Die Expedition ANTARKTIS XIX mit FS "Polarstern" 2001/2002 Bericht von den Fahrtabschnitten 1 und 2

The Expedition ANTARKTIS XIX of RV "Polarstern" in 2001/2002 Reports of Legs 1 and 2

Herausgegeben von / Edited by Wilfried Jokat und Gunther Krause Mit Beiträgen der Fahrtteilnehmer / With contributions of the participants

Ber. Polarforsch. Meeresforsch. 448 (2003) ISSN 1618 - 3193

table of contents

page

1	Fahrtverlauf und Zusammenfassung ANT-XIX/1
ו ס	Schiffstechnische Erprohungen und Abnahmen
2	2.1 Test und Abnahme der neuen KGW-Speicherwinde
	2.2 Erweiterung der Biologischen Kläranlage
	2.3 Kraftstoff-Wasser- Emulsion (KWE)
3	Neustrukturierung des Intranet auf FS "Polarstern"
4	Das wissenschaftliche Bordrechnersystem auf FS Polarstern
	4.1 Einleitung
	4.2 Technische Realisierung
-	4.3 Bewertung
5	Ein Beispiel für die Nutzung des PODAS-Sytems zur Darstellung
6	Ventiouiarliche Meerschedenvermessung mit Hydrosween
0	6 1 Datenformate
	6.2 Hard- und Software
	6.3 Akustisches Umweltmonitoring
	6.4 Ausbildung
	6.5 Bathymetrie
7	Schiffsdynamische Untersuchungen zur Squat-Messung
8	UV-B-Dosimetrie
	8.1 Arbeitsprogramm
0	8.2 Durchtuhrung
9	Messungen almosphänscher Spurengase
	Summary ANT-XIX/2
1	Meteorological Conditions during "Polarstern" Cruise ANT XIX/2
2	Marine Geophysics
	2.1 Introduction
	2.2 Seismic data processing
	2.3 Gravity data
	2.4 Magnetic data
	2.5 Results
Q	Geomagnetic Measurements 53
0	3 1 Introduction 53
	3.2 Installation of the magnetometer system
	3.3 Results
4	Bathymetric investigations in the Weddell Sea
5	Parasound
6	Marine Chemistry
7	MABEL
8	Weddell Sea Circulation
	APPENDIX

Fahrtverlauf und Zusammenfassung

Bremerhaven - Kapstadt (08.11. - 30.11.2001) G. Krause

FS "Polarstern" verließ am 8. November 2001 morgens um 3:00 Uhr ihren Liegeplatz in Bremerhaven. Nach der Einstellung der Motoren in der Deutschen Bucht bei steifem bis stürmischem Wind wurden die Maschinenspezialisten zusammen mit dem Lotsen gegen 18:00 Uhr von einem Versetzboot auf der Schillingreede in der Jade übernommen.

Auf dem ersten Teil der Reise bildeten zahlreiche schiffstechnische Erprobungen und Abnahmen von Systemen und Messeinrichtungen nach den Werftarbeiten zur Generalüberholung und Modernisierung des Schiffes den Schwerpunkt der Arbeiten. Nach Abschluss der meisten Erprobungen verließ ein Teil des dazu speziell benötigten Personals am 16.11.2001 das Schiff auf der Reede vor Las Palmas.

Auf der Weiterfahrt nach Kapstadt fanden neben umfangreichen Arbeiten am Rechnersystem, Messungen zur Physik und Chemie der Atmosphäre sowie Untersuchungen zur Schiffsdynamik statt.

Wie geplant lief FS "Polarstern" am 30.11.2001 vormittags in Kapstadt ein (Abb. I.1).

cruise leg ANT-XIX/1

Abb. I.1: Fahrtroute der Expedition ANT-XIX/1

1 Bericht der Wetterwarte K. Buldt

Am 08.11.01 gestaltete ein von Nordengland ins Baltikum ziehendes Sturmtief die ersten Stunde der Reise ANT XIX/1 besonders aber die Nacht auf den 09.11. mit Wind aus Nordwest bis Nord Stärke 8-9 Bft und einer See um 3 Meter sowie zum Teil kräftigen Graupelschauern recht ungemütlich. Ein sich vor Irland verstärkendes Hoch sorgte aber bereits am 09. 11. abends bei der Fahrt durch die Straße von Dover für eine rasche Wetterbesserung.

In den folgenden Tagen verstärkte sich das Hoch weiter, verlagerte sein Zentrum aber kaum. In der Biskaya erreichte der an seiner Ostseite aus Nord bis Nordost wehende Winde Stärke 4 – 5 Bft. Als "Polarstern" am 11.11.01 Kap Finisterre passierte, lebte er nachmittags bis zu 8 Windstärken auf. Ursache dafür war ein von den Balearen nach Nordwesten ziehendes Orkantief, das innerhalb von wenigen Stunden für eine markante Verschärfung des Gradienten sorgte (Abb. 1.1).

Der in Folge des stabilen Hochs anhaltende Rückenwind aus Nord- bis Nordostwind mit Stärke 5 – 6 Bft sorgte in den folgenden Tagen für eine ruhige Reise. Am Morgen den 16.11. erreichten wir bei bedecktem Himmel, vereinzelten Schauern über der Insel sowie Temperaturen knapp unter 20 Grad C die Reede von Las Palmas, wo 11 Personen ausgeschifft wurden.

Die weitere Fahrt verlief von einem leichten Nordostpassat mit Stärke 4-5 Bft sowie Temperaturen zwischen 20° und 25° C günstig beeinflusst zunächst Richtung Südwesten, dann entlang der mauretanischen bzw. senegalesischen Küste nach Süden. In den Kalmen um 8° Nord erreichte die Lufttemperatur bei schwachen umlaufenden Winden mit 29° C das Maximum dieser Reise. Die Wassertemperatur stieg auf den bemerkenswerten Maximalwert von 30,6° C an.

In der Nacht vom 19. auf den 20.11. durchfuhren wir den größten Teil der diesmal nur schwach ausgeprägten ITC. Es kam dabei zu keinen nennenswerten Niederschlägen.

Einen Tag später, am 21.11., überquerte FS "Polarstern" um 22:37 UTC bei 11° 5' West den Äquator (Abb. 1.2).

Bereits am folgenden Tag setzte der zunächst nur schwach ausgeprägte Südostpassat ein, der im Mittel die Windstärke 4-5 Bft erreichte. Das hierfür verantwortliche nahezu stationäre subtropische Hoch lag während der gesamten Reisezeit im Gebiet um 35° S - 10° W.

Ein flaches Tief im Raum Süd-Angola/ Nord-Namibia sorgte in den Tagen ab den 23.11. für eine geringe Gradientverschärfung an der Nordostseite des

Hoch, was auf unserem Kurs für einen Anstieg der Windgeschwindigkeiten auf bis zu 6 Bft aus südlichen Richtungen sorgte.

Am 29.11. verlief unser Kurs bereits dicht unter Land. Hier ließ der nun aus Südsüdwest bis Süd wehende Wind schnell nach. Mit Windstärken zwischen 4 und 5 Bft, wechselnder Bewölkung und Temperaturen um 18° C verlief der letzte Tag der Reise dann wieder eher ruhig.

Im Verlauf dieser Reise erstellte das Personal der Bordwetterwarte 540 Wetterbeobachtungen und führte 21 Radiosondenaufstiege durch (Abb. 1.3). Diese Daten wurden per DCP in das internationale Netz GTS eingespeist. Ferner konnten 345 Funkwetterkarten aufgezeichnet und 204 Satellitenbilder empfangen werden. Zur Information von Besatzung und Wissenschaft erstellte die Bordwetterwarte insgesamt 46 Wetterberichte.

Abb. 1.1: Am Kap Finisterre

· - P(4)A5		· · · · · · · · · · · · · · · · · · ·	at mine and	and a second	Ro 2
File Color Templates Standard Deplays (User Displays Help	Position Latitude	Position	Longitude	ES Polarctorn server
21.11.2001	22:37:39	9 0°	0.00' N	11° 5.64'	W PODAS Display V2.0
Mission Name Stat	tion Name	l	ETA		werum
ANT XIX / 1 Ä	quator		21.	11.01 22:5	58
		CONTRACTOR OF STREET, ST. ST.			
the an Eds Eggsty Info			NOCTO STATEMENTS OF A STATEMENT		
gyro heading		ourse		speed	
138.0	deg	140	,4 deg		12,0kn
Depth		epth Sensorname		visibility	
4543	m	ANP	15	1	0000 m
air pressure	ai	ir temperature		rel. humidity	
1013,4	hPa	23	3,9°C		92,0%
true wind direction	tr	ue wind velocity		ceiling	
146,0	deg	6	3,5m/s	2	20000 <mark>ft</mark>
rel. wind direction	re	al wind velocity		max rel wind veloci	ty last min
5,0	deg	12	2,7 m/s		13,2m/s
precipitation	d	ewpoint		global radiation	
0,0	mm/min	21	,3°C		-1,0W/m2
temperature bow	S	alinity bow		conductivity bow	
24,56	°C	35,9	96 psu		53,90mS/cm
temperature keel	sa	linity keel	-	conductivity keel	
24,54	°C	35,	73psu		53,57 mS/cm
PODAS Display V2.0 / overview					Online 🔗

Abb. 1.2: PODAS Display im Moment der Überquerung des Äquators

cruise leg ANT-XIX/1

Abb. 1.3: Histogramme für Windrichtung und Stärke

2 Schiffstechnische Erprobungen und Abnahmen S. El Nagger

Während der vierten Phase der Modernisierung der "Polarstern" wurden vom 07.10.2001– 07.11.2001 folgende Umbaumaßnahmen durchgeführt:

- Neue Ausstattung des Kinoraumes mit Möbeln und Vorführtechnik, Firma Pieper;
- Neue Speicherwinde für Einleiter-Koaxkabel mit optischer Drehkopplung, Firma KGW;
- Erweiterung des 15 t Krans (Achtern) auf 18 t bis 16 m Auslage und auf 10 t bei 24m Auslage, Firma HATLAPA;
- Austausch des Radoms und der Antenne der HRPT-SeaSpace-Anlage;
- Erweiterung der Kläranlage und Integration des Grauwassers, Firma Rochem;
- Konservierung im Unterwasserbereich und Aufbauten ;
- Modernisierungen der Wohnräume und Decks;
- Modernisierungen im Laborbereich;
- Modernisierung der Elektronikerwerkstatt;
- Integration der dynamischen Positionierung, ROBOS;
- Beschaffung eines neuen aufgeteilten Müllcontainers;
- Beschaffung eines Gefahrgutcontainers;
- Grundüberholung der Hauptmaschinen (Fortsetzung);
- Stahlarbeiten im Unterwasserbereich;
- Erneuerung der Frischwassertanks;
- Inbetriebnahme der Kraftstoff- Wasser- Emulsionsanlage (KWE) (Backbord).

Auf dem Teilabschnitt Bremerhaven - Las Palmas wurden die installierten Systeme im realen Betrieb getestet und zum Teil abgenommen. Die restlichen Arbeiten wurden bis Kapstadt durchgeführt.

Die Integration der neuen Erfassungssoftware PODAS wurde bis Kapstadt ergänzt und abgenommen. Hier wurde das elektronische Stationsbuch eingeführt. Die WEB-Seiten des INTRANET wurden neu geschrieben und mit dem AWI-System vereinheitlicht.

Die neue Winde wurde in das vorhandene Windensystem integriert, getestet und abgenommen.

2.1 Test und Abnahme der neuen KGW-Speicherwinde S. El Naggar, E. Wagner, W. Manthei, V. Schulz, G. Woike

Die Winden an Bord der "Polarstern" stellen die Grundlage des Forschungsbetriebes dar. Dementsprechend müssen sie technisch sicher und zuverlässig arbeiten. Dafür wurde ein neues Versorgungs- und Steuerungskonzept erarbeitet und in der dritten Phase realisiert. In diesem Jahr wurde ferner eine neue Speicherwinde für den 18 mm-Einleiterdraht angeschafft und auf dem Arbeitsdeck (E-Deck) an der Stelle der ehemaligen MZ-Winden aufgestellt. Dazu wurde die Behausung des Windenraumes erweitert. Die alte Speicherwinde wurde als Zusatzwinde für den 18 mm-Draht der Geologie eingesetzt. Damit ist eine Redundanz garantiert und eine symmetrische Belastung der Friktionswinden ermöglicht.

Die neue Speicherwinde wurde durch die Firma KGW gebaut und ist zur Aufnahme von 8000 m, 18 mm-Draht oder -Kabel konzipiert. Sie wurde mit Koaxund Optokoppler versehen, so dass der Einsatz von LWL-Kabel ohne weiteres möglich ist.

Die Steuerung und Integration der Winde wurde durch die Firma STNH (SAM) realisiert. Die Tests und die Abnahme fanden zwischen Bremerhaven und Las-Palmas statt. Die Winde zeigte während des Betriebes erhebliche Konstruktionsmängel auf. Diese zeigten sich an den Seitenwänden der Trommel und der Spulvorrichtung. Die Mängel wurden zur Nachbesserung an die Firma KGW weitergegeben. Die Sensorik zur Seilüberwachung muss noch verbessert werden. Ansonsten wurde die Winde bis ca. 4000 m getestet und abgenommen.

2.2 Erweiterung der Biologischen Kläranlage

S. El Naggar , E. Wagner, W. Manthei, V. Schulz , S. Guttau, J. Thorman

Die biologische Kläranlage wurde während der letzten Werftliegezeit so ergänzt, dass die technischen Probleme bei der Integration des Grauwasser- und Vorfiltersystems so weit wie möglich behoben werden sollten. Das Ziel der Modernisierung der Anlage war, eine gemeinsame Kläranlage für Schwarz- und Grauwasser zu installieren, somit die Effektivität zu erhöhen und als Vorbild beim Einsatz im Antarktischen Vertragsgebieten zu dienen. Die Anlage soll die Anforderungen an Kläranlagen auf Schiffen weitgehend übertreffen, so dass nur geklärtes reines Wasser über Bord geht.

Die Probleme mit dem Vorfilter wurden durch den Einsatz des Sweco-Siebsystems gelöst, wofür eine aufwendige Installation notwendig war. Die Inbetriebnahme und Integration der Anlage wurde durch den Ausfall eines Pumpensystems erschwert. Das Auslaufen der "Polarstern" wurde dadurch um 12 Stunden verzögert. Die erwarteten Ersatzteile kamen auch in Las Palmas nicht mehr an. Die Besatzung hat jedoch eine Ersatzpumpe zusammengebaut, so dass das System als ganzes gefahren werden konnte. Modifikationen, Einstellungen und Reparaturen an Bord wurden vorgenommen und haben den Betrieb der Anlage während der Reise sichergestellt. Sie arbeitet zufriedenstellend und wurde in Kapstadt mit den Originalteilen bestückt. Eine Ingenieurin der Firma ROCHEM nahm dann am folgenden Abschnitt teil, um die endgültigen Einstellungen der Anlage vorzunehmen.

2.3 Kraftstoff-Wasser- Emulsion (KWE) E. Wagner, W. Manthei, V. Schulz , W. Tausendfreund

Die Kraftstoff-Wasser-Emulsionsanlage wurde während der Werftzeit vervollständigt und während der Reise in Betrieb genommen. Die beiden Maschinen der Backbordseite wurden mit dem System ausgestattet und mit voller Last während der gesamten Reise gefahren. Die Anlage erlaubt es bis zu 20% des eingespritzten Kraftstoffes mit Wasser zu vermischen. Diese Technologie führt zur Reduzierung der NOX-Abgase und zur Verminderung der Rußpartikel.

Nach Inspektion der Maschinen kurz vor Kapstadt, wurden keine Beanstandungen oder Verschleiß an den Einlassventilen vorgefunden. Die Verminderung des Rußes war ohne Messungen sichtbar. Somit ist der Einsatz der KWE-Anlage als erfolgversprechend zu bezeichnen. Die Steuerbordmaschinen werden demnächst ebenfalls mit einer gleichen KWE-Anlage ausgestattet.

3 Neustrukturierung des Intranet auf FS "Polarstern"

M. Hofmann, S. El Naggar, J. Hofmann

Das Intranet an Bord von "Polarstern" wurde komplett überarbeitet. Die Vorarbeiten dazu waren bereits in Bremerhaven durchgeführt worden, wo mit den dortigen Web-Administratoren ein Grundkonzept erarbeitet und wichtige Elemente der Web-Infrastruktur des AWI übernommen wurden. Folgende Ziele wurden definiert:

- Eine einfache und übersichtliche Benutzerführung und Strukturierung des Webs;
- Leichte und schnelle Administration und Aktualisierung der vorhandenen Seiten sowie das einfache Erstellen und Hinzufügen neuer Seiten;
- Zuverlässige Funktion der Verlinkung und der Anzeige der Inhalte;
- Anpassung an das AWI-Design, um quasi eine Corporate Identity einzuführen;
- Korrekter Seitenaufbau auf allen Softwareplattformen auf Polarstern.

Konsequent wurden deshalb die Seiten in reinem HTML-Code ohne Verwendung von Scripten oder proprietärem Code komplett neu geschrieben. Die Zahl der Navigationsebenen wurde auf zwei begrenzt, wobei die meisten und populärsten Inhalte mit einem Klick im Browserfenster erreichbar sind. Die gesamte serverseitige Verzeichnisstruktur wurde gestrafft und zentralisiert. Mit Hilfe von Templates und Prototypen gibt es eine erhebliche Arbeitserleichterung bei der Erstellung neuer Seiten. Als dominierende Farbe bestimmt das AWI-Blau das Design der Seiten. Die Einführung sogenannter Cascading Style Sheets (CSS) trennt in Zukunft den Inhalt der Seiten vom Layout und sichert durch eine zentrale Administration das konsistente Aussehen aller Seiten. Weiterhin wurde eine einfache Content-Management-Lösung erarbeitet, damit neue Inhalte auch ohne Programmieraufwand in das Intranet eingefügt werden können. Dies ist besonders wichtig für die Bordwetterwarte und die Funkstation, wo tagesaktuell Informationen von allgemeiner Bedeutung anfallen. Als sehr einfach und effizient erwies sich dabei die Programmierung von Formularen mit

Visual Basic für Microsoft Word. Auf Knopfdruck werden vordefinierte Token in HTML-Prototypen mit den Inhalten der Formularfelder ersetzt und automatisch im Intranet publiziert. Wünschenswert wäre hier die Einführung eines richtigen Content-Management-Systems, mit dem auch die einfache Erstellung von Webinhalten durch die mitfahrenden Wissenschaftler möglich wäre. Hier wird auch in Zukunft noch sehr viel Handarbeit nötig sein. Da das neue Intranet schon nach dem ersten Drittel der Fahrt über die alte Struktur geschaltet wurde (Relaunch), konnten wir einen ausgiebigen Praxistest durchführen und die auftretenden Probleme schnell beseitigen. Die Anpassung an die unterschiedlichen Softwareplattformen ist gelungen. Zum Abschluss wurde eine Dokumentation zur gesamten Struktur des Intranets erstellt, welche auch Informationen über die Aktualisierung vorhandener und die Erstellung neuer Seiten, sowie die Konfigurierbarkeit der Visual-Basic-Scripte enthält. Damit wurde sichergestellt, dass auch in Zukunft das Intranet auf FS "Polarstern" einfach zu verwalten ist sowie sicher und zuverlässig Informationen für alle Fahrtteilnehmer liefert.

4 Das wissenschaftliche Bordrechnersystem auf FS Polarstern M. Reinke, P. Gerchow, S. El Naggar, M. Hofmann, J. Hofmann

4.1 Einleitung

Mit der Abnahme des elektronischen Stationstagebuchs am 12.11.2001 wurde die Installation des wissenschaftlichen Bordrechnernetzwerkes und des neuen PODAS Schiffsinformationssystems an Bord von "FS Polarstern" abgeschlossen.

Die Notwendigkeit, ein neues wissenschaftliches Bordrechnernetz auf "FS Polarstern" einzurichten, wurde 1996 in der Schiffko Studie zur Modernisierung der "Polarstern" festgestellt. Die über Jahre gewachsene informationstechnische (IT) Infrastruktur - wie Netzwerk, Server und Anzeigestationen – genügten nicht mehr den gestiegenen Anforderungen.

Die Vorarbeiten zum jetzt implementierten Bordrechnersystem begannen seitens des AWI Rechenzentrums 1997. Das Bordrechnernetz sollte bezüglich der Verkabelung und der aktiven Netzwerkkomponenten den neuen Standards im AWI folgen. Das neue Schiffsinformationssystem sollte, basierend auf einem Echtzeit-Datenbankmanagementsystem, modular erstellt werden, um den Anteil speziell für "Polarstern" entwickelten Codes so klein wie möglich zu halten.

Die Planung für das "Polarstern"-Rechnersystem wurde vom Rechenzentrum (Manfred Reinke und Peter Gerchow) und der Reederei Laeisz (Jörg Hofmann) mit einem Bericht im Juni 1999 abgeschlossen, der "Technischen Kommission Polarstern" vorgestellt und in dieser Form genehmigt. Das wissenschaftliche Bord-rechnernetzwerk wurde in der Werftliegezeit im September 1999 erneuert. Das Schiffsinformationssystem wurde auf Grundlage eines Pflichtenhefts von der Reederei Laeisz im November 1999 beschränkt ausgeschrieben. Der Auftrag erging im Februar 2000 an die Firma WERUM, Lüneburg.

4.2 Technische Realisierung

Das Bordrechnernetzwerk verfügt vom Rechnerraum ausgehend über eine sternförmige Topologie. Es wurden ausschließlich Glasfasern verlegt, um induktive Störungen auf den Leitungen auszuschließen. Alle technischen, nautischen und wissenschaftlichen Räume und Labore und alle Kammern sind an das System angeschlossen. Insgesamt sind über 800 Anschlüsse im Schiff verfügbar. Ein Drittel der Anschlüsse ist fest mit sogenannten Hubs belegt, die den Anschluss von je 4 Endgeräten über eine Standardschnittstelle (Twisted Pair, 100 Mbit) ermöglichen. Rechner von Fahrteilnehmern können darüber problemlos in das Bordnetzwerk integriert werden. Über eine zentrale Verteilung im Rechnerraum können je zwei offene Schnittstellen miteinander verbunden werden, so dass innerhalb des Schiffes bei Bedarf beliebige Räume über Glasfaser direkt verbunden werden können. Die Datenendgeräte sind über 3 Cisco 6509 Switche mit einem Routermodul untereinander verbunden. Dieses ermöglicht hohe Transferleistungen und Subnetz-Bildung (VLAN) für die Sicherheit - z.B. für die Messdatenerfassung - und die Lastentkopplung. Für die Unix-Welt steht eine zentraler Sun Server (Enterprise 250) und für die PCs ein zentraler Windows-Server für Mail-, File- und Print-Services zur Verfügung. Ein bordeigenes Intranet bietet standardisierten Zugang zu allen wichtigen Informationen.

Das PODAS System ist das zentrale Bordsystem zur Erfassung der für die Wissenschaft wichtigen Umwelt- und Schiffsdaten. Es zeichnet sich durch hohe Betriebssicherheit, Transparenz bei der Messdatenerfassung, Verfügbarkeit der Daten auf dem Schiff und im AWI, Benutzungsfreundlichkeit und Konfigurierbarkeit für neue Messaufgaben aus.

Das PODAS System läuft verteilt auf drei "Enterprise 250" Rechnern der Firma "Sun", die leistungsmäßig so ausgelegt sind, dass das System mit den heutigen Anforderungen auch auf zwei oder sogar einem Rechner funktionsfähig wäre. Die dazu notwendige Neukonfiguration und der Neustart des Systems kann innerhalb kürzester Zeit vom Systemadministrator an Bord vorgenommen werden, so dass Datenverluste im Schadensfall minimiert werden können. Alle Programme liegen in lokalen Kopien auf jedem Rechner vor, und auch die Datendateien werden entsprechend gespiegelt. Zusätzlich wird täglich eine Sicherungskopie auf Magnetband (DLT) gezogen. Am Ende jeden Fahrtabschnittes werden die Daten auf "Digtal Versatile Disk" (DVD) in zwei Kopien gebrannt, von denen eine an das Alfred-Wegener-Institut, Bremerhaven, geschickt wird und die andere an Bord in einem elektronischen Archiv (NSM Stacker für 250 DVD) verbleibt.

Zur Zeit werden Messdaten von 20 Geräten mit insgesamt 136 Sensoren kontinuierlich erfasst. Um Fehler bei der Messung oder Speicherung rechtzeitig zu erkennen, wird jede Messung auf Plausibilität – Messbereich, Änderungsrate und Messfrequenz – überprüft und das PODAS Speichersystem unabhängig auf Funktion kontrolliert. Bei Fehlfunktionen wird der Systemadministrator über ein abgestuftes Warnsystem alarmiert. Aufgetretene Fehler werden protokolliert und stehen mit den Messdaten zur Verfügung. Das System kann um Geräte und Sensoren erweitert werden. Falls diese Geräte mit dem PODAS System über das Standardprotokoll NMEA (Nautical and Marine Engineers Association) kommunizieren, kann dieses durch den Systemadministrator an Bord durchgeführt werden. Geräte mit anderen Kommunikationsschnittstellen werden per Auftrag von der Firma Werum in das System integriert. Für jedes Gerät und jeden Sensor verfügt das System über ein Gerätestammblatt, in dem die für die Interpretation der Messwerte relevanten Änderungen gespeichert werden können. Über eine Versionsverwaltung werden alle Änderungen zeitlich genau dokumentiert.

An Bord erfolgt die Anzeige der Messwerte in einem eigenen Teilnetzwerk (Subnetz) auf 30 fest installierten PC in allen wichtigen Funktionsräumen und den Messen. Die Darstellung auf den Bildschirmen besteht zur Zeit aus 21 Vorlagen, die für bestimmte Aufgaben, wie Wissenschaft, Brücke, Winden und Flugbetreuung vordefiniert wurden. Zusätzlich können eigene Zusammenstellungen von Geräten und Sensoren vorgenommen werden, die lokal als eigene Vorlagen gespeichert und wieder aufgerufen werden können.

Die Extraktion von Daten über frei wählbare Zeiträume und Verdichtungen (Mittelwerte, Einzelbeobachtungen) erfolgt über das bordeigene Intranet mit gängigen Werkzeugen, wie Netscape Internet Browser oder Internet Explorer. Die Ergebnisdaten werden auf einem öffentlichen Bereich des Netzwerkservers abgelegt, von dem sie auf die lokalen Rechner geladen werden können. Verfügbar sind die Daten des laufenden Fahrtabschnittes und die der abgeschlossenen Fahrtabschnitte, für die sich die entsprechenden Archivdaten im DVD Speicher (Stacker) befinden. Im Alfred-Wegener-Institut in Bremerhaven ist ein analoges System von Zugriffssoftware und DVD Archiv installiert worden, auf das mit der gleichen Internet Technik zugegriffen werden kann. Die schnelle Verfügbarkeit der Schiffs- und Umweltdaten nach Abschluss der Reise ist dadurch gewährleistet.

Ergänzend zu der kontinuierlichen Messdatenfassung, ist das Stationstagebuch, in dem alle Einsätze wissenschaftlicher Geräte von Bord des Schiffes aus handschriftlich vom Wachoffizier dokumentiert wurden, durch eine elektronische Version ersetzt worden. Während einer wissenschaftlichen Station werden auf der Brücke vom wachhabenden nautischen Offizier die Geräteeinsätze in dieses System eingetragen, wobei die zugehörigen Umweltparameter automatisch aus dem PODAS System übernommen werden. Das elektronische Stationstagebuch verfügt neben der normalen Datensicherung über eine Reihe von zusätzlichen Sicherheitsmaßnahmen gegen Verlust oder Verfälschung. So wird jeder Geräteeinsatz auf einem Drucker auf der Brücke protokolliert und kann nachträglich nur durch den Systemadministrator geändert werden. Auch diese Änderungen bleiben nachvollziehbar, da sie in einem elektronischen

Logbuch und auf dem zugehörigen Drucker dokumentiert werden. Das elektronische Stationsbuch kann auf den PODAS Anzeigestationen dargestellt und die Daten von dort aus heruntergeladen werden. Das Programm unterstützt die Vergabe für die Nummern der Stationen und Geräteeinsätze nach den Vorgaben des AWI. Diese sehen vor, dass eine Station mit dem Kürzel PS und der Expeditionsnummer bezeichnet wird. Dabei erhält jede Expedition, auch wenn sie aus mehreren Abschnitten besteht, nur eine Nummer. Die Stationen werden auf einer Expedition durchlaufend numeriert, ebenso die Geräteeinsätze auf einer Station (z.B.: PS61/002-1). Vom Stationsbuch wird eine Kopie zusammen mit den PODAS Daten nach Abschluss eines Fahrtabschnittes an das AWI gegeben.

Als weitere Komponente steht für den Fahrtleiter, bzw. einer beauftragten Person ein Werkzeug zur Stationsplanung zur Verfügung. Auf einer tabellarischen Maske kann die Planung für die nächste Zeit eingetragen werden und ist auf allen PODAS Anzeigestationen sichtbar.

4.3 Bewertung

Das wissenschaftliche Bordrechnersystem stellt zusammen mit dem PODAS Datenerfassungssystem bezüglich Leistungsfähigkeit, Datenqualität, Verfügbarkeit und Benutzungsfreundlichkeit einen neuen Standard für Forschungsschiffe dar. Vergleichbare kleinere Systeme befinden sich auf den Forschungsschiffen "Meteor" und "Sonne", nur bieten diese nicht die Verfügbarkeit der Daten über das Ende eines Fahrtabschnittes hinaus. Es wäre zu überlegen, ob das AWI im Rahmen seines ICSU (International Council for Science) Weltdatenzentrums für Marine Umweltdaten, dieses auch für diese Schiffe übernehmen könnte, wenn diese ihre Systeme um die entsprechenden Komponenten erweitern.

Ein elektronisches Stationstagebuch ist bisher auf keinem anderen deutschen Forschungsschiff eingeführt worden.

5 Ein Beispiel für die Nutzung des PODAS-Sytems zur Darstellung ozeanographischer Größen im Oberflächenwasser G. Krause

Mit Hilfe des neuen Datenerfassungssystems PODAS ist es auf einfache Weise möglich, eine Auswahl unter den zahlreichen Zeitserien der Messwerte von installierten Standard-Sensoren der Polarstern in den eigenen Rechner herunterzuladen und diese z.B. mit Hilfe von Excel oder anderen Programmen weiter zu verarbeiten. Das soll hier anhand eines Beispiels demonstriert werden. Sowohl für Ozeanographen wie für die Schiffsführung kann es z.B. interessant sein, die Meeresströmungen im Fahrtgebiet während einer Expedition zu erfassen.

Strömung in Fahrtrichtung (EM-Log - System-Geschwindigkeit)

Abb. 5.1: Hier ist ein Beispiel für die Strömungsverhältnisse während der Transitreise ANT-XIX/1 dargestellt, wobei der Einfachheit halber nur die Komponente in Fahrtrichtung gewählt wurde. Werden die Daten vektoriell behandelt, d.h. System-Geschwindigkeit und System-Kurs mit EM-Geschwindigkeit und Kompass-Kurs, so lassen sich Betrag und Richtung der wahren Meeresströmungen berechnen.

Von Norden kommend, fuhr "Polarstern" auf dieser Reise zunächst gegen den Kanarenstrom, später im äquatorialen Bereich gegen den kräftig ausgeprägten Guineastrom und wurde danach durch den nach Südwesten setzenden Strom in ihrer Fahrt begünstigt (Abb. 5.1) Hinsichtlich der Oberflächentemperatur ist besonders auf das noch weit in der Nordhemisphäre gelegene Maximum von 30,6° C und das relative Minimum direkt am Äquator hinzuweisen. Im Salzgehalt kommt der beträchtliche Süßwassereintrag der großen afrikanischen Flüsse durch relativ niedrige Werte über weite Distanzen zu Geltung (Abb. 5.2). Es handelt sich bei diesen Beispielen um Phänomene, die schon lange bekannt sind. Sie sollen hier nur darauf hinweisen, dass aus dem Gesamtmaterial aller "Polarstern"-Fahrten mit Hilfe des neuen Systems wertvolle Informationen über die Veränderlichkeit der Oberfächenparameter in den Fahrtgebieten des Schiffe mit wenig Aufwand gewonnen werden können.

Salzgehalt

Abb. 5.2: Salzgehalt und Wassertemperaturen entlang eines ausgewählten Bereich um den Äquator.

6 Kontinuierliche Meeresbodenvermessung mit Hydrosweep F. Niederjasper, O. Büchsenschütz-Nothdurft

Die Teilnahme der Arbeitsgruppe Bathymetrie am Fahrtabschnitt ANT-XIX/1 diente in erster Linie der Vorbereitung des Hydrosweep-Einsatzes während der Fahrtabschnitte ANT-XIX/2 und ANT-XIX/5. Parallel dazu wurde außerhalb der internationalen Beschränkungsgebiete (EEZ) kontinuierlich mit dem Hydrosweep-System gemessen. Die Daten wurden aufgezeichnet und prozessiert. Es wurden nachstehend beschriebene Arbeiten durchgeführt

- Systemkalibrierung -

Bestimmung der Korrekturwerte für die Roll- und Pitch-Winkel (Kalibrierung), mit denen der Sende- und Empfangsstrahl des Hydrosweep gesteuert wird. Mit diesen Werten werden die systematischen Restfehler der Bewegungssensoren, auf "Polarstern" sind das zwei Ringlaserkreiselsysteme vom Typ MINS, und die Abweichungen der hydroakustischen Wandler im Schiffsboden von der Horizontalen, die elektrisch und/oder mechanisch verursacht sein können, kompensiert.

Die Unterschiede zwischen dem tatsächlichen und dem scheinbaren Horizont des Inertialsystems sind nicht unmittelbar messbar. Sie werden beim Durchfahren einer vorgegebenen Messstrecke indirekt bestimmt. Eine wichtige Voraussetzung ist ein möglichst ebener, wenig strukturierter Meeresboden. Es wurde deshalb eine Lokation nahe 35° 35'N und 13° 15'W ausgesucht, von der die Bathymetrie aus früheren Hydrosweep-Vermessungen bekannt war. Vor der Messfahrt wurde eine CTD-Station bis 2500 m Tiefe gefahren. Sie diente der Bestimmung eines genauen Wasserschallprofils, das beim Hydrosweep für die Refraktionskorrektur der schräg verlaufenden Schallstrahlen benötigt wird. Für die eigentliche Bestimmung der Korrekturwerte wurde anschließend ein 7,5 nm langes Profil achtmal durchfahren.

Die Kalibrierung wurde nach dem Austausch einer der hydroakustischen Wandler des Hydrosweep im Frühjahr 2001 notwendig. Das Ergebnis der Untersuchung zeigt, dass sich die Korrekturwerte durch den Wandlertausch tatsächlich signifikant geändert haben. Die Ergebnisse der Kalibrierung und die gute Reproduzierbarkeit der Hydrosweep-Daten werden durch die Abbildung 6.1 dokumentiert. Das Kalibriergebiet lag nordwestlich des Ampere Seamounts, dessen Vulkankegel aus fast 5000 m Wassertiefe bis ca. 60 m unterhalb der Wasseroberfläche aufsteigt. Dieser Vulkan wurde 1991 von der "Polarstern" mit Hydrosweep detailliert vermessen. Beim Ablaufen nach der Kalibrierung führte der Kurs über den nordwestlichen Teil des damals vermessenen Gebietes. Abbildung 4 zeigt die Tiefenlinien der 1991er Vermessung in grau und die Linien der aktuellen Messung in schwarz. Die gute Übereinstimmung der Tiefenlinien belegt die gute Qualität der Kalibrierung. Sie zeigt aber auch, dass auch nach mittlerweile 12-jähriger Betriebszeit mit dem Hydrosweep zuverlässige und reproduzierbare Daten gewonnen werden.

6.1 Datenformate

Zur Festlegung eines "Bathymetrie-Formates" in dem neuen "Polarstern" Datenerfassungs- und Datenverteilungssystem PODAS wurde sowohl eine Sammlung aller relevanten Gerätesensoren als auch ihr Format zusammengestellt. Dazu wird in einem sog. Template das Format abgelegt, das den allgemeinen Zugriff auf diese Datenstruktur ermöglicht. In Anlehnung an das Programm zur Konvertierung des früheren POLDAT-Formates in das in der Bathymetrie verwendete nak-Format, wurde ein neues Programm zur Konvertierung der PODAS-Daten entwickelt.

Abb. 6.1: Vergleich der Tiefenlinien aus aktueller Messung (schwarz), mit Tiefenlinien einer früheren Hydrosweep-Vermessung von 1991 (grau). Der Maßstab der Karte beträgt 1 : 300.000.

6.2 Hard- und Software

Integration einer Windows Workstation auf PC-Basis in das für die Auswertung der Hydrosweep-Daten verwendete Rechnerumfeld. Die alte Konfiguration bestand aus einem File- und Compute-Server und zwei Workstations der Firma Sun, die alle drei mit dem Betriebssystem Solaris arbeiteten. Eine der zwei Workstations wurde zugunsten des PCs abgeschafft. Die Hinzunahme eines PCs wurde nötig, da wesentliche Programme zur Bearbeitung der HydrosweepDaten nur noch für das Microsoft Betriebssystem "Windows" weiterentwickelt und angeboten werden.

Um aus beiden Rechnerwelten auf die gleichen Datenbestände zugreifen zu können, eine wesentliche Voraussetzung für ein effektives, projektorientiertes Arbeiten, wurde auf dem Sun-Server das Programm SAMBA installiert, das als File-Server dem Windows Betriebssystem die Datenplatten des Sun-Servers verfügbar macht.

Im Rahmen dieser Arbeiten wurden die vorhandenen Programme zur Bearbeitung der Hydrosweep- und Navigations-Daten auf einen aktuellen Stand gebracht.

6.3 Akustisches Umweltmonitoring

Inbetriebnahme und Test eines Systems zur akustischen Erkennung und Beobachtung von "Wallauten". Da für die Vervollständigung des Auswerteprogramms noch hydroakustische Aufzeichnungen fehlen, die während ANT XIX/2 aufgenommen werden sollen, beschränkten sich die Arbeiten auf den Aufbau des Auswerterechners, die Unterbringung des Hydrophonarrays und dem Training zur Bedienung des Auswerteprogramms.

6.4 Ausbildung

Für die Arbeit mit Hydrosweep während des Fahrtabschnittes ANT-XIX/2 wurde ein Operator ausgebildet. Die Bedienung und Betreuung des Systems, sowie die tägliche Bearbeitung der Daten, bis hin zur Visualisierung, wurden unter Praxisbedingungen geübt.

6.5 Bathymetrie

Parallel zu den Vorbereitungsarbeiten wurde außerhalb der nationalen Seerechtsgrenzen kontinuierlich mit Hydrosweep der Meeresboden vermessen. Die Daten wurden aufgezeichnet und vollständig bearbeitet. Zur Bearbeitung gehört u.a. die Validierung und Editierung der Navigationsdaten und der Tiefenmessung. Diese Daten werden an die internationalen Datenbanken abgegeben und dienen so z. B. der Verbesserung und Ergänzung der kleinmaßstäbigen "General Bathymetric Chart of the Oceans (GEBCO)". Ferner können sie in Form von großmaßstäbigen Detailkarten für zukünftige Expeditionen benutzt werden.

7 Schiffsdynamische Untersuchungen zur Squat-Messung A. Härting

Der Squat eines Wasserfahrzeuges, also seine hydrodynamisch bedingte Tauchungsänderung gegenüber der statischen Schwimmlage, ist von großer Bedeutung für die Befahrbarkeit von Flussrevieren und Kanälen mit tiefgehenden Schiffen. An der Fachhochschule Oldenburg/Ostfriesland/ Wilhelmshaven (Institut für Maritime Studien, A. Härting und Institut für Mess- und Auswertetechnik, J. Reinking) wird derzeit ein neues Messverfahren für den Squat entwickelt. Dieses Verfahren basiert auf Differential-GPS, wobei der Höhenunterschied zwischen dem Seeschiff und einem Begleitboot gemessen wird. Zur Ableitung des Squat aus den Messwerten muss das fahrdynamische Verhalten des Begleitbootes berücksichtigt werden.

Durch Ruder- oder Maschinenbetätigung sowie durch Wellen erhält das Verhalten des Bootes einen höherfrequenten Anteil, der unabhängig bestimmt werden muss, um die messtechnische Genauigkeit der GPS-Höhendifferenz ausnutzen zu können. Dazu ist ein Bewegungssensor vom Typ TSS-DMS-25 vorgesehen. Dieses Gerät basiert auf Drehraten- und Beschleunigungsmessung und kann daher, ohne externe Stützung durch eine absolute Höhe, Dynamik unterhalb einer bestimmten Grenzfrequenz (0.05 – 0.125 Hz) nicht mehr auflösen. In der vom Hersteller gelieferten Software wird dieser Frequenz-Cutoff durch einen Echtzeit-Filter realisiert, der in seiner Leistungsfähigkeit durch die Erfordernis der Phasenerhaltung begrenzt ist. Weitere, nicht kompensierbare Fehler entstehen durch Beschleunigungen in horizontaler Richtung.

Da bei der Squat-Messung eine Auswertung in Echtzeit nicht vorgesehen ist, wird angestrebt, die Genauigkeit der Hub-Messung durch Post-Prozessierung der Rohdaten zu verbessern. Dies ist erfolgversprechend, weil in Post-Prozessierung eine phasenerhaltende Filterung problemlos realisiert werden kann. Im Oktober 2001 wurde dazu ein Test mit einem Boot des Vermessungsschiffes *Komet* des BSH durchgeführt. Dabei lag die Dynamik des Bootes mit einer typischen Hub-Periode von etwa 2s deutlich oberhalb der genannten Grenzfrequenz des Sensors. Die Entwicklung einer geeigneten Post-Prozessierung erfordert eine Ergänzung des dynamischen Spektrums in den Bereich der Grenzfrequenz und damit eine Messung auf einem Schiff von der Größe der "Polarstern".

Auf der "Polarstern" sind durch die optimale wissenschaftlich-navigatorische Grundausstattung mehrere Vergleichsmöglichkeiten gegeben:

- der Bewegungssensor TSS-330, ein ähnlicher Typ wie der untersuchte,
- die Trägheitsplattform MINS mit Winkeldaten und
- MINS mit der Vertikalgeschwindigkeit, die nach Integration und Filterung als in Post-Prozessierung berechneter Hub betrachtet werden kann.

Im Zeitraum 9.11. bis 27.11.2001 wurden unter verschiedenen Seegangs-, Wind- und Fahrtbedingungen insgesamt 22 Messreihen aufgezeichnet. Die zunächst mit etwa 10Hz anfallenden Daten des DMS-25-Sensors wurden vorverarbeitet und auf 1-Sekunden-Schritte reduziert. Die Daten der "Polarstern"-Sensoren wurden im 1-Sekunden-Takt der neuen PODAS-Datenbasis entnommen. Daneben wurden für Testzwecke auch Rohdaten des Ashtech-GPS-Empfängers gespeichert.

Abb. 7.1 zeigt einen Ausschnitt von 20 min Dauer während der Hydrosweep-Tests. Der Ausschnitt enthält ein ca. 10-minütiges Drehmanöver. Gezeigt sind die vom DMS-25-Sensor direkt ausgegebenen Hub-Werte dar. Man erkennt, dass die Hub-Amplitude vor dem Drehmanöver, als das Schiff noch gegen Wind und See arbeitet, deutlich größer ist als danach. Außerdem ist (graue Ausgleichskurve) zu erkennen, dass die Hub-Werte kurz nach Beginn und kurz vor Ende des Manövers vom Mittelwert Null abweichen, was vermutlich auf Fehler durch die Zentrifugalbeschleunigung zurückgeführt werden kann. In der nachträglichen Berechnung aus den Rohdaten tritt diese Abweichung nicht mehr auf.

Abb. 7.1: Echtzeitausgabe DMS-25 mit Abweichungen bei Manöver

22

In Abb. 7.2 ist ein Detail von 40s Dauer dargestellt. Exemplarisch sind die postprozessierten Rohdaten des DMS-25-Sensors (schwarze Kurve) den entsprechend bearbeiteten Werten der MINS (graue Kurve) gegenübergestellt. Die Rohdaten (Vertikalbeschleunigung bzw. -geschwindigkeit) wurden zunächst integriert und dann einem verzögerungsfreien Hochpass-Filter mit 1/40s cutoff unterworfen. Die MINS-Daten scheinen gegenüber den DMS-25-Daten um 0.5s-1.0s verzögert vorzuliegen. Ob dies durch Speicherung im bzw. Extraktion aus PODAS begründet liegt, muss noch geklärt werden.

Eine Analyse der z.B. aus Abb. 7.2 hervorgehenden Detailabweichungen liegt zum Zeitpunkt dieses Berichtes noch nicht vor. Dazu ist noch umfangreiches Datenmaterial zu bearbeiten. Um den bestmöglichen Einsatz des Hubsensors bei der Squat-Messung zu erreichen, müssen die unter verschiedenen Bedingungen durchgeführten Tests gemeinsam ausgewertet und daraus ein optimaler Filteralgorithmus für das dynamische Verhalten des Begleitbootes erarbeitet werden, was noch einige Zeit in Anspruch nehmen wird. Die hier diskutierte Vorauswertung zeigt aber bereits (zusammen mit dem Test auf der Komet), dass durch Post-Prozessierung der Hubsensor-Daten eine Genauigkeitssteigerung bei der nächsten Squat-Messung erwartet werden kann.

Abb. 7.2: Hub jeweils nachträglich berechnet; dunkel DMS-25, hell: MINS

8 UV-B-Dosimetrie

S. El Naggar, O. Schrems, H. Tüg

Die solare UV-B-Strahlung in der Antarktis hat in den letzten Jahren, bedingt durch den Ozonabbau, drastisch zugenommen. Die Veränderung und die Auswirkung dieser Strahlenbelastung auf die Biosphäre ist heute ein Schwerpunkt vieler wissenschaftlicher Programme. Die Auswirkungen auf die Menschen, die sich in antarktischen Gebieten oder in hohen Breitengraden aufhalten, bedarf jedoch noch systematischer Studien. Zu diesem Projekt sollten im Rahmen der UV-Arbeitsgruppe des AWI Basisdaten gewonnen werden.

Für die Risikoabschätzung werden Vergleichsdaten benötigt. Diese sollen auf meridionalen Fahrtabschnitten zu verschiedenen Jahreszeiten ermittelt werden, um die maximal zu erwartende Dosis auf Meeresniveau und deren Variationen zu gewinnen.

Da die Messungen der solaren Strahlung durch die Bewölkung beeinträchtigt wird, werden die Transferreisen der "Polarstern" ausgenutzt, um möglichst viele ungestörte Messdaten in verschiedenen Breiten (Sonnenhöhen) und Jahreszeiten zu erhalten. Diese werden für Strahlentransfermodelle und Risikoabschätzungen benötigt.

Ziele des Forschungsvorhabens sind:

- Bestimmung der globalen UV-B-Dosis auf dem meridionalen Abschnitt zwischen Bremerhaven und Kapstadt unter Verwendung des elektronischen UV-B-Dosimeters ELUV-14 und des UV-B-Biometers;
- Bestimmung der maximalen Tagesdosis in Abhängigkeit von Sonnenhöhe und Ozonkonzentration;
- Messung der meridionalen spektralen UV-B-Strahlungsverteilung.

8.1 Arbeitsprogramm

Das Arbeitsprogramm umfasste:

- Exponieren der verschiedenen Dosimeter zur Bestimmung der globalen Tagesdosis
- Messung der globalen erythem-gewichteten Bestrahlungsstärken und Dosen
- Spektrale Messung der solaren Strahlung mit Hilfe des AWI-Spektrometers
- Verwendung der TOMS-Daten zur Bestimmung der lokalen Ozonkonzentrationen

8.2 Durchführung

- Dosisbestimmung -

Die Dosismessungen wurden vom 09.11.2001 bis 29.10.2001 wie folgt durchgeführt:

- Täglich wurden zwei elektronische Dosimeter (Eluv-14) exponiert, die zeitaufgelöst gewichtete UV-B-Strahlungsleistung jede Minute aufgezeichnen. Sie wurden täglich ausgelesen und ausgewertet.
- Täglich wurden Daten des Biometers ausgelesen und ausgewertet. Tagesverlauf und Tagesdosis wurden bestimmt.

UV-B-Messungen am Boden sind, wie bereits erwähnt, vom Bedeckungsgrad des Himmels durch Wolken stark abhängig. Um eine absolute Bestimmung der Strahlungsintensität zu garantieren, muss der Himmel wolkenfrei sein. Die Tatsache, dass man während der Reise einige bewölkte Tage vorfinden wird, wurde bei der Planung der Reise berücksichtigt. Die Messergebnisse sind in der Tabelle 8.1 zusammengefasst.

Während dieser Reise gab es auch dieses mal nur wenige wolkenfreie Tage. Dadurch sind die erhofften Ziele nicht erreicht worden. Die aufgezeichnete Dosisverteilung war von der starken Bewölkung geprägt, und somit war eine Aussage über die absolute Verteilung nicht möglich (Abb. 8.1). Die Daten von mehreren Expeditionen werden zusammenlegt, um die absolute Verteilung interpolieren zu können.

Die ermittelten Tagesdosen der ungewichteten UV-B-Strahlung lagen zwischen 1200 und 688852 J/m². Die erythem-gewichteten lagen dagegen zwischen 144 und 5455 J/m². Dies entspricht 0.7 bis 26 MED (Minimal Erythemal Dose = 210 J/m²). Die maximal von 290 bis 322 nm integrierte Strahlungsleistung lag bei 3.4 W/m² für die ungewichtete und bei 224 mW/m² für die Erythem-gewichtete Strahlung.

- Spektrale Messung der UV-B-Strahlung -

Zur spektralen Messung der UV-B-Strahlungsintensitäten wurde das modifizierte AWI-Spektrometer Land 6 eingesetzt. Dabei wurden alle 5 Minuten Spektren zwischen 280 und 322 nm sowie im UV-A-Bereich zwischen 305 und 460 nm aufgezeichnet. Die Daten wurden vor Ort auf ihre Qualität überprüft und bearbeitet. Dabei wurden Integrale zur Berechnung der UV-B-Dosis gebildet und mit den Ergebnissen anderer Dosimeter verglichen (Abb. 8.2).

Die Spektraldaten dienen als Basis zur Erstellung von Langzeitmessreihen und zur Berechnung aller abgeleiteten Größen sowie zur Kalibrierung des verwendeten Messsystemen. Das Spektrometer wurde technisch erneuert und kann nun auch die UV-A-Strahlung messen. Es wurde auch mit einer neuen Software ausgestattet. Der Kühler hat leider nicht richtig gearbeitet und die Solltemperatur von 20° C nicht gehalten. Die Daten müssen nachträglich korrigiert werden.

- Ozonkonzentrationen -

Die totalen Ozonkonzentrationen für die jeweiligen täglichen Positionen, bei der die Sonne im Zenith stand, wurden von der TOMS-Datenbank via AWI geholt und zum Vergleich der Messungen verwendet. Während dieser Reise gab es keine Ozonsondierung (Abb. 8.3)

Tab. 8.1: UV-B - Messungen

Date	Zenith Time [UTC]	Lati- tude [deg]	Longi- tude [deg]	UV-B-dose [J/m²]	Erythem- dose [J/m²]	Erythem- dose [MED]	Ozone [DU]	Max. Sun Elevation [°]
08.11.2001		54.0	8.0	1216.280			314	
09.11.2001	11:50	51.9	2.7	2763.996	144.000	0.670	393	21.3
10.11.2001	12:20	48.9	-5.0	7628.766	484.500	2.300	219	24
11.11.2001	12:40	43.8	-9.5	9864.839	629.800	3.000	259	28.8
12.11.2001	12:48	38.1	-12.0	6608.976	423.000	2.000	273	33
13.11.2001	12:52	35.5	-13.2	13561.711	924.800	4.400	274	36.6
14.11.2001	12:56	33.0	-14.0	18630.741	1302.000	6.200	273	39.8
15.11.2001	12:59	30.2	-14.8	22820.688	1594.300	7.600	280	41.5
16.11.2001	13:02	27.4	-15.5	23083.908	1668.300	7.900	266	44.3
17.11.2001	13:13	22.2	-18.3	37213.747	2845.300	13.600	240	48.9
18.11.2001	13:13	16.4	-18.2	35188.045	3138.000	14.940	240	54.8
19.11.2001	13:14	10.9	-17.6	35373.220	3122.000	14.900	242	59.7
20.11.2001	13:03	5.7	-15.8	27679.531	2276.800	10.800	268	64.6
21.11.2001	12:49	1.5	-12.4	41614.714	3539.600	16.900	282	68.6
22.11.2001	12:36	-2.4	-9.1	43078.579	3598.000	17.100	263	72.3
23.11.2001	12:22	-6.7	-5.6	52333.183	4649.400	22.140	274	76. 1
24.11.2001	12:08	-11.1	-2.1	60139.677	5054.500	24.100	288	80.4
25.11.2001	11:53	-15.5	1.7	50073.978	4051.500	19.290	282	84.7
26.11.2001	11:38	-19.7	5.3	59383.744	4764.500	22.690	290	88.7
27.11.2001	11:35	-23.7	8.8	67282.686	5384.600	25.600	286	87.5
28.11.2001	11:10	-27.5	12.3	68852.895	5455.380	25.978	288	83.8
29.11.2001	10:56	-31.5	16.1	60842.693	4857.700	23.200	290	80

Unweighted and Erythemal weighted UV-B daily dose distributions from Bremerhaven to Cape Town, cruise ANT XVIII/1, RV "Polarstern", 29.09.00 - 23.10.00

Unweighted and Erythemal weighted UV-B daily dose distributions from Bremerhaven to Cape Town, cruise ANT XIX/1, RV "Polarstern", 08.11.01 - 29.11.01

Abb. 8.1: Vergleich der ungewichteten und erythemal gewichteten Bestrahlungsstärken auf dem meridonalen Abschnitt zwischen Kapstadt und Bremerhaven während ANT-XVIII/1 (2000) und ANT-XIX (2001)

Abb. 8.2: UV-B Sonnenspektrum am 18.10.2001 11:52 UTC

Total ozone column distributions from Bremerhaven to Cape Town, cruise ANT XIX/1, RV "Polarstern", 08.11.01 - 29.11.01

Abb. 8.3: Ozonverlauf auf dem meridonalen Abschnitt zwischen Kapstadt und Bremerhaven. Das Ozon zeigt keine großen Variationen und lag im Durchschnitt bei 300 DU

9 Messungen atmosphärischer Spurengase

J. Boßmeyer

Bis zum jetzigen Zeitpunkt wurden langfristige Messungen atmosphärischer Spurengase mittels der Differentiellen Optischen Absorptions-Spektroskopie (DOAS) hauptsächlich in Polarregionen und mittleren Breiten durchgeführt. Beobachtungen von Spurengasen in den Tropen, wo der Hauptteil der Ozon abreichernden Komponenten in die Stratosphäre eintritt, sind immer noch rar gesät. Daher bietet sich die kontinuierliche Datennahme auf der Transitstrecke eines Schiffes von Bremerhaven nach Kapstadt an, auf der vor allem niedere Breiten durchfahren werden. Im Rahmen eines Forschungsprogramms zur Validierung von Satellitendaten (z.B. von SCIAMACHI, GOME, OMI), welche fast lückenlos den gesamten Erdball abdecken, hat das Institut für Umweltphysik der Ruprecht-Karls-Universität Heidelberg auf dem Forschungsschiff "Polarstern" des Alfred-Wegener-Instituts für Polar- und Meeresforschung in Bremerhaven für die vollständige Expedition ANT-XIX zwei großenteils automatisierte Multi-Axis-DOAS (=Viel-Achsen-DOAS) Messapparaturen aufgebaut, mit denen sich ein großer Teil des Lichtspektrums zwecks Bestimmung der Absorbtionsstrukturen verschiedener Spurengase untersuchen lässt. Unter Zuhilfenahme einer neuen Messgeometrie von neun fest installierten Teleskopen für den UV-Bereich (Wellenlängen ca. 340-450nm), mit der sich gleichzeitig Messungen unter verschiedenen Elevationswinkeln durchführen lassen, und einem schwenkbaren für den sichtbaren Bereich (ca. 400-680nm), soll es möglich sein, nicht nur Informationen über die totale atmosphärische Säulendichte verschiedener Absorber, sondern auch über das Vertikalprofil verschiedener troposphärischer Spurengase zu gewinnen (z.B. NO₂, H₂O, HCHO, BrO und IO).

Etappe 1 diente neben der Datennahme vorrangig der Anpassung des Gerätes an die durch die Fortbewegung des Schiffes natürlich verursachten schnell wechselnden äußeren Bedingungen. Mit der Voreinstellung einer angestrebten quasi idealen Messkonfiguration wird sich die Wartung des Apparates auf den folgenden Etappen auf ein Minimum beschränken. Obwohl die auf der Fahrt mit der "Polarstern" gewonnenen Rohdaten einen brauchbaren Eindruck machen, müssen sie zur Auswertung nach Heidelberg gebracht werden, wo eine endgültige Aussage über die Brauchbarkeit der Messungen gemacht werden kann.

II Summary

Kapstadt - Punta Arenas (01.12.2001 – 21.01.2002) W. Jokat

The expedition started on December 1st, 2002 in CapeTown with altogether 74 scientists on board. The first stop was made at the German Neumayer base in Antarctica (Fig. II.1). We planned to reach the base with a 10 days transit time. After a rather smooth journey we met the edge of the Antarctic pack ice on December 7 at 58°30'S. The ice floes mainly consisted of single year ice with a thickness of up to 1 m, which fortunately did not reduce the ship's speed too much - we maintained an average speed of 10 kts.. The thick multiyear ice was met in the night of December 11th to 12th and the progress towards the south reduced to 1-2 NM per hour only. On December 14th, the ship approached Neumayer base to 30 NM. The new overwintering team and some technicians were already flown to the base to start their programmes. With the onset of southerly winds we finally reached the shelf edge on December 18th and immediately started unloading the equipment for the land based operations and the supply goods for Neumayer base which we completed on December 22nd when 48 scientists left the ship. Most of the international team leaving "Polarstern" at Neumayer base belonged to the EPICA (European Project for Ice Coring in Antarctica) drilling team. During the austral season 2001/02 the Kohnen Station was built on the plateau of Dronning Maud Land at an altitude of almost 3000 m. This season all scientific equipment including the drilling devices had to be transported to the station. The installation of the science trench as well as a 450-m deep ice core were achieved during this first drilling season. From the South African Station EBASE two Dornier aircrafts operated to investigate the magnetic and gravity fields of Dronning Maud Land. The scientific object of the airborne investigations was the sub-ice geology of the old part of Antarctica.

The Italian-German ship programme started on December 22nd. Almost 1/3 of the ship's time requested for marine research programmes was lost due to the late arrival of "Polarstern" at Neumayer base and moreover, any seismmic work became impossible because of the rough ice conditions, thus we were forced to move to another research area than originally planned. A short bathymetric and seismic network was gathered north of EBASE on our way out of the pack ice area. Recent seismicity had been observed there from recordings of the Neumayer array. The areas of two epicenters were investigated, whether the earthquakes had triggered some landslides. No such evidence was provided neither by the bathymetric nor the seismic data. We finished this survey on December 27th.

For the remaining research time some radical changes became unavoidable: the NOAA satellite images showed favourable ice conditions in our alternate research area along the eastern margin of the Antarctic Peninsula (Fig. II.2). We used the transit time to continue with a water sampling programme. All along we did not discover any suitable iceberg to be marked by an ARGOS transmitter in order to track its drift path for at least one year. At some stations a geochemical package was tested to be adapted for a cold water environment. After several initial problems it finally worked well. After 5 days transit we reached our new area at 69°S 40°W. It was not investigated by any geophysical expedition before as the whole area is known to provide the most difficult ice conditions of Antarctica in normal years. Thus, the acquired acoustic data were the first ones to describe the shallow and deeper structure of this margin. Parallel to the seismic investigations intensive helicopter flights were conducted for detailed mapping of the marine magnetic anomalies. However, the very variable weather conditions, did not allow continuous operations. Thus, the magnetic survey was concentrated on the margin to identify the initial opening direction. The seismic survey in the very south had to be terminated because of extremely thick multiyear packice fields. The shelf edge could not be reached. Along the more northern profiles the ice conditions became gradually better. Due to careful navigation heavy ice breaking was avoided during the survey and the seismic gear was not endangered at all.

Between 66°S and 67°S the seismic data indicated a large-scale mass failure of the lower continental slope. Along a distance of more than 60 km the slope became unstable and slid into the deeper part of the Weddell Sea abyssal plain. Ice conditions allowed a systematic bathymetric survey to map the extent and shape of the slump area. On January 17th we finished the survey and all research activities according to the environmental permit. As planned the expedition terminated after a smooth passage through the Drake Passage in Punta Arenas on January 21, 2002.

In summary, most of the scientific programmes like the buoy and water sampling programme were completely fulfilled. The geophysical programme strongly suffered from the ice conditions and lost 10 research days to reach Neumayer base. On the other hand, we were able to survey an area being completely unknown before. The largest slump ever known around the entire Antarctic margin was discovered along the eastern margin of the Antarctic Peninsula. The cruise went extremely smooth and we would like to thank captain Uwe Pahl and his crew as well the helicopter crew for their excellent support.

Fig. II.1: Cruise track during Leg ANT-XIX/2

Fig. II.2: NOAA Satellite image showing the ice conditions along the eastern margin of the Antarctic Peninsula. The lines are the track of "Polarstern" during the geophysical and bathymetric surveys. The Larsen Ice Shelf is approximately at 60° W in the left upper corner of the image.
1 Meteorological Conditions during "Polarstern" Cruise ANT XIX/2 R. Brauner

When "Polarstern" left Cape Town on December 1st, at 20:00 h a coldfront with light to moderate rain was passing the harbour. The air temperature was about 17° C. At the rear of this coldfront southwesterly winds increased up to 8 Beaufort and initiated swell up to 5 meter. As a consequence of this "bad weather" some people got seasick. After this first impression of weather in the southern ocean "Polarstern" passed a high-pressure zone with light and variable winds. But as a preview for the "Roaring Forties" and "Screaming Fifties" swell was never below 2.5 meters.

At 44° southern latitude "Polarstern" crossed the oceanographic subtropical convergence. The water temperature decreased from 20 °C to 9 °C. The first iceberg was observed. Around 58° southern latitude "Polarstern" reached the ice edge. The sea ice covered 4 to 7 tenth with one-year-ice. But at 62° southern latitude ice conditions became worth with thick multi-year-ice. "Polarstern" tried hard to get through but northwestly to easterly winds forced the stress on the ice floes. The polar front where low pressure systems moved along from west to east around Antarctica was along 63 to 68° south. Therefore winds from southerly directions to release some ice pressure were very rare and only for a short time period as shown in Fig. 1.1.

Fig. 1.1: Frequency in Wind direction between the 7th and 19th of December.

Due to a strong gale centre between the 12th and 14th of December easterly winds increased with gales up to 8 Beaufort associated with snowdrift, bad visibility and white out. At the rear south-westerly winds predominated for

several days. They helped "Polarstern" reaching the shelf ice edge of Neumayer region on the 20th of December.

After "Polarstern" left Neumayer on the 22nd of December for scientific work east of Neumayer region an unusual weather development was observed. A gale centre moved westwards along the shelf ice edge from the Russian Station Novolazarevkaja to near Sanae III. Therefore south-westerly winds up to force 8 were observed in the cruising area of "Polarstern".

After Christmas "Polarstern" headed for the working area western Weddell Sea. The weather was dominated by low-pressure systems moving in easterly or southeasterly directions from the Drake Passage to the central Weddell Sea.

On the front of the low-pressure systems moist air masses with temperatures about 0 °C streamed in from northerly to easterly directions with wind forces up to 7 Beaufort accompanied by snow and fog causing bad conditions for helicopter flights. Southerly winds with cold and dry air about minus 4 °C were experienced at the rear of the low-pressure systems. Moderate to gusty winds between 4 and 8 Beaufort were observed together with good visibilities.

The temporary high-pressure influence was accompanied by broken stratocumulus cloudiness and occasionally by fog. On the 17th of January "Polarstern" left the working area for Punta Arenas. The weather conditions passing the Drake Passage were almost comfortable with westerly winds between 5 and 8 wind forces Beaufort and initiated wave heights up to 6 meter. On the 21st January cruise ANT XIX/2 ended in Punta Arenas.

2 Marine Geophysics

M. Calcara, W. Jokat, M. Amaru, B. Ehlers, M. König, R. Kroth, C. Kopsch, D. Kühn, N. Lensch, A. Medow, M. Nicolaus, M. Schmidt-Aursch, S. Wassermann

2.1 Introduction

From the present knowledge of geodynamic movements of Antarctica, the Weddell Sea faced the earliest rifting events, which ended in the break-up of the Gondwana super continent. After South America and Africa had separated from Antarctica, the rift process continued into the recent Lazarew and Riiser Larsen seas to split off India. The break-up of these continental masses resulted into the creation of new restricted basins. At approximately 130 Ma a major reorganisation of the sea floor spreading occurred. Altimeter data indicate an almost continuous herringbone pattern of gravity anomalies, which are interpreted to result from a drastic decrease of spreading velocities. Around the same time the formation of a large volcanic feature, the Maud Rise, was in progress. From ODP holes 693 and 692 it is known that a large hiatus started at 110-120 Ma and ended at approximately 40 Ma. During the same time span oceanic crust formed along the South Atlantic/Indian ocean sector of East

Antarctica. Madagascar and India split off latest 110 Ma ago. The rifting continued with the separation of Australia and New Zealand. Till 30 Ma Antarctica still was connected with the South American continent preventing the establishment of a Circum-Antarctic current system, as it is present today. The separation of both continents afterwards led to an oceanographic isolation of the Antarctic continent, which might have accelerated and/or initiated the large-scale glaciation of the whole continent. Till today several glacial/interglacial periods with different strengths occurred. No age control exists to describe these glacial events in greater detail, e.g. when did the Filchner-Ronne Ice Shelf advance to the shelf break.

The south-western Weddell Sea attracted in the past numerous scientific expeditions to retrieve new information on its geological structure. In contrast to its importance for understanding the break-up processes of Gondwana, little is known based on geophysical data. This is also true for the large western channel/levee systems created by the drainage system of the East Antarctic ice shield. These systems are large elongated sediment structures, which channelled the cold water produced on the Filchner-Ronne Shelf into the abyssal plains of the southern Weddell Sea during the glacial/interglacial periods. Although they have been mapped bathymetrically reasonably well, its relationships in terms of their age are poorly understood.

The scientific objectives of the expedition include both glacial and tectonic related targets. The seismic investigations, furthermore, will be used as a presite survey for future deployments of underwater long-term observatories. Here, information e.g. on the crustal structure and the earth's mantle will be gathered. For a sound selection of the deployment locations a good knowledge on the tectonic history and state of the region is essential.

Due to uncertainties concerning the ice conditions several alternate areas are chosen to optimise the expedition. In detail the following scientific experiments are planned:

- North-western Weddell Sea (64°S 60°W/70°S 50°W) -

This area is extremely poor investigated as here the most difficult ice conditions are found. The Larsen Shelf between 64°S and 66°S has been surveyed during two American expeditions in 1991 and 1993. The multichannel seismic equipment will be used to fully describe the subsurface. Parallel to the seismic acquisition bathymetric and magnetic data will be collected.

- South-western Weddell Sea (Filchner Trough mouth fan and Orion anomaly) -Seismic surveys of several institutions have mapped at least four large-scale channel/levee complexes having their origin along the Crary Trough mouth fan. The full extent of these structures is now known due to the new Weddell Sea bathymetric map. However, the age, development and dynamic relations of the channel/levee complexes are unknown at all. It is evident that most of the glacial material of this part of the Weddell Sea has been drained through the Crary Trough mouth fan. Several cross lines between the oldest channels and the more modern southernmost system are planned. New information on the deeper structure of the eastern Weddell Sea around in the area of the Orion Anomaly will be acquired with detailed magnetic helicopter surveys to identify the Mesozoic spreading anomalies.

- Continental Margins between 20°W and 40°E -

From bathymetric mapping it is known that the non-ice-covered shelf is quite narrow. At some locations the present ice shelf edge is almost above the bathymetric shelf break. Between 19°W and 0° a prominent escarpment, the Explora Escarpment, is present at water depths of less than 2000 m. Here, two ODP holes were drilled on the shoulders of the Wegener Canyon. The oldest drilled rocks were of Cretaceous age. The existing network will be extended eastwards of the Wegener Canyon to find areas with shallower basement, which can be drilled more easily. The MCS network will help to locate new drill sites for Mesozoic objectives (black shales).

- Neumayer base -

Here, a seismic refraction profile will be extended landwards. For this experiment seismic recorders onshore and offshore (ocean bottom hydrophones) will be deployed. Large volume airguns will be used to generate sufficient sound energy for the large offsets. The seismic recording stations will be deployed by helicopter up to 100 km south of the coast.

Due to the ice conditions found during the expedition the plans had to be changed significantly. This year the ice covered almost the entire continental margin from the Filchner Trough mouth fan to 2°E. Therefore, all investigations in the vicinity of the Neumayer base (items 3 and 4) were cancelled. Especially the deep seismic refraction experiment was impossible to be performed since only a narrow polynya off Neumayer existed. Only a minor amount of research time were spent along the continental margin at 2°E (Fig. 2.1). The ice maps showed favourable ice conditions along the eastern margin of the Antarctic Peninsula. That allowed to investigate the by far most remote area of the southwestern Weddell Sea with marine geophysical methods (Fig. 2.2). Therefore, almost all the research time was spent in this remote area.

Applied geophysical methods and equipment: Multichannel seismic reflection experiment Airgun: 6x3 lt. at 115 bar; total volume 24 lt. Streamer: 600 m active length; 96 channels; 6.25 group spacing Shooting interval: 15 s Recording length: 12.5 s Length of seismic network: 2968 km Gravimeter system fixed mounted on FS "Polarstern"; KSS31-Bodenseewerke Magnetic system SCINTREX HELIMAG system plus BO105 helicopter, Fixed mounted magnetometer system onboard of "Polarstern".

cruise leg ANT-XIX/2

Fig. 2.1: Seimic network off EBASE. The seismic lines are respectively labelled with their profile numbers. The contour interval of the seafloor topography is 500 m.

Fig. 2.2: Seismic profiles along the eastern margin of the Antarctic Peninsula and the Ronne Shelf. The lines are respectively labelled with their profile number. The GEBCO bathymetry is contoured in 500 m intervals.

2.2 Seismic data processing

For the data processing on the vessel a SGI Origin 2000 (2 CPU) and several SUN workstations were available. The amount of data (Tab. 2.1) allowed only processing of the seismic data including a CDP sorting, first filter tests and editing of dead traces were performed during the processing sequence. For the set-up of the CDP geometry at major changes in the ship's track the profile was split to allow the calculation of a simple 1D-geometry model (Tab. 2.2). This worked fine for most profiles and the results of brute stacks showed good results.

40

		Latituda	Longitudo	Lotitudo	Longitude	Chota	Longth	Ctroomer	Loodin	Airgun	Chan	dv
Profile	Dato/Timo Start - Dato/Timo Torm	(Start)	Congitude (Start)	Latitude (End)	Longitude (End)	Snots	Length (km)	Streamer	Lead in	Airgun	Chan	Chan
FIONE	Date/Time Start - Date/Time Term.	(Start)	(Start)	(End)	(End)		(KIII)	(11)	(11)			Chair
20020001	25.12.2001 18:17:00 - 26.12.2001 02:18:00	-69,3600	003,1328	-69,7889	001.5302	1912	81.9	600	25	8x3l	96	6.25
20020002	26.12.2001 02:30:00 - 26.12.2001 03:24:00	-69,7998	001,5534	-69,8001	001,8003	216	9,6	600	25	8x3I	96	6.25
20020003	26.12.2001 03:40:00 - 26.12.2001 06:33:00	-69,7811	001,8090	-69,5429	001,5128	689	30,3	600	25	8x3l	96	6,25
20020004	26.12.2001 06:50:00 - 26.12.2001 09:03:00	-69,5346	001,5627	-69,5316	002,1482	529	23,1	600	25	8x3I	96	6,25
20020005	26.12.2001 09:30:00 - 26.12.2001 14:00:00	-69,5438	002,1292	-69,7355	001,3200	913	41,3	600	25	8x3I	96	6,25
20020006	26.12.2001 14:13:00 - 26.12.2001 15:07:00	-69,7186	001,2975	-69,6462	001,1602	215	9,7	600	25	8x3l	96	6,25
20020007	26.12.2001 15:15:00 - 26.12.2001 19:30:00	-69,6392	001,1800	-69,5022	002,1498	1014	42,6	600	25	8x3l	96	6,25
20020008	26.12.2001 19:45:00 - 26.12.2001 21:20:00	-69,5118	002,1909	-69,6379	002,1557	379	15,0	600	25	8x3l	96	6,25
20020009	26.12.2001 21:25:00 - 26.12.2001 22:50:00	-69,6399	002,1373	-69,6666	001,8325	339	12,5	600	25	8x3l	96	6,25
20020010	01.01.2002 17:16:00 - 02.01.2002 01:10:00	-68,9905	-039,9849	-69,6111	-040,7016	1884	75,7	600	30	8x3I	96	6,25
20020015	02.01.2002 01:45:00 - 02.01.2002 23:48:00	-69,6539	-040,7482	-71,1499	-042,4882	4932	203,7	600	30	8x3l	96	6,25
20020020	02.01.2002 23:52:20 - 03.01.2002 12:30:20	-71,1604	-042,5261	-71,9622	-043,6448	3009	121,5	600	30	8x3l	96	6,25
20020030	03.01.2002 20:42:00 - 03.01.2002 21:49:00	-72,1635	-043,9640	-72,1967	-044,2118	269	10,4	600	30	8x3I	96	6,25
20020035	03.01.2002 23:00:00 - 04.01.2002 00:01:40	-72,2039	-044,2976	-72,2607	-044,3764	247	10,3	600	30	8x3I	96	6,25
20020040	04.01.2002 01:10:40 - 04.01.2002 02:27:00	-72,2710	-044,4252	-72,3415	-044,2369	304	12,5	600	30	8x3l	96	6,25
20020050	05.01.2002 20:38:00 - 07.01.2002 09:45:00	-69,0057	-047,8398	-69,0291	-056,2902	8786	406,8	600	30	8x31	96	6,25
20020055	07.01.2002 09:45:00 - 07.01.2002 11:31:00	-69,0294	-056,2908	-69,1885	-056,2825	421	20,1	600	30	8x3I	96	6,25
20020060	07.01.2002 21:45:00 - 08.01.2002 20:00:00	-68,5295	-057,4127	-68,6459	-052,5014	5151	238,8	600	30	8x3l	96	6,25
20020070	08.01.2002 20:10:00 - 09.01.2002 02:02:00	-68,6118	-052,5064	-68,1710	-053,0580	1314	61,9	600	30	8x3l	96	6,25
20020080	09.01.2002 02:02:00 - 09.01.2002 16:30:20	-68,1695	-053,0984	-68,1239	-056,4046	3410	163,3	600	30	8x3l	96	6,25
20020090	10.01.2002 02:56:00 - 10.01.2002 11:02:00	-67,5353	-057,4745	-67,4998	-055,4184	1931	90,9	600	30	8x3I	96	6,25
20020100	10.01.2002 11:43:00 - 10.01.2002 14:30:00	-67,4601	-055,2779	-67,5006	-054,6960	556	26,1	600	30	8x3l	96	6,25
20020110	10.01.2002 14:45:00 - 10.01.2002 15:37:00	-67,4882	-054,6490	-67,4049	-054,5913	205	9,9	600	30	8x3l	96	6,25
20020120	10.01.2002 16:00:00 - 11.01.2002 11:24:00	-67,4207	-054,5292	-67,4991	-050,1517	4211	204,2	600	30	8x3l	96	6,25
20020130	11.01.2002 11:50:00 - 11.01.2002 16:52:00	-67,4668	-050,1695	-67,0061	-049,9956	1018	55,6	600	30	8x3I	96	6,25
20020140	11.01.2002 01:15:00 - 12.01.2002 01:05:00	-67,0009	-050,0391	-67,0009	-052,0790	1914	91,8	600	30	8x31	96	6,25
20020141	12.01.2002 01:15:00 - 12.01.2002 02:40:00	-66,9970	-052,1220	-66,9061	-052,4104	337	16,5	600	30	8x3I	96	6,25
20020142	12.01.2002 03:00:00 - 12.01.2002 04:20:00	-66,9196	-066,9957	-52,4858	-052,7772	317	15,4	600	30	8x31	96	6,25
20020143	12.01.2002 04:40:00 - 12.01.2002 13:20:40	-67,0022	-052,8647	-66,9907	-054,9527	2067	97,5	600	30	8x3l	96	6,25
20020150	12.01.2002 13:45:00 - 13.01.2002 10:08:00	-66,9652	-054,9999	-66,9995	-060,1039	4823	228,8	600	30	8x3l	96	6,25
20020160	14.01.2002 02:03:00 - 15.01.2002 00:59:00	-66,5209	-057,1264	-66,4634	-051,4335	5463	260,6	600	30	8x3l	96	6,25
20020170	15.01.2002 01:06:00 - 15.01.2002 03:14:00	-66,4524	-051,1264	-66,2511	-051,5399	508	24,5	600	30	8x3l	96	6,25
20020180	14.01.2002 02:03:00 - 15.01.2002 00:59:00	-66,2526	-051,5559	-66,2510	-056,2641	4574	220,0	600	30	8x3I	96	6,25
Total						63857	2932,8					

Tab. 2.1: List of all seismic lines and acquisition parameters acquired during the cruise

cruise leg ANT-XIX/2

4

Tab. 2.2: Overview of the seismic data processing during the cruise

Profile	Ехр. Туре	Field Tapes	No. of Tapes	Demultiplext	Demux-Tapes	Geometry	Sorting	CDP-Tapes
20020001	Marine	F04011-F04023	13	03.01.2002	C17210-C17218	06.01.2002	06.01.2002	C17299-C17308
20020002	Marine	F04024-F04025	2	03.01.2002	C17219-C17220	06.01.2002	06.01.2002	C17307
20020003	Marine	F04026-F04030	5	03.01.2002	C17221-C17224	06.01.2002	06.01.2002	C17308-C17310
20020004	Marine	F04031-F04035	5	03.01.2002	C17225-C17228	06.01.2002	06.01.2002	C17311-C17313
20020005	Marine	F04036-F04042	7	03.01.2002	C17229-C17233	06.01.2002	06.01.2002	C17314-C17317
20020006	Marine	F04043-F04044	2	03.01.2002	C17234-C17235	06.01.2002	07.01.2002	C17318
20020007	Marine	F04045-F04051	7	03.01.2002	C17236-C17240	06.01.2002	07.01.2002	C17319-C17323
20020008	Marine	F04052-F04054	3	03.01.2002	C17241-C17242	06.01.2002	07.01.2002	C17324-C17325
20020009	Marine	F04055-F04057	33	03.01.2002	C17243-C17244	06.01.2002	07.01.2002	C17326-C17327
20020010	Marine	F04058-F04071	14	03.01.2002	C17245-C17253	06.01.2002	07.01.2002	C17328-C17336
20020015	Marine	F04072-F04111	40	04.01.2002	C17254-C17278	06.01.2002	07.01.2002	C17337-C17358
20020020	Marine	F04112-F04134	23	04.01.2002	C17279-C17292	06.01.2002	07.01.2002	C17359-C17371
20020030	Marine	F04135-F04136	2	04.01.2002	C17293-C17294	06.01.2002	07.01.2002	C17372-C17373
20020035	Marine	F04137-F04138	2	04.01.2002	C17295-C17296	06.01.2002	07.01.2002	C17374-C17375
20020040	Marine	F04139-F04141	3	04.01.2002	C17297-C17298	06.01.2002	07.01.2002	C17376-C17377
20020050	Marine	F04142-F04206	65	07.01.2002	C17378-C17417	08.01.2002	08.01.2002	C17421-C17459
20020055	Marine	F04207-F04210	4	07.01.2002	C17418-C17420	08.01.2002	08.01.2002	C17460-C17461
20020060	Marine	F04211-F04249	39	09.01.2002	C17462-C17485	10.01.2002	10.01.2002	C17510-C17532
20020070	Marine	F04250-F04259	10	09.01.2002	C17486-C17492	10.01.2002	10.01.2002	C17550-C17555
20020080	Marine	F04260-F04286	7	09.01.2002	C17493-C17509	10.01.2002	10.01.2002	C17556-C17570
20020090	Marine	F04287-F04300	14	10.01.2002	C17533-C17542	11.01.2002	11.01.2002	C17599-C17607
20020100	Marine	F04301-F04305	5	10.01.2002	C17543-C17546	11.01.2002	11.01.2002	C17608-C17610
20020110	Marine	F04306-F04308	3	10.01.2002	C17547-C17549	11.01.2002	11.01.2002	C17611
20020120	Marine	F04309-F04344	36	11.01.2002	C17571-C17592	12.01.2002	13.01.2002	C20302-C20310
20020130	Marine	F04345-F04353	9	11.01.2002	C17593-C17598	12.01.2002	13.01.2002	C20311-C20313
20020140	Marine	F04354-F04390	47	12.01.2002	C17612-C20301	13.01.2002	13.01.2002	C20326-C20329
20020141	Marine	s. 20020140		s. 20020140	s. 20020140	13.01.2002	13.01.2002	C20330
20020142	Marine	s. 20020140		s. 20020140	s. 20020140	13.01.2002	13.01.2002	C20331
20020143	Marine	s. 20020140		s. 20020140	s. 20020140	13.01.2002	13.01.2002	C20332-C20336
20020150	Marine	F04391-F04426	36	13.01.2002	C20314-C20325	13.01.2002	14.01.2002	C20337-C20346
20020160	Marine	F04427-F04467	41	14.01.2002	C20367-C20378	14.01.2002	14.01.2002	C20426-C20437
20020170	Marine	F04468-F04471	4	15.01.2002	C20424-C20425	16.01.2002	16.01.2002	C20438-C20439
20020180	Marine	F04771-F04505	35	16.01.2002	C20440-C20450	17.01.2002	17.01.2002	C20451-C20460

2.3 Gravity data

Continuous gravity data were acquired with a fixed mounted gravity meter KSS31. The data were sampled each 10 s, the data were directly archived within the PODAS-system. Initial processing of the gravity data was performed on the vessel. Harbour points were taken in Cape Town and Punta Arenas.

2.4 Magnetic data

During this expedition two types of magnetic measurements were conducted. Here, only the results of the helicopter-borne surveys are discussed. The results of the fixed-mounted magnetic sensors are presented in a separate chapter. The scientific objective of this experiment was to supplement existing magnetic data in this region that were acquired with fixed wing aircrafts at an altitude of 2000 m and thus to complete the information on the Jurassic opening history of the Gondwana break-up in this area. The flight operations in the western part of the Weddell Sea were limited due to constantly bad visibility in the area of operations. Finally, almost 60 h of flight time was possible and in total 11650 km of new magnetic data was acquired (Figs. 2.3 /2.4; Tab. 2.3). After final processing the data will be combined with the existing US-Argentine-Chilean magnetic data. The interpretation will be performed in conjunction with the seismic data that might provide constraints on the Mesozoic spreading velocities from the basement roughness. For the later processing it is important to note that a high solar activity was observed already in the raw data. Thus, we will use information from adjacent magnetic observatories to correct the helicopter and ship-borne data.

Tab. 2.3: List of all helicopter borne magnetic flights

44

Date	Flight	Starttime	Endtime	No of Fid	Start		End		Textfile	Binary file	Data-File
06.12.2001	1	11:57:46	14:12:33	8087	54,47 S	19,61 E	54,80 S	19,27 E	s1120611.t57	S1120611.B57	0112061.raw
	2	16:45:56	18:24:53	5937	55,23 S	18.86 E	55,42 S	18,68 E	s1120616.t45	S1120616.B45	0112062.raw
07.12.2001	1	13:22:29	15:01:20	5931	58,46 S	15.32 E	58,67 S	15,01 E	s1120713.t22	S1120713.B22	0112071.raw
08.12.2001	1	8:55:05	10:48:11	6786	61,34 S	10,20 E	61,29 S	10,34 E	s1120808.t54	S1120808.B55	0112081.raw
	2	11:15:43	13:09:50	6847	61,34 S	10,20 E	61,54 S	9,81 E	s1120811.t15	S1120811.B15	0112082.raw
30.12.2001	1	10:31:08	11:24:24	3196	69,00 S	20,03 W	68,99 S	20,09 W	s1123010.t29	S1123010.B31	0112301.raw
		11:24:29	12:29:08	3879						S1123011.B24	
	2	12:52:03	14:03:14	4271	69,00 S	20,26 W	69,01 S	20,44 W	s1123012.t51	S1123012.B52	0112302.raw
	3	15:14:16	16:06:13	3117	69,00 S	21,02 W	69,01 S	21,60 W	s1123015.t13	S1123015.B14	0112303.raw
		16:06:13	16:59:12	3178						S1123016.B06	
	4	17:22:39	18:20:55	3496	68,99 S	21,94 W	69,01 S	22,54 W	s1123017.t20	S1123017.B22	0112304.raw
		18:20:55	19:22:59	3723						S1123018.B20	
		19:23:00	19:23:06	6						S1123019.B23	
31.12.2001	1	10:25:00	10:58:23	2004	69,00 S	28,38 W	69,00 S	28,42 W	s1123110.t24	S1123110.B25	0112311.raw
		10:58:46	11:42:37	2631	1					S1123110.B58	
	2	12:01:14	12:56:11	3297	69,00 S	28,51 W	68,99 S	28,79 W	s1123112.t00	S1123112.B01	0112312.raw
		12:56:11	14:00:14	3842	1					S1123112.B56	
	3	14:18:39	14:18:55	16	69,00 S	28,83 W	68,99 S	29,71 W	s1123114.t18	S1123114.B18	0112313.raw
		14:18:55	14:21:16	140						S1123114.B1I	
		14:21:16	15:24:09	3772]					S1123114.B21	
		15:24:09	15:24:13	3	1					S1123115.B24	
	1	15:24:13	15:24:17	3	1					S1123115.B2E	
		15:24:17	16:11:57	2859						S1123115.B2V	
	4	16:31:32	17:32:06	3633	69,02 S	29,83 W	69,00 S	30,81 W	s1123116.t30	S1123116.B31	0112314.raw
		17:32:06	18:36:08	3841						S1123117.B32	
01.01.2002	1	11:57:13	12:40:52	2618	69,00 S	38,27 W	69,00 S	39,03 W	s2010111.t56	S2010111.B57	0201011.raw
		12:40:52	13:58:41	4668						S2010112.B40	
	2	14:21:31	14:24:26	175	68,98 S	39,33 W	69,00 S	39,72 W	s2010114.t21	S2010114.B21	0201012.raw
		14:27:05	15:11:11	2645	1					S2010114.B27	
	1	15:11:11	15:11:13	1	1					S2010115.B11	
	1	15:11:13	15:11:15	1	1					S2010115.B1B	

cruise leg ANT-XIX/2

		r	1	T	٦	1	1	1	1		1
		15:11:15	16:16:20	3904						S2010115.B1S	
	3	16:40:24	16:40:32	8	68,97 S	40,10 W	69,09 S	40,14 W	s2010116.t40	S2010116.B40	0201013.raw
		16:40:32	16:40:34	1						S2010116.B4A	
		16:40:34	16:40:36	1	1					S2010116.B4R	
		16:40:36	16:40:38	1						S2010116.B4c	
		16:40:38	17:39:29	3530						S2010116.B4t	
		17:39:29	18:40:33	3663						S2010117.B39	
02.01.2002	1	11:27:17	12:11:32	2655	70,37 S	41,38 W	70,45 S	41,66 W	s2010211.t26	S2010211.B27	0201021.raw
		12:11:32	12:47:51	2178						S2010212.B11	
04.01.2002	1	15:00:30	15:40:53	2423	71,36 S	42,74 W	72,02 S	42,70 W	s2010414.t59	S2010415.B00	0201041.raw
		15:41:20	15:44:44	204						S2010415.B41	
	2	15:45:07	16:18:42	2015	72,02 S	42,77 W	71,27 S	42,49 W	s2010415.t44	S2010415.B45	0201042.raw
		16:18:42	16:18:44	1						S2010416.B18	
		16:18:44	16:18:47	3						S2010416.B1I	
		16:18:47	16:25:02	373						S2010416.B1Z	
	3	16:40:37	16:54:56	859	71,22 S	42,51 W	71,16 S	43,09 W	s2010416.t40	S2010416.B40	0201043.raw
		16:54:56	16:59:56	299						S2010416.B54	
07.01.2002	1	14:51:00	15:37:23	2783	69,02 S	56,64 W	68,80 S	56,84 W	s2010714.t50	S2010714.B51	0201071.raw
		15:37:23	15:37:30	6						S2010715.B37	4
		15:37:30	16:34:53	3442						S2010715.B3H	-
		16:34:53	16:34:56	2						S2010716.B34	
		16:34:56	16:46:07	670						S2010716.B3E	
	2	17:05:23	17:05:25	1	68,79 S	57,01 W	68,73 S	57,13 W	s2010717.t05	S2010717.B05	0201072.raw
		17:05:25	17:05:27	1						S2010717.B0F	4
		17:05:27	17:05:30	2						S2010717.B0W	-
		17:05:30	17:05:32	1	_					S2010717.B0h	-
		17:05:32	17:05:33	1						S2010717.B0y	4
		17:05:33	17:55:23	2988						S2010717.B0E	-
		17:55:23	17:55:25	1						S2010717.B55	-
		17:55:25	17:55:31	5						S2010717.B5F	4
		17:55:31	17:55:32	1						S2010717.B5W	-
		17:55:32	17:55:38	4						S2010717.B5h	4
		17:55:38	17:55:40	1	_					S2010717.B5y	-
		17:55:40	18:53:15	3454						S2010/17.B5E	
	3	19:13:58	19:32:36	1118	68,63 S	57,21 W	68,28 S	56,90 W	s2010719.t13	S2010719.B13	0201073.raw

45

cruise leg ANT-XIX/2

		19:32:51	19:32:55	4	7					S2010719.B32	
08.01.2002	1	16:56:10	17:05:30	560	68,58 S	53,54 W	68,50 S	52,90 W	s2010816.t55	S2010816.B56	0201081.raw
001011200-		17:05:30	17:30:31	1500	7					S2010817.B05	
09.01.2002	1	19:02:00	20:01:28	3568	67,89 S	56,35 W	67,88 S	56,31 W	s2010918.t58	S2010919.B02	0201091.raw
00.01.2002		20:01:28	20:01:31	2						S2010920.B01	
		20:01:31	21:02:04	3632	1					S2010920.B0B	
10 01 2002	1	13:12:08	14:08:34	3386	67,50 S	54,90 W	67,45 S	54,60 W	s2011013.t11	S2011013.B12	0201101.raw
10.01.2002		14:08:39	15:15:01	3982						S2011014.B08	
	2	15:29:40	15:30:20	39	67,41 S	54,62 W	67,48 S	54,04 W	s2011015.t29	S2011015.B29	0201102.raw
	-	15:30:20	15:30:23	2	7					S2011015.B30	
		15:30:23	15:30:28	4						S2011015.B3A	
		15:30:28	16:23:38	3189	7					S2011015.B3R	
	1	16:23:38	16:23:41	2	7					S2011016.B23	
		16:23:41	17:16:09	3147				1		S2011016.B2D	
		17:16:09	17:37:03	1253						S2011017.B16	
	3	17:59:42	18:46:38	2816	67,44 S	54,13 W	67,50 S	53,83 W	s2011017.t59	S2011017.B59	0201103.raw
	-	18:46:38	18:46:40	1						S2011018.B46	-
		18:46:40	18:46:43	2						S2011018.B4G	-
		18:46:43	18:46:47	3						S2011018.B4X	
	1	18:46:47	19:58:43	4315						S2011018.B4i	
	4	20:15:19	20:43:22	1683	67,53 S	53,77 W	67,49 S	53,48 W	s2011020.t15	S2011020.B15	0201104.raw
	1	20:43:22	20:43:24	1						S2011020.B43	4
		20:43:24	20:43:28	3						S2011020.B4D	-
	1	20:43:28	21:40:23	3414						S2011020.B4U	
11 01 2002	1	11:24:08	12:01:09	2221	67,50 S	50,17 W	67,30 S	50,12 W	s2011111.t23	S2011111.B24	10201111.raw
		12:01:09	12:01:12	2						S2011112.B01	-
		12:01:12	12:50:50	2977						S2011112.B0B	-
		12:50:50	12:50:53	2						S2011112.B50	4
		12:50:53	13:27:55	2221						S2011112.B5A	0001112 101
	2	13:45:07	13:45:12	5	67,28 S	50,18 W	67,14 S	50,07 W	s2011113.t44	S2011113.B45	0201112.1aw
	1	13:45:12	13:45:14	1				ļ		S2011113.B4F	-
		13:45:14	13:45:16	1						S2011113.B4W	-
	1										-
											-
		13:45:16	14:20:04	2087						S2011113.B4h	

46

and the second se	1	14.20.04	14.20.06	1	1	1	1	1	1	S2011114 P20	1
		14:20:06	15:15:23	3316	1					S2011114.B20	
		15:15:23	15:15:25	1	1					S2011115 B15	-
	1	15:15:25	15:53:34	2288	<u> </u>	<u> </u>		<u> </u>	<u> </u>	S2011115.D15	
	3	16:10:54	16:54:02	2588	67 07 S	50.05 W	67.01.5	50.27 W	\$2011116 110	S2011116 B10	0201112 row
	-	16:54:02	16:54:04	1		00,00 11		00,27 11	32011110.110	S2011116 B54	0201113.1aw
		16:54:04	17:52:56	3531	1					S2011116 B5E	
	1	17:52:56	17:53:00	3	1		Ì			S2011117 B52	1
		17:53:00	18.10.03	1022	1					S2011117.B52	
	4	18:29:12	19:23:22	3250	66 97 S	50.47 W	67 00 S	50.89 W	s2011118 +28	S2011118 B20	0201114 raw
		19:23:22	19:23:26	3	100,07 0	00,17 11		00,00 W	32011110.120	S2011110.D29	0201114.1aw
		19:23:26	19:23:28	1	-					S2011119 B2D	
		19:23:28	19:23:33	4	1					S2011119 B2U	
		19:23:33	20:22:50	3556	1					S2011119.B2t	1
15.01.2002	1	11:31:57	11:33:08	72	66,26 S	53,56 W	66,28 S	53,56 W	s2011511.t23	S2011511.B23	0201151.raw
	2	11:25:53	12:25:20	3567	66,30 S	53,56 W	66,67 S	52,90 W	s2011511.t25	S2011511.B25	0201152.raw
		12:25:21	12:31:04	1544	1					S2011512.B25	
	3	15:30:57	16:33:05	3727	66,28 S	54,53 W	66,54 S	52,54 W	s2011515.t29	S2011515.B3U	0201153.raw
		16:33:06	16:38:48	344	1					S2011516.B33	1
	4	16:53:44	17:08:55	911	66,49 S	53,27 W	66,36 S	54,01 W	s2011516.t53	S2011516.B53	0201154.raw
		17:12:55	17:25:34	759	66,35 S	54,20 W	66,26 S	54,84 W	s2011517.t12	S2011517.B12	0201155.raw
16.01.2002	1	11:21:47	12:17:40	3353	66,28 S	53,00 W	66,22 S	53,65 W	s2011611.t21	S2011611.B21	0201161.raw
		12:17:40	13:20:40	3779						S2011612.B17	
	2	13:43:27	14:38:59	3332	66,16 S	53,64 W	66,30 S	50,73 W	s2011613.t43	S2011613.B43	0201162.raw
		14:38:59	14:39:02	2		Į				S2011614.B39	
		14:39:02	14:39:04	1						S2011614.B3J	
	3	14:40:25	15:36:58	3393	66,26 S	50,73 W	66,14 S	53,59 W	s2011614.t40	S2011614.B40	0201163.raw
	4	15:58:59	16:55:16	3376	66,08 S	53,43 W	66,12 S	52,77 W	s2011615.t57	S2011615.B58	0201164.raw
		16:55:16	16:55:18	1				1		S2011616.B55])
		16:55:18	16:55:20	1]					S2011616.B5F	
		16:55:20	17:56:32	3671						S2011616.B5W	
		18:15:06	19:09:46	3280	66,03 S	52,60 W	66,04 S	53,01 W	s2011618.t14	S2011618.B15	0201165.raw
		19:09:46	19:09:48	1						S2011619.B09	
		19:09:48	19:09:50	1	1					S2011619.B0J	
		19:10:07	19:54:54	2687		<u> </u>				S2011619.B10	<u> </u>

cruise leg ANT-XIX/2

2.5 Results

The unusual ice conditions during this season did not allow geophysical investigations in the primary research areas. The coast parallel polynya off Neumayer was only 10 km wide and the sea ice north of it was too strong to operate the seismic equipment. Thus, the acquisition of seismic reflection network as well as the seismic refraction profile in the region of the Neumayer was cancelled. From the planned activities along the Antarctic continental margin between 20°W and 40°E only a small bathymetric and seismic survey was conducted around 2°E close to the South African station EBASE.

The scientific objective of this short survey was to map an area off the Jutulstraumen glacier (Fig. 2.1) where in 2001 unusual strong earthquake activities occurred. The magnitude of the two events was Mb= 5.1. Thus, at first a detailed bathymetric survey was conducted to map the seafloor topography for identifying possible land slides. The area investigated is dominated by three large scale drainage channels, which point out that a significant amount of melts water is produced by the glacier. Only at one of the epicentres evidences for faulting has been found. The deeper sedimentary structure has been investigated by a 2 days seismic reflection survey, which crossed the locations of both epicentres. The data indicate that the sediments between the channel are current controlled deposited. They have thicknesses up to 2000 m. Bathymetric and seismic data indicate that the earthquakes did not trigger any land slides in the investigated area. The sediment structure across the epicentres is not strongly disturbed and does not provide any information on the causes for the seismicity. Most likely isostatic movements along the continental slope or a giant iceberg have triggered the quakes. However, for a final statement on the causes of the seismicity, the acquired seismic, magnetic and gravity data have to be processed and jointly interpreted. In this research area in total 256 km of multichannel seismic data (profiles 20020001-20020010) were acquired from 25 to 26.12.2001.

After finishing this survey we had an almost 5 day transit to the main research area along the eastern continental margin of the Antarctic Peninsula. The transfer was mainly done along 69°S since this latitude marked the northern rim of the heavy pack ice. Thus, the research area off Filchner Trough mouth fan located at 71°S could not be investigated. Based on the satellite images there were severe doubts that even the ship could reach this area. However, this quite unusual ice condition for south-eastern Weddell Sea created favourable ice conditions for our alternate research area in the south-west/north-western Weddell Sea. The satellite images showed a region mainly free of ice that has been visited by two ships only in the last 100 years. One of them was the Endurance; she sank on November 17th, 1917 during the famous Shakelton drift in the Weddell Sea.

During the times of modern Antarctic geoscientific research the area south of 66°S has never been that ice-free. Thus, no reliable information on the seafloor topography and the sediment structures and thicknesses existed. Before this

expedition this region was one of the big white spots of the continental margins of Antarctica. Consequently, all remaining research time was concentrated in this area. From January, 1st till January, 18th, 2002 bathymetric and geophysical investigations were conducted in the very western Weddell Sea. During the first 15 days in total 2676 km of multichannel seismic data were acquired (Fig. 2.2).

With the profiles 20020015 to 20020040 (Fig. 2.2) we tried to investigate the oldest part of the western Weddell Sea and especially the structure of the magnetic ORION anomaly. This pronounced magnetic anomaly marks the continent-ocean transition in this region. Although we crossed this structure it is not seen in the seismic data yet, since it is obviously deeply buried by sediments. The profile also terminates before the shelf edge of the Ronne shelf. More and more difficult ice conditions prevent us to penetrate more southward. The risk to loose or damage the seismic equipment was too high. The profiles 20020050 to 20020180 (Fig. 2.2) are designed to provide information on the sediment structure of the eastern continental margin of the Antarctic Peninsula. All profiles were designed to start in the deep-sea basin and terminate at the current shelf edge of the Larsen Shelf. However, to reach the shelf ice edge was only possible in the very north of the network. In all other cases large and thick ice fields did not allow to sail more to the west with the seismic equipment towed behind the ship.

The three southernmost profiles indicate a typical shape of a continental margin. A slope with a gentle dip occasionally disrupted by deep-sea channels. The data show no evidence for slump processes or the existence of large drift bodies that were found on the opposite margin of the Antarctic Peninsula. The missing drift bodies in the deep sea indicate that completely different depositional processes are in charge comparing the western and eastern margins of the Antarctic Peninsula. Ice drainage mainly by ice streams/glaciers dominated the western margin and may be a prerequiste for the formation of the drift bodies. The absence of the drift bodies along the eastern margin may be a consequence that here the ice shelf is advancing and retreating along most of the margins. The role of ice streams/glaciers in the southern part is less pronounced.

- The shape of the continental slope along the three northernmost profiles -

At first evidences for drift bodies in the deep sea were seen in the seismic data. Then the northern two profiles provided clear evidence for a large-scale landslide in this part of the continental margin. The surface at which the slump was decoupled is clearly visible in the data. West of this area the flat-laying deepsea sediments are strongly disturbed. As a consequence of the slump obviously drift bodies were formed. The age of the slump is unknown. However, the seismic data show, that it is not a young feature. The erosional surface created at this time instant is buried by at least 500 m of sediments.

To better understand this feature a detailed bathymetric survey was conducted for two days between 66°30'S and 67°S. An area of 65x75 km (4875 km²) was investigated. The data show that the slump area at a water depth of 2000 m is

more than 70 km long and thus comprises the largest known submarine landslide along the continental margins of Antarctica. These surprising results indicate that the depositional processes along the eastern margin are completely different from the western part of the Antarctic Peninsula. From the results of the eastern margin one may speculate that single or repeated slump events are an essential trigger for the formation of the deep-sea drift bodies. The cause and consequence of the large landslide are currently completely unknown and need further investigations.

The results described here should be regarded as preliminary. The interpretation is based on the raw data. Thus, no results on the sediment thickness are discussed here. This information will be available after the final processing of the data. Furthermore, the parallel acquisition of magnetic and gravity data along the seismic profiles will allow to set up an enhanced model for the deeper structure of this continental margin.

2.6 Perspectives

This expedition has been carried out within a co-operation between the AWI, Bremerhaven and the INGV, Rome to define locations for future deployments of geophysical/oceanographic long term observatories (MABEL). The ice distribution during this season confirmed the strategy to have widely distributed locations for such a deployment. E.g. a deployment at the primary sites that were chosen before the expedition would have been impossible this season along the continental margin between 20°W and 10°E. It turned out to be important that such widely distributed deployment locations are essential to react on the ice conditions actually in place during such an expedition. Based on the new geophysical data two new locations for a long term observatory can be defined:

The area off the Jutulstraumen glacier has changed to a primary target for future long-term investigations. The occurrence of strong earthquakes at the continental slope rise questions on its origin. This can be best investigated in deploying an underwater seismic station right on top of the epicentres. The completeness of the geoscientific information will make a sound decision on the location possible.

The location of the large land-slide at the eastern continental margin of the Antarctic Peninsula at approximately 2000 m water depth, which might be one of the largest in Antarctica discovered so far, is of specific interest to investigate the cold water drainage of the Larsen Shelf with an underwater observatory.

The surprising results of this expedition again showed how large our gaps in knowledge about the structure of the margins and the deep-sea basin are. The new data will add new valuable information on the tectonic and glacial history of the southwestern Weddell Sea/Antarctic Peninsula.

cruise leg ANT-XIX/2

Fig. 2.3: Location map for helicopter borne magnetic flights (grey lines). The solid line represents the ship's track. GEBCO bathymetry is contoured with 500 m.

cruise leg ANT-XIX/2

3 Geomagnetic Measurements

C. Kopsch, R. Kroth

3.1 Introduction

The geomagnetic measurements on RV "Polarstern" which started during leg ANT-VII/4 continued to leg ANT-XIX/2. The aim of this project is to investigate geomagnetic anomalies at the seafloor with a ship-based vector magnetometer. To achieve this it is necessary to eliminate magnetospheric and ionospheric disturbances as well as permanent and induced magnetic fields of the ship's body in order to measure the geomagnetic component. Two magnetometers were mounted permanently at the platform of the crow's nest. This location was tested during leg ANT-XVII/4. The vector magnetometers were developed and adapted to the needs of a ship-based set-up by the MAGSON GmbH Berlin. The magnetometers are digital fluxgate magnetometers with the following technical parameters:

3 component ring-core sensors	
noise level:	<10pT/sqrt(Hz)
long term stability:	<10nT/year
orientation:	orthogonal,X,Y,Z
dynamic range:	+/-100000nT in all components
resolution:	+/-10pT
temperature measurement:	separately for electronics and sensor
housing for electronics and sensor:	waterproofed aluminium box
power supply:	12-20V DC
input current:	200mA
signal processor:	TMS320F206
tiltmeter:	dual axis inclinometer SSY0090C

3.2 Installation of the magnetometer system

In the previous stay of "Polarstern" in the dock the magnetometers had been mounted at the crow's nest and during the last transit the company WERUM installed an interface to supply the magnetometers with the navigation data and a hardware trigger signal of the navigation system 'MINS'. During this leg the complete magnetometer system was installed and set in operation. An industrial qualified PC was installed in the computer room, which receives the data from the MINS and both magnetometers. Between the magnetometers at the crow's nest and the PC a fibber optic link had been installed and tested. The received data are displayed on the PC's screen and forwarded to the PODAS-system. Now the magnetometer data are available for all users.

- Determination of the calibration coefficients -

A number of calibration loops had been carried out to determine the calibration coefficients, which describe the magnetic properties of the ship. It was tried to

locate the calibration loop equidistant along the track in order to detect longterm magnetisation or magnetic influence of loading or unloading of the ship. Furthermore different shapes of calibration loops had been tested. So circular and octangular loops in both turning directions had been carried out to detect dynamic influences of the magnetometers or the navigation system.

No	Date	UTC	Latitude	Longitude	Remarks
1	03.12.2001	18:00	42,517 S	19,297 W	octogon 0,5sm
2	04.12.2001	17:00	46,795 S	19,965 W	Circle, radius 1 sm
3	11.12.2001	12:50	69,302 S	05,540 W	4 circles portside turning
4	20.12.2001	10:00	70,595 S	09,082 W	1.circle with operating Intering system 2.circle, intering system switched off
5	22.12.2001	21:47	70,513 S	07,739 W	2 circles, portside turning at the Atka Bay
6	27.12.2001	10:43	68,983 S	01,783 W	1. circle, portside turning, 0,5 sm rad. 2 circle, starbord turning, 0,5 sm radius
7	13.01.2002	10:35	67,002 S	60,051 W	 circle starbord turning, 1sm radius octogon, starbord turning, 1sm rad. octogon portside turning, 1sm rad.

Tab. 3.1: List and location of the calibration loops

- Technical problems -

In a few cases the PODAS-system marked the magnetometer data vectors as not valid. A check with a parallel registration showed that the magnetometers where sending valid data although PODAS marked them as not valid. We suppose a synchronisation problem between the receiving PODAS-system and the sending magnetometer system. This error was also observed with other sensor systems. So the magnetometer system has its own separate interface to the MINS no gaps in the gyro heading values were observed which can be visible permanently in the PODAS output of the gyro heading. This indicates that the PODAS-system has not yet the reliability of a stable data logging system. The geomagnetic data is sampled with a rate of 1Hz. Caused by the 'not valid' marking of the PODAS-system an additional editing of the data sets is needed. We would like to save the magnetic data not only via the PODAS-system but also on a separate disk of the network server.

- Algorithm problems -

The data, which were corrected with the calibration coefficients, still showed a dependence of the heading angle. The magnetic field values could not completely freed from the influence of the heading angle. This is the weakness of the used algorithm. If the reason is the small variation of the Z component during the calibration loops or if there are other reasons has to be investigated in a following data evaluation.

Fig. 3.1: Comparison of the ship and helicopter borne magnetic data. The large central line is acquired with the fix-mounted magnetometers of "Polarstern"

55

3.3 Results

The raw data of the magnetometer and the MINS are provided synchronously. So all *prerequisites* for a successful data correction are given. The problem of unperfected synchronised magnetometer and navigation data, which occurred during leg ANT-XVII/4 is solved.

While the variation of heading angle is small the results derived by the shipbased magnetometer correspond well with the results of the data derived with the helicopter magnetometer (Fig. 3.1). The correction algorithm has to be modified to reduce the influence of larger variations of the heading angle.

To our surprise the unloading of most of the containers at the Atka Bay didn't show a significant effect on the magnetic properties of the ship. If "Polarstern" stays for a longer period at a station the data of the ship-based magnetometers could be used as base values. This could be useful for parallel operating helicopter magnetometers. Fig. 3.2 shows the variation of the 21.12.2001 measured by the Neumayer station and by the "Polarstern".

Fig. 3.2: Comparison of ship's magnetometers with the recordings of the Neumayer base station. During the recording the ship did not move but stuck in the ice. Lower panel: recording of Neumayer base.

4 Bathymetric investigations in the Weddell Sea R. Krocker

Due to an agreement of AWI with South Africa, "Polarstern" is allowed to gather bathymetric data within the 200 miles zone. Therefore, the multibeam sonar system "Hydrosweep" was started while leaving the harbour of Cape Town. The first destination of the cruise was the Neumayer-Station. The track towards Neumayer-Station passed uncharted areas. Thus no track adjustments to avoid duplication were necessary. Almost 50 NM north of Neumayer-Station the ice condition became extremely difficult. "Polarstern" could move only very slowly in southern directions. Thus, Hyrosweep was switched off until leaving Neumayer-Station on December 22^{nd,} 2001. The next destination was a potential earthquake-area, with two epicentres at 69.626 S / 1.957 E and at 69.513 S / 2.038 E. "Polarstern" has passed this area earlier in 1990, 1991, 1992, 1996 and 1997. Including the information of these surveys of those previous cruises, a track was planned to fill gaps and to extend the area. The surveyed area now covers 60 by 80 nautical miles (Fig. 4.1). During the survey no landslides or volcanic formations were found, which could have been the reason of the seismic activities. Still the topography of the area is very interesting, as we found four seafloor-canyons, which lead from the continental shelf down to the deep sea floor. After the survey and leaving the area Hydrosweep was turned off again. The reason for this was, that we had to take a track different from the one originally intended, and hence had no permission to acquire hydro-acoustic data.

The next area investigated was at the eastern continental shelf of the Antarctic Peninsula. As this lies in the western Weddell Sea, we were allowed to switch on our systems again. At first the margin was covered in wide loops, to gather seismic profiles. During these surveys we crossed the position where Shackleton's Endurance sank. For this position at 68° 38' S / 52° 28' W we found the depth to be 3048 metres. Working our way north parallel to the seismic we reached a second area to be surveyed on January 16, 2002. The centre of this was at 66°5' S / 52°50' W and coverage was about 35 by 40 nautical miles. Here, the margin is characterised by a large scale slump. The aim of the detailed bathymetric survey was to map the full extend of this feature. This will allow estimates on the amount of material, which slides into the deep sea. After finishing the survey it was clear that the largest know slump along the entire Antarctic margins were found. Leaving the survey area "Polarstern" headed for Punta Arenas, where the cruise ended. Hydrosweep was turned off at midnight January 17/18 for the last time of this cruise. A possible survey area between Antarctica and the 200-mile zone of Chile and Argentina was to small to conduct a meaningful survey. An overview of the multibeam tracks of this cruise is shown in Fig. 4.2. In general the surveys went very smooth, as we seldom had any hard- or software trouble. It also is to be considered as a successful survey cruise, as we were able to cover new areas, not surveyed before. Additional work on board for sustaining the surveys like CTD-/ soundspeed-profiles, where also carried out successfully and unproblematic in conjunction with the chemistries aboard.

cruise leg ANT-XIX/2

Fig. 4.1: Results of bathymetric survey off EBASE

Fig. 4.2: Overview of the multibeam tracks of this cruise

cruise leg ANT-XIX/2

5 Parasound

S. Niemann

Since geology scientific work was not performed during cruise ANTXIX/2 by the means of taking cores with gravity or multicorer systems, the Parasound system was worked mainly to gain additional information for seismic shooting and in future perspective for gaining information on valuable sites for coring and deployment of long term geophysical observatories. Besides knowledge on glacial sedimentary and erosional processes was archived.

The Parasound system was started after leaving South Africans 200 Miles coastal zone on 3 of December at 40°43.2' S / 19°06.25' E (Fig. 5.1). Measurements continued to 7 of December just before entering the Antarctic polar region at 60° S / 13°01.4' E. Since the course of this traverse to Neumayer station was due to magnetic measurements far more easterly than the routes usually taken, we were able to gain a new sediment-profile of deep-sea sediments with penetration depths up to 100 metres.

South of 60° S Parasound was started again after leaving Atka Bay near Neumayer Station on 22 of December, heading for an area Northeast of Sanae station where earthquakes were located at 69.626° S / 1.957° E and 69.513 S / 2.038° E. To confirm whether they might be linked to possible submarine slides, a Parasound and Bathymetric survey was conducted first to and during seismic measurements until 27 of December. From Parasound point of view we found no indices for large-scale slumps but a harsh morphology dominated by glacial erosional processes, leaving hardly any sites for net sediment accumulation (Fig. 5.2).

While shelf sediments are marked continuously by iceberg plough marks, long and deep canyons stretching far out into the deep-sea basin partition the continental margin. The penetration depth did not exceed more than 20 metres and most of the time there was only one strong reflector to be seen, also an indications that sediments are reworked and compacted continuously. Along the slopes of the canyons indications of slumping and massflow events were recognised. Summarising the results of the Parasound measurements off SANAE we constitute a very dynamic submarine environment with active largescale erosional processes connected with huge masstransport (Fig. 5.3).

In the evening of 27 of December, RV "Polarstern" left the survey area for the western Weddell Sea and Parasound was turned off during transfer due to missing permissions for hydroaccoustic measurements. As soon as we reached the new survey area at 69°00.4' S / 28°48.2' W the data acquisition was started again.

Still in the western Weddellsea deep-sea basin we recorded a very nice profile of deep-sea sediment sequences interrupted by large channel systems. Penetration depths down to 80 meters were reached. Approaching the basis of the continental margin the sequence is partly dominated by sedimentary structures of a high energy regime, expressed in undulating sedimentary waves of comparably high frequency and high amplitudes (Fig. 5.4). Until the end of the measuring period on 17 of January at 65°04.9' S / 54°03.8' W eight sections across the eastern continental slope of the Antarctic Peninsula were recorded parallel to the seismic campaign. Since ice conditions only very rarely support scientific campaigns so close to the east of the Antarctic Peninsula and for the last 80 years no research vessels operated in this area, the data gained are new and very valuable.

During the cruise the conversion of Parasound .ps3 data from 31 of December to 7 of January via segy- into DISCO/FOCUS format was performed. However, data processing has to continue after return to the Alfred Wegener Institute in Bremerhaven.

Summarising the Parasound measurement during ANT XIX/2 it has to be stated that the system was capable to produce very good quality data - but that it has a performance below its possibilities due to software caused instability. In average 8,5 times per day the system had failures each time cutting off data storage on hard disk and as online-plot. As a consequence, approximately 30-40 minutes of data were lost each time. Since failures seem to be connected with serial nav data storage, navdata protocol was monitored for over 24 hours, confirming PARADIGMA-Software as the cause for system failures

For an improvement, the software should be rewritten allowing data storage directly in SEGY format. Once established parallel processing of Parasound data in DISCO or FOCUS should be possible. For further improvement a general reduction of the sampling rate with perspective to reduce raw-data for better handling and processing should be applied. First tests showed that data could be more than halved without any loss of information.

cruise leg ANT-XIX/2

Fig 5.1: Sediment Profile measured with ATLAS-Parasound on 4th of December starting at 44° 12.74' S / 19°36.06'E resolving sediment structures down to 80 meters depth.

Fig. 5.2: Profile measured with ATLAS Parasound on 23rd of December showing deep iceberg plough mark and submarine canyons

cruise leg ANT-XIX/2

Fig. 5.3: Profile across the channels off EBASE

6 Marine Chemistry

R. Engbrodt, B. Gerdes

Dissolved organic matter (DOM) in the ocean is one of the major pools of organic carbon in the biosphere and as such has the potential to influence the global carbon cycle on a time scale of 1000 to 10000 years. Whereas the DOM in most oceanic regimes could either be of terrestrial or marine origin, the DOM of the Weddell Sea is of sole marine origin, produced by phytoplankton. On previous cruises to the Arctic, DOM of both terrigenous and marine origin was characterised on elemental and molecular levels. One goal during this cruise was to gather DOM of pure marine, phytoplanktonic origin to compare its chemical characteristics and structure with Arctic DOM.

Two different types of DOM were isolated, with and without fractionation. Isolation without fractionation was used for the samples on which size-exclusion chromatography and elemental-level-analyses will be performed later. For that purpose, 50 seawater samples were filtrated through precombusted quartz fibre filter (0.2 μ m pore size). The filtrates are stored frozen at minus 30 degrees C in sealed precombusted ampoules. Isolation with fractionation using different solid phase adsorbers with known chemical composition was used to obtain additional information about the chemical composition of the DOM.

With macroporous XAD resins (Rohm&Haas), composed of a polystyrene polymer, 14 samples were processed, i.e., 20 to 25 litres of 0.2 μ m filtered seawater were passed through a sequence of XAD-2 and XAD-4 resins in prepacked glass columns. The adsorbed material was eluted later with diluted so-dium hydroxide solution (0.01 M, HbA fraction), methanol (HbN_I fraction), and ethylacetate (HbN_{II} fraction) and stored at minus 30 degrees C in the dark. Since the two resin types exhibit different pore sizes, information about the molecular size distribution of DOM can be obtained.

With pre-packed C18-adsorber cartridges (commercially available by Varian BondElut), based on aliphatic C18 hydrocarbon chains bonded covalently to a silica gel matrix, 39 water samples were processed, i.e., 20 to 25 litres of 0.2 μ m filtrated sea water were passed through the cartridges and were eluted later with methanol and ethylacetate (HbN₁ and HbN₁₁ fractions). These adsorbers must not be eluted with sodium hydroxide solution, since the silica gel matrix is sensitive to dissolution with alkaline reagents. Further, a variety of other commercially available pre-packed adsorbers was used: C18-OH, C18-EWP, C8 differ in their relative polarity from C18 and hence fractionate DOM of slightly different polarity while ENV and PPL (all Varian BondElut) are macroporous polymeric resins. The PPL cartridges were treated in a similar way to XAD, all others were treated like C18.

For tangential-flow ultrafiltration through 1000 Da filters, which is done in the home laboratory, some 100 l of 0.2 μ m pre-filtered samples are carried home. All the samples were taken within all characteristic water masses of the survey

area, such as Antarctic Surface Water (AASW), Warm Deep Water (WDW), Weddell Sea Deep Water (WSDW), and Weddell Sea Bottom Water (WSBW), which was found on the shelves and across the western continental slope towards the deep-sea. Most of the stations were along a transect at 69° S from 3° E to 60° W (Fig. 6.1), covering the Weddel Sea Abyssal Plains to the eastern continental slope of the Antarctic Peninsula. In the south, at 72° S, the stations are located across the continental slope at 43° W.

At each station, CTD measurements throughout the water column were performed. Using a CTD rosette water sampler equipped with a fluorometer, concentrations of the photopigment Chlorophyll a were simultaneously measured. Very large concentrations of more than 15 µg Chl a/l were found in surface waters east of the Larsen Ice Shelf, indicating massive algal bloom. DOM of these sampling sites is presumably of very fresh origin and low diagenetic state. For HPLC post-cruise calibration of the photopigment concentration, 2.0 litres of surface water sample were filtrated through the precombusted 0.2 µm filter and the filter was immediately stored frozen in the dark. Since no chemical analyses were carried out directly onboard, no detailed information about extraction efficiencies and chemical composition and structures could be obtained yet. However, it was observed during the processing that both C18 and C8 adsorbers retained a yellowish/brown part of DOM, as in surface and in deep sea samples, which was easily eluted with methanol and was not observed with the other adsorbers. All further investigations and analyses will be performed in our home laboratory in Bremerhaven, and, as part of an international cooperation, at the University of Washington (Seattle, USA).

Saurce:GEBCO.

Fig. 6.1: Sampling sites of DOM and CTD measurements.

7 MABEL

M. Calara

During the transfer between Cape Town and Neumayer Station the instrumented system, which represent the first basis of the MABEL observatory was assembled and tested.

The system on board, being tested during the expedition ANT XIX/2, is made up of some subsystems of the benthic multidisciplinary MABEL observatory, which was temporary assembled on a frame that belongs to another project (European project, BIODEEP) and for vertical profiles up to 120-150 meters deep. In this manner it was possible to execute a preliminary test phase to verify the operability in Antarctic conditions and environment and at the same time to verify the compatibility with the on board facilities by collecting important information for the future MABEL deployment.

The subsystems are:

A prototype of water chemical analyser: In this version it is equipped with two electrodes (pH and H2S). It was projected for long term monitoring in time *domain*. And for this purpose it is equipped with flux cells, electrodes cleaning, calibrating solutions with standards, *even* in this phase it will be used only for vertical profiles, in order to verify the first analytical and technological solutions adopted for assembly and calibrating routines. The system is developed by Institute Nazionale di Geofisica e Vulcanologia (INGV) and Tecnomare S.p.A. based on a first prototype, which was constructed in collaboration with System S.p.A. is *made up from* a vessel pressure *compensated* (able to operate at any depth) and from an electronic unit (user programmable) in a titanium vessel. The complete system is able to operate up to 6000-meter depth.

A submarine acquisition and control unit: based on low power consumption hardware developed from Tecnomare. It is mounted in a Titanium tube able to operate up to a 6000 meter depth.

- A surface managing and control unit: based on the same hardware of the submarine unit.
- A user interface for managing and controlling all the operations at sea.
- A set of status sensors for controlling all the functionality of the whole system (comprehending also tilt and heading sensors and current parameters).

All the submergible devices are mounted in a frame of light alloy of another European project, BIODEEP.

For a complete characterisation of the environment where the future MABEL observatory will operate and for an indirect comparison of the chemical analyser data, other instruments of the BIODEEP project are present:

- Water samples rosette, General Oceanic 1015, with 12 bottles, each of them of 2,5 litres.
- An Idronaut 316 CTD.

The Digital Acquisition and Control System of MABEL manage all these instruments.

This system has a weight in air of 2kN. It is linked with the surface through an umbilical cable (for data transmission and power) and a mechanical cable. So, the whole system was assembled during the first days of the transfer according to the instructions of the operative handbook written by Tecnomare (MABEL – 2001-2002 "Polarstern" Cruise DATA BOOK).

After a complete verification of all the subsystems, a series of functional tests began, during which a series of mission simulation, comprehensive of measure and calibration routines of the chemical analyser, with data logging of all data (2 samples per second) were undertaken. These tests were already foreseen in the operative procedures DATA BOOK and are addressed as a test in low air temperature before starting the water tests.

During this phase some technical failures were encountered, due to high current absorption from the chemical analyser, when the peristaltic pump starts to work and when the valves open. These problems caused the bad functioning of the pump, compromising the measures and the calibrations. In order to overcome these difficulties, some modification to the electronics and to hydraulics were made, to have more power and minor current consumption.

On the 3 of January 2002 was the first water test where other problems were encountered probably due to a bad functioning of the power unit. Again on board, a spare power unit was mounted and other wet tests and mission simulation were conducted without problems. The second profile was conducted on the 9 of January and a complete profile up to 100 meter of CDT data and chemical data was recorded. Also seven water samples were collected for laboratory analyses. The third profile was undertaken on the 13 of January. The reached depth was again 100 meters and again a complete set of chemical physical data besides the status sensors data were recorded. Again seven water samples were collected.

The last test consisted of two parts. The aim of this test was to control the system functionality and behaviour with an inside instrument temperature close to or below zero. The frame with all components was placed on the working deck for a night to reach a temperature inside of the entire set-up as low as possible.

The system was switched on with an inside temperature close to - 9°C and a measure cycle was carried out without any problems. After that, the system was drowned in seawater and one measure cycle was carried out. Then, the system was lowered to a depth of 100 meters and turned on without any problems. Finally, the system was again placed on board for all the cleaning routines and final storage.

The aim of the 2001-2002 "Polarstern" Antarctic mission was finally completely reached.

8 Weddell Sea Circulation S. Wassermann

- Argo floats -

The drift of sea-ice, icebergs and the underlying body of water govern the Weddell Sea Circulation. This study attempts to resolve the circulation patterns by tracking all three components with satellite-tracked buoys and platforms.

A study of the ocean interior has the intention to explore the intensity and structure of the thermohaline circulation in the Atlantic sector of the Southern Ocean, in order to determine the impact of Antarctic Bottom Water formation variations on the global circulation and climate. Measurements of the deep and bottom water masses of the Weddell Sea indicate significant changes in their properties within the last 5 to 10 years. The water mass characteristics of inflow from the Circumpolar Current into the Weddell Sea are dependent on the criteria of convergence at the Weddell Front. To capture the inflow and its properties 9 APEX floats (Tab. 8.1) were deployed.

- Icebergs -

Together with precipitation over the ocean itself and melting and freezing of sea ice, melting icebergs govern the salinity of the oceanic surface waters of the polar and subpolar regions. An increase in the melting of icebergs decreases the waters' salinity and may influence the large scale sinking of surface water in these regions. This sinking is an important segment in the global ocean circulation, which significantly contributes to the worlds climate system.

The shedding and drift of icebergs causes a significant transport (410 Gt) of fresh water from precipitation over the Antarctic continent to the open ocean. Icebergs develop along the coast of Antarctica when ice masses flow out from inland to the coast and then calve. Icebergs often drift with speeds of up to 15 km per day over a few years until they break into pieces or melt. Some icebergs get grounded during their journey and remain at the same place over some years.

Drift paths and life times of very large icebergs can be tracked with satellite images; smaller ones have to be marked for this issue. To monitor the drift path of the smaller icebergs, a transmitter is deployed in this study on the berg. Using System ARGOS satellite service, its' position is transmitted to Bremerhaven on a regular basis. The berg's drift depends on directions and speeds of wind as well as water. The icebergs themselves offer relatively little catch for the wind and water systems, but a closed Sea Ice field works as a sail.

Deployments of iceberg and sea-ice transmitter (Tab. 8.2) continue experiments from earlier expeditions. The iceberg observations belong to the iAnzone Programme of SCOR (Scientific Committee of Oceanic Research) and contribute to

the "Climate and Cryosphere (CLIC) " Programme of WCRP (World Climate Research Programme).

- Sea-Ice -

The observation of sea-ice drift poses a challenge as well, since ever changing patterns in the sea-ice makes pattern recognition based tracking difficult. The AWI buoys transmit their position as well as measurement of air temperature and air pressure every three hours. In connection with the "International Program of Antarctic Buoys" (IPAB) the Alfred-Wegener-Institute has committed to deploy up to three drifting buoys onto the sea ice per year (Tab. 8.3).

- Work at Sea -

In total 22 PTT ARGOS platforms were deployed during this leg. By 22 March 2002, all systems are still operational and had performed so far without interruption. Heading South to Neumayer-Station, we deployed 9 APEX floats between 50° S and 60° S with meridional distances of 1° 15'. The longitude of the deployment was optional according to the ships' course between 13° E and 21° E. The floats are programmed to descend every 7 days to 2000-m depth in order to measure a temperature and salinity profile during the subsequent ascent to the surface. Five floats feature an ice-probability recognition, which prevents surfacing, if the median of the 7 near-surface temperature points is less than -1.79° C. The two southernmost floats were deployed in open water leads, with the ice cover varying between 4/10 and 7/10 ice, respectively.

Float- No.	ID	Water- Depth (m)	Latitude	Longi-tude	Date (UT) 2001	Time (UTC)	lce Detect.
397	DEC 2355 – HEX 24CDE	3782	51° 13.73'	20° 41.84'	05.12.	17:57	no
398	DEC 9353 HEX 9227D	4119	49° 57.32'	20° 29.21'	05.12.	10:51	no
399	DEC 9356 HEX 92331	3872	55° 00.18'	19° 04.33'	06.12.	15:25	no
400	DEC 9358 HEX 92397	4705	56° 14.95'	17° 49.45'	06.12.	23:33	no
402	DEC 9362 HEX 92499	5352	59° 55.48'	13° 06.91'	07.12.	23:37	yes
403	DEC 9363 – HEX 9241A	4955	57° 30.24'	16° 31.49'	07.12.	07:13	yes
404	DEC 9365 HEX 92573	5040	58° 44.57'	14° 54.34'	07.12.	15:31	yes
405	DEC 9369 - HEX 92652	3099	52° 28.50'	20° 54.57'	06.12.	00:24	yes
406	DEC 9372 HEX 9271E	3359	53° 45.35'	20° 16.97'	06.12.	07:33	yes

Tab. 8.1: APEX float deployments

The deployment of iceberg transmitters was adjusted to the availability of suitable icebergs in the vicinity of the ships' track. We placed one buoy east of the

68

Greenwich meridian, two buoys between Neumayer station and Cap Norwegia, and the remaining 7 in the southwestern Weddell Sea. Three transmitters (ID's 8066, 8067, 8068) determine position and additionally air pressure every 3 hours, transmitting every 200 s during the whole day. Seven transmitters take the GPS-position every 6 hours and send the data every 7 days via ARGOS to Bremerhaven. Both types of transmitters are expected to work 2 years.

Tab. 8.2: List of iceberg transmitters.

Dimensions of the iceberg

ARGOS Identifica- tion	Date	Time UTC	Latit	ude	Long	jitude	Length (m)	Width (m)	Free Board Height (m)
8067	12.12.01	11.36	69° S	42.60'	6° 53	3.10' W	550	550	60
9366	27.12.01	18.40	68° S	44.38'	00° E	05.91'	740	370	45
9367	04.01.02	16.45	71° S	00.29'	41° W	52.70'	50	250	25
9832	07.01.02	12.15	68° S	57.68'	56° W	10.92'	1900	500	60
9665	07.01.02	12.45	68° S	36.70'	55° W	59.50'	15000	2700	70
8068	09.01.02	15.15	68° S	06.87'	55° W	47.52'	40000	17000	50
8057	09.01.02	15.45	68° S	00.55'	56° W	37.35'	2900	1440	60
8066	10.01.02	12.27	67° S	12.99'	55° W	14.76'	8000	8000	60
8061	11.01.02	21.30	66° S	53.54'	52° W	18.33'	1200	800	60
9831	15.01.02	14.13	66° S	20.66'	54° W	07.18'	10000	3000	45

Three sea ice buoys were placed as southerly as possible in a triangular pattern. Weather and flight conditions limited the distance between the edge points of the triangle to max. 50 miles. Positioning buoys beside pressure ridges on the ice flows decreased the risk to loose buoys by breaking up of the flow into pieces. The data of all three sensor types are transmitted to AWI, Bremerhaven.

Tab. 8.3: Deployment locations of sea-ice buoys.

ID 8060	5.1.2002	71° 28.34' S 42° 52.00' W
ID 9781	5.1.2002	71° 54.84' S 43° 07.20' W
ID 9728	5.1.2002	71° 45.56' S 45° 11.35' W
App. 1: List of stations ANT-XIX/2

Station	Date	Time	Position	Position	Depth	Wind	Course	Speed	Gear	Action	Comment
PS61/004-1	05 12 01	10.40	Lat	LON	[m]		1752	[KII]	Anex Floater	1	[
PS61/005-1	05 12 01	13:45	50° 29 28' 5	20° 34 43' F	4439.0	NW 11	172.4	11.5	XPT	surface	
PS61/006-1	05.12.01	17:57	51° 13.73' 5	20° 41.83' E	3814.0	S 14	173.0	11.5	Apex Floater		
PS61/007-1	05.12.01	19:14	51° 28.18' S	20° 44.29' E	3488.0	S 15	173.4	11.4	XPT	surface	
PS61/008-1	06.12.01	00:23	52° 28.40' S	20° 54.54' E	3013.0	S 10	175.0	12.3	Apex Floater		
PS61/009-1	06.12.01	03:14	53° 2.00' S	20° 58.09' E	1881.0	SSW 11	204.9	12.2	XPT	surface	1
PS61/010-1	06.12.01	07:32	53° 44.86' S	20° 17.46' E	3453.0	SW 8	209.1	11.7	Apex Floater		
PS61/011-1	06.12.01	15:23	54° 59.87' S	19° 4.64' E	3888.0	SW 10	208.7	11.1	Apex Floater		
PS61/012-1	06.12.01	23:33	56° 14.93' S	17° 49.50' E	4705.0	WSW 13	211.7	11.5	Apex Floater		
PS61/013-1	07.12.01	05:30	57° 13.14' S	16° 49.45' E	5495.0	SWS	208.3	11.6	XPT	surface	
PS61/014-1	07.12.01	07:12	57° 30.05' S	16° 31.74' E	4938.0	SW 7	209.8	11.5	Apex Floater		
PS61/015-1	07.12.01	13:15	58° 25.60' S	15° 22.40' E	5302.2	SW 11	216.0	11.1	XP1	surface	
PS61/015-1	07.12.01	13:36	58° 28.70' N	15° 17.70° E	5236.0	SW 11	218.0	11.0	XP	sunace	
PS61/017-1	07.12.01	15:30	50° 0 47' 5	14° 30 61' E	5502 0	MOW E	220.9	11.6	Apex Floater	eurface	
PS61/019-1	07 12 01	17:25	59° 1 20' 9	14° 29 52' E	5594 (WSW A	218.0	11.6	YPT	surface	
PS61/020-1	07.12.01	23:36	59° 55.30' S	13° 7.24' E	5331.0	w	218.6	12.4	Apex Floater	Buildoo	
PS61/021-1	22.12.01	20:00	70° 34.41' S	7° 37.61' W	169.6	NE 6	222.6	0.2	CTD - Seabird	surface	
PS61/021-1	22.12.01	20:04	70° 34.40' S	7° 37.63' W	168.8	NE 7	11.3	0.5	CTD - Seabird	at depth	
PS61/021-1	22,12.01	20:12	70° 34.36' S	7° 37.68' W	165.6	NE 6	255.5	0.2	CTD - Seabird	on deck	
PS61/022-1	25.12.01	13:42	69° 20.45' S	2° 49.25' E	2426.0	WSW 10	257.4	1.3	CTD - Seabird	surface	
PS61/022-1	25.12.01	14:29	69° 20.50' S	2° 48.54' E	2417.0	W 9	260.1	0.5	CTD - Seabird	at depth	2366 m
PS61/022-1	25.12.01	15:14	69° 20.53' S	2° 48.09' E	2405.0	W 10	256.0	0.1	CTD - Seabird	on deck	
PS61/023-1	25.12.01	15:31	69° 20.33' S	2° 48.57' E	2415.0	W 9	88.4	3.4	Seismic reflection profile	Streamer i. w.	
PS61/023-1	25.12.01	17:08	69° 20.19' S	3° 1.15' E	2744.0	W 9	92.7	2.6	Seismic reflection profile	airguns i. w.	
PS61/023-1	25.12.01	17:47	69° 20.08' S	3° 10.82' E	2486.0	W 9	85.9	5.3	Seismic reflection profile	profile start	
PS61/023-1	26.12.01	22:57	69° 40.09' S	1° 48.64' E	1975.0	W 12	261.1	2.5	Seismic reflection profile	end of profile	
PS61/024-1	28.12.01	08:55	0° 0.00 N	2º 41 09' W	3823.0	N U	0.0	0.0	CTD - Seabled	on deck	
PS61/024-1	28 12 01	11:00	68° 36 76' S	3º 41.00 W	3826.4	5 W 2	354.0	0.4	CTD - Seabird	at deptin	
PS61/024-1	28.12.01	12:05	68° 36 58' S	3° 42 30' W	3834 4	S 4	280.9	0.5	CTD - Seabird	on deck	
PS61/025-1	29.12.01	10:05	68° 58.26' S	12° 5.29' W	4676.0	SSE 6	39.6	0.1	CTD - Seabird	surface	
PS61/025-1	29.12.01	11:20	68° 58.05' S	12° 5.82' W	4688.4	SSE 6	303.8	0.3	CTD - Seabird	at depth	
PS61/025-1	29.12.01	12:30	68° 57.89' S	12° 6.53' W	4666.0	SE 7	295.3	0.2	CTD - Seabird	on deck	
PS61/025-1	29.12.01	12:31	68° 57.89' S	12° 6.54' W	4664.0	SE 7	291.9	0.2	CTD - Seabird	on deck	
PS61/026-1	30.12.01	10:45	69° 0.56' S	20° 13.63' W	4783.6	WSW 4	65.3	0.4	CTD - Seabird	surface	
PS61/026-1	30.12.01	12:07	69° 0.01' S	20° 12.56' W	4783.6	SW 5	33.8	0.9	CTD - Seabird	at depth	
PS61/026-1	30.12.01	13:17	68° 59.65' S	20° 11.40' W	4784.8	WSW 4	28.0	0.8	CTD - Seabird	on deck	
PS61/027-1	31.12.01	10:32	69° 0.26' S	28° 29.99' W	4676.0	ENE 4	269.5	0.1	CTD - Seabird	surface	
PS61/027-1	31.12.01	11:45	69° 0.23' S	28° 29.48' W	4676.0	E 3	355.8	0.2	CTD - Seabird	at depth	
PS61/027-1	31.12.01	13:01	69° 0.02' S	28° 29.18' W	4676.4	E 5	13.5	0.1	CTD - Seabird	on deck	
PS61/028-1	01.01.02	10:52	68° 58.03' S	39" 57.34" W	4261.0	NW 6	210.5	4.1	Seismic reflection profile	Streamer I. W.	
PS61/028-1	01.01.02	17.10	68° 59.04 3	39 50.50 W	4200.0	NININ D	201.9	3.1	Seismic reflection profile	airguns I. W.	First shot
PS61/028-1	03.01.02	12:39	71° 57 92' S	43° 39 10' W	2802.0	ENE 6	205.0	4.0	Seismic reflection profile	Streamer i w	
PS61/028-1	03.01.02	12:43	71° 57.93' S	43° 39.14' W	2802.0	ENE 6	275.1	0.2	Seismic reflection profile	oncumor i. n.	
PS61/029-1	03.01.02	14:10	71° 58.97' S	43° 42.92' W	2770.8	0 E 5	230.1	0.4	CTD - Seabird	surface	
PS61/029-1	03.01.02	14:58	71° 59.03' S	43° 43.40' W	2769.0	ESE 5	268.8	0.2	CTD - Seabird	at depth	2718 m
PS61/029-1	03.01.02	15:44	71° 59.03' S	43° 43.90' W	2766.0	SE 6	277.7	0.4	CTD - Seabird	on deck	
PS61/029-2	03.01.02	15:54	71° 59.03' S	43° 43.98' W	2767.0	SE 6	290.7	0.3	MABEL/Ozeanogr.Instrument	into water	erst.mall
PS61/029-2	03.01.02	16:42	71° 58.97' S	43° 44.36' W	2769.0	SSE 7	328.4	0.2	MABEL/Ozeanogr.Instrument	on depth	80 m
PS61/029-2	03.01.02	17:40	71° 58.80' S	43° 44.86' W	2772.0	SSE 7	307.9	0.5	MABEL/Ozeanogr.Instrument	on deck	
PS61/028-1	03.01.02	20:16	72° 9.75' S	43° 53.64' W	2508.0	S 10	228.1	3.0	Seismic reflection profile	Streamer i. w.	
PS61/028-1	03.01.02	20:36	72° 9.62' S	43° 56.54' W	2506.0	S 10	301.5	4.3	Seismic reflection profile	airguns i. w.	
PS61/028-1	03.01.02	20:41	72° 9.73' S	43° 57.61' W	2504.0	S 10	219.9	5.9	Seismic reflection profile	profile start	
PS61/028-1	03.01.02	22:09	72" 11,78' S	44" 13.21' W	2402.0	SW 12	6.5	0.4	Seismic reflection profile	01	
PS61/028-1	03.01.02	22:41	12" 11.88' S	44° 13.81' W	2398.0	SW 10	234.7	2.1	Seismic reflection profile	streamer i. w.	L
PS61/028-1	03 01 02	22.50	72 12.07 5	44° 17 57' W	23/8.0	SW 10	201.3	4.2	Seismic reflection profile	arguns I. W.	
PS61/028-1	04.01.02	00:26	72° 15 57' S	44° 22 66' W	2270.0	WSW 0	166 5	0.0	Seismic reflection profile	prome start	
PS61/028-1	04.01.02	00:51	72° 16 11' S	44° 25 67' W	2251 0	WSW 10	147 F	2.3	Seismic reflection profile	Streamer i w	
PS61/028-1	04.01.02	01:01	72° 16.36' S	44° 24.59' W	2244.0	WSW 9	37.1	3.0	Seismic reflection profile	Streamer i w	
PS61/028-1	04.01.02	01:05	72° 16.19' S	44° 24.68' W	2247.0	SW 9	324.3	2.3	Seismic reflection profile	airgun i. W.	
PS61/028-1	04.01.02	01:08	72° 16.12' S	44° 25.02' W	2252.0	SW 10	279.5	4.2	Seismic reflection profile	profile start	
PS61/028-1	04.01.02	02:33	72° 20.60' S	44° 14.26' W	2169.0	WSW 8	190.9	0.2	Seismic reflection profile		
PS61/028-1	04.01.02	02:52	72° 20.61' S	44° 14.33' W	2167.0	W 7	195.5	0.1	Seismic reflection profile	end of profile	
PS61/030-1	04.01.02	12:52	71° 21.83' S	42° 57.62' W	3436.0	WNW 8	340.1	1.0	CTD - Seabird	surface	
PS61/030-1	04.01.02	13:57	71° 21.53' S	42° 57.25' W	3443.0	NW 8	75.3	0.3	CTD - Seabird	at depth	tief3393m
PS61/030-1 (04.01.02	14:50	71° 21.50' S	42° 56.97' W	3439.0	NW 9	178.2	0.2	CTD - Seabird	on deck	
PS61/031-1 (05.01.02	17:46	68° 60.00' S	47° 55.54' W	3591.0	WNW 7	71.3	0.5	CTD - Seabird	surface	

¢

Station	Date	Time	Position	Position	Depth	Wind	Course	Speed	Gear	Action	Comment
			Lat	Lon	[m]	(m/s)	[°]	[kn]			
PS61/031-1	05.01.02	18:58	68° 59.57' S	47° 53.40' W	3595.0	NW 6	46.4	0.7	CTD - Seabird	at depth	3627m
PS61/031-1	05.01.02	19:56	68° 59.05' S	47° 52.22' W	3586.0	WNW 3	32.4	0.6	CTD - Seabird	on deck	
PS61/032-1	05.01.02	20:17	68° 59.65' S	47° 48.26' W	3641.0	WNW 5	147.8	3.5	Seismic reflection profile	Streamer i. w.	
PS61/032-1	05.01.02	20:34	69° 0.33' S	47° 49.48' W	3667.0	WNW 3	273.2	2.8	Seismic reflection profile	airguns i. w.	
PS61/032-1	05.01.02	20:34	69° 0.33' S	47° 49.48' W	3667.0	WNW 3	273.2	2.8	Seismic reflection profile	profile start	
PS61/032-1	07.01.02	11:40	69° 11.20' S	56° 14.70' W	0.0	S 7	84.0	3.0	Seismic reflection profile	array on deck	
PS61/032-1	07.01.02	11:50	0° 0.00' N	0° 0.00' E	0.0	N 0	0.0	0.0	Seismic reflection profile	streamer o. d.	
PS61/033-1	07.01.02	21:28	68° 32.30' S	57° 28.10' W	436.0	SW 5	66.0	3.2	Seismic reflection profile	Streamer i. w.	
PS61/033-1	07.01.02	21:42	68° 31.80' S	57° 25.40' E	386.0	SW 5	78.0	2.8	Seismic reflection profile	airguns i. w.	
PS61/033-1	09.01.02	16:30	68° 7.20' S	56° 24.70' W	556.0	SW 7	330.0	5.9	Seismic reflection profile	end of profile	
PS61/033-1	09.01.02	16:48	68° 7.00' S	56° 24.90' W	556.0	SW 7	336.0	0.3	Seismic reflection profile	streamer o.d.	
PS61/034-1	09.01.02	19:03	67° 53.00' S	56° 20.70' W	525.0	SW 5	200.0	0.1	CTD/rosette water sampler	surface	
PS61/034-1	09.01.02	19:17	0° 0.00' N	0° 0.00' E	0.0	N O	0.0	0.0	CTD/rosette water sampler	at depth	496m
PS61/034-1	09.01.02	19:32	67° 52.90' S	56° 20.20' W	527.0	SW 5	245.0	0.0	CTD/rosette water sampler	on deck	
PS61/034-2	09.01.02	19:44	67° 52.90' S	56° 20.00' W	527.0	SW 5	245.0	0.0	CTD	surface	GEO-Pack
PS61/034-1	09.01.02	21:41	67° 52.50' S	56° 19.20' W	523.0	WSW 5	248.0	0.0	CTD/rosette water sampler	on deck	
PS61/034-2	09.01.02	21:41	67° 52.50' S	56° 19.20' W	523.0	WSW 5	248.0	0.0	CTD	on deck	
PS61/035-1	10.01.02	02:35	67° 32.80' S	57° 31.80' W	461.0	SW 3	50.0	4.0	Seismic reflection profile	Streamer i.w.	
PS61/035-1	10.01.02	02:50	67° 32.20' S	57° 29.50' W	458.0	W 3	70.0	4.0	Seismic reflection profile	airguns i.w.	
PS61/035-1	13.01.02	10:13	67° 0.20' S	60° 7.10' W	410.0	NNE 3	166.0	5.9	Seismic reflection profile	array on d.	
PS61/035-1	13.01.02	10:25	67° 0.50' S	60° 4.80' W	408.0	NNE 2	90.0	3.9	Seismic reflection profile	streamer o.d.	
PS61/036-1	13.01.02	13:12	66° 59.20' S	60° 3.30' W	417.0	NÓ	223.0	0.5	CTD - Seabird	surface	
PS61/036-1	13.01.02	13:24	66° 59.10' S	60° 3.30' W	400.0	NO	223.0	0.0	CTD - Seabird	at depth	396m
PS61/036-1	13.01.02	13:36	66° 59.10' S	60° 3.20' W	400.0	N 0	120.0	0.0	CTD - Seabird	on deck	
PS61/037-1	13.01.02	13:47	66° 59.10' S	60° 3.40' W	418.0	NO	120.0	0.0	CTD	surface	GEO-PACK
PS61/037-1	13.01.02	15:57	66° 59.00' S	60° 3.50' W	415.0	NNE 2	26.0	0.0	СТО	on deck	
PS61/038-1	14.01.02	01:51	66° 31.60' S	57° 9.50' W	547.9	ENE 5	66.2	4.3	Seismic reflection profile	Streamer i.w.	
PS61/038-1	14.01.02	01:58	66° 31.40' S	57° 8.40' W	538.8	ENE 6	65.2	3.3	Seismic reflection profile	airguns i.w.	
PS61/038-1	14.01.02	02:33	66° 30.09' S	57° 0.53' W	521.2	NE 7	67.2	6.2	Seismic reflection profile	profile start	
PS61/038-1	15.01.02	22:32	66° 15.06' S	56° 16.34' W	488.4	SW 8	269.0	5.9	Seismic reflection profile	array on d.	
PS61/038-1	15.01.02	22:47	66° 15.54' S	56° 17.89' W	466.7	SW 8	168.8	2.7	Seismic reflection profile	streamer o.d.	
PS61/039-1	17.01.02	09:17	65° 59.74' S	52° 24.86' W	2636.0	ENE 5	318.8	0.2	CTD - Seabird	surface	
PS61/039-1	17.01.02	10:04	65° 59.71' S	52° 25.30' W	2634.0	ENE 5	353.6	0.2	CTD - Seabird	at depth	2.588m
PS61/039-1	17.01.02	10:46	65° 59.63' S	52° 25.79' W	2619.0	ENE 5	249.7	0.5	CTD - Seabird	on deck	
PS61/039-2	17.01.02	10:54	65° 59.69' S	52° 25.96' W	2628.0	ENE 5	230.6	0.8	CTD	surface	M.Calcara
PS61/039-2	17.01.02	11:16	65° 59.75' S	52° 26.29' W	2640.0	ENE 6	214.7	0.8	CTD	at depth	
PS61/039-2	17.01.02	12:10	65° 59.86' S	52° 27.00' W	2676.0	ENE 5	248.7	0.4	СТD	on deck	
PS61/039-2	17.01.02	12:10	65° 59.86' S	52° 27.00' W	2676.0	ENE 5	248.7	0.4	CTD	on deck	
L									Lanna	J	L

App. 2: Distribution of helicopter flights for Helimag during the center cruise

Institutionen / Participating Institutions

France

CEA-DSM-LSCE B.P. 91191 Gif-sur-Yvette

Germany

Alfred-Wegener-Institut für Polar- und Meeresforschung Columbusstraße D-27515 Bremerhaven

Alfred-Wegener-Institut für Polar- und Meeresforschung Forschungsstelle Potsdam Am Telegrafenberg A 43 D-14473 Potsdam

DLR Braunschweig Lilienthalplatz 7 D-38108 Braunschweig

DLR Oberpfaffenhofen D-82234 Weßling

Deutscher Wetterdienst Geschäftsfeld Seeschiffahrt Bordwetterdienst Jenfelder Allee 70 A D-20359 Hamburg

Fachhochschule Hamburg Winterhuder Weg 29 D-22085 Hamburg

Helikopter Service Wasserthal GmbH Kätnerweg 43 D-22393 Hamburg

INES Stahlbau GmbH An der Packhalle VI D-27572 Bremerhaven

Kaessbohrer Geländefahrzeuge AG Erich-Rittinghaus-Straße 2 D-89250 Senden

Magson GmbH Carl-Scheele-Straße 14 D-12489 Berlin

OPTIMARE Coloradostraße 5 D-27580 Bremerhaven

Reederei Laeisz GmbH Barkhausenstraße 34 D-27568 Bremerhaven

<u>Italy</u>

Inst. Nazionale di Geofisica Via di Vigna Murata, 605 I-00143 Roma

<u>Japan</u>

National Institute of Polar Research 9-10, Kaga 2-chome, Itabashi-ku Tokyo 173-8515 Japan

The Netherlands

Institute for Marine and Atmospheric research University of Utrecht Princetonplein NL-3584 CC Utrecht

Technische Universiteit Delft Julianalaan 1234, Postbus 5 NL-2600 AA Delft

Fahrtteilnehmer / Cruise Participants

Name	ANT-XIX/1	ANT-XIX/2
Ackermann, Adolf		Х
Ahammer, Heinz		Х
Amaru, Maisha		Х
Anschütz, Helgard (ÜWI)		Х
Berns, Hans-Jürgen		X
Boebel, Tobias		X
Böhler, Ralf		X
Boßmeyer, Jens	X	
Brauner, Ralf		X
Büchsenschütz-Nothdurft, Ottokarl	X	Х
Buldt, Klaus	X	
Busch, Andreas		Х
Calcara, Massimo		Х
Cattani, Oliver		Х
Dietl, Klaus		Х
Dinkeldein, Wolfgang		Х
Drücker, Cord		Х
Ehlers, Birte		X
Eli, Izabella (ÜWI)		Х
El Naggar, Saad	Х	
Engbrodt, Ralf		Х
Feldt, Oliver		Х
Frenzel, Andreas		Х
Fritzsche, Diedrich		Х
Gemsa, Steffen		Х
Gerchow, Peter	Х	
Gerdes, Birte		X
Grobe, Hannes		Х
Guttau, Simone	Х	
Härting, Alexander	Х	
Hilmarsson, Sverrir		X
Hofmann, Jörg	Х	
Hofmann, Michael	Х	
Hult, Krister	Х	
Jaeschke, Andrea	Х	
Jannek, Jürgen		Х
Jokat, Wilfried		Х
Judt, Siegfried		Х
Kapieske, Uwe		
Karsten, Achim		X
Karsten, Lorenz		X
Keij, Willem-Dirk	······································	Х
Kipfstuhl, Sepp		Х

Name	ANT-XIX/1	ANT-XIX/2
Klaas, Andrew (ÜWI)		X
Koenig. Matthias		X
Köhler. Jens		X
König-Langlo, Gert		X
Kopsch, Conrad		X
Krause, Gunther	X	
Krischat, Joachim		X
Krocker, RalfI		X
Kroth, Ronald		X
Krüger, Olaf		X
Kühn, Daniela		X
Kühnle, Ulf	X	
Lahrmann, Uwe		X
Lambrecht, Astrid		X
Lensch, Norbert		X
Lindner, Kathleen		X
Mach, Dieter		X
Mackowiak, Bernhard (Journalist)		Х
Manthei, Wolfgang	X	
Medow, Anett		X
Neugebauer, Frank		X
Nicolaus, Marcel		X
Niederjasper, Fred	X	
Niemann, Steffen		X
Nixdorf, Uwe		X
Piel, Claudia		X
Rampf, Michael (ÜWI)		X
Reinke, Manfred	X	
Riedel, Sven (ÜWI)		X
Roschinsky, Jörg	Х	
Saltner, Charlotte		X
Schmidt-Aursch, Mechita		X
Schubert, Holger		Х
Schulz, Harry (ÜWI)		Х
Snellen, Henk		X
Sonnabend, Hartmut		Х
Stoof, Günter		X
Sulzbach, Frank		Х
Takada, Morimasa		Х
Tausendfreund, Wolfgang	X	
Thorman, Janina	X	
Van As, Dirk		Х
Van Den Broeke, Michiel		Х
Wagner, Carsten (ÜWI)		X
Wagner, Eberhard	X	
Warnecke, Volker (ÜWI)		X

Name	ANT-XIX/1	ANT-XIX/2
Wassermann, Stephanie		X
Wehrbach, Johann		Х
Weynand, Markus		Х
Wilhelms, Frank		Х
Woicke, Günther	X	
Wölk, Markus (ÜWI)		X
Zenker, Uwe	X	
Zepick, Burkhard		X
Ziemann,Olaf	X	

Schiffspersonal / Ship's crew

Name		ANT-XIX/1	ANT-XIX/2
Pahl, Uwe	Master	Х	X
Grundmann, Uwe	1. Offc	Х	
Domke, Uwe	1. Offc		Х
Schulz, Volker	Ch.Eng	Х	Х
Rodewald, Martin	1. Offc./L	Х	
Rodewald, Martin	2. Offc.		X
Peine, Lutz G.	2.Offc.	Х	
Fallei, Holger	2. Offc.		X
Thieme, Wolfgang	2. Offc.		Х
Kohlberg, Eberhard	Doctor	Х	
Lezius	Doctor		Х
Hecht, Andreas	R.Offc.	Х	Х
Erreth , Monostori, G.	1.Eng.	Х	Х
Krohn, Günter	2. Eng.	Х	Х
Simon, Wolfgang	2.Eng.	Х	Х
Baier, Ulrich	Electron.	Х	Х
Dimmler, Werner	Electron.	Х	Х
Fröb, Martin	Electron.	Х	Х
Holtz, Hartmut	Electron.	Х	Х
Piskorzynski, Andreas	Electron.	Х	Х
Loidl, Reiner,	Boatsw.	Х	Х
Neisner, Winfried,	Carpenter	Х	Х
Bäcker, Andreas	A.B.	Х	Х
Bastigkeit, Kai	A.B.	Х	Х
Guse, Hartmut	A.B.	Х	
Hagemann, Manfred	A.B.		Х
Hartwig, Andreas	A.B.	Х	Х
Moser, Siegfried	A.B.	Х	
Schmidt, Uwe	A.B.	Х	Х
Schröder, Norbert	A.B.		Х

Name		ANT-XIX/1	ANT-XIX/2
Winkler, Michael	A.B.		Х
Beth, Detlef	Storek.	X	Х
Arias Iglesias,, Enr.	Mot-man		Х
Dinse, Horst	Mot-man	X	Х
Fritz, Günter	Mot-man	X	
Krösch, Eckard	Mot-man	X	Х
Fischer, Matthias	Cook	X	Х
Martens, Michael	Cooksmate	X	Х
Tupy, Mario	Cooksmate	X	X
Dinse, Petra	1.Stwdess	X	Х
Brendel, Christina	Stwdss/Kr	Х	Х
Deuß, Stefanie	2.Stwdess	X	Х
Schmidt, Maria	2.Stwdess	Х	Х
Streit, Christina	2.Stwdess	X	Х
Wu, Chi Lung	2. Stwd.		Х
Tu, Jian Min	2. Stwd.		Х
Yu, Chung, Leung	Laundrym.		Х
Kruse, Lars	Apprentice		Х
Wanke, Steffen	Apprentice		Х