Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of $p$CO$_2$

Allen J. Milligan$^1$
Department of Geosciences, Princeton University, Princeton, New Jersey 08544

Diana E. Varela$^2$ and Mark A. Brzezinski
Department of Ecology, Evolution, and Marine Biology and the Marine Science Institute, University of California, Santa Barbara, California 93106

François M. M. Morel
Department of Geosciences, Princeton University, Princeton, New Jersey 08544

Abstract

Opal accumulation rates in sediments have been used as a proxy for carbon flux, but there is poor understanding of the factors that regulate the Si quota of diatoms. Natural variation in silicon isotopes ($\delta^{30}$Si) in diatom frustules recovered from sediment cores are an alternative to opal mass for reconstructing diatom Si use and potential C export over geological timescales. Understanding the physiological factors that may influence the Si quota and the $\delta^{30}$Si isotopic signal is vital for interpreting biogenic silica as a paleoproxy. We investigated the influence of $p$CO$_2$ on the Si quota, fluxes across the cell membrane, and frustule dissolution in the marine diatom *Thalassiosira weissflogii* and determined the effect that $p$CO$_2$ has on the isotopic fractionation of Si. We found that our Si flux estimates mass balance and, for the first time, describe the Si budget of a diatom. The Si quota rose in cells grown with low $p$CO$_2$ (100 ppm) compared with controls (370 ppm), and the increased quota was the result of greater retention of Si (i.e., lower losses of Si through efflux and dissolution). The ratio of efflux:influx decreased twofold as $p$CO$_2$ decreased from 750 to 100 ppm. The efflux of silicon is shown to significantly bias measurements of silica dissolution rates determined by isotope dilution, but no effect on the Si isotopic enrichment factor ($\varepsilon$) was observed. The latter effect suggests that silicon isotopic discrimination in diatoms is set by the Si transport step rather than by the polymerization step. This observation supports the use of the $\delta^{30}$Si signal of biogenic silica as an indicator of the percentage utilization of silicic acid.

Diatoms play an important role in the export of carbon to the deep sea and control the reverse weathering of silicon in the oceans. This is caused by their high productivity and absolute requirement for silicon in cell wall formation. Silica production has been hypothesized to be a useful proxy of current and past carbon export production (Dugdale and Wilkerson 1998; Ragueneau et al. 2000). The usefulness of this proxy is dependent on understanding the factors that influence the Si:C ratio of the phytoplankton community as a whole and diatoms in particular, as well as the dissolution of silica during sinking and the preservation efficiency of silica in sediments.

Here we focus on cellular level processes and investigate the effects of growth conditions on silicic acid (Si(OH)$_4$) metabolism in the marine diatom *Thalassiosira weissflogii* under saturating concentrations ([Si(OH)$_4$] = 40 μmol L$^{-1}$) of silicic acid. A number of studies have measured the fluxes of Si in diatoms, but none have measured all fluxes under the same conditions (e.g., Sullivan 1976; Ragueneau et al. 2001 and references therein).

There are four important cellular fluxes of Si(OH)$_4$ (if we ignore the fluxes between intracellular compartments) (Fig. 1): (1) Influx is the transport rate across the plasmalemma from outside to inside the cell. (2) Incorporation is the rate of frustule formation (simply calculated as Si cell$^{-1}$ multiplied by the specific growth rate $\mu$). (3) Efflux is the outward transport rate across the plasmalemma, either via the Si transporter or diffusion of some Si species (the internal speciation of Si is not known). (4) Dissolution is the rate of depolymerization of silica to silicic acid. We can also calculate two additional fluxes. (5) Loss is the sum of dissolution and efflux. (6) Net uptake is the difference between influx and loss.

Silicic acid efflux has, to date, not been measured under steady-state silicic acid concentrations in diatoms, but work under non-steady-state conditions has shown that efflux is

---

1 Present address: Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, New Jersey 08901 (allenm@princeton.edu).
2 Present address: Department of Biology & School of Earth and Ocean Sciences University of Victoria, Victoria, British Columbia V8W 3N5, Canada.

Acknowledgments

We thank Michael Bender and Danny Sigman for helpful discussions. Phillipe Tortell provided advice and materials for the silicon oil centrifugation method. Janice Jones helped in running samples for silicon isotopic ratios in the mass spectrometer. Two anonymous reviewers provided comments on the manuscript.

Funding was provided by Center for Bioinorganic Chemistry NSF/CEBIC grant CHE 0221978, National Science Foundation (NSF) Biocomplexity grant DEB-0083566 to A.J.M. and F.M.M.M., NSF grant OCE-972996 to M.A.B., and an NSERC postdoctoral fellowship to D.E.V.
positively correlated to the external concentration of Si(OH)₄ (Sullivan 1976). Nutrient effluxes under steady-state conditions are commonly measured in vascular plants (MacRobbie 1971; Britto and Kronzucker 2001), and we applied those techniques to measuring the Si(OH)₄ effluxes in diatoms.

Diatoms fractionate isotopes of silicon, discriminating against the heavier (³²Si) isotope (De La Rocha et al. 1997). Natural variations in isotopes of biogenic silica from sediment cores can potentially be used to estimate the relative utilization of Si in surface waters over geological timescales (De La Rocha et al. 1998; Brzezinski et al. 2002). Understanding the physiological factors that may influence the Si isotopic signal is vital for interpreting the δ³⁰Si signal in diatoms. The δ³⁰Si signal in diatoms has been shown to be unaffected by growth temperature and dissolution of the frustule (De La Rocha et al. 1998), but the physiological mechanism that leads to fractionation is not known. Specifically, it is unknown whether fractionation occurs during Si transport across the cell membrane or during silica deposition. The influence of changes in the ratio of Si(OH)₄ influx to Si(OH)₄ efflux on the silica δ³⁰Si can provide insight as to the mechanism of fractionation. By analogy to stable carbon isotopes and given the assumption of an intracellular isotopic discrimination step, we expect that fractionation would be maximal at a high efflux:influx ratio, because a high efflux rate decreases the likelihood that the heavy isotope (³²Si) will be incorporated into silica before it is lost from the cell. A low efflux:influx ratio increases the likelihood that the heavy isotope will react within the cell and become incorporated into the frustule, resulting in diminished fractionation. The overall isotope effect is related to the flux ratio according to the equation

\[ \epsilon_f = \epsilon_i + (\epsilon_p - \epsilon_i)\rho_e / \rho_i \]  

where \( \epsilon_f \) is the isotope effect measured in the frustule, \( \epsilon_i \) is the isotope effect for transport into the cell, \( \epsilon_p \) is the isotope effect for transport out of the cell, \( \rho_e \) is the isotope effect for polymerization, and \( \rho_i / \rho_e \) is the efflux:influx ratio (Popp et al. 1989). Hence, the overall isotope effect is a linear function of the flux ratio.

Recent evidence that the siliceous cell wall of diatoms is an effective pH buffer for the enzyme carbonic anhydrase and that it enables the enzymatic conversion of bicarbonate to CO₂ suggests that the silicon metabolism may be influenced by the partial pressure of CO₂ (pCO₂) (Milligan and Morel 2002). Here we investigate the influence of an environmentally realistic range of pCO₂ (0.3–2 times atmospheric pCO₂) on the Si quota and fluxes across the cell membrane in asynchronous cultures of the diatom T. weissflogii and determine the effect of pCO₂ on the isotopic discrimination of Si (expressed as the enrichment factor e). Silicic acid transport is cell cycle–dependent in diatoms with the greatest uptake rates during the G2 + M phase (Claquin et al. 2002). Because T. weissflogii cannot be synchronized, we grew cultures in continuous light in order to completely randomize (asynchronous growth) the cell cycle.

Methods and materials

Culture conditions—An axenic culture of the marine diatom T. weissflogii (clone Actin) was obtained from the Center for the Culture of Marine Protozoa. Continuous saturating irradiance was provided at a photon flux density of 160 μmol m⁻² s⁻¹ using fluorescent bulbs below the cultures. Temperature was maintained at 20°C. Cultures were grown using Aquil artificial seawater medium (Price et al. 1988/89), with some modifications. Macronutrients were added at 100 μmol L⁻¹ NO₃, 100 μmol L⁻¹ Si(OH)₄, and 10 μmol L⁻¹ PO₄, and Zn was doubled (Zn²⁺ = 30 pmol L⁻¹). Medium and culture flasks were microwave sterilized in polycarbonate (PC) bottles. All medium preparation and sample handling was carried out in a class 100 laminar flow hood. All plasticware was acid-cleaned by soaking in 10% trace metal grade HCl for 2–5 d and rinsed five times with 18.2 MΩ cm deionized water. Unchelated (Zn²⁺ and Fe²⁺) metal concentrations were calculated using the thermodynamic equilibrium program Mineql (Westall et al. 1976). Axenicity was verified using acidine orange staining and epifluorescence microscopy.

High (750 ppm) and low (100 ppm) partial pressures of CO₂ were controlled using premixed gasses (Scott). Atmospheric level CO₂ was provided using laboratory air. Equilibrium was maintained by bubbling cultures with acid-washed plastic air diffusers, and, to ensure that partial pressures remained constant during growth, pH was monitored daily.

Growth and biomass measurements—Triplicate samples for cell counts and cell volume from each replicate flask were obtained using a Coulter particle counter (Model II A) fitted with a 70-μm aperture. Growth was calculated from changes in cell counts through time. Cellular silicon quotas were obtained by filtering triplicate 20–40-ml aliquots of culture from each replicate flask onto 3.0-μm pore size PC (Poretics) filters. Total Si in biosilica was measured using 0.2 mol L⁻¹ NaOH digestion and colorimetric determination of Si (Pasche 1980).

Si uptake—Silicon uptake and efflux rates were obtained using ³²Si (Los Alamos Laboratory)–amended cultures. For long-term (1 h) uptake rates, cells were harvested at the mid-exponential phase ([Si(OH)₄] 40–50 μmol L⁻¹) onto 3.0-μm
pore size PC filters, rinsed, and resuspended in Si-free medium. Aliquots (25 ml) were dispensed into acid-cleaned duplicate PC tubes with Si additions of 0–25 μmol L⁻¹ and spiked with 315 Bq ³²Si. At the end of the incubation period, each tube was filtered onto 0.2-μm pore size 25-mm PC filters and rinsed with 3 × 10 ml radioisotope-free medium. The total amount of Si incorporated was determined by liquid scintillation counting and was calculated according to the method of Brzezinski and Phillips (1997). Uptake data were fitted to the Michaelis-Menten equation using nonlinear regression (Sigma plot 7.0).

Short-term (10 s) uptake rates were determined using a silicon oil centrifugation method (Badger et al. 1980; Tortell et al. 2000). Cells (2 × 10⁷) were harvested at the exponential phase ([Si(OH)₄] 40–50 μmol L⁻¹) onto 3.0-μm pore size PC filters, rinsed, and resuspended in 1 ml of bicine buffer with seawater salts (pH 8, [Si(OH)₄] = 50 μmol L⁻¹). Concentrated cells (200 μl) were layered on top of silicon oil in 0.6-ml microcentrifuge tubes. Illumination was provided from below at a photon flux density determined by loading 2 filters and rinsed with 3 mL of culture medium with a unlabeled silicic acid concentration of 100 μmol L⁻¹. Aliquots (5 ml) were spiked with 315 Bq ³²Si. At the end of the incubation period, the method of Brzezinski and Phillips (1997). Uptake data were fitted to raw and log 10 -transformed data using linear and nonlinear regression (Sigma plot 7.0).

Results

Si efflux—Efflux rates were determined using 1-liter cultures grown at 100 and 750 ppm CO₂ in the presence of 12,600 Bq ³²Si for five to six generations. Efflux rates were determined by loading 2 × 10⁶ cells, harvested at the mid-exponential phase ([Si(OH)₄] 40–50 μmol L⁻¹), onto an acid-cleaned 3-μm pore size, 25-mm PC filter supported on an acid-cleaned 25-mm PC cartridge (volume 1.6 ml). Illumination was provided from below at a photon flux density of 500 μmol m⁻² s⁻¹ using a tungsten-halogen bulb from a slide projector. To start the incubation, 315 Bq of ³²Si was added and mixed with the pipette. Incubations were terminated by centrifugation through the silicon oil layer into a basic terminating solution (2.5 mol L⁻¹ NaOH and 10% methanol). The resulting pellet was immediately frozen in liquid nitrogen. The pellet was harvested by cutting off the base of the centrifuge tube and quantified using liquid scintillation counting, as described above.

Si dissolution—Si dissolution rates were measured according to the method of Bidle and Azam (2001). Axenic cultures (250 ml) were grown at 100 and 750 ppm CO₂ partial pressures in Aquil in the presence of 6,400 Bq ³²Si for six to seven generations. Triplicate samples (50 ml) were harvested in at the midexponential phase ([Si(OH)₄] 40–50 μmol L⁻¹). Cells were broken with seven rounds of freezing and thawing (−75–50°C) and incubated at 20°C and 100 and 750 ppm CO₂ partial pressures for 48 h. Aliquots (5 ml) were filtered through 0.2-μm pore size sterile cartridge filters, and the filtrate was retained for scintillation counting. Specific and cell-normalized dissolution rates were calculated according to the method of Bidle and Azam (2001).

Effect of pCO₂ on diatom δ³⁰Si—Triplicate 2-liter cultures were grown under 100 and 750 ppm CO₂ partial pressures in Aquil with 200 μmol L⁻¹ silicic acid. After a 10% draw down of source silicic acid, the cultures were harvested by filtration onto 25-mm PC filters with 3-μm pore size. Dissolved-phase Si was collected from 0.2-μm PC filtrate. δ³⁰Si values for the dissolved Si(OH)₄ and diatom silica (35 mmol Si per sample) were determined according to the method of De La Rocha et al. (1996).

Fig. 2. Biogenic silica quotas as a function of pCO₂ in the diatom T. weissflogii. (A) Si quota. (B) Biogenic silica quotas as a percent of 750 ppm treatment. Comparison of fixed (8.3 ± 0.1) and ranging pH (100 ppm, pH = 8.5 ± 0.1; 750 ppm, pH = 7.8 ± 0.1). Error bars are 95% confidence intervals calculated from three replicates.

750 ppm CO₂, partial pressures for 48 h. Aliquots (5 ml) were filtered through 0.2-μm pore size sterile cartridge filters, and the filtrate was retained for scintillation counting. Specific and cell-normalized dissolution rates were calculated according to the method of Bidle and Azam (2001).

Effect of pCO₂ on diatom δ³⁰Si—Triplicate 2-liter cultures were grown under 100 and 750 ppm CO₂ partial pressures in Aquil with 200 μmol L⁻¹ silicic acid. After a 10% draw down of source silicic acid, the cultures were harvested by filtration onto 25-mm PC filters with 3-μm pore size. Dissolved-phase Si was collected from 0.2-μm PC filtrate. δ³⁰Si values for the dissolved Si(OH)₄ and diatom silica (35 mmol Si per sample) were determined according to the method of De La Rocha et al. (1996).

Results

Si quota—Si quotas in T. weissflogii did not change with a rise of pCO₂ from 370 to 750 ppm, but a significant (P < 0.001, ANOVA) increase was observed at 100 ppm (Fig. 2A). To verify that the change in the Si quota was due to the partial pressure of CO₂ and not to pH-induced changes in metal speciation, control cultures were grown in which the pH was kept constant (pH 8.1 ± 0.1; 750 ppm, pH = 7.8 ± 0.1). Error bars are 95% confidence intervals calculated from three replicates.

Si uptake in 1-h incubations—Si uptake rates as a function of external Si(OH)₄ concentration did not show a detectable difference in the half-saturation constant (K₅₀) of high and low CO₂-grown cells (Fig. 3). Increases in the maximum rate of uptake (V₅₀) of 25% were observed with increasing pCO₂, and these differences were greater (42%) when the data were normalized to Si quotas (specific rates).

Si influx and efflux—The unidirectional influx of Si was estimated using a 10-s uptake time course under the assumption of a negligible loss of ³²Si from the cell during that time. Over these short-term timescales (and saturating Si(OH)₄ concentration of 50 μmol L⁻¹), there was no de-
**Fig. 3.** *T. weissflogii* uptake kinetics of Si from 1-h incubations. (A) Cellular Si uptake rate. Michaelis-Menten fits, values, and SEs are 100 ppm: $k_m = 15.2 \pm 1.3, V_{max} = 44 \pm 2.1$; 750 ppm: $k_m = 17.4 \pm 1.5, V_{max} = 55 \pm 2.7$. (B) Specific Si uptake rate. 100 ppm: $k_m = 14.9 \pm 1.3, V_{max} = 0.038 \pm 0.002$; 750 ppm: $k_m = 17 \pm 1.4, V_{max} = 0.054 \pm 0.003$. Raw data from two replicates.

Influx rates of Si were determined under steady state, saturating Si(OH)$_4$ concentrations (100 $\mu$mol L$^{-1}$) and with the assumption of no recapture of $^{32}$Si after efflux. The efflux of Si was greater at 750 ppm than at 100 ppm CO$_2$ (Fig. 3). Unidirectional efflux rates of $^{32}$Si were determined under steady state, saturating Si(OH)$_4$ concentrations (100 $\mu$mol L$^{-1}$) and with the assumption of no recapture of $^{32}$Si after efflux. The efflux of Si was greater at 750 ppm than at 100 ppm CO$_2$ (Fig. 5). Losses of $^{32}$Si from both high and low CO$_2$ showed a two-phase kinetic system. Each kinetic phase represents an internal cellular compartment of Si, with characteristic fluxes (fmol Si cell$^{-1}$ min$^{-1}$) and exchange constants ($k_a, k_b$ min$^{-1}$) given as the y intercept and slope, respectively (Fig. 5B) (MacRobbie 1971). Although it is not possible to identify the intracellular location of each pool with these data alone, the turnover times ($2/k_a \sim 7$ min $2/k_b \sim 50$ min) are on the order of turnover times for nitrogen in vascular plant cytosol (10 min) and vacuoles (100 min) (Britto and Kronzucker 2001; Britto et al. 2001).

**Si dissolution**—Silica dissolution rates of freeze-thaw—prepared, axenic frustules were dependent on ambient CO$_2$ (Fig. 6). At low CO$_2$, the specific dissolution ($V_{diss}$) was 0.6% d$^{-1}$ or 8 fmol cell$^{-1}$ d$^{-1}$. Incubations under high CO$_2$ resulted in a six- to sevenfold increase in dissolution rates ($V_{diss} = 4\%$ d$^{-1}$ or 40 fmol cell$^{-1}$ d$^{-1}$).

**Si isotope discrimination**—In incubations for silicon isotope measurements, the Si(OH)$_4$ concentration was drawn down 10–15% (Table 1). At this low substrate utilization, we assumed that the difference between the substrate [Si(OH)$_4$] and product (silica) was equivalent to the enrichment factor $\varepsilon$ ($\varepsilon = \varepsilon^{\text{Si}}$ Si(OH)$_4$ $- \varepsilon^{\text{Si}}$ silica). The enrichment factor was not affected by pCO$_2$ in *T. weissflogii* (Table 1). The average value of $\varepsilon$, $-1.5\%$ was somewhat higher than the value of $-1.1\%$ determined for this species by De La Rocha et al. (1997) but was within the reported error of the method.

**Discussion**

**Cellular mass-balance model of Si**—The results of Si quota and flux measurements can be used to formulate a Si mass-balance model for asynchronous *T. weissflogii* growing under saturating silicic acid concentrations ([Si(OH)$_4$] $\geq$ 40 $\mu$mol L$^{-1}$) at high and low pCO$_2$ (Fig. 7). In this calculation, we pooled the two-compartment efflux (Fig. 5B) into a single flux, to avoid making assumptions of how the internal pools are connected. The averages of our independent flux...
Fig. 5. (A) $^{29}$Si efflux curves for fully labeled (8–10 generations) *T. weissflogii* grown at high and low $p$CO$_2$. (B) Log (base 10) transformed efflux curves showing the linear regressions of each efflux phase. Error bars are 95% confidence intervals, calculated from three replicates.

Fig. 6. Dissolution of Si in broken, axenic frustules as a function of time in high and low $p$CO$_2$. Raw data from three replicates.

**Efflux and dissolution**—Laboratory studies have shown that, in the absence of bacteria, there is very little dissolution (0.4–0.9% d$^{-1}$) of silica from diatom detritus that retains the organic covering over the frustule (Bidle and Azam 2001). Our results for axenic dissolution rates agree well with those of Bidle and Azam (2001) but only under low CO$_2$. At high CO$_2$, we were surprised to find that dissolution rates were six- to sevenfold higher and that the highest dissolution rate was observed at low pH (7.7) rather than at high pH (8.4), as expected for SiO$_2$. We were able to rule out bacterially enhanced dissolution and to foresee three possibilities for this response. (1) Frustules produced under high CO$_2$ growth conditions may differ in the degree to which organic matter is effective in protecting silica from dissolution. (2) A decrease in the Si quota results in a change in the architecture of the frustule and a higher surface area of silica. A high surface area has been shown to be correlated with high dissolution rates (Dixit et al. 2001). (3) The increase in dissolution is an indirect effect of the decrease in pH. At pH 7.8, 20% of the aluminum (present as a trace contaminant in the medium) was chelated by EDTA, whereas aluminum was unchelated at pH 8.4 and was more bioavailable. The incorporation of unchelated aluminum in the silica matrix could decrease silica dissolution rates (Van Cappellen et al. 2002). Further work is needed to determine the degree to which any of these factors drive dissolution rates.

**Table 1. Isotopic discrimination of frustule Si ($^{29}$Si:$^{28}$Si) in *T. weissflogii* grown under high and low $p$CO$_2$.**

<table>
<thead>
<tr>
<th>$p$CO$_2$ treatment (%e)</th>
<th>Si(OH)$_4$ drawdown (µmol L$^{-1}$)</th>
<th>Si(OH)$_4$ drawdown (%)</th>
<th>Soluble phase $\delta^{29}$Si (%e)</th>
<th>Particulate phase $\delta^{29}$Si (%e)</th>
<th>Isotope effect $\epsilon^{29}$Si (%e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>26.8</td>
<td>13.1</td>
<td>0.124</td>
<td>-1.43</td>
<td>-1.55</td>
</tr>
<tr>
<td></td>
<td>30.2</td>
<td>14.6</td>
<td>0.083</td>
<td>-1.45</td>
<td>-1.53</td>
</tr>
<tr>
<td></td>
<td>23.6</td>
<td>11.6</td>
<td>NA</td>
<td>-1.25</td>
<td>NA</td>
</tr>
<tr>
<td>750</td>
<td>19.9</td>
<td>10.1</td>
<td>0.141</td>
<td>-1.41</td>
<td>-1.56</td>
</tr>
<tr>
<td></td>
<td>21.5</td>
<td>10.9</td>
<td>0.114</td>
<td>-1.63</td>
<td>-1.75</td>
</tr>
<tr>
<td></td>
<td>19.5</td>
<td>9.8</td>
<td>0.079</td>
<td>-1.43</td>
<td>-1.51</td>
</tr>
</tbody>
</table>
327

CO₂ effects on Si metabolism

Fig. 7. Mass balanced flux model in units of fmol Si cell⁻¹ d⁻¹ for *T. weissflogii* grown under low and high μCO₂. Cylinders represent the silica cell wall (frustule). Influx, efflux, and dissolution are measured. Incorporation into frustule is calculated as Si quota × growth rate (μ = 1.4·d⁻¹). Fluxes are mean values. Mass-balanced values, in parentheses, were calculated using Microsoft Excel solver to iteratively solve for 0 = influx – efflux – dissolution – incorporation. The iteration was constrained to 6% variation around each mean flux value.

Measurements of Si dissolution rates using ²⁹Si isotope dilution are affected by Si efflux. In such studies, a highly enriched heavy isotope of silicon is added to an incubation, and, because there are insignificant differences between ²⁹Si and ³⁰Si incorporation rates, the dilution of the heavy isotope pool established by adding ²⁹Si to the seawater results from the dissolution of relatively light silica. However, the exchange of internal pools of Si(OH)₄ early in the experiment, before the isotopic composition of the cellular pools have equilibrated with the Si(OH)₄ in the seawater, results in further isotopic dilution and an overestimation of dissolution. The extent of this overestimate is a function of incubation time and can be calculated on the basis of the data in Fig. 5. On the basis of these calculations (Fig. 8), we can reconcile the relatively high dissolution rates obtained in culture by Nelson et al. (1976) and in the field (Brzezinski et al. 2003) with the low rates reported by Bidle and Azam (2001) and confirmed in the present study (Fig. 6). Nelson et al. (1976) measured apparent specific dissolution rates (Vₐₛₚ) of 5–20% d⁻¹ in 4-h incubations. This is in accord with our prediction that the efflux rates from *T. weissflogii* should give apparent dissolution rates of 6–18% d⁻¹ in 4-h incubations (Fig. 8).

During diatom bloom events, Brzezinski et al. (2003) measured apparent dissolution rates of ~5% of silica production on the basis of 24-h incubations. This is of the same order of magnitude as the ratio of our efflux rates to Si transport (3–5%) for the contribution of efflux of intracellular Si to dissolution: production rate ratios measured using isotope dilution. This comparison suggests that the low rates of dissolution measured during blooms may represent the efflux of internal dissolved pools rather than the true dissolution of frustules. It is possible that the frustules of living diatoms do not dissolve at ecologically significant rates. This is advantageous for diatoms, because daughter cells inherit half of their frustule from the mother cell, and there is no known repair mechanism for diatom silica after its deposition. The dissolution of otherwise healthy diatoms would mean that the quality of the inherited frustule would decline with each generation, with likely detrimental effects once the structural integrity of the structure is compromised. During postbloom conditions, measured rates of silica dissolution are sufficiently high (60–80%) that efflux from live cells would have little effect on the calculated rates.

**CO₂ effects on Si quota**—Diatoms possess a carbon concentrating mechanism that uses an extracellular carbonic anhydrase (CA) and catalyses the following equilibrium reaction (Burkhardt et al. 2001; Morel et al. 2002).

\[
\text{HCO}_3^- + \text{H}^+ \rightleftharpoons \text{CO}_2 + \text{H}_2\text{O}
\]

(2)

Catalysis allows maintenance of the equilibrium concentration of CO₂ (10 μmol L⁻¹) given a seawater alkalinity of 2.3 mmol L⁻¹ and 20°C at the surface of the cell, and permits access to the high concentrations of bicarbonate (~2 mmol L⁻¹) in seawater. Forms of CA that have high catalytic
rates ($K_{\text{cat}} > 10^4 \, \text{s}^{-1}$) require a pH buffer to either provide or receive the proton in the above reaction, because proton exchange with water is relatively slow compared with the rate of catalysis. The silica frustule has been shown to be an effective pH buffer for the CA-mediated conversion of bicarbonate to CO$_2$, and the activity of external CA increases dramatically in *T. weissflogii* grown at 100 ppm CO$_2$ (Milligan and Morel 2001). The increase in Si quota at low pCO$_2$, which is concomitant with an increase in CA activity, is consistent with its role as a buffer for CA.

It has been demonstrated that both iron and zinc play a role in modifying the Si:N relationship in diatoms (Ruehr and Morel 1981; Hutchins and Bruland 1998; De La Rocha et al. 2000). Iron limitation increases the Si:N ratio in cultured phytoplankton by two- to threefold and Si:N uptake ratios in field populations of Antarctic diatoms from 2–8 (Franck et al. 2000). Zinc limited growth of cultured diatoms results in a decrease in Si:N ratio (De La Rocha et al. 2000). It is unlikely that the Si quota changes we measured resulted from changes in the trace metal availabilty. Both iron and zinc were provided at saturating concentrations (100 ppm: Fe$^+$ = 133 nmol L$^{-1}$, Zn$^{2+}$ = 16 pmol L$^{-1}$; 750 ppm: Fe$^+$ = 10 nmol L$^{-1}$, Zn$^{2+}$ = 12 pmol L$^{-1}$), and the Si quota changed with pCO$_2$ whether pH varied or was kept constant by varying carbonate alkalinity.

Several researchers have hypothesized that the growth rate limitation of diatoms by nutrients other than Si results in increases in the Si:N ratio (Flynn and Martin-Jézéquel 2000; Claquin et al. 2002). The ability of *T. weissflogii* to control Si quota through efflux of Si suggests that quota changes are not simply a function of cell cycle, as was suggested by Claquin et al. (2001). Those authors reasoned that, because the major transport of Si is during the G2 + M phase of the cell cycle, a change in the Si quota may be driven by the length of time a cell spends in these phases. In the present study, changes in the Si quota with pCO$_2$ are not accompanied by a concomitant change in growth rate. This is consistent with an efficient carbon-concentrating mechanism and with observations in field incubations of natural diatom assemblages that show little change in growth rate over a large CO$_2$ range (Tortell et al. 1997, 2000). Changes in the Si efflux presumably reflect the fine control of silicon metabolism by diatoms. It is possible for the duration of a particular cell-cycle stage to change without a change in the duration of the total cell cycle, although the G2 + M phase of the cell cycle is the least variable in duration (Guiget et al. 1984). If this were the case, the expression of Si transporters during G2 + M could occur over a longer time period at low CO$_2$. However, our results indicate that the Si efflux is regulated and that this regulation is not necessarily a function of Si transporter expression. The diffusion of Si species (either uncharged Si(OH)$_4$ or organically bound forms of Si(OH)$_4$) across the cell membrane is a possible means of exit from the cell. We propose that there are additional controls on Si quota that were not envisioned in the Claquin et al. (2002) model. The mechanisms by which Si is regulated in diatoms remains unclear, and elucidation awaits molecular-level studies of the regulatory steps involved.

**Silicon isotopes**—Silicon isotope fractionation has been measured in three species of diatoms grown under three temperatures and the fractionation factor ($\epsilon = -1.1\% \pm 0.4$) was found to be similar, regardless of species tested or their rates of growth (De La Rocha et al. 1997). It has been suggested that the most likely explanation for a consistent fractionation factor is the transport of Si across the membrane is the discriminatory step in the biomineralization process. Alternatively, a step internal to the cell (i.e., polymerization) could be the site of discrimination. The variation in the efflux:influx ratio caused by pCO$_2$ is an ideal tool to test these opposing explanations.

If the isotope discrimination is intracellular, the isotopic effect can be scaled linearly to the efflux:influx ratio (Eq. 1; Popp et al. 1989). We would then expect low pCO$_2$ grown cells to have a 2.3-fold lower $\delta^{30}$Si signal than high CO$_2$ cells (Fig. 7). The lack of difference in the $\delta^{30}$Si signal under low and high pCO$_2$ supports the notion that Si discrimination occurs at the membrane transport step and that the loss of Si from the cell has no measurable isotope effect (i.e., $\epsilon_30 > 0$). The fact that the isotope effect for Si is small (1.5%) may also be evidence of discrimination at the level of transport, which may not necessitate breaking or forming chemical bonds. Of importance, this finding supports the use of the silica $\delta^{30}$Si signal as an indicator of the extent of Si(OH)$_4$ utilization in surface waters both in paleo- and contemporary studies, because diatom physiology is unlikely to affect the $\delta^{30}$Si value of the frustule.

**Oceanographic implications**—The increase in the Si quota at low pCO$_2$ may increase diatom Si:C and, hence, reduce the flux of diatom carbon export to deep waters for a given level of silica production. High pCO$_2$ would favor lower diatom Si:C ratios, potentially increasing diatom C flux; however, this effect would be partially offset by the higher rates of silica dissolution under high pCO$_2$. These effects act in concert with other factors such as the influence of bacteria on silica dissolution (Bidle and Azam 2001). Bacterially mediated silica dissolution is likely to be a more important control on the coupling between diatom Si and C cycling than is pCO$_2$ (Bidle and Azam 2001; Brzezinski et al. 2003). The pCO$_2$-induced changes in Si quotas of *T. weissflogii* are small (~20%), but further work on other diatoms, particularly heavily silicified Antarctic species, is required to determine the range of possible impacts of pCO$_2$ on Si quotas.

**References**


---, M. Y. SIDDIQI, A. D. M. GLASS, AND H. J. KRONZUCKER.
CO$_2$ effects on Si metabolism


Received: 21 April 2003

Accepted: 16 September 2003

Amended: 8 October 2003