6772	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	346-364	geochemical, microbiological, molecularbiological
44	LD01-6773	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	364-376	geochemical microbiological molecularbiological
45	LD01-6774	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	376-393	geochemical, microbiological, molecularbiological
46	LD01-6775	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	393-396	geochemical, microbiological, molecularbiological
47	LD01-6776	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	396-416	geochemical microbiological molecularbiological
48	LD01-6777	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	416-428	geochemical, microbiological, molecularbiological
49	LD01-6778	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	428-441	geochemical, microbiological, molecularbiological
50	LD01-6779	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	441-446	geochemical, microbiological, molecularbiological
51	LD01-6780	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	446-456	geochemical, microbiological, molecularbiological
52	LD01-6781	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	456-466	geochemical, microbiological, molecularbiological
53	LD01-6782	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	466-483	geochemical, microbiological, molecularbiological
54	LD01-6783	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	483-495	geochemical, microbiological, molecularbiological
55	LD01-6784	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	495-502	geochemical, microbiological, molecularbiological
56	LD01-6785	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	502-519	geochemical, microbiological, molecularbiological
57	LD01-6786	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	519-532	geochemical, microbiological, molecularbiological
58	LD01-6787	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	532-549	geochemical, microbiological, molecularbiological
59	LD01-6788	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	549-565	geochemical, microbiological, molecularbiological
60	LD01-6789	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	565-575	geochemical, microbiological, molecularbiological
61	LD01-6790	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	575-592	geochemical, microbiological, molecularbiological
62	LD01-6791	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	592-605	geochemical, microbiological, molecularbiological
63	LD01-6792	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	605-622	geochemical, microbiological, molecularbiological
64	LD01-6793	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	622-631	geochemical, microbiological, molecularbiological
65	LD01-6794	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	631-645	geochemical, microbiological, molecularbiological
66	LD01-6795	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	645-662	geochemical, microbiological, molecularbiological
67	LD01-6796	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	662-676	geochemical, microbiological, molecularbiological
68	LD01-6797	02.08.01	Samoyiov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	676-695	geochemical, microbiological, molecularbiological
69	LD01-6798	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	695-710	geochemical, microbiological, molecularbiological
70	LD01-6799	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	710-728	geochemical, microbiological, molecularbiological
71	LD01-6800	02.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	728-743	geochemical, microbiological, molecularbiological
72	LD01-6801	03.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	743-758	geochemical, microbiological, molecularbiological
73	LD01-6802	03.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	758-776	geochemical, microbiological, molecularbiological
74	LD01-6803	03.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	776-790	geochemical, microbiological, molecularbiological
75	LD01-6804	03.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	790-806	geochemical, microbiological, molecularbiological
76	LD01-6805	03.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	806-821	geochemical, microbiological, molecularbiological
77	LD01-6806	03.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	821-838	geochemical, microbiological, molecularbiological
78	L.D01-6807	03.08.01	Samoylov 72°22.184' N 126° 28.833' E	permafrost sample, core 2	838-854	geochemical, microbiological, molecularbiological
79	LD01-6808	04.08.01	Samoylov 72°22 002' N 126° 29 338' E	permafrost sample, core 3	25-51	geochemical, microbiological, molecularbiological
80	LD01-6809	04.08.01	Samoylov 72°22 002' N 126° 29 338' E	permatrost sample, core 3	51-67	geochemical, microbiological, molecularbiological
81	LD01-6810	04.08.01	Samoylov 72°22 002' N 126° 29 338' E	permafrost sample, core 3	67-83	geochemical, microbiological, molecularbiological
82	LD01-6811	04.08.01	Samoylov 72°22 002' N 126° 29 338' E	permafrost sample, core 3	83-102	geochemical, microbiological, molecularbiological

Inc. Sample ID Use Inclusion Gescription Geptin (cm) planned analyses 83 LD01-6812 04.06.01 Samoylov 72°22 002 N 126° 29 338' E permatrost sample, core 3 120-137 geochemical, microbiological, molecularbiological 85 LD01-6812 04.08.01 Samoylov 72°22 002 N 126° 29 338' E permatrost sample, core 3 137-150 geochemical, microbiological, molecularbiological 86 LD01-6814 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permatrost sample, core 3 159-166 geochemical, microbiological, molecularbiological 87 LD01-6816 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permatrost sample, core 3 168-189 geochemical, microbiological, molecularbiological 88 LD01-6816 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permatrost sample, core 3 125-234 geochemical, microbiological, molecularbiological 89 LD01-6818 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permatrost sample, core 3 215-234 geochemical, microbiological, molecularbiological 90 LD01-6818 04.08.01 Samoylov 72°22 002' N 126° 29 338' E perm
83 LD01-6812 a 04.08.01 Samoylov 72*22 002* N 126*29 338* E permafrost sample, core 3 102-120 geochemical, microbiological, molecularbiological 84 LD01-6812 b 04.08.01 Samoylov 72*22 002* N 126*29 338* E permafrost sample, core 3 120-137 geochemical, microbiological, molecularbiological 85 LD01-6813 04.08.01 Samoylov 72*22 002* N 126*29 338* E permafrost sample, core 3 159-166 geochemical, microbiological, molecularbiological 86 LD01-6815 04.08.01 Samoylov 72*22 002* N 126*29 338* E permafrost sample, core 3 166-189 geochemical, microbiological, molecularbiological 87 LD01-6816 04.08.01 Samoylov 72*22 002* N 126*29 338* E permafrost sample, core 3 166-189 geochemical, microbiological, molecularbiological 88 LD01-6818 04.08.01 Samoylov 72*22 002* N 126*29 338* E permafrost sample, core 3 215-234 geochemical, microbiological, molecularbiological 90 LD01-6818 04.08.01 Samoylov 72*22 002* N 126*29 338* E permafrost sample, core 3 215-234 geochemical, microbiological, molecularbiological 91 LD01-6819 04.08.01 Samoylov 72*22 002* N 126*29 338* E permafrost sample, core 3
64 LD01-0812 b 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 120-137 geochemical, microbiological, molecularbiological 85 LD01-6813 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 137-150 geochemical, microbiological, molecularbiological 86 LD01-6815 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 166-189 geochemical, microbiological, molecularbiological 87 LD01-6816 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 189-205 geochemical, microbiological, molecularbiological 88 LD01-6816 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 205-215 geochemical, microbiological, molecularbiological 90 LD01-6819 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 234-247 geochemical, microbiological, molecularbiological 91 LD01-6819 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 234-247 geochemical, microbiological, molecularbiological 92 LD01-6820 04.08.0
65 LD01-6813 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 137-150 geochemical, microbiological, molecularbiological 86 LD01-6814 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 159-166 geochemical, microbiological, molecularbiological 87 LD01-6815 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 166-189 geochemical, microbiological, molecularbiological 88 LD01-6817 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 205-215 geochemical, microbiological, molecularbiological 90 LD01-6817 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 215-234 geochemical, microbiological, molecularbiological 91 LD01-6819 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 234-247 geochemical, microbiological, molecularbiological 92 LD01-6820 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 247-263 geochemical, microbiological, molecularbiological 93 LD01-6821 04.08.01<
86 LD01-8814 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 159-166 geochemical, microbiological, molecularbiological 87 LD01-6815 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 166-189 geochemical, microbiological, molecularbiological 88 LD01-6816 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 205-215 geochemical, microbiological, molecularbiological 90 LD01-6818 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 215-234 geochemical, microbiological, molecularbiological 91 LD01-6819 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 234-247 geochemical, microbiological, molecularbiological 92 LD01-6819 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 247-263 geochemical, microbiological, molecularbiological 93 LD01-6821 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 263-276 geochemical, microbiological, molecularbiological 94 LD01-6823 04.08.01<
87LD01-681504.08.01Samoylov 72*22 002* N 126* 29 338* Epermafrost sample, core 3166-189geochemical, microbiological, molecularbiological88LD01-681604.08.01Samoylov 72*22 002* N 126* 29 338* Epermafrost sample, core 3189-205geochemical, microbiological, molecularbiological89LD01-681704.08.01Samoylov 72*22 002* N 126* 29 338* Epermafrost sample, core 3205-215geochemical, microbiological, molecularbiological90LD01-681904.08.01Samoylov 72*22 002* N 126* 29 338* Epermafrost sample, core 3215-234geochemical, microbiological, molecularbiological91LD01-681904.08.01Samoylov 72*22 002* N 126* 29 338* Epermafrost sample, core 3234-247geochemical, microbiological, molecularbiological92LD01-682004.08.01Samoylov 72*22 002* N 126* 29 338* Epermafrost sample, core 3247-263geochemical, microbiological, molecularbiological93LD01-682104.08.01Samoylov 72*22 002* N 126* 29 338* Epermafrost sample, core 32263-276geochemical, microbiological, molecularbiological94LD01-682204.08.01Samoylov 72*22 002* N 126* 29 338* Epermafrost sample, core 32263-276geochemical, microbiological, molecularbiological95LD01-682304.08.01Samoylov 72*22 002* N 126* 29 338* Epermafrost sample, core 32263-276geochemical, microbiological, molecularbiological96LD01-682304.08.01Samoylov 72*22 002* N 126* 29 338* Epermafrost sample, core 3302-320geochemical, m
88 LD01-6816 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 189-205 geochemical, microbiological, molecularbiological 89 LD01-6817 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 205-215 geochemical, microbiological, molecularbiological 90 LD01-6818 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 215-234 geochemical, microbiological, molecularbiological 91 LD01-6818 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 234-247 geochemical, microbiological, molecularbiological 92 LD01-6820 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 247-263 geochemical, microbiological, molecularbiological 93 LD01-6821 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 263-276 geochemical, microbiological, molecularbiological 94 LD01-6823 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 276-291 geochemical, microbiological, molecularbiological 95 LD01-6823 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 </td
B8 LD01-6817 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 205-215 geochemical, microbiological, molecularbiological 90 LD01-6818 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 215-234 geochemical, microbiological, molecularbiological 91 LD01-6819 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 234-247 geochemical, microbiological, molecularbiological 92 LD01-6820 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 247-263 geochemical, microbiological, molecularbiological 93 LD01-6821 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 263-276 geochemical, microbiological, molecularbiological 94 LD01-6822 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 276-291 geochemical, microbiological, molecularbiological 95 LD01-6823 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 320-320 geochemical, microbiological, molecularbiological 96 LD01-6824 04.08.01<
90 LD01-6818 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 215-234 geochemical, microbiological, molecularbiological 91 LD01-6819 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 234-247 geochemical, microbiological, molecularbiological 92 LD01-6819 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 247-263 geochemical, microbiological, molecularbiological 93 LD01-6821 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 263-276 geochemical, microbiological, molecularbiological 94 LD01-6822 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 226-291 geochemical, microbiological, molecularbiological 95 LD01-6823 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 302-320 geochemical, microbiological, molecularbiological 96 LD01-6824 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 320-336 geochemical, microbiological, molecularbiological 97 LD01-6824 04.08.01<
91 LD01-6819 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 234-247 geochemical, microbiological, molecularbiological 92 LD01-6820 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 247-263 geochemical, microbiological, molecularbiological 93 LD01-6821 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 263-276 geochemical, microbiological, molecularbiological 94 LD01-6822 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 276-291 geochemical, microbiological, molecularbiological 95 LD01-6823 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 291-302 geochemical, microbiological, molecularbiological 96 LD01-6823 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 302-320 geochemical, microbiological, molecularbiological 97 LD01-6825 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 320-336 geochemical, microbiological, molecularbiological 98 LD01-6826 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 </td
92 LD01-6820 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 247-263 geochemical, microbiological, molecularbiological 93 LD01-6821 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 263-276 geochemical, microbiological, molecularbiological 94 LD01-6822 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 276-291 geochemical, microbiological, molecularbiological 95 LD01-6823 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 291-302 geochemical, microbiological, molecularbiological 96 LD01-6823 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 302-320 geochemical, microbiological, molecularbiological 97 LD01-6825 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 320-326 geochemical, microbiological, molecularbiological 98 LD01-6825 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 336-351 geochemical, microbiological, molecularbiological 99 LD01-6826 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 </td
93 LD01-6821 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 263-276 geochemical, microbiological, molecularbiological 94 LD01-6822 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 276-291 geochemical, microbiological, molecularbiological 95 LD01-6823 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 291-302 geochemical, microbiological, molecularbiological 96 LD01-6823 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 302-320 geochemical, microbiological, molecularbiological 97 LD01-6825 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 320-330 geochemical, microbiological, molecularbiological 98 LD01-6826 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 336-351 geochemical, microbiological, molecularbiological 99 LD01-6826 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 336-351 geochemical, microbiological, molecularbiological 99 LD01-6827 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 </td
94 LD01-6822 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 276-291 geochemical, microbiological, molecularbiological 95 LD01-6823 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 291-302 geochemical, microbiological, molecularbiological 96 LD01-6823 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 302-320 geochemical, microbiological, molecularbiological 97 LD01-6825 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 320-336 geochemical, microbiological, molecularbiological 98 LD01-6825 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 336-351 geochemical, microbiological, molecularbiological 99 LD01-6827 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 336-351 geochemical, microbiological, molecularbiological 100 LD01-6828 04.08.01 Samoylov 72*22 002* N 126* 29 338* E permafrost sample, core 3 351-366 geochemical, microbiological, molecularbiological 100 LD01-6828 04.08.0
95 LD01-6823 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 291-302 geochemical, microbiological, molecularbiological 96 LD01-6824 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 302-320 geochemical, microbiological, molecularbiological 97 LD01-6824 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 320-336 geochemical, microbiological, molecularbiological 98 LD01-6825 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 336-351 geochemical, microbiological, molecularbiological 99 LD01-6827 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 351-366 geochemical, microbiological, molecularbiological 100 LD01-6827 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 356-382 geochemical, microbiological, molecularbiological 100 LD01-6828 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 386-382 geochemical, microbiological, molecularbiological 101 LD01-6828 04.08.
96 LD01-6824 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 302-320 geochemical, microbiological, molecularbiological 97 LD01-6825 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 320-336 geochemical, microbiological, molecularbiological 98 LD01-6825 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 336-351 geochemical, microbiological, molecularbiological 99 LD01-6827 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 351-366 geochemical, microbiological, molecularbiological 100 LD01-6828 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 351-366 geochemical, microbiological, molecularbiological 100 LD01-6828 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 366-382 geochemical, microbiological, molecularbiological 100 LD01-6829 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 382-394 geochemical, microbiological, molecularbiological 101 LD01-6829 04.08
97 LD01-6825 04.08.01 Samoylov 72*22 002' N 126° 29 338' E permafrost sample, core 3 320-336 geochemical, microbiological, molecularbiological 98 LD01-6826 04.08.01 Samoylov 72*22 002' N 126° 29 338' E permafrost sample, core 3 336-351 geochemical, microbiological, molecularbiological 99 LD01-6827 04.08.01 Samoylov 72*22 002' N 126° 29 338' E permafrost sample, core 3 331-366 geochemical, microbiological, molecularbiological 100 LD01-6828 04.08.01 Samoylov 72*22 002' N 126° 29 338' E permafrost sample, core 3 351-366 geochemical, microbiological, molecularbiological 100 LD01-6828 04.08.01 Samoylov 72*22 002' N 126° 29 338' E permafrost sample, core 3 366-382 geochemical, microbiological, molecularbiological 101 LD01-6829 04.08.01 Samoylov 72*22 002' N 126° 29 338' E permafrost sample, core 3 382-394 geochemical, microbiological, molecularbiological 102 LD01-6829 04.08.01 Samoylov 72*22 002' N 126° 29 338' E permafrost sample, core 3 382-394 geochemical, microbiological, molecularbiological 102 LD01-6829 04.0
98 LD01-6826 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 336-351 geochemical, microbiological, molecularbiological 99 LD01-6827 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 351-366 geochemical, microbiological, molecularbiological 100 LD01-6828 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 366-382 geochemical, microbiological, molecularbiological 100 LD01-6829 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 366-382 geochemical, microbiological, molecularbiological 101 LD01-6829 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 386-394 geochemical, microbiological, molecularbiological 102 LD01-6829 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 382-394 geochemical, microbiological, molecularbiological 102 LD01-6829 04.08.01 Samoylov 72*22 002' N 126* 29 338' E permafrost sample, core 3 384-394 geochemical, microbiological, molecularbiological
99 LD01-6827 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 351-366 geochemical, microbiological, molecularbiological 100 LD01-6828 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 366-382 geochemical, microbiological, molecularbiological 101 LD01-6828 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 386-382 geochemical, microbiological, molecularbiological 101 LD01-6829 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 382-394 geochemical, microbiological, molecularbiological 102 LD01-6829 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 382-394 geochemical, microbiological, molecularbiological 102 LD01-6829 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 382-394 geochemical, microbiological, molecularbiological 103 LD01-6829 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 382-394 geochemical, microbiological, molecularbiological
100 LD01-6828 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 366-382 geochemical, microbiological, molecularbiological 101 LD01-6829 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 382-394 geochemical, microbiological, molecularbiological 102 LD01-6829 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 382-394 geochemical, microbiological, molecularbiological 102 LD01-6829 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 382-394 geochemical, microbiological, molecularbiological
101 LD01-6829 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 382-394 geochemical, microbiological, molecularbiological 102 LD01-6829 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 382-394 geochemical, microbiological, molecularbiological 103 LD01-6829 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 382-394 geochemical, microbiological, molecularbiological
103 L 001 6930 04 09 01 Samplay 73932 003' N 126' 20 239' E parmatrat sample core 2 304 412 construction miles intributerial
T 102 LLOT-0030 04.00.01 Samoylov /2.22.002 N 120.29.330 ⊏ permanosi sample, core 3 394-413 geochemical, microbiological, molecularbiological
103 LD01-6831 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 413-427 geochemical, microbiological, molecularbiological
104 LD01-6832 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 427-442 geochemical, microbiological, molecularbiological
105 LD01-6833 04.08.01 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 442-457 geochemical, microbiological, molecularbiological
106 LD01-6834 05.08.02 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 457-475 geochemical, microbiological, molecularbiological
107 LD01-6835 05.08.02 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 475-491 geochemical, microbiological, molecularbiological
108 LD01-6836 05.08.02 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 491-501 geochemical, microbiological, molecularbiological
109 LD01-6837 05.08.02 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 501-517 geochemical, microbiological, molecularbiological
110 LD01-6838 05.08.02 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 517-534 geochemical, microbiological, molecularbiological
111 LD01-6839 05.08.02 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 534-546 geochemical, microbiological, molecularbiological
112 LD01-6840 05.08.02 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 546-562 geochemical, microbiological, molecularbiological
113 LD01-6841 05.08.02 Samoylov 72°22 002' N 126° 29 338' E permatrost sample, core 3 562-576 geochemical, microbiological, molecularbiological
114 LD01-6842 05.08.02 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 576-590 geochemical, microbiological, molecularbiological
115 I D01-6643 05.08.02 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 590-605 geochemical, microbiological, molecularbiological
116 1 D01-6844 05.08.02 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 605-617 geochemical, microbiological, molecularbiological
117 I D01-6845 05.08.02 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 617-630 geochemical, microbiological, molecularbiological
118 L D01-6846 05.09.02 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 630-642 geochemical, microbiological, molecularbiological
119 LD01-6947 05.08.02 Samoylov 72°22 002' N 126° 29 338' E permafrost sample, core 3 642-654 geochemical, microbiological, molecularbiological
120 L DOL-6848 05.08.02 Samoviov 72°22 002' N 126° 29 338' E permafrost sample, core 3 654-666 geochemical microhiological molecularbiological
121 L DOL6840 05.08.02 Sampler 72*22.002'N 126*29.338' E permatrast sample core 3 666-680 percentencial microbiological molecularbiological
122 LD11.6850 D5.08.02 Samular 72°22.002 N 126 20 381 F permatrast sample core 3 60.694 percembinal introducing molecularbiological
123 L D01.6851 07.08.02 Sampler 72°22.002'N 126'29 338' E permatrost sample rore 3 694-703 percentantial microhological moderitamiological

Table A3-8 (page 3): List of permafrost sediment samples (total amount = 182), collected at central Lena Delta during the expedition Lena Delta 2001.

able A3-8 (page 4): List of permafrost sediment samples (total amount = 182), collected at central Lena Delta during the expedition Lena Delta 2001.

no.	sample ID	date	location	description	depth (cm)	planned analyses
124	LD01-6852	07.08.02	Samoulov 72922 002 N 1262 00 228' E			planned analyses
125	L D01-6853	07.08.02	Samoylov 72 22 002 N 126 29 338 E	permatrost sample, core 3	703-714	geochemical, microbiological, molecularbiological
126	1 D01-6854	07.08.02	Samoylov 72 22 002 N 128 29 338 E	permarrost sample, core 3	/14-/25	geochemical, microbiological, molecularbiological
127	1.001-6855	07.08.02	Samoylov 72 22 002 N 128 29 338 E	permatrost sample, core 3	725-741	geochemical, microbiological, molecularbiological
120	1 D01 6856	07.08.02	Samoylov 72 22 002 N 126 29 338 E	permatrost sample, core 3	/41-/59	geochemical, microbiological, molecularbiological
120	1 D01 6957	07.08.02	Samoylov 72*22 002 N 126* 29 338* E	permatrost sample, core 3	759-773	geochemical, microbiological, molecularbiological
129	1.Do1.6959	07.08.02	Samoylov 72*22 002 N 126* 29 338 E	permatrost sample, core 3	773-790	geochemical, microbiological, molecularbiological
101	LD01-0656	07.08.02	Samoylov 72*22 002" N 126* 29 338" E	permatrost sample, core 3	790-803	geochemical, microbiological, molecularbiological
131	LD01-6859	07.08.02	Samoylov 72°22 002' N 126° 29 338' E	permatrost sample, core 3	803-816	geochemical, microbiological, molecularbiological
132	LD01-0000	07.08.01	Samoylov 72-22 002 N 126-29 338 E	permatrost sample, core 3	816-826	geochemical, microbiological, molecularbiological
133	LD01-6861	13.08.01	Sardakh 72°33 465' N 127° 10 007' E	permafrost sample, core 4	0-27	geochemical, microbiological, molecularbiological
134	LD01-6862	13.08.01	Sardakh 72°33 465' N 127° 10 007' E	permafrost sample, core 4	27-76	geochemical, microbiological, molecularbiological
135	LD01-6863	13.08.01	Sardakh 72°33 465' N 127° 10 007' E	permafrost sample, core 4	76-104	geochemical, microbiological, molecularbiological
136	LD01-6864	13.08.01	Sardakh 72°33 465' N 127° 10 007' E	permafrost sample, core 4	104-143	geochemical, microbiological, molecularbiological
137	LD01-6865	13.08.01	Sardakh 72°33 465' N 127° 10 007' E	permafrost sample, core 4	143-169	geochemical, microbiological, molecularbiological
138	LD01-6866	13.08.01	Sardakh 72°33 465' N 127° 10 007' E	permafrost sample, core 4	169-192	geochemical, microbiological, molecularbiological
139	LD01-6867	14.08.01	Sardakh 72°33 465' N 127° 10 007' E	permafrost sample, core 4	192-224	geochemical, microbiological, molecularbiological
140	LD01-6868	14.08.01	Sardakh 72°33 465' N 127° 10 007' E	permafrost sample, core 4	224-276	geochemical, microbiological, molecularbiological
141	LD01-6869	14.08.01	Sardakh 72°33 465' N 127° 10 007' E	permafrost sample, core 4	276-317	geochemical, microbiological, molecularbiological
142	LD01-6870	14.08.01	Sardakh 72°33 465' N 127° 10 007' E	permafrost sample, core 4	317-353	geochemical, microbiological, molecularbiological
143	LD01-6871	14.08.01	Sardakh 72°33 465' N 127° 10 007' E	permafrost sample, core 4	353-381	geochemical, microbiological, molecularbiological
144	LD01-6872	15.08.01	Sardakh 72°33 465' N 127° 10 007' E	permafrost sample, core 4	381-387	geochemical, microbiological, molecularbiological
145	LD01-6873	15.08.01	Sardakh 72°33 465' N 127° 10 007' E	permafrost sample, core 4	387-422	geochemical, microbiological, molecularbiological
146	LD01-6874	15.08.01	Sardakh 72°33 465' N 127° 10 007' E	permafrost sample, core 4	422-457	geochemical, microbiological, molecularbiological
147	LD01-6875	17.08.01	Kurungnakh 72° 20 392' N 126° 17 711' E	permafrost sample, core 5	41-67	molecularbiological
148	LD01-6876	17.08.01	Kurungnakh 72° 20 392' N 126° 17 711' E	permafrost sample, core 5	78-94	molecularbiological
149	LD01-6877	17.08.01	Kurungnakh 72° 20 392' N 126° 17 711' E	permafrost sample, core 5	187-194	molecularbiological
150	LD01-6878	17.08.01	Kurungnakh 72° 20 392' N 126° 17 711' E	permafrost sample, core 5	254-269	molecularbiological
151	LD01-6896	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	0-40	geochemical, microbiological, molecularbiological
152	LD01-6897	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	40-41	geochemical, microbiological, molecularbiological
153	LD01-6898	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	51-76	geochemical, microbiological, molecularbiological
154	LD01-6899	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	76-94	geochemical, microbiological, molecularbiological
155	LD01-6900	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	94-112	geochemical, microbiological, molecularbiological
156	LD01-6901	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	112-129 /	geochemical, microbiological, molecularbiological
157	LD01-6902	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	129-153	geochemical, microbiological, molecularbiological
158	LD01-6903	18 08 01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	153-172	geochemical, microbiological, molecularbiological
159	LD01-6904	18 08 01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	172-185	geochemical, microbiological, molecularbiological
160	LD01-6905	18 08 01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	185-200	geochemical, microbiological, molecularbiological
161	LD01-6906	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	200-213	geochemical, microbiological, molecularbiological
162	LD01-6907	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	213-224	geochemical, microbiological, molecularbiological
163	LD01-6908	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	224-230	geochemical microbiological molecularbiological
164	LD01-6909	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' F	permafrost sample, core 6	230-242	geochemical, microbiological, molecularbiological
1				p.0, 0010 0	1	geochermen, millionergioal, moleoalarbiologioal

no.	sample ID	date	location	description	depth (cm)	planned analyses
165	LD01-6910	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	242-258	geochemical, microbiological, molecularbiological
166	LD01-6911	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	258-273	geochemical, microbiological, molecularbiological
167	LD01-6912	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	273-289	geochemical, microbiological, molecularbiological
168	LD01-6913	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	289-303	geochemical, microbiological, molecularbiological
169	LD01-6914	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	303-313	geochemical, microbiological, molecularbiological
170	LD01-6915	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	313-327	geochemical, microbiological, molecularbiological
171	LD01-6916	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	327-341	geochemical, microbiological, molecularbiological
172	LD01-6917	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	341-355	geochemical, microbiological, molecularbiological
173	LD01-6918	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	355-370	geochemical, microbiological, molecularbiological
174	LD01-6919	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	370-374	geochemical, microbiological, molecularbiological
175	LD01-6920	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	374-401	geochemical, microbiological, molecularbiological
176	LD01-6921	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	401-418	geochemical, microbiological, molecularbiological
177	LD01-6922	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	418-434	geochemical, microbiological, molecularbiological
178	LD01-6923	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	434-448	geochemical, microbiological, molecularbiological
179	LD01-6924	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	448-468	geochemical, microbiological, molecularbiological
180	LD01-6925	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	468-483	geochemical, microbiological, molecularbiological
181	LD01-6926	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	483-503	geochemical, microbiological, molecularbiological
182	LD01-6927	18.08.01	Kurungnakh 72° 20 314' N 126° 17 079' E	permafrost sample, core 6	503-520	geochemical, microbiological, molecularbiological

Table A3-8 (page 5): List of permafrost sediment samples (total amount = 182), collected at central Lena Delta during the expedition Lena Delta 2001.

158

Table A3-9: List of gas samples (total amount = 18), collected at central Lena Delta during the expedition Lena Delta 2001.

no.	sample ID	date	location	description	depth (cm)	planned analyses
1	LD01-6685	26.07.01	Samoylov 72° 22.2' N 129° 28.5' E	gas sample, polygoncentre	surface of the ice wedge	methane content, isotopes
2	LD01-6686	26.07.01	Samoylov 72° 22.2' N 129° 28.5' E	gas sample, polygoncentre	surface of the ice wedge	methane content, Isotopes
3	LD01-8201	23.08.01	Samoylov 72° 22 066' N 126° 29 209' E	gas sample, polygonlake	bottom of the lake	methane content, Isotopes
4	LD01-8216	15.08.01	Sardakh 72° 33.465' N 127° 10.007' E	gas sample, polygonlake	bottom of the lake	methane content, Isotopes
5	LD01-8217	15.08.01	Sardakh 72° 33.465' N 127° 10.007' E	gas sample, polygonlake	bottom of the lake	methane content, Isotopes
6	LD01-8218	15.08.01	Sardakh 72° 33.465' N 127° 10.007' E	gas sample, polygonlake	bottom of the lake	methane content, Isotopes
7	LD01-8219	20.08.01	Kurungnakh	gas sample	bottom of the lake	methane content, Isotopes
8	LD01-8220	21.08.01	Kurungnakh	gas sample	bottom of the lake	methane content, Isotopes
9	LD01-8368	22.07.01	Samoylov	gas sample	surface	Isotopes
10	LD01-8369	22.07.01	Samoylov	gas sample	surface	Isotopes
11	LD01-8370	22.07.01	Samoylov	gas sample	surface	Isotopes
12	LD01-8371	22.07.01	Samoylov	gas sample	surface	Isotopes
13	LD01-8372	22.07.01	Samoylov	gas sample	surface	Isotopes
14	LD01-8373	22.07.01	Samoylov	gas sample	surface	Isotopes
15	LD01-8374	22.07.01	Samoylov	gas sample	surface	Isotopes
16	LD01-8375	22.07.01	Samoylov	gas sample	surface	Isotopes
17	LD01-8376	22.07.01	Samoylov	gas sample	surface	Isotopes
18	LD01-8377	22.07.01	Samoylov	gas sample	surface	Isotopes

No.	Species	Status	Proportion in bird population, %	Densi ty , Ind/km²
1	Gavia stelleri	В	1.90	0.54
2	Gavia arctica	В	1.71	0.23
3	Clangula hyemalis	+	2.48	2.03
4	Somateria spectabilis	В	5.90	1.72
5	Polysticta stelleri	+	0.19	-
6	Lagopus mutus	В	5.90	-
7	Pluvialis squatarola	в	4.00	1.92
8	Charadrius hiaticula	В?	3.24	-
9	Arenaria interpres	В?	0.76	-
10	Phalaropus fulicarius	?	0.38	-
11	Phylomachus pugnax	?	0.95	-
12	Calidris minuta	В	28.95	-
13	Calidris ferruginea	?	0.76	2.5
14	Calidris alpina	?	2.10	3.75
15	Calidris alba	F	5.33	-
16	Stercorarius parasiticus	+	0.57	-
17	Larus argentatus	в	18.29	-
18	Larus hyperboreus	В	2.48	0.33
19	Xema sabini	В	6.48	1.92
20	Sterna paradisaea	В	2.67	
21	Calcarius lapponicus	В	0.95	1.0
22	Plectrophenax nivalis	В	0.19	-

Table A 4-1: List of birds and their status in the study area.

9 Appendix

B - breeding; B? - probably breeding; + - over summering;

? - status unknown; F - flying species.

The Expedition LENA 2001 9 Appendix

Table A 4-2:List of trapped lemmings

No.	Species	Weight (g)	Sex	Age/reproductive state
1	Dicrostonyx torquatus	94	female	Adult, pregnant, 3 fetuses
2	Lemmus sibiricus	66	male	Adult, testis 16x11
3	_"_	62,5	male	Adult, 14x10
4	_"_	54	male	Adult, 13x10
5	_"_	36	female	Subadult, 3 fetuses
6	_"_	32	male	Subadult, testis 7x6
7		55,5	male	Adult, testis 15x12
8	_"_	32	female	Subadult, farrow

.....

9 Appendix

Table	A7-1:	Water	temperature	vertical	profiles	in the	Sanga-Dzhie	and Sanga	ı-Lake
		lagoor	is, Oleneksky	/ Bay, J	uly 26-2	8, 200 ⁻	1.	-	

Depth,	Station Sanga-Dzhie Lagoon	Station Sanga	a-Lake Lagoon ([°] C)
m	(°C)	by mercury	by thermal cable
		thermometer	with temperature
			sensors
0	14,9	15,0	14,90
1	14,7	14,9	
2	14,3	13,7	
3	13,4	6,7	
4	3,5	2,2	2,55
5	1,4	-1,2	
6	0,3	-1,4	
7	-0,7	-1,8	-2,20
8	-1,2	-2,2	-2,42
9	-0,5	-2,4	-2,38
10	-1,0	3,0	
11	-0,9		
12	-0,8		
13	-0,9		
14	-0,9		
15	-1,0		
16	-1,0		
17	-1,0		
18	-1,0		
19	-1,0		
20	-1,0		

The Expedition LENA 2001 9 Appendix

Relief	Soil surface	Active layer, •m
	Babaruna-Bel'kee	
beach	sand	79
dunes	sand	95
cliff	peat	54
drained lake depression	peaty silty-sandy deposits	76
drained lake depression	peaty silty-sandy deposits	74
slope of depression	Sand with peat layers	68
cut dunes	sand	73
low ground between cut dunes	Turfy sand	57
low ground between dead dunes	turf	43
	Sanga-Dzhie	
watershed	wet centre polygon	35
sand ridge	sparse lichen-moss cover	70
deflation depression	sand	75
lake cliff	sand	120
lake depression slope	turfy sand	80
watershed	herb tundra	centre – 35; crack – 55: border - 60
shallows water laver – 0.2-0.15 cm	sand	95

Table A7-2: Active layer depths in the Arga region. Sangha-Dzhie / Babaryna-
Belkee, 30.07.2001.

9 Appendix

Site Code	Description	Geographic Coordinates	Investigations in the field	Sample Type (Codes)	Planned Analyses
SDS1	summit of a rise	73° 31,735' N, 123° 25,606 E			· .
a	moist tundra		CH₄ emission; characterisation and sampling of soil	air-dried soil; cooled moist soil (LD01 8035-8039)	soil chemistry, particle size distribution, soil microbiology
b	wet, swampy tundra		CH₄ emission		
С	thermokarst mire (ø 15 m), vegetated part		CH₄ emission		· · ·
d	thermokarst mire (ø 15 m), unvegetated		CH₄ emission		
SDS2	slope shoulder of a rise, dry tundra	73° 31,766' N, 123° 25,309' E	CH₄ emission; characterisation and sampling of one soil profile	air-dried soil; cooled moist soil (LD01 8029-8034)	soil chemistry, particle size distribution, soil microbiology
SDS3	slope, deflation section, intense Fe-translocation	73° 32,151' N, 123° 29,023' E	characterisation and sampling of one soil profile	air-dried soil (LD01 8040-8046)	soil chemistry, particle size distribution
SDS4	Coastal cliff, Babaryna Tumsa Cape	73° 34,512' N, 123° 21,815' E	sampling of soil and permafrost sediments	air-dried sediments; cooled moist sediments (LD01 8047-8053)	soil chemistry, particle size distribution, soil microbiology, pollen analysis, radio-carbon dating
ONL1	Ochchugun- Nerpalakh Lake, vegetated, shallow rim of large thermo- karst lake	73° 31,903' N, 123° 27,277' E	CH₄ emission		
ONL2	Ochchugun- Nerpalakh Lake, deep centre of large thermo- karst lake	73° 31,637′ N, 123° 28,271′ E	CH ₄ emission; sampling of lake sediments and water column	cooled sediment cores (LD01 8207- 8209); cooled water samples (LD01 8248-8351)	Sediment geo- chemistry and microbiology; chemistry and CH ₄ content of water
UL	Ugly Laguna	73° 32,288' N, 123° 26,076' E	sampling of sediments and water column	Cooled sediment cores (LD01 8211- 8213); cooled water samples (LD01 8287-8320; HH01 N1-N11)	Sediment geo- chemistry and microbiology; chemistry and CH ₄ content of water

Table A7-3: Investigation sites in the Arga region. Sanga-Dzhie/Babaryna-Belkee.

31.07.01 31.07.01 31.07.01 31.07.01 31.07.01 31.07.01 31.07.01 01.08.01 01.08.01 01.08.01	Auga 73° 31,756 N 122° 25,309 E Auga 73° 31,756 N 122° 25,606 E Auga 73° 32,151 N 122° 25,606 E Auga 73° 23,151 N 122° 25,005 E Auga 73° 23,151 N 122° 25,005 E Auga 73° 23,151 N 122° 25,005 E	soil sample, A-01, dry undra (atte SDS2) soil sample, A-02, moist undra (atte SDS1a) soil sample, A-03, dry undra, deflation (dif, pseudomorphosis (atte SDS3) soil sample, A-03, dry tundra, deflation (dif, pseudomorphosis (atte SDS3) soil sample, A-03, dry tundra, deflation (dif, pseudomorphosis (atte SDS3) soil sample, A-03, dry tundra, deflation (dif, pseudomorphosis (atte SDS3) soil sample, A-03, dry tundra, deflation (dif, pseudomorphosis (atte SDS3) soil sample, A-03, dry tundra, deflation (dif, pseudomorphosis (atte SDS3) soil sample, A-03, dry tundra, deflation (dif, pseudomorphosis (atte SDS3)	0-7 7-21 7-21 7-21 7-21 47-70 0-5 0-5 13-20 5-13 5-13 5-13 5-13 5-13 20-35 20-	particle randyzer soil physics, soil chemistry, microbiological, molecularbiological soil physics, soil chemistry
01.08.01 01.08.01 01.08.01 02.08.01 02.08.01 02.08.01 02.08.01 02.08.01 02.08.01 02.08.01 02.08.01 02.08.01 02.08.01 01.07.01 00.0000000000	Aqa 79° 22,151 N 122° 23,025 E Aqa 79° 22,151 N 122° 23,025 E Aqa 79° 23,151 N 122° 23,027 E Aqa 79° 24,515 N 122° 23,012 F Aqa 79° 24,515 N 122° 21,815 E Aqa 79° 34,512 N 122° 21,815 E Aqa 79° 34,512 N 122° 21,815 E Aqa 79° 34,512 N 122° 21,815 E Aqa 79° 31,512 N 122° 21,815 E Aqa 79° 31,512 N 122° 25,606 E Aqa 79° 31,755 N 122° 25,606 E	so sample, Arvo, dy turda, emiatoriu, peeudomorphouss (sine SOS) soi sample, Arvo, dy turda, deflation cliff, pseudomorphosis (sine SOS) soi sample, Arvo, dy turda, deflation cliff, pseudomorphosis (sine SOS3) soi sample, Arvo, dy turda, costatal cliff (site SDS4) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, moist turdat (site SDS1a) soi sample, steel cylinder (100 cm3, ArQ2, m	-9.7.45 -9.7.45 -10.10	so in physics, so our ensurements so in physics, so in chemistry so in physics, so in chemistry so in physics, so in chemistry, microbiological, molecularbiological so in prostry so in prostry
31.07.01 31.07.01 31.07.01 31.07.01 31.07.01 31.07.01 31.07.01 31.07.01 31.07.01 31.07.01 31.07.01 31.07.01 31.07.01	Arga 72° 31,75° 11° 10° 10° 2000 E Arga 72° 31,73° 11° 22° 25,606 E Arga 72° 31,75° 11° 22° 25,606 E	sol sample, steel cylinder 100 cm3, A-02, moist tundra (site SDS1a) soil sample, steel cylinder 100 cm3, A-02, moist tundra (site SDS1a) soil sample, steel cylinder 100 cm3, A-02, moist tundra (site SDS1a) soil sample, steel cylinder 100 cm3, A-02, moist tundra (site SDS1a) soil sample, steel cylinder 100 cm3, A-02, moist tundra (site SDS1a) soil sample, steel cylinder 100 cm3, A-02, moist tundra (site SDS1a) soil sample, steel cylinder 100 cm3, A-02, moist tundra (site SDS1a) soil sample, A-01, dry tundra (site SDS2) vegetation sample, A-01, dry tundra (site SDS1a) vegetation sample, A-01, dry tundra (site SDS1a)	13-20 20-35 20-35 20-35 20-35 20-35 20-35 20-35	soli porosity soli porosity soli porosity soli porosity soli porosity soli porosity soli porosity biomass determination biomass determination

The Expedition LENA 2001

9 Appendix

sample	1D date	location	description	depth (cm)	planned analyses
LD01-82	37 31.07.01	Arga 73° 31,735' N 123° 25,606 E	vegetation sample, wet tundra (site SDS1b)		biomass determination
LD01-82	08 25.07.01	Arga 73° 31,637' N 123° 28,271' E	sediment core, Ochugun-Nerpalakh Lake (site ONL2)	0-30	micromombology
LD01-82	09 25.07.01	Arga 73° 31,637' N 123° 28,271' E	sediment core, Ochugun-Nerpalakh Lake (site ONL2)	000	histochomists.
LD01-82	10 25.07.01	Arga 73° 31,637' N 123° 28,271' E	sediment core, Ochugun-Nerpaiakh Lake (site ONL2)	6-0	orogeocuteritating microbiotocical
LD01-82	11 28.07.01	Arga 73° 32,288' N 123° 26,076' E	sediment core, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	0-50	micromombological
LD01-82	12 28.07.01	Arga 73° 32,288' N 123° 26,076' E	sediment core, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	050	histochemistos
LD01-82	13 28.07.01	Arga 73° 32,288' N 123° 26,076' E	sediment core, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	0-50	uogeoureriisiry microhiolonicat
LD01-82	48 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	50	CH4 contant datermination
LD01-82	49 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated. Ochugun-Nemalakh Lake (site ONI 2)		
LD01-82	50 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated. Ochugun-Nerpalakh Lake (site ONL 2)	9 C	
LD01-82	51 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated. Ochugun-Neroalakh Lake (site ONI 2)	2	
LD01-82	52 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpajakin Lake (site ONL 2)	19	CH4 content determination
LD01-82	53 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	8 8	CH4 content determination
LD01-82	54 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	8	CH4 content determination
LD01-82	55 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	200	CH4 content determination
LD01-82	56 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	200	CH4 content determination
LD01-82	57 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONI 2)	300	CH4 content determination
LD01-82	58 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated. Ochuoun-Neroalakh Lake (site ONI 2)	Sec.	CH4 content determination
LD01-82	59 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated. Ochuoun-Neroalakh Lake (site ONI 2)	300	
LD01-82	50 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated. Ochuoun-Nerpalakh Lake (site ONI 2)	400	CH4 context determination
LD01-82	51 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated. Ochuoun-Nerpalakh Lake (site ONI 2)	007	
LD01-82	52 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated. Ochuoun-Nerpalakh Lake (site ONI 2)	400	CHA context determination
LD01-82	53 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated. Ochuoun-Neroalakh Lake (site ONI 2)	005	
LD01-82	54 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated. Ochuoun-Nerpalakh Lake (site ONI 2)	8,5	CHA content determination
LD01-82	55 25.07.01	Arga 73° 31,637' N 123° 28.271' E	water sample NaCI-saturated Orbinnin-Nernalakh I ake (site ONI 2)	00°	
LD01-82	56 25.07.01	Arga 73° 31.637' N 123° 28.271' E	water sample NaCI-saturated Ochuoun-Nermalakh I ake (site ONI 2)	2000	
LD01-82	57 25.07.01	Arga 73° 31.637' N 123° 28.271' E	water sample NaCl-saturated Octumn-Nemalakh Lake (site ONLO)	8	CH4 CONTENT OPERATION
LD01-82	58 25.07.01	Arga 73° 31.637' N 123° 28.271' E	water samnle NaCL-saturated Ochunun-Nemalakh I ake (site OMI 0)	200	
LD01-82	59 25.07.01	Arga 73° 31.637' N 123° 28.271' E	water sample NaCl-saturated. Ochunun-Nernalakh Lake (site ONI 2)	200	CLA content determination
LD01-82	70 25.07.01	Arga 73° 31.637' N 123° 28.271' E	water sample NaCI-saturated Ochumun-Nermalakh Lake (site ONI 2)	202	CH4 content determination
LD01-82	71 25.07.01	Arga 73° 31,637 N 123° 28.271 E	water sample NaCI-saturated. Ochugun-Nerpalakh Lake (site ONL 2)	700	CH4 content determination
LD01-82	72 25.07.01	Arga 73° 31,637' N 123° 28.271' E	water sample NaCl-saturated. Ochugun-Nerpalakh Lake (site ONL 2)	800	CH4 content determination
LD01-82	73 25.07.01	Arga 73° 31,637' N 123° 28.271' E	water sample NaCI-saturated. Ochugun-Nerpalakh Lake (site ONL 2)	ann Ann	CH4 content determination
LD01-82.	74 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated. Ochugun-Nerpalakh Lake (site ONL2)	BOO	CH4 content determination
LD01-82	75 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCt-saturated, Ochugun-Nerpalakh Lake (site ONL2)	006	CH4 content determination
LD01-82	76 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	906	CH4 content determination
LD01-82	77 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	906	CH4 content determination
LD01-82	78 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	1000	CH4 content determination
LD01-82	79 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	1000	CH4 content determination
LD01-82	90 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	1000	CH4 content determination
LD01-82	81 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	1100	CH4 content determination
LD01-82,	32 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	1100	CH4 content determination
LD01-82	33 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	1100	CH4 content determination
LD01-82	34 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	1200	CH4 content determination
LD01-82	35 25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample NaCI-saturated, Ochugun-Nerpalakh Lake (site ONL2)	1200	CH4 content determination
LD01-82	36 25.07.01	Arna 73° 31 637' N 123° 28 271' F	water commits NorCLeaturated Ochimum Manadolik Labor (250 ONI O		
			main sample reachsammand, oungain the palant take (site ONLZ)	1200	CH4 content determination

9 Appendix

Table A7-4 (page 3): List of samples (total amount = 257), collected in the region Sanga-Dzhie / Babaryna-Belkee during the expedition Lena Delta 2001 (team 2).
--

no.	sample ID	date	location	description	depth (cm)	planned analyses
95	LD01-8288	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	50	CH4 content determination
96	LD01-8289	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	50	CH4 content determination
97	LD01-8290	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCl-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	50	CH4 content determination
98	LD01-8291	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCl-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	100	CH4 content determination
99	LD01-8292	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCl-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	100	CH4 content determination
100	LD01-8293	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	100	CH4 content determination
101	LD01-8294	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	300	CH4 content determination
102	LD01-8295	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCl-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	300	CH4 content determination
103	LD01-8296	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCl-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	300	CH4 content determination
104	LD01-8297	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCl-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	400	CH4 content determination
105	LD01-8298	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCl-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	400	CH4 content determination
106	LD01-8299	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	400	CH4 content determination
107	LD01-8300	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	500	CH4 content determination
108	LD01-8301	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	500	CH4 content determination
109	LD01-8302	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	500	CH4 content determination
110	LD01-8303	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated,, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	600	CH4 content determination
111	LD01-8304	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	600	CH4 content determination
112	LD01-8305	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	600	CH4 content determination
113	LD01-8306	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	700	CH4 content determination
114	LD01-8307	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated,, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	700	CH4 content determination
115	LD01-8308	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	700	CH4 content determination
116	LD01-8309	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCl-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	800	CH4 content determination
117	LD01-8310	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCl-saturated,, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	800	CH4 content determination
118	LD01-8311	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCl-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	800	CH4 content determination
119	LD01-8312	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	900	CH4 content determination
120	LD01-8313	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCl-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	900	CH4 content determination
121	LD01-8314	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCi-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	900	CH4 content determination
122	LD01-8315	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCl-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	950	CH4 content determination
123	LD01-8316	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	950	CH4 content determination
124	LD01-8317	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	950	CH4 content determination
125	LD01-8318	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	1000	CH4 content determination
126	LD01-8319	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	1000	CH4 content determination
127	LD01-8320	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample NaCI-saturated,, Sanga-Lake lagoon, "Ugly Laguna" (site UL)	1000	CH4 content determination
128	LD01-8321	25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	50	hydrochemistry
129	LD01-8322	25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	100	hydrochemistry
130	LD01-8323	25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	200	hydrochemistry
131	LD01-8324	25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	300	hydrochemistry
132	LD01-8325	25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	400	hydrochemistry
133	LD01-8326	25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	500	hydrochemistry
134	LD01-8327	25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	600	hydrochemistry
135	LD01-8328	25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	700	hydrochemistry
136	LD01-8329	25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	800	hydrochemistry
137	LD01-8330	25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	900	hydrochemistry
138	LD01-8331	25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	1000	hydrochemistry
139	LD01-8332	25.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	1100	hydrochemistry
140	LD01-8333	28.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	50	hydrochemistry
141	LD01-8334	28.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	100	hydrochemistry

	date	location	description	depth (cm)	planned analyses
2 LD01-8335	28.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	200	hydrochemistry
3 LD01-8336	28.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample. Ochugun-Neroalakh Lake (site ONL2)	300	hydrochemistry
4 LD01-8337	28.07.01	Arga 73° 31 637' N 123° 28 271' E	water sample Ochugun-Nemalakh Lake (site ONI 2)	400	hydrochemistry
5 I D01-8338	28.07.01	Arra 73° 31 637' N 123° 28 271' E	water sample, Ochugun Nemalakh Lake (site ONL2)	500	hydrochemistry
6 1 001 8220	28.07.01	Arga 70° 01,007 N 120° 20,271 E	water sample, Octogui-Nerpalaki Lake (site ONL2)	500	hydrochemistry
0 LD01-8339	28.07.01	Arga 73 31,037 N 123 28,271 E	water sample, Ochugun-Nerpalakri Lake (sne ONLZ)	600	hydrochemistry
/ LD01-8340	28.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	700	hydrochemistry
B LD01-8341	28.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	800	hydrochemistry
9 LD01-8342	28.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	900	hydrochemistry
D LD01-8343	28.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	1000	hydrochemistry
LD01-8344	28.07.01	Arga 73° 31,637' N 123° 28,271' E	water sample, Ochugun-Nerpalakh Lake (site ONL2)	1100	hydrochemistry
2 LD01-8345	28.07.01	Arga 73° 31.637' N 123° 28.271' E	water sample. Ochugun-Nerpalakh Lake (site ONL2)	1200	hydrochemistry
1 001-8346	28.07.01	Arga 73° 31 637' N 123° 28 271' F	water sample Ochugun-Nernalakh Lake (cite ONI 2)	1300	bydrochemisto/
1 1 001 8247	20.07.01	Arga 739 21 627 N 1229 28 271 5	water sample, Ochugus Nerpalaki Lake (site ONL2)	1400	bydrochemiate
1 001-0347	20.07.01	Area 708 01 0071 N 120 20,271 E	water sample, Ochugun Nerpalaki Lake (Sile Office)	1400	
LU01-8348	28.07.01	Arga 73° 31,637 N 123° 28,271 E	water sample, Octogun-Nerpalakh Lake (site ONL2)	1500	hydrochemistry
LU01-8349	25.07.01	Arga 73" 31,903 N 123" 27,277 E	water sample, ocnugur-iverpalakri Lake (site CDS14)	15	hydrochemistry
LD01-0350	28.07.01	Arga 73° 32 288' N 123° 26 076' 5	water sample, light aguna (site 11)	15	hydrochemistry
	20.07.01	Area 729 22 200 N 123 20,070 E	water sample, ogiy Laguna (site OL,	50	hydrochemidty
	21.07.01	Area 73° 32 299' N 123° 26 076' 5	water sample, Sanga-Lake lagoon	200	hydrochemistry
	21.07.01	Arga 73° 32,280 N 123° 26,076 E	water sample, Sanga-Lake lagoon	300	hydrochemistry
	21.07.01	Arga 73° 32,200 N 123 20,076 E	water sample. Sanga-Lake lagoon	500	hydrochemistry
	21.07.01	Arga 73º 32,200 N 123º 26,070 E	water sample, Sanga-Lake lagoon	600	hydrochemistry
	21.07.01	Arga 73 32,200 N 123 20,070 E	water sample, Sanga-Lake lagoon	700	hydrochemistry
5 UU01-17	21.07.01	Arga 73° 32 298' N 123° 26 076' E	water sample, Sanga Luke lagoon	800	hydrochemistry
	21.07.01	Arga 73° 32 288' N 123° 26 076' E	water sample, Sanga-Lake lagoon	900	hydrochemistry
7 1101-10	21.07.01	Arga 73° 32 288' N 123° 26 076' E	water sample, Sanga-Lake largoon	1000	bydrochemistry
8 HH01-1 10	21.07.01	Arga 73° 32 288' N 123° 26 076' E	water sample, Sanga-Lake lagoon	1100	hydrochemistry
9HH01-L groun	21.07.01	Arga 73° 32 288' N 123° 26.076' E	surface sediment sample. Sanga-Lake lagoor		mineralogy, chemistry
0 HH01-S1	29.07.01	Arga 73°33 440 N 123°21 251 E	water sample. Sanga-Zhie lagoon	10	hydrochemistry
1 HH01-S2	29.07.01	Arga 73°33.440 N 123°21.251 E	water sample, Sanga-Zhie lagoon	100	hydrochemistry
2 HH01-S3	29.07.01	Aroa 73°33,440'N 123°21,251'E	water sample, Sanga-Zhie lagoon	200	hydrochemistry
3 HH01-S4	29.07.01	Arga 73°33,440'N 123°21,251'E	water sample, Sanga-Zhie lagoon	300	hydrochemistry
4 HH01-S5	29.07.01	Arga 73°33,440'N 123°21,251'E	water sample, Sanga-Zhie lagoon	400	hydrochemistry
5 HH01-S6	29.07.01	Arga 73°33,440'N 123°21,251'E	water sample, Sanga-Zhie lagoon	500	hydrochemistry
6 HH01-S7	29.07.01	Arga 73°33,440'N 123°21,251'E	water sample, Sanga-Zhie lagoon	600	hydrochemistry
7 HH01-S8	29.07.01	Arga 73°33,440'N 123°21,251'E	water sample, Sanga-Zhie lagoon	700	hydrochemistry
8 HH01-S9	29.07.01	Arga 73°33,440'N 123°21,251'E	water sample, Sanga-Zhie lagoon	800	hydrochemistry
9 HH01-S10	29.07.01	Arga 73°33,440'N 123°21,251'E	water sample, Sanga-Zhie lagoon	900	hydrochemistry
0 HH01-S11	29.07.01	Arga 73°33,440 N 123°21,251 E	water sample, Sanga-Zhie lagoon	1000	hydrochemistry
1 HH01-S12	29.07.01	Arga 73°33,440 N 123°21,251 E	water sample, Sanga-Zhie lagoon	1100	hydrochemistry
2 HH01-S13	29.07.01	Arga 73°33,440'N 123°21,251'E	water sample, Sanga-Zhie lagoon	1200	hydrochemistry
3 HH01-S14	29.07.01	Arga 73°33,440'N 123°21,251'E	water sample, Sanga-Zhie lagoon	1300	nyurocriemistry
4 HH01-S15	29.07.01	Arga 73°33,440'N 123°21,251'E	water sample, Sanga-Zhie lagoon	1400	hydrochemistry
5 HH01-S16	29.07.01	Arga 73°33,440 N 123°21,251 E	water sample, Sanga-Zhie lagoon	1500	hydrochemieter
6 HH01-S17	29.07.01	Arga 73°33,440 N 123°21,251 E	water sample, Sanga-Zhie lagoon	1700	hydrochamistay
7 HH01-S18	29.07.01	Arga 73°33,440 N 123°21,251 E	water sample, Sanga-Zhie lagoon	1800	hydrochemistry
18 HH01-S19	29.07.01	Arga /3°33,440 N 123°21,251 E	water sample, Sanga-Zhie lagoon	1000	hydrochemiste
19 HH01-S20	29.07.01	Arga /3°33,440 N 123°21,251 E	water sample, Sanga-Znie lagoon	10	hydrochomialay
ю <u>і нно1-N1</u>	28.07.01	Arga 73° 32,288' N 123° 26,076' E	water sample, Sanga-Lake lagoon	100	hydrochemistry
	1 28 07 01	+ Arda 73° 32,288' N 123° 26,076' E	water sample, Sanga-Lake lagoon	100	пумочнымых
1 HH01-N2	20.07.01	Area 739 33 300 N 1339 36 6761 F	water cample Sanga Jake lagoon	200	hydrochemistry

Table 47-4 (name 4): List of samples (total amount - 257), collected in the region Sanga-Dzhie / Bahanna-Belkee during the expedition Lena Delta 2001 (toam 2)

168

able A7-4 (page 5): List of samples (total amount = 2)), collected in the region Sanga-Dzhie / Babar	yna-Belkee during the expedition Lena Delta 2001 (te	∌am 2).
--	--	--	---------

	date	location	description	depth (cm)	planned analyzas
	09.07.01	Area 739 20 099' N 1239 06 070' F	weles comple Correct du Jacob	ucpart(cm)	platurov analysics
194 HHUI-NS	20.07.01	Arga 73° 32,200 N 123° 20,0/6 E	water sample, Sanga-Lake lagoon	400	
	28.07.01	Arga 73' 32,200 N 123' 20,070 E	water sample, Sanga-Lake lagoon	500	nydrochemistry
107 WW01-NP	28.07.01	Area 72° 32 288' N 123° 26 076' E	water sample, sample Lake lagoon	700	nyorocremistry
198 HH01-N0	28.07.01	Arga 73 32,200 14 123 20,070 E	water sample, Sanga-Lake lagoon	700	nydrochemistry
	28.07.01	Arga 73° 32 288' N 123° 26 076' E	water sample, Sanga Lake laguon	800	nyorochemistry
00 HH01 N11	28.07.01	Arga 73 32,200 N 123 20,070 E	water sample, Sanga-Lake lagoon	900	nydrochemistry
	28.07.01	Arga 73 32,200 N 123 20,070 E	water sample, Sanga-Lake lagoon	950	nydrochemistry
OI HHUI-NI	28.07.01	Arga 73° 32,288 N 123° 26,076° E	suspended load, Sanga-Lake lagoon	10	chemistry, mineralogy
02 HH01-N6	28.07.01	Arga 73° 32,288 N 123° 26,076 E	suspended load, Sanga-Lake lagoon	500	chemistry, mineralogy
J3 HHU1-N9	28.07.01	Arga 73° 32,288 N 123° 26,076 E	suspended load, Sanga-Lake lagoon	800	chemistry, mineralogy
04 HH01-N10	28.07.01	Arga 73° 32,288' N 123° 26,076' E	suspended load, Sanga-Lake lagoon	900	chemistry, mineralogy
J5 HH01-N11	28.07.01	Arga 73° 32,288' N 123° 26,076' E	suspended load, Sanga-Lake lagoor	950	chemistry, mineralogy
06 HH01-BT1	25.07.01	Arga 73°34.520 N 123°21.781 E	soil sample, Cape Babaryan Tumsa	230-240	C-14 dating
07 HH01-BT2	25.07.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	190-200	C-14 dating
08 HH01-BT3	25.07.01	Arga 73°34.520 N 123°21.781 E	soil sample, Cape Babaryan Turnsa	150-160	C-14 dating
09 HH01-BT4	25.07.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	80-90	C-14 dating
10 HH01-30	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	0-30	pollen
11 HH01-40	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	40	pollen
12 HH01-50	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	50	pollen
13 HH01-60	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	60	pollen
14 HH01-70	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	70	pollen
5 HH01-80	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	80	pollen
6 HH01-90	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	90	pollen
7 HH01-100	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	100	polien
8 HH01-110	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	110	pollen
19 HH01-120	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	120	pollen
20 HH01-130	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	130	pollen
21 HH01-140	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	140	polien
22 HH01-150	02.08.01	Arga 73°34.520'N 123°21.781 E	soil sample, Cape Babaryan Tumsa	150	pollen
23 HH01-165	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	165	pollen
24 HH01-180	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	180	pollen
25 HH01-190	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	190	pollen
26 HH01-200	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	200	pollen
27 HH01-210	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	210	pollen
28 HH01-220	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	220	pollen
29 HH01-230	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	230	pollen
30 HH01-270	02.08.01	Arga 73°34.520'N 123°21.781'E	soil sample, Cape Babaryan Tumsa	270	pollen
31 HH01-SA1	27.07.01	Arga 73°36.518'N 123°12.718'E	water sample surface + bottom sediment, profile Sargalakh	1000	chemistry, mineralogy
32 HH01-SA2	27.07.01		water sample surface + bottom sediment, profile Sargalakh	800	chemistry, mineralogy
3 HH01-SA3	27.07.01		water sample surface + bottom sediment, profile Sargalakh	600	chemistry, mineralogy
34 HH01-SA4	27.07.01		water sample surface + bottom sediment, profile Sargalakh	380	chemistry, mineralogy
35 HH01-SA5	27.07.01		water sample surface + bottom sediment, profile Sargalakh	200	chemistry, mineralogy
36 HH01-SA6	27.07.01		water sample surface + bottom sediment, profile Sargalakt	60	chemistry, mineralogy
7 HH01-SM1	27 07 01	Arga 73°31 128'N 123°09.832'F	water sample surface + bottom sediment, profile Sargalakh	1000-	chemistry, mineralogy
8 HH01-SN2	27 07 01	The second secon	water sample surface + bottom sediment, profile Sargalakh	800	chemistry, mineralogy
39 HH01-SN3	27.07.01	· · · · · · · · · · · · · · · · · · ·	water sample surface + bottom sediment, profile Sargalakh	600	chemistry, mineralogy
101 HH01-SNA	27 07 01		water sample surface + bottom sediment, profile Sargalakh	400	chemistry, mineralogy
41 HH01-SNS	27.07.01	·····	water sample surface + bottom sediment, profile Sargalakh	200	chemistry, mineralogy
42 HH01-SN6	27.07.01		water sample surface + bottom sediment, profile Sargalakt	50	chemistry, mineralogy
43 HH01-KM1	29.07.02	Arga 73°33.065 'N 123°10.661 'E	water sample, profile Kanal	850	chemistry, mineralogy
MAL HHOLKMA	29.07.02	7.1gu 70 00.000 W 120 10.001 E	water sample, profile Kanal	700	chemistry, mineralogy
45 4401 1012	29.07.02		water cample, profile Kanal	500	chemistry mineralogy
	29.07.02		water comple, provid rana	300	chemistry mineralogy
40 HHUI-KW4	29.07.02		water sample, prove reality	100	chemistry mineralogy
14/1 HHUI-KW5	29.07.02	1	water sample, prome Natian	1 100	Guerrisory, nanotelogy

169

9 Appendix

Table A7-4 (page 6): List of samples (total amount = 257), collected in the region Sanga-Dzhie / Babaryna-Belkee during the expedition Lena Delta 2001 (team 2).

no. s	sample ID	date	location	description	depth (cm)	planned analyses
248 H	H01-KW6	29.07.02		water sample, profile Kanal	100	chemistry mineralogy
249 1	H01-KW7	29.07.02		water sample, profile Kanal	350	chemistry, mineralogy
250 H	HH01-KS1	29.07.02	Arga 73°32.998'N 123°04.845, E	surface sediment, profile Kanal	970	chemistry mineralogy
251 +	HH01-KS2	29.07.02		surface sediment, profile Kanal	800	chemistry mineralogy
252 H	HH01-KS3	29.07.02		surface sediment, profile Kanal	600	chemistry, mineralogy
253 H	HH01-KS4	29.07.02		surface sediment, profile Kanal	400	chemistry, mineralogy
254 F	HH01-KS5	29.07.02		surface sediment, profile Kanal	200	chemistry, mineralogy
255 F	HH01-KS6	29.07.02		surface sediment, profile Kanal	230	chemistry mineralogy
256 ⊦	HH01-KS7	29.07.02		surface sediment, profile Kana	460	chemistry mineralogy
257	HH01-W	22.07.01	Arga 73°34.302´N 123°14.121´E	wood sample, uppermost driftwood, Babaryna Island S-coas		C-14 dating

Table A8-1 (page 1)): MKh section, 2001	. Description of	sedimentary	vunits and s	samples taken

171

Unit No	Depth, m	Alti- tude a.s.l., m	Sediment	Cryostructure	Macrofossil sample and its mean altitude a.s.l.	General (sediment) sample (depth and mean altitude a.s.l.)
Bdzh	. "P" (2	0-25 m	SE of landmark R6 of 1999 [approximately the same as 4.6 of	1998].		
1.	0.0-0.3	38,9- 38,6	Soil, active layer			
2.	0.3-1.0	38,6- 37,9	Gray silt with scattered inclusions of poorly decomposed organic: mostly lenses at 0.4-0.5 m, and "spots" at 0.5-0.6 m.	Extremely high ice content		0,6 (38,3) 0,9 (38,0)
3.	1.0-2.2	37,9- 36,7	Gray silt with "hummock-like" peat inclusions. Peat "hummocks" are concentrated mostly at two quasi-horizontal levels: at 1.0-1.4 and 1.8-2.0 m depth. Peat is poorly decomposed and contains many thin (up to 2 mm) twics	High ice content		1,2 (37,7) 1,5 (37,4) 1,8 (37,1) 2 1 (36 8)
4.	2.2-2.9	36,7- 36.0	Gray silt	Reticulated and fine-schlieren	MKh-01-23: 36.5 m	2,4 (36,5) 2,7 (36,2)
5.	2.9-3.9	36,0- 35,0	Silty sand, silt with lens-like horizontal-wavy lamination and inclusion of numerous thin roots (grass). Sand layers up to 0.5-1 cm thick	Massive	MKh-01-21: 35,9 m	3,0 (35,9) 3,2 (35,7)
P1.	3.9-4.5	35,0- 34,4	Silt - contact zone with the "longitudinal" ice wedge (sub-parallel to the cliff)	High ice content in abundant small lenses (schlieren), oriented parallel to the ice wedge		
Bdzh	. "O" (7	′-12 m	SE of landmark R6 of 1999). The top of the Bdzh was 0.7 -1 m	below the Yedoma surface on 24.07.01 and 2 m be	elow it on 23.	08.01.
3.	0.9-2.0	38,0- 36,9	Silt, brownish-gray with "hummock-like" peat inclusions. Peat consists of moss and sedge (?) remains and includes woody roots or twigs up to 3 mm in diameter.	Siltwith reticulated microschlieren structure. Both peat and loarn are crossed by the system of thick (2- 7 mm) ice schlieren with clean transparent ice.	MKh-01-01: 37,6 m, MKh-01-02: 37.3 m	1,8 (37,1)
4.	2.0-2.7	36,9- 36,2	Sandy silt, gray. The unit has reasonably steep (up to 30°) profile in the upper part of the bdzh.	Reticulated and fine- <i>schlieren</i> cryogenic structure and a system of discontinuous thicker <i>schlieren</i> (up to 5 mm).	MKh-01-03: 36,4 m	
5.	2.7-4.0	36,2- 34,9	Silty sand, sandy silt with lens-like horizontal-wavy lamination and inclusion of numerous thin roots (grass). Sand layers up to 0.5-1 cm thick. In some lenses sand particles reach 2 mm in size. The unit forms steep profile (50-60°) in the bdzh. By thawin	Massive cryostructure.	МКһ-01-22: 35,4 m	3,3 (35,6) 3,6 (35,3) 3,9 (35,0)

9 Appendix

Table A8-1 (page 2): MKh section, 2001. Description of sedimentary units and samples taken

172

Unit No	Depth, m	Alti- tude a.s.l., m	Sediment	Cryostructure	Macrofossil sample and its mean altitude a.s.l.	General (sediment) sample (depth and mean altitude a.s.l.)
6.	4.0-4.6	34,9- 34,3	Silt, sandy silt, gray, with numerous woody roots and thin (grass) rootlets. The unit forms very steep profile (50-60°) in the bdzh, up to negative incline. By thawing, the sediment of this unit fells down in narrow blocks, following the ice bands.*	Fine-reticulated, laminated, with a system of horizontal ice belts up to 2-3 cm thick.		4,2 (34,7) 4,5 (34,4) 4,6 (34,1)
NOT	ES: *Thi	s unit	represents a visually notable member in this and other bdzhs: very	steep or vertical wall with horizontal stratification. It may	akes impressi	on of normal
(lithol	ogical)	stratific	ation, with darker layers enriched with organic remains.	p · · · · · · · · · · · · · · · · · · ·		
7.	4.6-8.2	34,3- 30 7	Silt, gray, no visible lamination, Organic inclusions (grass roots and woody roots and twigs) are rather common, but much less	Relatively high ice content. Cryostructure lens-like,		4,8 (34,1)
		00,1	abundant than in the unit above. By thawing, the sediment of this	individual thick bands below 5-5.2 m		5 4 (33 5)
			unit does not form any melted blocks, but turns into liquid mu			57 (332)
						6.0(32.9)
						6,3 (32,6)
		ļ				6,6,(32,3)
						6.9 (32.0)
						7.2(31.7)
						7.5(31.4)
						7,8 (31,1)
NOT starts	ES: **In s. The "ri	this ar idges"	d other bdzkhs, this member is exposed at the base of the bdzkh, are formed by exposed frozen sediment, while along the "valleys"	forming a rather steep wall, from which a series of sub	parallel (radia	ting) "ridges"
01.	8.2-8.5	30,7-	Contact zone with the "longitudinal" ice wedge (sub-parallel to the	Silt with high ice content in abundant small lenses		
	ĺ	30,4	cliff). In the lateral areas of this and other baydzerakhs (adjoining the ice wedges, exposed more or less normally to the cliff) the	(schlieren), oriented parallel to the ice wedge		
			lavers are curved upward. ***.			
NOT	ES: ***T	he cor	ntact zones with the ice wedges have higher ice content in abundar	nt small lenses (schlieren), oriented almost vertically (p	arallel to the i	ce wedge).
Thus	, each b	dzkh i	s bordered with the band of these contact zones with very high ice	coni		
Bdzh dest	1. "S" (4 roved. V	-8 m N Vhen i	W of landmark R6 of 1999). At the beginning of our work (23.0 its description started (28.08.01), the top of the Bdzh was at 3.3	18.01) the Bdzh was crowned with a narrow peak, w 3 m below the Yedoma surface.	which was so	D ri

Table	A8-1	(page 3): MKh sectio	n, 2001. Descriptior	of sedimentar	y units and samples taken
			· ·		

Unit No	Depth, m	Alti- tude a.s.l., m	Sediment	Cryostructure	Macrofossil sample and its mean altitude a.s.l.	General (sediment) sample (depth and mean altitude a.s.l.)
5+6*	3.3-4.5	35,6- 34,4	Silt with the admixture of fine sand particles. Inclusion of woody roots and thin rootlets, with the organic-rich spots in the upper part of the unit. The unit forms a steep wall in the thawing bdzh, and has horizontally stratified appearance, which is vi	Cryogenic structure varies from the laminated lens- like wavy microschlieren to the massive one in the adjacent (alternating) layers	MKh-01-05: 35,4 m, MKh-01-04: 35,2 m	3,6 (35,3)
NOTE	ES: * (pa	rtially	destroyed from the top)			-h
7.	4.5-9.0	34,4- 29,9	Gray silt, unstratified, forming a long system of "ridges" on the thawing surface between upper and lower steep parts of bdzh "S". In the interval 5.7 - 7.0 m – silt with rare admixture of fine sand particles. Plant fragments up to 3 mm in diameter and ab	Alteration of layers with a lower ice content and fine- reticulated microschlieren or massive cryostructure, and the layers with a higher ice content. In the latter, continuous ice schlieren up to 1-5 mm thick in silt or ice bands up to 0.5-2 cm thick occu	MKh-01-06: 34,3 m, MKh-01-07: 33,3 m, MKh-01-08: 32,3 m, MKh-01-09:	5,1 (33,8) 6,1 (32,8) 7,2 (31,7) 7,5 (31,4) 7,9 (31,8)
8.	9.0 - 9.8	29,9- 29,1	Silt with clear horizontal lamination, probably of cryogenic character. This unit forms a steep step on the face of the eroded	Layers with closely laminated lens-like c/s alternate with those with massive microschlieren c/s.	MKh-01-10: 29,5 m	
9a+	9.8 -	29,1-	Silt with higher ice content. The upper part of this unit is still within	Every 5-10 cm in the profile horizontal ice bands are	MKh-01-11:	
9b.	11.6	27,3	the steep step on the slope (up to the depth of ca 10.5 m), further down the unit forms the lower system of "ridges" of the bdzh "S". The lower part of the unit includes the contact	observed, alternating with the layers of silt with microschlieren lens-like wavy c/s. the thickness of ice lenses up to 3 mm. This structure is characteristic for at least upper 70 cm of the unit.	28,4 m	
Bdzh	. "I" (be	etweer	"O" and "S", but further down the slope - the third level of bo	Izkhs from the top,). The top mark of this bdzkh is	accepted at	8,5 m depth
from	the top	of the	Gray sandy silt with sand layers and lenses. The sand is gray	C/s mostly massive in sand lens-like wavy closely		
1.	m -	29,9	fine-grained, with some grains up to 1 mm. Sand lenses are of irregular shape. Thin rootlets and rare plant fragments (twigs).	laminated microschlieren in sandy silt, especially in the upper part of the unit. Horizontal ice schlieren up to 1-3 mm thick, not visible within sand lenses.		
NOT	ES: * (pa	artially	destroyed from the top)			

The Expedition LENA 2001

9 Appendix

Unit No	Depth, m	Alti- tude a.s.l., m	Sediment	Cryostructure	Macrofossil sample and its mean altitude a.s.l.	General (sediment) sample (depth and mean altitude a.s.l.)
8.	9.0-9.8	29,9- 29,1	Silty loam with high ice content and rare plant fragments. This unit, together with the previous one, forms relatively steep slope in the upper part of the melting bdzkh.	Horizontal ice bands 1-4 cm thick and ice/silt bands, consisting of ice schlieren 3-5 mm thick. Silt between these bands has fine-reticulated microschlieren c/s.		
9.	9.8- 11.8 -	29,1- 27,1	Gray silt with high ice content. The unit contains fragments of woody plant roots up to 3 mm in diameter and abundant long thin rootlets (grass). In the lower part of the unit the spots of poorly decomposed organic material (peat) up to 2-5 cm in size app	Every 5-10 cm – ice/silt bands 0.5-1 cm thick. Between them the cryostructure changes in alternating micro-layers from fine-reticulated microschlieren to cell-like reticulated microschlieren. Within the "ridges", the c/s is reticulated and slightly	MKh-01-15: 27,9 m, MKh-01-15a: 27,6 m	
10.	11.8- 12.2	27,1- 26,7	Gray silty fine sand, intercalating with silt. In the upper part of the unit sand grains up to 1 mm. Abundant grass roots and woody plant roots up to 3 mm in diameter, lightly colored at the cross- section; some are surrounded with the spots of dark organi	C/s mostly massive, in silt layers – fine reticulated. Thin ice bands (up to 1 mm) are observed every 5- 10 cm across the unit.		
11.	12.2- 12.8	26,7- 26,1	Gray-brownish silt with a stratified appearance, forms a vertical step on the slope of the thawing bdzkh. Stratification is visually caused by a rhythmic alteration of layers with different cryogenic structure. The unit contains abundant woody plant fragm	The layers with massive or lens-like microschlieren c/s (less ice content) 2-3 cm thick intercalate with ice saturated layers. The latter have closely-laminated microschlieren c/s with the ice schlieren up to 2 mm thick, growing up to 3-10 mm to the botto	MKh-01-14: 26,6 m	
12.	12.8- 14.2	26,1- 24,7	Gray silt with high ice content. In the upper part of the interval, still on a relatively steep wall, it has stratified appearance as well, but looks and thaws differently from Unit 12. At the depth about 13.3 in the part system of sub-parallel "ridges" st		MKh-01-13: 25,9 m, MKh-01-12: 24,9 m	
13.	14.2- 17.7	24,7- 21,2	Gray silt with a rhythmic cryogenic structure. Between 15 and 16.5 m all ridges form a short steeper step, looking as another possible "paleosol". The lower part of the unit includes the contact zone with the longitudinal ice wedge.	Continuous horizontal ice bands up to 2 cm thick occur every ca 15 cm. Silt between them has fine- reticulated, horizontally oriented microschlieren c/s. Small organic spots are restricted mostly to the "ridges"	MKh-01-20: 23,8 m, MKh-01-19: 22,8 m	

Table A8-1 (page 4): MKh section, 2001. Description of sedimentary units and samples taken

174

Table A8-1 (page 5): MKh section, 2001. Description of sedimentary units and samples taken

175

Unit No	Depth, m	Alti- tude a.s.l., m	Sediment	Cryostructure	Macrofossil sample and its mean altitude a.s.l.	General (sediment) sample (depth and mean altitude a.s.l.)
KS1	15.5-	23,4-	Gray-brownish silt with rare fine sand particles, with thin rootlets	A THE MANDER MANNER I COMPAREMENT IN A DATA TO THE OWNER AND A DATA TO THE DATA DATA TO T		
	15.9	23,0	and woody plant roots up to 3-4 mm in diameter, surrounded by dark organic spots.			
KS2	15.9-	23,0-	Silt with high ice content	Ice/silt and clear ice bands, horizontal on the face of		
	18.0	20,9		the bdzkh, are strongly tilted upward near the ice wedge		
кзз	18.0-	20,9-	Silty sand with organic (peat) spots and woody root fragments,	Massive cryostructure in sand.		
	18.2	20,7	intercalating with Silt.			
KS4	18.2-	20,7-	Silt, below is the ice wedge.			
Bdzh	. "W" (SE of I	KS, overlaps in altitude with the lower part of bdzkh "KS" The	top mark of this bdzkh is accepted at 18.0 m depth	from the top	of the cliff.
W1	18.0-	20.9-	Gray silt, sandy silt. Forms the top of the bdzkh (under			
	18.8	20.1	destruction).			
W2	18.8-	20,1-	Brownish silt with abundant long interweaving woody roots and		MKh-01-16:	
	20.0	18,9	associated twiggy rootlets. Forms a steep slope of the bdzkh and		19,8 m	
พз	20.0-	18.9-	Gray silt, forms the "ridges", starting below the steep part of the		MKh-01-17:	
	20.5	18.4	bdzkh. Still includes some twigs. No detailed description.		18,8 m	
Bdzk	ch "Z" d	lown t	o the seafront from "W". No detailed description.			
Z1	20.8-	18,1-	Gray silt (the top of bdzkh under destruction)			
1	21.1	17.8				
Z2	21,1-	17,8-	Silt with abundant twigs		MKh-01-18:	
	22,0	16,9			17,5 m	
Z3	22,0-	16,9-	Gray silt with higher ice content.			
1	23.0	15.9				

Table A8-2: List of macrofossil samples

Sample No	Location	Depth in the profile (top)	Depth in the profile (base)	Depth (mean)	Altitude (38.9 m at "zero" mark)	Sediment description
MKh-01-01	Baydzh. "O", the top	1,15	1,4	1,3	37,6	Peat
MKh-01-02	Baydzh. "O", the upper part	1,5	1,7	1,6	37,3	Peat
MKh-01-03	Baydzh. "O", the upper part	2,35	2,6	2,5	36,4	Silty sand
MKh-01-04	Baydzh. "S", steep slope	3,6	3,9	3,7	35,2	Silty sand
MKh-01-04a	Baydzh. "S", steep slope	3,4	3,8	3,6	35,3	Silty sand
MKh-01-05	Baydzh. "S", the top (steep slope)	3,3	3,7	`3,5	35,4	Silty sand
MKh-01-06	Baydzh. "S", the base of the steep slope	4,5	4,8	4,7	34,3	Silty sand
MKh-01-07	Baydzh. "S", the step on the upper third of the ridge	5,5	5,7	5,6	33,3	Silt
MKh-01-07a	Baydzh. "S", the step on the upper third of the ridge	5,7	5,9	5,8	33,1	Silt
MKh-01-08	Baydzh. "S", the step in the middle of the ridge	6,5	6,7	6,6	32,3	Silt
MKh-01-09,	Baydzh. "S", the lower part of the ridge above the lower steep	7,5	7,8	7,7	31,3	Silt with "stratified" cryostructure (lens-like) and
9a	slope on top of the ice wedge					woody roots
MKh-01-	Baydzh. "S", the lower part of the ridge above the lower steep	8.7	8.9	8.8	30.1	Silt
09b	slope on top of the ice wedge	,	-,-	-,-	,.	
MKh-01-10	Baydzh. "S", lower steep slope	9,3	9,6	9,5	29,5	Silt
MKh-01-10a	Baydzh. "S", lower steep slope	9,5	9,8	9,7	29,3	Silt
MKh-01-11	Baydzh. "S", the upper part of the ridges beneath the lower steep slope	10,4	10,7	10,6	28,4	Silt
MKh-01-12	Baydzh. "I", the ridges beneath the lower steep slope	13,9	14,2	14,1	24,9	Silt
MKh-01-13	Baydzh. "I", the base of the lower steep slope	12,9	13,2	13,1	25,9	Silt
MKh-01-14	Baydzh. "I", the upper part of the vertical steep slope	12,2	12,5	12,4	26,6	Silt
MKh-01-15	Baydzh. "I", the top of the vertical steep slope	10,9	11,2	11,1	27,85	Silt
MKh-01-15a	Baydzh. "I", the top of the vertical steep slope	11,2	11,4	11,3	27,6	Silt with peat inclusions
MKh-01-16	Baydzh. "W", the middle part	19,0	19,2	19,1	19,8	Silt with abundant woody roots and twigs
MKh-01-17	Baydzh. "W", the middle part	20	20,3	20,2	18,75	Silt with abundant woody roots and twigs
MKh-01-18	Baydzh. "Z", the middle part	21,3	21,6	21,5	17,45	Silt with abundant woody roots and twigs
MKh-01-19	Baydzh. "I", the lower part	16	16,3	16,2	22,75	Silt
MKh-01-20	Baydzh. "I", the lower part	15	15,3	15,2	23,75	Silt
MKh-01-21	Baydzh. "P", the middle part	2,9	3,2	3,1	35,85	Sand
MKh-01-21a	Baydzh. "P", the middle part	3	3,3	3,2	35,75	Sand
MKh-01-22	Baydzh. "O", the upper part	3,3	3,7	3,5	35,4	Sand
MKh-01-23	Baydzh. "P", the upper part, under the peat cover	2,3	2,6	2,5	36,45	Silt

9 Appendix

Table A8-3: List of sediment samples

Sample No	Location	Depth, m.	Altitude (38.9 m at "zero" mark)	Sediment description
MKh-S-01	Baydzh. "P", Unit 2	0,6	38,3	silt with ataxite cryostructure
MKh-S-02	Baydzh. "P", Unit 2	0,9	38,0	peat inclusion
MKh-S-03	Baydzh. "P", Unit 3	1,2	37,7	silt above the "peat hummocks" layer
MKh-S-04	Baydzh. "P", Unit 3	1,5	37,4	silt between peat hummocks
MKh-S-05	Baydzh. "P", Unit 3	1,8	37,1	silt
MKh-S-06	Baydzh. "P", Unit 3	2,1	36,8	silt
MKh-S-07	Baydzh. "P", Unit 4	2,4	36,5	silt
MKh-S-08	Baydzh. "P", Unit 4	2,7	36,2	silt above the contact with sand
MKh-S-09	Baydzh. "P", Unit 5	3,0	35,9	sand layer, upper part
MKh-S-10	Baydzh. "P", Unit 5	3,2	35,7	stratified sand/silt
MKh-S-11	Baydzh. "O", Unit 5	3,3	35,6	stratified sand/silt
MKh-S-12	Baydzh. "O", Unit 5	3,6	35,3	stratified sand/silt
MKh-S-13	Baydzh. "O", Unit 5	3,9	35,0	stratified sand/silt
MKh-S-14	Baydzh. "O", Unit 6	4,2	34,7	stratified silt
MKh-S-15	Baydzh. "O", Unit 6	4,5	34,4	stratified silt
MKh-S-16	Baydzh. "O", Unit 6	4,6	34,3	stratified silt, the foot of massive stratified zone
MKh-S-17	Baydzh. "O", Unit 7	4,8	34,1	silt with high ice content, still on the steep wall
MKh-S-18	Baydzh. "O", Unit 7	5,1	33,8	silt with high ice content, beginning of the "ridges"
MKh-S-19	Baydzh. "O", Unit 7	5,4	33,5	silt with high ice content
MKh-S-20	Baydzh. "O", Unit 7	5,7	33,2	silt with high ice content
MKh-S-21	Baydzh. "O", Unit 7	6,0	32,9	silt with high ice content
MKh-S-22	Baydzh. "O", Unit 7	6,3	32,6	silt with high ice content
MKh-S-23	Baydzh. "O", Unit 7	6,6	32,3	silt with high ice content
MKh-S-24	Baydzh. "O", Unit 7	6,9	32,0	silt with high ice content
MKh-S-25	Baydzh. "O", Unit 7	7,2	31,7	silt with high ice content
MKh-S-26	Baydzh. "O", Unit 7	7,5	31,4	silt with high ice content
MKh-S-27	Baydzh. "O", Unit 7	7,8	31,1	silt with high ice content
MKh-S-28	Baydzh. "O", Unit 7	8,1	30,8	silt with high ice content
Mkh-01s-01k	Baydzh. "O", Unit 2	1,8	37,1	peat
Mkh-01s-05	Baydzh. "S", Unit 7	7,5	31,4	silt with high ice content
Mkh-01s-07	Baydzh. "S", Unit 5	3,6	35,3	silt with high ice content
Mkh-01s-08	Baydzh. "S", Unit 7	5,1	33,9	silt with high ice content
Mkh-01s-09	Baydzh. "S", Unit 7	6,1	32,9	silt with high ice content
Mkh-01s-10	Baydzh. "S", Unit 7	7,2	31,7	silt with high ice content
Mkh-01s-11,	Baydzh. "S", Unit 7	7,9	31,1	silt with high ice content
11a				

Table A8-4: Description of ice in the ice wedge transects for isotope sampling

178

rom the lef edge of the ice wedge transect, in cm	Description of ice
· · · ·	
ransect MI	(h-01-1, NW of baydzherakh "S", depth 10 m. The main orientation of the transect is 320°, of the ice wedge (by the strike of the stripes) - 280°.
he ice is cl	ean, transparent, with rounded gas bubbles, mostly 1-2 mm in diameter, with evident parallel stripes, built with light-gray mud inclusions.
10-20	Ca 18 mud stripes in 10 cm
25-35	Ca 22 mud stripes in 10 cm, each is 1 mm thick or less, together with clear ice one rhythm is about 2-4 mm.
70-90	Milky-white ice
90-100	discontinuous silt inclusions up to 2 mm in size
ransect Mi ransparent nm.	(h-01-2, S of baydzherakh "O", average depth 7 m. The main orientation of the ice wedge (by the strike of the stripes) - 195°. The ice is clean, saturated with rounded gas bubbles, with vertical stripes. The width of milky-white stripes is less than 1 mm, of the transparent ones - 2-4
ransect M ransparent nm. 0-10	Ch-01-2, S of baydzherakh "O", average depth 7 m. The main orientation of the ice wedge (by the strike of the stripes) - 195°. The ice is clean, saturated with rounded gas bubbles, with vertical stripes. The width of milky-white stripes is less than 1 mm, of the transparent ones - 2-4 26 stripes of white ice, separated by transparent ones. At 9 cm - a crack, oriented at 215°, inclined to the wedge at the degree of 70°.
ransect Mi ransparent nm. 0-10 10-40	Ch-01-2, S of baydzherakh "O", average depth 7 m. The main orientation of the ice wedge (by the strike of the stripes) - 195°. The ice is clean, saturated with rounded gas bubbles, with vertical stripes. The width of milky-white stripes is less than 1 mm, of the transparent ones - 2-4 26 stripes of white ice, separated by transparent ones. At 9 cm - a crack, oriented at 215°, inclined to the wedge at the degree of 70°. Milky-white ice because of the saturation with gaz bubbles. Additional cracks like in the prefious segment.
ransect MI ransparent nm. 0-10 10-40 40-180	 Ch-01-2, S of baydzherakh "O", average depth 7 m. The main orientation of the ice wedge (by the strike of the stripes) - 195°. The ice is clean, saturated with rounded gas bubbles, with vertical stripes. The width of milky-white stripes is less than 1 mm, of the transparent ones - 2-4 26 stripes of white ice, separated by transparent ones. At 9 cm - a crack, oriented at 215°, inclined to the wedge at the degree of 70°. Milky-white ice because of the saturation with gaz bubbles. Additional cracks like in the prefious segment. The main orientation is 210°, additional - 180°. The areas of transparent dark ice prevail, the stripes of gray mud (up to 3 mm width). At 59 cm - the third system of cracks appear (225° strike, 70° inclination). At 90 cm - silt xenolith with sand grains (up to 1 mm), 50x8 mm in size, crosses the cracks.
Transect MH ransparent nm. 0-10 10-40 40-180 180-210	 Ch-01-2, S of baydzherakh "O", average depth 7 m. The main orientation of the ice wedge (by the strike of the stripes) - 195°. The ice is clean, saturated with rounded gas bubbles, with vertical stripes. The width of milky-white stripes is less than 1 mm, of the transparent ones - 2-4 26 stripes of white ice, separated by transparent ones. At 9 cm - a crack, oriented at 215°, inclined to the wedge at the degree of 70°. Milky-white ice because of the saturation with gaz bubbles. Additional cracks like in the prefious segment. The main orientation is 210°, additional - 180°. The areas of transparent dark ice prevail, the stripes of gray mud (up to 3 mm width). At 59 cm - the third system of cracks appear (225° strike, 70° inclination). At 90 cm - silt xenolith with sand grains (up to 1 mm), 50x8 mm in size, crosses the cracks. Milky-white ice. Inclusions of mineral mud along the cracks, very thin (below 1 mm). Between 155 and 160 cm - 8 stripes in 3 cm, between 175 and 180 cm - 6 stripes in 2.5 cm.
ransect MH ransparent nm. 0-10 10-40 40-180 180-210 210-270	 Ch-01-2, S of baydzherakh "O", average depth 7 m. The main orientation of the ice wedge (by the strike of the stripes) - 195°. The ice is clean, saturated with rounded gas bubbles, with vertical stripes. The width of milky-white stripes is less than 1 mm, of the transparent ones - 2-4 26 stripes of white ice, separated by transparent ones. At 9 cm - a crack, oriented at 215°, inclined to the wedge at the degree of 70°. Milky-white ice because of the saturation with gaz bubbles. Additional cracks like in the prefious segment. The main orientation is 210°, additional - 180°. The areas of transparent dark ice prevail, the stripes of gray mud (up to 3 mm width). At 59 cm - the third system of cracks appear (225° strike, 70° inclination). At 90 cm - silt xenolith with sand grains (up to 1 mm), 50x8 mm in size, crosses the cracks. Milky-white ice. Inclusions of mineral mud along the cracks, very thin (below 1 mm). Between 155 and 160 cm - 8 stripes in 3 cm, between 175 and 180 cm - 6 stripes in 2,5 cm. Alteration of milky-white and gray with dark ice. Dark ice stripes are 2-4 cm thick, and have essential admixture of mineral particles, concentrated along the stripes. Their main orientation is 245° inclination 70°.
ransect MH ransparent 10. 10-40 40-180 180-210 210-270 270-	 Ch-01-2, S of baydzherakh "O", average depth 7 m. The main orientation of the ice wedge (by the strike of the stripes) - 195°. The ice is clean, saturated with rounded gas bubbles, with vertical stripes. The width of milky-white stripes is less than 1 mm, of the transparent ones - 2-4 26 stripes of white ice, separated by transparent ones. At 9 cm - a crack, oriented at 215°, inclined to the wedge at the degree of 70°. Milky-white ice because of the saturation with gaz bubbles. Additional cracks like in the prefious segment. The main orientation is 210°, additional - 180°. The areas of transparent dark ice prevail, the stripes of gray mud (up to 3 mm width). At 59 cm - the third system of cracks appear (225° strike, 70° inclination). At 90 cm - silt xenolith with sand grains (up to 1 mm), 50x8 mm in size, crosses the cracks. Milky-white ice. Inclusions of mineral mud along the cracks, very thin (below 1 mm). Between 155 and 160 cm - 8 stripes in 3 cm, between 175 and 180 cm - 6 stripes in 2,5 cm. Alteration of milky-white and gray with dark ice. Dark ice stripes are 2-4 cm thick, and have essential admixture of mineral particles, concentrated along the stripes. Their main orientation is 245°, inclination 70°.
ransect MH ansparent im. 0-10 10-40 40-180 180-210 210-270 270- 225-230	 Ch-01-2, S of baydzherakh "O", average depth 7 m. The main orientation of the ice wedge (by the strike of the stripes) - 195°. The ice is clean, saturated with rounded gas bubbles, with vertical stripes. The width of milky-white stripes is less than 1 mm, of the transparent ones - 2-4 26 stripes of white ice, separated by transparent ones. At 9 cm - a crack, oriented at 215°, inclined to the wedge at the degree of 70°. Milky-white ice because of the saturation with gaz bubbles. Additional cracks like in the prefious segment. The main orientation is 210°, additional - 180°. The areas of transparent dark ice prevail, the stripes of gray mud (up to 3 mm width). At 59 cm - the third system of cracks appear (225° strike, 70° inclination). At 90 cm - silt xenolith with sand grains (up to 1 mm), 50x8 mm in size, crosses the cracks. Milky-white ice. Inclusions of mineral mud along the cracks, very thin (below 1 mm). Between 155 and 160 cm - 8 stripes in 3 cm, between 175 and 180 cm - 6 stripes in 2.5 cm. Alteration of milky-white and gray with dark ice. Dark ice stripes are 2-4 cm thick, and have essential admixture of mineral particles, concentrated along the stripes. Their main orientation is 245°, inclination 70°. Stripping zone, forms a "hill" on the wedge surface. Black stripe 2-4 mm thick of mineral-organic inclusion. consists of 2-3 elementary stripes.
ransect MH ransparent 10 10-10 10-40 40-180 180-210 210-270 270- 225-230 245-250	 Ch-01-2, S of baydzherakh "O", average depth 7 m. The main orientation of the ice wedge (by the strike of the stripes) - 195°. The ice is clean, saturated with rounded gas bubbles, with vertical stripes. The width of milky-white stripes is less than 1 mm, of the transparent ones - 2-4 26 stripes of white ice, separated by transparent ones. At 9 cm - a crack, oriented at 215°, inclined to the wedge at the degree of 70°. Milky-white ice because of the saturation with gaz bubbles. Additional cracks like in the prefious segment. The main orientation is 210°, additional - 180°. The areas of transparent dark ice prevail, the stripes of gray mud (up to 3 mm width). At 59 cm - the third system of cracks appear (225° strike, 70° inclination). At 90 cm - silt xenolith with sand grains (up to 1 mm), 50x8 mm in size, crosses the cracks. Milky-white ice. Inclusions of mineral mud along the cracks, very thin (below 1 mm). Between 155 and 160 cm - 8 stripes in 3 cm, between 175 and 180 cm - 6 stripes in 2,5 cm. Alteration of milky-white and gray with dark ice. Dark ice stripes are 2-4 cm thick, and have essential admixture of mineral particles, concentrated along the stripe. Their main orientation is 245°, inclination 70°. Stripping zone, forms a "hill" on the wedge surface. Black stripe 2-4 mm thick of mineral-organic inclusion, consists of 2-3 elementary stripes. Black stripe 2 cm thick of mineral-organic inclusion, consists of elementary veins with fine sand and plant remains.
ransect MH ransparent nm. 0-10 10-40 40-180 180-210 210-270 225-230 245-250 255-260	 Ch-01-2, S of baydzherakh "O", average depth 7 m. The main orientation of the ice wedge (by the strike of the stripes) - 195°. The ice is clean, saturated with rounded gas bubbles, with vertical stripes. The width of milky-white stripes is less than 1 mm, of the transparent ones - 2-4 26 stripes of white ice, separated by transparent ones. At 9 cm - a crack, oriented at 215°, inclined to the wedge at the degree of 70°. Milky-white ice because of the saturation with gaz bubbles. Additional cracks like in the prefious segment. The main orientation is 210°, additional - 180°. The areas of transparent dark ice prevail, the stripes of gray mud (up to 3 mm width). At 59 cm - the third system of cracks appear (225° strike, 70° inclination). At 90 cm - silt xenolith with sand grains (up to 1 mm), 50x8 mm in size, crosses the cracks. Milky-white ice. Inclusions of mineral mud along the cracks, very thin (below 1 mm). Between 155 and 160 cm - 8 stripes in 3 cm, between 175 and 180 cm - 6 stripes in 2,5 cm. Alteration of milky-white and gray with dark ice. Dark ice stripes are 2-4 cm thick, and have essential admixture of mineral particles, concentrated along the stripes. Their main orientation is 245°, inclination 70°. Stripping zone, forms a "hill" on the wedge surface. Black stripe 2 cm thick, of mineral-organic inclusion, consists of 2-3 elementary stripes. Black stripe 2 cm thick, of mineral-organic inclusion, consists of 2-3 elementary stripes. Black stripe 2 cm thick, of mineral-organic inclusion, consists of elementary veins with fine sand and plant remains. 10 stripes in 3.5 cm
ransect Mł ransparent nm. 0-10 10-40 40-180 180-210 210-270 270- 225-230 245-250 255-260 310-315	 Ch-01-2, S of baydzherakh "O", average depth 7 m. The main orientation of the ice wedge (by the strike of the stripes) - 195°. The ice is clean, saturated with rounded gas bubbles, with vertical stripes. The width of milky-white stripes is less than 1 mm, of the transparent ones - 2-4 26 stripes of white ice, separated by transparent ones. At 9 cm - a crack, oriented at 215°, inclined to the wedge at the degree of 70°. Milky-white ice because of the saturation with gaz bubbles. Additional cracks like in the prefious segment. The main orientation is 210°, additional - 180°. The areas of transparent dark ice prevail, the stripes of gray mud (up to 3 mm width). At 59 cm - the third system of cracks appear (225° strike, 70° inclination). At 90 cm - silt xenolith with sand grains (up to 1 mm), 50x8 mm in size, crosses the cracks. Milky-white ice. Inclusions of mineral mud along the cracks, very thin (below 1 mm). Between 155 and 160 cm - 8 stripes in 3 cm, between 175 and 180 cm - 6 stripes in 2.5 cm. Alteration of milky-white and gray with dark ice. Dark ice stripes are 2-4 cm thick, and have essential admixture of mineral particles, concentrated along the stripes. Their main orientation is 245°, inclination 70°. Stripping zone, forms a "hill" on the wedge surface. Black stripe 2-4 mm thick of mineral-organic inclusion, consists of 2-3 elementary stripes. Black stripe 2 cm thick, of mineral-organic inclusion, consists of 2-3 elementary stripes. Black stripe 3 m 4 cm

The Expedition LENA 2001

9 Appendix
Table A8-5: List of ice	wedge samples for isotope study	

Sample No	Distance from the left edge of the ice wedge transect, in cm	Sample No	Distance from the left edge of the ice wedge transect, in cm	Sample No	Distance from the left edge of the ice wedge transect, in cm
Transect MK	h-01-1, NW of	Transect MK	h-01-2, S of	Transect MKh	-01-3A, ice
baydzherakh "S", depth 10		baydzherakh "O", average		wedge from below the active	
m	1.	depth	7 m.	layer, narrow "	waist", depth
				1,3 r	n.
MKh-01-1-00	0	MKh-01-2-10	10	MKh-01-3A-10	10
MKh-01-1-10	10	MKh-01-2-20	20	MKh-01-3A-20	20
MKh-01-1-20	20	MKh-01-2-30	30	MKh-01-3A-30	30
MKh-01-1-30	30	MKh-01-2-40	40	MKh-01-3A-40	40
MKh-01-1-40	40	MKh-01-2-50	50	MKh-01-3A-50	50
MKh-01-1-50	50	MKh-01-2-60	60	MKh-01-3A-60	60
MKh-01-1-60	60	MKh-01-2-80	80	MKh-01-3A-70	70 .
MKh-01-1-70	70	MKh-01-2-90	90	MKh-01-3A-80	80
MKh-01-1-80	80	MKh-01-2-100	100	MKh-01-3A-90	90
MKh-01-1-90	90	MKh-01-2-110	110	MKh-01-3A-100	100
MKh-01-1-100	100	MKh-01-2-120	120	MKh-01-3A-110	110
MKh-01-1-110	110	MKh-01-2-130	130	Total: 11 s	amples
MKh-01-1-120	120	MKh-01-2-140	140		
MKh-01-1-130	130	MKh-01-2-150	150	Transect MKh	-01-3B, ICe
MKh-01-1-140	140	MKh-01-2-160	160	wedge from bel	ow the active
MKh-01-1-150	150	MKh-01-2-170	170	layer, widening	lower part,
MKh-01-1-160	160	MKh-01-2-180	180	depth 3	,0 m
MKn-01-1-170	1/0	MKn-01-2-190	190		10
MKn-01-1-180	180	MKN-01-2-200	200	MKh-01-38-10	10
MKn-01-1-190	190	MKn-01-2-210	210	MKh 01 28 20	20
MKN-01-1-200	200	MKH-01-2-220	220	MKh 01-38-40	40
MKh 01 1 220	210	MKh 01-2-230	230	MKb-01-3B-50	50
MKh-01-1-220	220	MKh-01-2-240	250	MKh-01-3B-60	60
MKb-01-1-240	240	MKh-01-2-250	260	MKh-01-3B-70	70
MKh-01-1-240	250	MKh-01-2-200	270	MKh-01-3B-80	80
MKh-01-1-260	260	MKh-01-2-280	280	MKh-01-3B-90	90
MKh-01-1-280	280	MKh-01-2-290	290	MKh-01-3B-100	100
MKh-01-1-290	290	MKh-01-2-300	300	MKh-01-3B-110	110
MKh-01-1-300	300	MKh-01-2-310	310	MKh-01-3B-120	120
MKh-01-1-310	310	MKh-01-2-320	320	MKh-01-3B-130	130
MKh-01-1-320	320	MKh-01-2-330	330	MKh-01-3B-140	140
MKh-01-1-330	330	MKh-01-2-340	340	Total: 14 s	amples
MKh-01-1-340	340	MKh-01-2-350	350		
MKh-01-1-350	350	MKh-01-2-360	360	Transect MKh-0	1-4, modern
MKh-01-1-360	360	MKh-01-2-370	370	ice wedge (wi	th a stock),
MKh-01-1-380	380	MKh-01-2-380	380	depth 1	.0 m
MKh-01-1-390	390	MKh-01-2-390	390		
MKh-01-1-400	400	MKh-01-2-400	400	MKh-01-4-10	10
MKh-01-1-410	410	Total: 39	samples	MKh-01-4-20	20
MKh-01-1-420	420			MKh-01-4-30	30
MKh-01-1-430	430			MKh-01-4-40	40
MKh-01-1-440	440			Total: 4 s	amples
Total: 43	samples				<u>i</u>

Data- base No.	Field label	Taxon	Skeleton element	Preservation	Loc. type *)	Locality	Elevation (a.s.l.)
1	MKh-01-001	Mammuthus primigenius (Blum.)	pelvis juv.	fragment	b	MKh, upper part of the thermoterrace, NW from the lighthouse, dry mud	ca 20 m
2	MKh-01-002	Rangifer tarandus (L.)	pelvis	fragment	b	MKh, ca Stn. 470, in mud	16-18 m
	MKh-01-003	Rangifer tarandus (L.)	costae	fragment	b	MKh, ca Stn. 450, in mud flow beneath baydzherakh	18-19 m
	MKh-01-004	Rangifer tarandus (L.)	costae	fragment	b	MKh, ca Stn. 450, in mud flow beneath baydzherakh	18-19 m
	MKh-01-005	Rangifer tarandus (L.)	costae	fragment	b	MKh, ca Stn. 450, in mud flow beneath baydzherakh	18-19 m
	MKh-01-006	Equus caballus L.	femur (diaphysis)	fragment	a	MKh, Stn. 820, baydzherakh "KS"	23 m
	MKh-01-007	Mammuthus sp.	epistropheus	damaged	b	MKh, ca Stn. 500	ca 14 m
	MKh-01-008	Bison priscus (Boj.)	cranium	two fragments	b	MKh, ca Stn. 520	ca 18 m
	MKh-01-009	Equus caballus L.	femur (diaphysis)	damaged	b		
0	MKh-01-010	Equus caballus L.	tibia	fragment	a	MKh, ca Stn. 780, baydzherakh next (NW) to "I", depth ca 15 m	24 m
1	MKh-01-011	Lepus sp.	tibia	complete	a	MKh, Stn. 850, depth 5,5 m	33,5 m
2	MKh-01-012	Lepus sp.	metapodial	complete	a	MKh, Stn. 850, depth 5,5 m	33,5 m
3	MKh-01-013	Lepus sp.	metapodial	complete	a	MKh, Stn. 850, depth 5,5 m	33,5 m
4	MKh-01-014	Lepus sp.	phalanx	complete	a	MKh, Stn. 850, depth 5,5 m	33,5 m
5	MKh-01-015	Lepus sp.	phalanx	complete	a	MKh, Stn. 850, depth 5,5 m	33,5 m
6	MKh-01-016	Lepus sp.	cranium	fragment	b	MKh, Stn.900, upper part of the section	
7	MKh-01-017	Lepus sp.	pelvis	fragment	a	MKh, Stn. 820, baydzherakh "KS", below the deformed layers at the contact with ice wedge	22 m
8	MKh-01-018	Artiodactyla	tibia juv.	fragment	b	MKh, Stn.900, upper part of the section	
9	MKh-01-099	Canis sp.	upper molar tooth	complete	d	MKh shore and bar	
0	MKh-01-100	Lepus sp.	humerus	fragment	d	MKh shore and bar	
1	MKh-01-101	Lepus sp.	scapula	fragment	d	MKh shore and bar	
2	MKh-01-102	Lepus sp.	?	fragment	d	MKh shore and bar	

Table A8-6 (page 1): List of mammal bones collected on Bykovsky Peninsula in 2001

180

Data-		-					
base No.	Field label	Taxon	Skeleton element	Preservation	Loc. type *)	Locality	Elevation (a.s.l.)
23	MKh-01-103	Lepus sp.	metapodial	fragment	q	MKh shore and bar	
24	MKh-01-104	Lepus sp.	pelvis	fragment	q	MKh shore and bar	
25	MKh-01-105	Lepus sp.	scapula	fragment	q	MKh shore and bar	
26	MKh-01-106	Lepus sp.	phalanx	fragment	q	MKh shore and bar	An Andreas and a company
27	MKh-01-107	Lepus sp.	scapula	fragment	q	MKh shore and bar	
28	MKh-01-108	Lepus sp.	cranium	fragment	q	MKh shore and bar	
29	MKh-01-109	Lepus sp.	madibula	fragment	σ	MKh shore and bar	and and and an other states of the states
30	MKh-01-110	Lepus sp.	femur	fragment	q	MKh shore and bar	
31	MKh-01-111	Lepus sp.	vert. cervic.	fragment	σ	MKh shore and bar	
32	MKh-01-112	Lepus sp.	cranium	fragment	q	MKh shore and bar	
33	MKh-01-113	Lepus sp.	humerus	fragment	σ	MKh shore and bar	
34	MKh-01-120	Mammuthus primigenius (Blum.)	teeth pd4-M2	anterior fragments	σ	MKh shore and bar	And a subdative data of the second
35	MKh-01-121	Mammuthus primigenius (Blum.)	teeth pd4-M2	anterior fragments	σ	MKh shore and bar	
36	MKh-01-122	Mammuthus primigenius (Blum.)	teeth pd4-M2	anterior fragments	σ	MKh shore and bar	
37	MKh-01-123	Mammuthus primigenius (Blum.)	teeth pd4-M2	anterior fragments	σ	MKh shore and bar	
38	MKh-01-124	Mammuthus primigenius (Blum.)	Lower tooth M1-2	fragment	q	MKh shore and bar	
39	MKh-01-125	Mammuthus primigenius (Blum.)	tooth	fragment	σ	MKh shore and bar	
40	MKh-01-126	Mammuthus primigenius (Blum.)	upper tooth M2-3	fragment	q	MKh shore and bar	
41	MKh-01-127	Mammuthus primigenius (Blum.)	tooth lower M3	fragment	σ	MKh shore and bar	NAMES & SALES AND ADDRESS OF TAXABLE ADDRESS
42	MKh-01-128	Mammuthus primigenius (Blum.)	removed worn tooth	fragment	σ	MKh shore and bar	
43	MKh-01-129	Mammuthus primigenius (Blum.)	removed worn tooth	fragment	σ	MKh shore and bar	
44	MKh-01-130	Mammuthus primigenius (Blum.)	removed worn tooth	fragment	σ	MKh shore and bar	
45	MKh-01-131	Mammuthus primigenius (Blum.)	tooth	fragment	σ	MKh shore and bar	
46	MKh-01-132	Mammuthus primigenius (Blum.)	tooth	fragment	q	MKh shore and bar	
47	MKh-01-133	Mammuthus primigenius (Blum.)	tooth M1-2	fragment	q	MKh shore and bar	
48	MKh-01-134	Mammuthus primigenius (Blum.)	removed worn tooth	fragment	q	MKh shore and bar	
49	MKh-01-135	Mammuthus primigenius (Blum.)	tusk	fragment	σ	MKh shore and bar	
50	MKh-01-139	Mammuthus primigenius (Blum.)	fibula (distal end)	fragment	σ	MKh shore and bar	
51	MKh-01-140	Mammuthus primigenius (Blum.)	humerus juv.	fragment	σ	MKh shore and bar	
52	MKh-01-141	Mammuthus primigenius (Blum.)	carpal bone	fragment	σ	MKh shore and bar	No. of Contemporaries and a second
53	MKh-01-142	Mammuthus primigenius (Blum.)	carpal bone	fragment	σ	MKh shore and bar	

Table A8-6 (page 2): List of mammal bones collected on Bykovsky Peninsula in 2001

The Expedition LENA 2001

9 Appendix

181

Data- base No.	Field label	Taxon	Skeleton element	Preservation	Loc. type *)	Locality	Elevation (a.s.l.)
54	MKh-01-143	Mammuthus primigenius (Blum.)	metapodial	fragment	d	MKh shore and bar	
55	MKh-01-144	Mammuthus primigenius (Blum.)	tibia	fragment	d	MKh shore and bar	
56	MKh-01-145	Mammuthus primigenius (Blum.)	carpal bone	fragment	d	MKh shore and bar	
57	MKh-01-146	Mammuthus primigenius (Blum.)	costae	fragment	d	MKh shore and bar	
58	MKh-01-147	Mammuthus primigenius (Blum.)	tooth lower M3	damaged	е	Cape Mamont, shore and bar	
59	MKh-01-148	Mammuthus primigenius (Blum.)	tooth lower M3	fragment	е	Cape Mamont, shore and bar	
60	MKh-01-149	Mammuthus primigenius (Blum.)	tooth lower M3	fragment	е	Cape Mamont, shore and bar	
61	MKh-01-150	Mammuthus primigenius (Blum.)	tooth lower M3	fragment	е	Cape Mamont, shore and bar	
62	MKh-01-151	Mammuthus primigenius (Blum.)	tooth lower M3	fragment	е	Cape Mamont, shore and bar	
53	MKh-01-152	Mammuthus primigenius (Blum.)	tooth lower M2-3	fragment	е	Cape Mamont, shore and bar	
64	MKh-01-153	Mammuthus primigenius (Blum.)	tooth lower M1-2 worn	fragment	е	Cape Mamont, shore and bar	
65	MKh-01-154	Mammuthus primigenius (Blum.)	tooth lower M1	fragment	е	Cape Mamont, shore and bar	
66	MKh-01-155	Mammuthus primigenius (Blum.)	atlas	damaged	е	Cape Mamont, shore and bar	
67	MKh-01-156	Mammuthus primigenius (Blum.)	vert. lumb.	fragment	е	Cape Mamont, shore and bar	
68	MKh-01-157	Mammuthus primigenius (Blum.)	vertebris	fragment	е	Cape Mamont, shore and bar	
69	MKh-01-158	Mammuthus primigenius (Blum.)	scapula	fragment	е	Cape Mamont, shore and bar	
70	MKh-01-159	Mammuthus primigenius (Blum.)	metapodial	fragment	е	Cape Mamont, shore and bar	
71	MKh-01-160	Mammuthus primigenius (Blum.)	calcaneus	fragment	е	Cape Mamont, shore and bar	
72	MKh-01-161	Mammuthus primigenius (Blum.)	femur	fragment	е	Cape Mamont, shore and bar	
73	MKh-01-162	Mammuthus primigenius (Blum.)	tibia	fragment	е	Cape Mamont, shore and bar	
74	MKh-01-163	Mammuthus primigenius (Blum.)	pelvis	fragment	е	Cape Mamont, shore and bar	
75	MKh-01-164	Mammuthus primigenius (Blum.)	pelvis	fragment	е	Cape Mamont, shore and bar	
76	MKh-01-165	Mammuthus primigenius (Blum.)	tusk juv.	fragment	е	Cape Mamont, shore and bar	
77.	MKh-01-166	Mammuthus primigenius (Blum.)	vert. Thoraic.	fragment	d	MKh shore and bar	
78	MKh-01-167	Mammuthus primigenius (Blum.)	vertebr.	fragment	d	MKh shore and bar	
79	MKh-01-168	Mammuthus primigenius (Blum.)	femur juv.	fragment	d	MKh shore and bar	
80	MKh-01-169	Mammuthus primigenius (Blum.)	humerus juv.	fragment	d	MKh shore and bar	
81	MKh-01-170	Mammuthus primigenius (Blum.)	carpal bone	fragment	d	MKh shore and bar	
82	MKh-01-171	Mammuthus primigenius (Blum.)	tarsal bone	fragment	d	MKh shore and bar	
83	MKh-01-172	Mammuthus primigenius (Blum.)	phalanx	fragment	d	MKh shore and bar	
84	MKh-01-173	Mammuthus primigenius (Blum.)	calcaneus	fragment	d	MKh shore and bar	

Table A8-6 (page 3): List of mammal bones collected on Bykovsky Peninsula in 2001

182

Data- base No.	Field label	Taxon	Skeleton element	Preservation	Loc. type *)	Locality	Elevation (a.s.l.)
85	MKh-01-200	Equus caballus L.	upper tooth	complete	d	MKh shore and bar	
86	MKh-01-201	Equus caballus L.	upper tooth	complete	d	MKh shore and bar	
87	MKh-01-202	Equus caballus L.	upper tooth	fragment	d	MKh shore and bar	
88	MKh-01-203	Equus caballus L.	upper tooth P2	fragment	d	MKh shore and bar	
89	MKh-01-204	Equus caballus L.	lower tooth	fragment	d	MKh shore and bar	
90	MKh-01-205	Equus caballus L.	mandibula	fragment	d	MKh shore and bar	
91	MKh-01-206	Equus caballus L.	mandibula	fragment	d	MKh shore and bar	
92	MKh-01-207	Equus caballus L.	vert. Cervic.	fragment	d	MKh shore and bar	
93	MKh-01-208	Equus caballus L.	humerus	fragment	d	MKh shore and bar	
94	MKh-01-209	Equus caballus L.	metacarpal	complete	d	MKh shore and bar	
95	MKh-01-210	Equus caballus L.	metacarpal	fragment	d	MKh shore and bar	
96	MKh-01-211	Equus caballus L.	metapodial dist.	fragment	d	MKh shore and bar	
97	MKh-01-212	Equus caballus L.	tibia	damaged	d	MKh shore and bar	
98	MKh-01-213	Equus caballus L.	metatarsal	complete	d	MKh shore and bar	
99	MKh-01-214	Equus caballus L.	metatarsal	fragment	d	MKh shore and bar	
100	MKh-01-215	Equus caballus L.	tarsal centrale	complete	d	MKh shore and bar	
101	MKh-01-216	Equus caballus L.	tarsal centrale	complete	d	MKh shore and bar	
102	MKh-01-217	Equus caballus L.	phalanx III	complete	d	MKh shore and bar	
103	MKh-01-218	Equus caballus L.	phalanx III	complete	d	MKh shore and bar	
104	MKh-01-219	Equus caballus L.	atlas	damaged	d	Cape Mamont, shore and bar	
105	MKh-01-220	Equus caballus L.	mandibula	fragment	d	Cape Mamont, shore and bar	
106	MKh-01-221	Equus caballus L.	humerus	fragment	d	Cape Mamont, shore and bar	
107	MKh-01-222	Equus caballus L.	tibia	damaged	d	Cape Mamont, shore and bar	
108	MKh-01-223	Equus caballus L.	tibia	fragment	d.	Cape Mamont, shore and bar	
109	MKh-01-224	Equus caballus L.	metacarpale juv.	fragment	d	Cape Mamont, shore and bar	
110	MKh-01-225	Equus caballus L.	phalanx III	complete	d	Cape Mamont, shore and bar	
111	MKh-01-226	Equus caballus L.	astragalus	complete	d	Cape Mamont, shore and bar	
112	MKh-01-227	Equus caballus L.	mandibula	fragment	d	MKh shore and bar	
113	MKh-01-228	Equus caballus L.	upper premolar	complete	√d	MKh shore and bar	
114	MKh-01-229	Equus caballus L.	upper tooth	complete	d	MKh shore and bar	
115	MKh-01-230	Equus caballus L.	upper tooth	fragment	d	MKh shore and bar	

Table A8-6 (page 4): List of mammal bones collected on Bykovsky Peninsula in 2001

183

9 Appendix

Data- base No.	Field label	Taxon	Skeleton element	Preservation	Loc. type *)	Locality	Elevation (a.s.l.)
16	MKh-01-231	Equus caballus L.	lower tooth	complete	d	MKh shore and bar	
17	MKh-01-232	Equus caballus L.	upper tooth	fragment	d	MKh shore and bar	
18	MKh-01-233	Equus caballus L.	radius	fragment	d	MKh shore and bar	
19	MKh-01-234	Equus caballus L.	calcaneus	damaged	d	MKh shore and bar	
20	MKh-01-235	Equus caballus L.	phalanx II	complete	d	MKh shore and bar	
21	MKh-01-236	Equus caballus L.	phalanx II	complete	d	MKh shore and bar	
22	MKh-01-237	Equus caballus L.	carpal bone	complete	d	MKh shore and bar	
23	MKh-01-238	Equus caballus L.	carpal bone	complete	d	MKh shore and bar	
24	MKh-01-239	Equus caballus L.	sesamoid	complete	d	MKh shore and bar	
25	MKh-01-240	Equus caballus L.	?	fragment	d	MKh shore and bar	
26	MKh-01-241	Equus caballus L.	phalanx I	damaged	d	MKh shore and bar	
27	MKh-01-300	Rangifer tarandus (L.)	cranium	fragment	d	MKh shore and bar	
28	MKh-01-301	Rangifer tarandus (L.)	antier	fragment	d	MKh shore and bar	
29	MKh-01-302	Rangifer tarandus (L.)	antler	fragment	d	MKh shore and bar	
30	MKh-01-303	Rangifer tarandus (L.)	antler	fragment	d	MKh shore and bar	
31	MKh-01-304	Rangifer tarandus (L.)	vertebrae	fragment	d	MKh shore and bar	
32	MKh-01-305	Rangifer tarandus (L.)	vertebrae	fragment	d	MKh shore and bar	
33	MKh-01-306	Rangifer tarandus (L.)	scapula	fragment	d	MKh shore and bar	
34	MKh-01-307	Rangifer tarandus (L.)	radius	fragment	d	MKh shore and bar	
35	MKh-01-308	Rangifer tarandus (L.)	metacarpale juv.	fragment	d	MKh shore and bar	
36	MKh-01-309	Rangifer tarandus (L.)	pelvis	fragment	d	MKh shore and bar	
37	MKh-01-310	Rangifer tarandus (L.)	antler	fragment	d	Cape Mamont, shore and bar	
38	MKh-01-311	Rangifer tarandus (L.)	vert. lumb.	fragment	d	Cape Mamont, shore and bar	
39	MKh-01-312	Rangifer tarandus (L.)	vert. lumb.	fragment	d	Cape Mamont, shore and bar	
40	MKh-01-313	Rangifer tarandus (L.)	vert. lumb.	fragment	d	Cape Mamont, shore and bar	
41	MKh-01-314	Rangifer tarandus (L.)	?	fragment	d	Cape Mamont, shore and bar	
12	MKh-01-315	Rangifer tarandus (L.)	antler	fragment	d	MKh shore and bar	
13	MKh-01-316	Rangifer tarandus (L.)	tooth	fragment	d	MKh shore and bar	
14	MKh-01-317	Rangifer tarandus (L.)	scapula	fragment	d	MKh shore and bar	
45	MKh-01-318	Rangifer tarandus (L.)	astragalus	complete	d	MKh shore and bar	
46	MKh-01-320	Alces sp.	antler	fragment	d	MKh shore and bar	

Table A8-6 (page 5): List of mammal bones collected on Bykovsky Peninsula in 2001

184

Table A8-6 (nage 6): List of mammal h	ones collected on P	wkovala Paninaula in O	~~4
Table Aoro (page o): List of manimal c	ones collected on B	ykovský Península in 20	JUT

Data- base No.	Field label	Taxon	Skeleton element	Preservation	Loc. type *)	Locality	Elevation (a.s.l.)
147	MKh-01-321	Rangifer tarandus (L.)	antler	fragment	d	MKh shore and bar	
148	MKh-01-322	Rangifer tarandus (L.)	tooth	fragment	d	MKh shore and bar	
149	MKh-01-323	Rangifer tarandus (L.)	scapula	fragment	d	MKh shore and bar	
150	MKh-01-324	Rangifer tarandus (L.)	metatarsal	fragment	d	MKh shore and bar	······
151	MKh-01-325	Rangifer tarandus (L.)	astragalus	damaged	d	MKh shore and bar	
152	MKh-01-326	Rangifer tarandus (L.)	phalanx III	damaged	d	MKh shore and bar	
153	MKh-01-379	Ovibos sp.	scapula	fragment	d	MKh shore and bar	
154	MKh-01-380	Ovibos sp.	naviculare	complete	d	MKh shore and bar	
155	MKh-01-381	Ovibos sp.	cranium female	fragment	d	Cape Mamont, shore and bar	
156	MKh-01-382	Ovibos sp.	metatarsal	fragment	d	MKh shore and bar	With a large hange a generation and a second se
157	MKh-01-383	Ovibos sp.	tooth	fragment	d	MKh shore and bar	
158	MKh-01-384	Ovibos sp.	carpale II+III	complete	d	MKh shore and bar	All - 19, 1970 Children and an an and a second product on the
159	MKh-01-400	Bison priscus Boj.	tooth lower M3	complete	d	MKh shore and bar	
160	MKh-01-401	Bison priscus Boj.	carpale II+III	complete	d	MKh shore and bar	
161	MKh-01-420	Bison priscus Boj.	femur	fragment	d	MKh shore and bar	
162	MKh-01-421	Bison priscus Boj.	astragalus	complete	d	MKh shore and bar	-
163	MKh-01-422	Bison priscus Boj.	phalanx I	complete	d	MKh shore and bar	
164	MKh-01-423	Bison priscus Boj.	phalanx I	complete	d	MKh shore and bar	
165	MKh-01-424	Bison priscus Boj.	metacarpal	fragment	d	MKh shore and bar	
166	MKh-01-425	Bison priscus Boj.	upper tooth premolar	complete	d	MKh shore and bar	
167	MKh-01-426	Bison priscus Boj.	upper tooth	complete	d	MKh shore and bar	
168	MKh-01-427	Bison priscus Boj.	astragalus	complete	d	MKh shore and bar	
169	MKh-01-428	Bison priscus Boj.	naviculare	complete	d	MKh shore and bar	
170	MKh-01-429	Bison priscus Boj.	phalanx II	complete	d	MKh shore and bar	
171	MKh-01-430	Bison priscus Boj.	phalanx III	fragment	d	MKh shore and bar	
172	MKh-01-449	Bison priscus Boj.	atlas	complete	d	Cape Mamont, shore and bar	
173	MKh-01-450	Bison priscus Boj.	vert. cervic.	complete	d	Cape Mamont, shore and bar	
174	MKh-01-451	Bison priscus Boj.	vert. cervic.	complete	d	Cape Mamont, shore and bar	
175	MKh-01-452	Bison priscus Boj.	vert. cervic.	fragment	d	Cape Mamont, shore and bar	
176	MKh-01-453	Bison priscus Boj.	vert. thoraic.	complete	d	Cape Mamont, shore and bar]
177	MKh-01-454	Bison priscus Boj.	vert. thoraic.	complete	d	Cape Mamont, shore and bar	

Data- base No.	Field label	Taxon	Skeleton element	Preservation	Loc. type *)	Locality	Elevation (a.s.l.)
178	MKh-01-455	Bison priscus Boj.	vert. thoraic.	complete	d	Cape Mamont, shore and bar	
179	MKh-01-456	Bison priscus Boj.	vert. lumb.	complete	d	Cape Mamont, shore and bar	
180	MKh-01-457	Bison priscus Boj.	vert. lumb.	complete	d	Cape Mamont, shore and bar	
181	MKh-01-458	Bison priscus Boj.	vert. lumb.	complete	d	Cape Mamont, shore and bar	
182	MKh-01-459	Bison priscus Boj.	horn sheet	damaged	d	Cape Mamont, shore and bar	
183	MKh-01-460	Bison priscus Boj.	horn sheet	damaged	d	Cape Mamont, shore and bar	
184	MKh-01-461	Bison priscus Boj.	mandibula	fragment	d	Cape Mamont, shore and bar	
185	MKh-01-462	Bison priscus Boj.	humerus	fragment	d	Cape Mamont, shore and bar	
186	MKh-01-463	Bison priscus Boj.	humerus	fragment	d	Cape Mamont, shore and bar	
187	MKh-01-464	Bison priscus Boj.	pelvis	fragment	d	Cape Mamont, shore and bar	
188	MKh-01-465	Bison priscus Boj.	tibia	damaged	d	Cape Mamont, shore and bar	
189	MKh-01-466	Bison priscus Boj.	tibia	fragment	d	Cape Mamont, shore and bar	
190	MKh-01-467	Bison priscus Boj.	metatarsal	complete	d	Cape Mamont, shore and bar	
191	MKh-01-468	Bison priscus Boj.	phalanx III	complete	d	Cape Mamont, shore and bar	

Table A8-6 (page 7): List of mammal bones collected on Bykovsky Península in 2001

186

9 Appendix

"Berichte zur Polarforschung"

Eine Titelübersicht der Hefte 1 bis 376 (1981 - 2000) erschien zuletzt im Heft 413 der nachfolgenden Reihe "Berichte zur Polar- und Meeresforschung". Ein Verzeichnis aller Hefte beider Reihen sowie eine Zusammenstellung der Abstracts in englischer Sprache finden sich im Internet unter der Adresse:

http://www.awi-bremerhaven.de/Resources/publications.html

Ab dem Heft-Nr. 377 erscheint die Reihe unter dem Namen: "Berichte zur Polar- und Meeresforschung".

Heft-Nr. 377/2000 - "Rekrutierungsmuster ausgewählter Wattfauna nach unterschiedlich strengen Wintern" von Matthias Strasser. Heft-Nr. 378/2001 - "Der Transport von Wärme, Wasser und Salz in den Arktischen Ozean", von Boris Cisewski. Heft-Nr. 379/2001 - "Analyse hydrographischer Schnitte mit Satellitenaltimetrie", von Martin Losch. Heft-Nr. 380/2001 - "Die Expeditionen ANTARKTIS XVI/1-2 des Forschungsschiffes POLARSTERN 1998/1999", herausgegeben von Eberhard Fahrbach und Saad El Naggar. Heft-Nr. 381/2001 - "UV-Schutz- und Reparaturmechanismen bei antarktischen Diatomeen und Phaeocystis antarctica", von Lieselotte Riegger. Heft-Nr. 382/2001 - "Age determination in polar Crustacea using the autofluorescent pigment lipofuscin", by Bodil Bluhm. Heft-Nr. 383/2001 - "Zeitliche und räumliche Verteilung, Habitatspräferenzen und Populationsdynamik benthischer Copepoda Harpacticoida in der Potter Cove (King George Island, Antarktis)", von Gritta Veit-Köhler. Heft-Nr. 384/2001 - "Beiträge aus geophysikalischen Messungen in Dronning Maud Land, Antarktis, zur Auffindung eines optimalen Bohrpunktes für eine Eiskerntiefbohrung", von Daniel Steinhage. Heft-Nr. 385/2001 - "Actinium-227 als Tracer für Advektion und Mischung in der Tiefsee", von Walter Geibert. Heft-Nr. 386/2001 - "Messung von optischen Eigenschaften troposphärischer Aerosole in der Arktis", von Rolf Schumacher. Heft-Nr. 387/2001 - "Bestimmung des Ozonabbaus in der arktischen und subarktischen Stratosphäre", von Astrid Schulz. Heft-Nr. 388/2001 - "Russian-German Cooperation SYSTEM LAPTEV SEA 2000: The Expedition LENA 2000", edited by Volker Rachold and Mikhail N. Grigoriev. Heft-Nr. 389/2001 - "The Expeditions ARKTIS XVI/1 and ARKTIS XVI/2 of the Rearch Vessel ,Polarstern' in 2000", edited by Gunther Krause and Ursula Schauer. Heft-Nr. 390/2001 - "Late Quaternary climate variations recorded in North Atlantic deep-sea benthic ostracodes", by Claudia Didié. Heft-Nr. 391/2001 - "The polar and subpolar North Atlantic during the last five glacial-interglacial cycles", by Jan P. Helmke. Heft-Nr. 392/2001 - "Geochemische Untersuchungen an hydrothermal beeinflußten Sedimenten der Bransfield Straße (Antarktis)", von Anke Dählmann. Heft-Nr. 393/2001 – "The German-Russian Project on Siberian River Run-off (SIRRO): Scientific Cruise Report of the Kara-Sea Expedition 'SIRRO 2000' of RV ,Boris Petrov' and first results", edited by Ruediger Stein and Oleg Stepanets. Heft-Nr. 394/2001 - "Untersuchungen der Photooxidantien Wasserstoffperoxid, Methylhydroperoxid und Formaldehyd in der Troposphäre der Antarktis ", von Katja Riedel. Heft-Nr. 395/2001 - "Role of benthic cnidarians in the energy transfer processes in the Southern Ocean marine ecosystem (Antarctica)", by Covadonga Orejas Saco del Valle. Heft-Nr. 396/2001 - "Biogeochemistry of Dissolved Carbohydrates in thew Arctic", by Ralph Engbrodt. Heft-Nr. 397/2001 - "Seasonality of marine algae and grazers of an Antarctic rocky intertidal, with emphasis on the role of the limpet Nacilla concinna Strebel (Gastropoda: Patellidae)", by Dohong Kim. Heft-Nr. 398/2001 - "Polare Stratosphärenwolken und mesoskalige Dynamik am Polarwirbelrand", von Marion Müller. Heft-Nr. 399/2001 - "North Atlantic Deep Water and Antarctic Bottom Water: Their Interaction and Influence on Modes of the Global Ocean Circulation", by Holger Brix. Heft-Nr. 400/2001 - "The Expeditions ANTARKTIS XVIII/1-2 of the Research Vessel 'Polarstern' in 2000", edited by Victor Smetacek, Ulrich Bathmann, Saad El Naggar. Heft-Nr. 401/2001 – "Variabilität von CH₂O (Formaldehyd) - untersucht mit Hilfe der solaren Absorptionsspektroskopie und Modellen", von Torsten Albrecht. Heft-Nr. 402/2001 - "The Expedition ANTARKTIS XVII/3 (EASIZ III) of RV 'Polarstern' in 2000", edited by Wolf E. Arntz and Thomas Brey.

Heft-Nr. 403/2001 – "Mikrohabitatansprüche benthischer Foraminiferen in Sedimenten des Südatlantiks", von Stefanie Schumacher.

Heft-Nr. 404/2002 - "Die Expedition ANTARKTIS XVII/2 des Forschungsschiffes 'Polarstern' 2000",

herausgegeben von Jörn Thiede und Hans Oerter.

Heft-Nr. 405/2002 – "Feeding Ecology of the Arctic Ice-Amphipod *Gammarus wilkitzkii*. Physiological, Morphological and Ecological Studies", by Carolin E. Arndt.

Heft-Nr. 406/2002 - "Radiolarienfauna im Ochotskischen Meer - eine aktuopaläontologische Charakterisierung der Biozönose und Taphozönose", von Anja Nimmergut.

Heft-Nr. 407/2002 - "The Expedition ANTARKTIS XVIII/5b of the Research Vessel 'Polarstern' in 2001", edited by Ulrich Bathmann.

Heft-Nr. 408/2002 – "Siedlungsmuster und Wechselbeziehungen von Seepocken (Cirripedia) auf Muschelbänken (*Mytilus edulis* L.) im Wattenmeer", von Christian Buschbaum.

Heft-Nr. 409/2002 – "Zur Ökologie von Schmelzwassertümpeln auf arktischem Meereis - Charakteristika, saisonale Dynamik und Vergleich mit anderen aquatischen Lebensräumen polarer Regionen", von Marina Carstens.

Heft-Nr. 410/2002 – "Impuls- und Wärmeaustausch zwischen der Atmosphäre und dem eisbedeckten Ozean", von Thomas Garbrecht.

Heft-Nr. 411/2002 – "Messung und Charakterisierung laminarer Ozonstrukturen in der polaren Stratosphäre", von Petra Wahl.

Heft-Nr. 412/2002 – "Open Ocean Aquaculture und Offshore Windparks. Eine Machbarkeitsstudie über die multifunktionale Nutzung von Offshore-Windparks und Offshore-Marikultur im Raum Nordsee", von Bela Hieronymus Buck.

Heft-Nr. 413/2002 – "Arctic Coastal Dynamics. Report of an International Workshop. Potsdam (Germany) 26-30 November 2001", edited by Volker Rachold, Jerry Brown and Steve Solomon.

Heft-Nr. 414/2002 - "Entwicklung und Anwendung eines Laserablations-ICP-MS-Verfahrens

zur Multielementanalyse von atmosphärischen Einträgen in Eisbohrkernen", von Heiko Reinhardt. **Heft-Nr. 415/2002 –** "Gefrier- und Tauprozesse im sibirischen Permafrost – Untersuchungsmethoden und ökologische Bedeutung", von Wiebke Müller-Lupp.

Heft-Nr. 416/2002 – "Natürliche Klimavariationen der Arktis in einem regionalen hochauflösenden Atmosphärenmodell", von Wolfgang Dorn.

Heft-Nr. 417/2002 – "Ecological comparison of two sandy shores with different wave energy and morphodynamics in the North Sea", by Iris Menn.

Heft-Nr. 418/2002 - "Numerische Modellierung turbulenter Umströmungen von Gebäuden", von Simón Domingo López.

Heft-Nr. 419/2002 – "Scientific Cruise Report of the Kara-Sea Expedition 2001 of RV 'Academik Petrov': The German-Russian Project on Siberian River Run-off (SIRRO) and the EU Project 'ESTABLISH'", edited by Ruediger Stein and Oleg Stepanets.

Heft-Nr. 420/2002 – "Vulkanologie und Geochemie pliozäner bis rezenter Vukanite beiderseits der Bransfield-Straße / West-Antarktis", von Andreas Veit.

Heft-Nr. 421/2002 - "POLARSTERN ARKTIS XVII/2 Cruise Report: AMORE 2001 (Arctic Mid-Ocean Ridge Expedition)", by J. Thiede et al.

Heft-Nr, **422/2002** – "The Expedition 'AWI' of RV 'L'Atalante' in 2001", edited by Michael Klages, Benoit Mesnil, Thomas Soltwedel and Alain Christophe with contributions of the participants.

Heft-Nr. 423/2002 – "Über die Tiefenwasserausbreitung im Weddellmeer und in der Scotia-Sea: Numerische Untersuchungen der Transport- und Austauschprozesse in der Weddell-Scotia-Konfluenz-Zone", von Michael Schodlok.

Heft-Nr. 424/2002 – "Short- and Long-Term Environmental Changes in the Laptev Sea (Siberian Arctic) During the Holocene", von Thomas Müller-Lupp.

Heft-Nr. 425/2002 – "Characterisation of glacio-chemical and glacio-meteorological parameters of Amundsenisen, Dronning Maud Land, Antarctica", by Fidan Göktas.

Heft-Nr. 426/2002 – "Russian-German Cooperation SYSTEM LAPTEV SEA 2000: The Expedition LENA 2001", edited by Eva-Maria Pfeiffer and Mikhail N. Grigoriev.