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Rheological Properties of Temperate Firn

By Walter Ambach and Heinrich Eisner*

Summary: On an approximately 20 m deep firn pit in the accumulation area of an Alpine glacier, deformation measurements have been car-
ried out over a period of 11 years. Evaluation of the data was performed by application of a Newtonian model, determining the shear- and
bulk viscosity as well as by introduction of a non-linear constitutive equation for temperate firn. For the transition for firn into glacier ice,
Glen’s Flow Law for incompressible ice results.

Zusammenfassung: In einem etwa 20 m tiefen Firnschacht im Akkumulationsgebiet eines Alpengletschers wurden iber 11 Jahre Verfor-
mungsmessungen durchgefithrt, Die Auswertung erfolgte einerseits durch Anwendung eines Newton’schen Modells mit Bestimmung der
Scher- und Volumsviskositét, andererseits durch Einfithrung eines nichtlinearen FlieBgesetzes fiir temperierten Firn. Bei der Umwandlung
von Firn in Gletschereis ergibt sich daraus das Glen’sche Flieigesetz fiir inkompressibles Eis.

1. INTRODUCTION

Temperate firn is snow with high density which has outlasted a balance year and may later turn into gla-
cier ice by metamorphosis and refreezing of meltwater. The delimitation between firn and glacier ice is gi-
ven by the fact that firn is an air- and water-permeable material, whereas glacier ice is air- and water-
impermeable. In addition, firn is compressible, whereas glacier ice is treated as incompressible material.
In a temperate glacier, the transition from firn to ice takes place in a depth of approximately 20 to 30 m,
largely depending on the annual net balance.

In order to investigate the rheological properties of firn in a temperate glacier, deformation measure-
ments of o firn pit were carried out between 1967 and 1978. Originally, the pit was 20 m deep and had a
elreular erossesection, In 14 different depths along the wall of the pit, 6 to 7 markers each were placed and
thelr relutive distances measured In intervals of one year. The deformed cross-sections of the pit were ap-
proximated by means of ellipses, the centres of the ellipses being located on the pit-axis. The tilt of the
pht-axis was determined from the horizontal distances of the centres of the ellipses from the plumb line
and from their relative vertical distances.

The pit is located in the central region of the accumulation area of Kesselwandferner (Oetztal Alps) in an
altitude of 3240 m a.s.l. The water equivalent of the averaged annual net balance between 1967 and 1980
amounts to 1,3 m at this site. From velocity measurements on the surface it is known that longitudinal
und transverse strain rates occur at the site of measurements (SCHNEIDER, 1970). With respect to the
state of stress, the pit is therefore not located in a neutral zone.

Pig. 1 gives a schematic representation of the pit deformation for the period from 1967 to 1978. The mea-
sured values are the tilt of the pit-axis, the compression of the individual layers, the increase of the diame-
ter in flow direction, and the decrease of the diameter in transverse direction. Moreover, the depth profile
of density and the surface tilt along the flow distance are known (EISNER & AMBACH, 1981; SCHNEI-
IPER, 1970). For the analysis, however, measured values for the period from 1967 to 1974 only were
wwed, since from 1975 onwards, some of the measured values have been systematically disturbed by the
formation of a large firn crevasse (EISNER et al., 1984a).

The lengths of the major and minor axes of the elliptically deforined cross-sections of the pit and the
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Fig. 1: Schematic representation of pit deformation for the pe-
riod from 1967 to 1978 (From: EISNER & AMBACH, 1981).

Abb. 1: Schematische Darstellung der Schachtverformung in der
Periode von 1967 bis 1978 (Aus: EISNER & AMBACH 1981).

thicknesses of the individual layers of firn were
determined as functions of time. These functions
can be approximated by straight lines, so that a
strain rate results which is constant with respect
to time (AMBACH & EISNER, 1986). The verti-
cal course of the pit-axis was also approximated
by a straight line.

The rheological properties of temperate firn can
be treated from 2 different points of view:

— From point of view of linear snow mechanics:
The shear viscosity 4 and bulk viscosity 7, being the material properties for the given state of stress,
are being determined as “effective quantities”’. The analysis is based on the assumption of a Newto-
nian Model and represents a linear set-up.

— From point of view of non-linear ice mechanics:
A non-linear constitutive equation for temperate firn is formulated, resulting in *’Glen’s Flow Law”’
at the transition from firn to ice.

2. NEWTON’S MODEL

In snow mechanics, deformations are often dealt with by means of a linear model (Newton’s Model). It is
being assumed that u and n are functions of density and structure, but do not depend on the state of
stress. This assumption is not correct (SALM, 1967), so that the results apply for the in situ state of stress
only and have to be interprefed as *’effective quantities’’. The linear model allows a multiaxial state of
stress to be represented as linear superposition of uniaxial states of stress (Fig. 2), when the same values
of 1 and n apply for the multi-axial and the uni-axial state of stress.
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The application of a linear model is required, since only the snow load is known from the state of stress at
the pit and therefore the strain rates, caused by the snow load alone, can be related to it. The following li-
near constitutive equation is being introduced (EISNER et al., 1984b):

o4 = 2ué; + (n— 2/3w)); & %))
=20, =1/, )
el

with Oij éij being the components of the stress tensor and the strain rate tensor, ¢ 'ij’ é ’ij the deviators,
I;, 1, the first invariants of the stress and the strain rate tensor, 6ij Kronecker’s Symbol, and u, 7 the
shear-and the bulk viscosity.

For the uni-axial state of stress, caused by the snow load o,,, one gets (EISNER at al., 1984b):
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with ¢ being the stress resulting from the snow load, cz)y the strain rate from the uni-axial state of stress
a, in y-direction, » the viscous Poisson’s Ratio, and u, n the shear- and bulk viscosity. v ist calculated as
a tunction of density (BADER et al., 1951).

The values z and n can be represented as a function of depth and density, however, they have to be inter-
preted as *’effective quantities’’. In order to compare temperate firn with other types of snow, the *’com-
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pactive viscosity” 1, according to
Me=n+4/3u (5).

is calculated (MELLOR, 1975). The values of 7, fit with values of old snow, if extrapolated in larger den-
sity ranges (Fig. 3). They are, however, lower than the values of polar firn with the same density by a fac-
tor of approx. 1072, since the viscosity depends considerably upon the temperature.

3. NON-LINEAR CONSTITUTIVE EQUATION

The non-linear constitutive equation for temperate firn, developed here, consists of a deviatoric and an
isotropic term and is expressed as

&; =€ + 1/31,0, 6)
In this equation, é; are the components of the strain rate tensor, ¢’;; the components of the deviator, J, is
the first invariant of the strain rate tensor, and éij is Kronecker’s Symbol. This set-up aiready contains the
splitting-up of the strain rate components into a deviatoric term (é’ij) and an isotropic term (1/3] 151j)-
The deviatoric term describes mere alterations of shape, caused by the stress deviator, whereas the isotro-
pic term describes mere changes in volume, caused by a confining pressure. The confining pressure
corresponds to the isotropic part of the tensor in the state of stress. At the transition from firn to ice,
»’Glen’s Flow Law’’ for incompressible ice must result from the constitutive equation for temperate firn.

3.1 The deviatoric term of the constitutive equation
Expressed in components, ’Glen’s Flow Law’’ reads

€= ATt o'y ™

A is a material constant depending upon temperature. All further symbols are defined in the list below.
Analogously to equation (7), the equation.

¢’y =D (" g0 ®)

is introduced, with g* being a dimensionless parameter for density as

Q* = 4 ®
Qice — @

For ice, g* — o holds true. The factor 72,40} in equ. (8) describes the dependence €’;; upon the stress, the
function D (g*) the dependence upon the density.

Fig. 4 shows the function D (g*) with following characteristic properties:

— With increasing values of g*, D (g*) decreases monotonously. This decrease corresponds to an in-
creased resistance against alterations of shape of firn with higher densities.

— D (g*) can be represented as sum of 2 exponential functions, covering both the left-hand steep range
and the right-hand flat range in a satisfactory way. :

— For large values of g*, D (g*) approaches a constant value. To demonstrate this value graphically,
the scale is extended by the factor 50 for @* = 6 in Fig. 4.

An adequate analytical shape for D (g*) in the range of 2<g*=<12 reads
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D{e*) = A + Dyexp(—d,0*) + Dyexp(—d,e®) (10)

The constants A, Dy, Dy, dy, d, have been calculated numerically from the plot of the measured data by
adapiion of the parameters and ave valid for the range of density from approx. 600 kg/m?® to 850 kg/m?3.
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tion of the parameters. With increasing values for ¢*, H(g*) decreases monotonously. This, again,
corresponds to an increased resistance against changes in volume of firn with higher density. With
o* — o one gets the limiting value H(p*) — 0 for incompressible ice.

3.3 Discussion and numerical results:

An essential point of the analysis is the reconstruction of the components of the strain rate tensor and the
stress tensor from the measured values. In this connection the following problems are of importance
which are discussed comprehensively in the literature quoted:

— The calculation of the vertical stress component from the snow load by a profile of density, as well as
the calculation of the resulting shear stress (AMBACH & EISNER, 1986). The cross-section profile
of the glacier bed is taken into consideration according to NYE (1965).

— The transformation of the measured values for the pit deformation into corresponding deformation
values for a solid body (EISNER et al., 1984b). The deformations have been measured at a cavity,
whereas the constitutive equation is valid for a solid body.

— The dependency of the viscous Poisson’s Ratio upon the density (BADER et al., 1951) and the state
of stress (SALM, 1977). The viscous Poisson’s Ratio is required for the above-mentioned transforma-
tion of the strain rate components of the cavity into those of a solid body. It is shown, however, that
the viscous Poisson’s Ratio does hardly influence the constitutive equation (AMBACH & EISNER,
1986).

— The calculation of the shear strain rate from the tilt rate of the pit axis (EISNER et al., 1984a).

— The set-up implies that in the constitutive equation, the same power is valid for snow and ice as far as
the stress dependency of the deviatoric strain rate components is concerned. This power is assumed to
be independent of the density of the firn (AMBACH & EISNER, 1986; MELLOR, 1975: 274,
fig. 16).

The result is a non-linear constitutive equation for temperate firn in the range of 2 = o* =12:

&; = D(eMa’y; + 1/3 H(eM1,5; 13
D(e*) = A + Dexp(—d,o*) + D,exp(—d,e*) (14)
H(g*) = Hyexp(—h ¢*) + H,exp(—d,e%) s

A =6,04x 107 kPa—%~!, D, = 3,94 x 10~ 1%Pa—3s—!
D, = 7,07 x 10~ B kPa—%~!, d, = 2,071, d, = 0,419

Hy = 4,74x 107" kPa—)s~!, H, = 9,64 x 10~ kPa—1s—!
h; = 1,081, h, = 0,131

d;, dy, hy, h, are dimensjonless values. At the transition from firn to ice, ’Glen’s Flow Law"’, expressed
in components, is obtained for g* — o from equ. 13

€y = Arlyy o’y (16)

The constant A for temperate ice has been determined numerically by various authors. Because of the in-
fluence of the water- and dirt contents values for A show a large scatter PATERSON (1981: 39, table 3.3)
provides a survey of these values and recommends a mean value of A = 5,3 x 10— %kPa—%~"! for ice at
0 °C. Compared with this value, the present investigation results in A = 6,04 x 10— 15kPa—3s~1. In view
of the range of scattering of these values in literature, a satisfactory numerical agreement is obtained.
Therefore ’Glen’s Flow Law’’ turns out to be the limiting case for the presently developed constitutive
equation for temperate firn.
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List of symbols

A constant of material

Dy, b, constant of material

dy, dy

D (") parameter of constitutive equation, depending on g*
C'“ (¢ components of strain rate tensor (deviator)

X% pyy, ¢ uniaxial strain rate in x-direction (subscript), caused by 7, (superscript), analogously in y,
?

+ 14 . .
SR 7 directions
Hy, 1, e ) ;
A constants of material
1 by
Hip*) parameter of the constitutive equation, depending on g*
i first fnvariant of stress tensor

first invariant of strain rate tensor

Podaon’s ratio
1 Cdensity of lee, p* o= o
tetner (deviafor)

Pitesainte

U B OEA) Proapoml Bor g constitative equation of temperate fitn, — Cold Regions Science and Tech-
Loy doweph, Job & Mo A Kanddgren (1951 Preliminary investigations of some physical
o s sl Hepon 7
& W A bae b (1981 St rste easureients on w20 m deep fien pit in a temperate glacier (Kesselwandferner,
st Adg VBT JRH, o 7 1 Cletscherkde, u, Glazinlgeol, 17 (1) 169176,
b, Ambach, Wk M, Behuelder (1984a) Time dependent tilt of a 20 m deep firn pit. Polarforschung 54 (2):
; Vi
Hy Ambavh, W, & H. Schneider (1984b): Evaluation of strain rate measurements on a 20 m deep firn pit,
pitving o Mewioidan Model (Kesselwandferner, Otztal Alps, 1967—1978), — Z. {. Gletscherkde. u. Glazialgeol. 20: 169—176.
‘i (EHTH A veview of basic snow mechandes. -~ Intern. Assoc. of Hydrological Sciences Publ. 114 (Symposium of Grindel-
g4 5); 251291,
P18B5): The flow of a glacier in o channel of rectangular, elliptic or parablic cross-section. — J. Glaciol. § (41): 661—690.
o W B I (IR The phivsles of glaclers, 2nd ed. — Oxford.
A srisn of vherlfy trinxial ereep mechanics of snow. — In: H. Oura, Ed., Physics of snow and ice, International
low temperatuee selence, 1966 Sapporo, Proceedings Vol. 1, Part 2, 857—874, Hokkaido University, Institute of
raiiie folenve, Rapporo, ¢
<o 3s Claclol, 19 (81) 67100
; HLei0p Die Grandiagen der Vermessungen am Kesselwandferner (Otztaler Alpen) und die Berechnung dieses Glet-
§i den Haushulizlaluen 1965/66, 1966767 und 1967/68. — Diss. Phil. Fak. Universitdt Innsbruck.

77




