
Chapter 13

Seaweeds and Their Communities in Polar

Regions

Christian Wiencke and Charles D. Amsler

13.1 Introduction

The natural environment of polar seaweeds is characterized by strong seasonal light

conditions and constant low temperatures (Zacher et al. 2011). At the northern and

southern distribution limits of seaweeds in the Arctic (80�N) and Antarctic (77�S),
the polar night lasts for about 4 months. At lower latitudes, e.g., the northern border

of the Antarctic region, at King George Island (South Shetland Islands; 62�S)
daylength varies between 20 h in summer and 5 h in winter. Sea-ice cover extends

the period of hibernal darkness. If the ice is covered by snow under-ice irradiance

can be reduced to <2% of the surface value. Extremely low irradiances �6.5 mmol

photons m�2 s�1 have been measured even in midsummer (June) below a sea-ice

cover and a snow layer of 30 cm in June on Arctic Spitsbergen (Hanelt et al. 2001).

So, seaweeds can be exposed for long periods to darkness and very low light

conditions. However, when the sea-ice breaks up solar radiation can penetrate

deeply into the relatively clear water. In October/November 1993, average midday

irradiances as high as 70 mmol photons m�2 s�1 were measured in 30 m water depth

at King George Island (Gómez et al. 1997). At Signy Island (South Orkney Islands),

the mean 1% depth of surface photosynthetically active radiation (PAR) is at about

29 m (Brouwer 1996a). Ultraviolet (UV) radiation as well can go down to consid-

erable depths. In coastal areas, the 10% level for UV-A/UV-B radiation can be

as deep as 7.1/4.3 m water depth, respectively, in summer (Richter et al. 2008).
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These relatively high light conditions prevail until phytoplankton blooms are

formed and turbid melt-water carrying fine sediments and detritus flows into the

sea (Drew and Hastings 1992). Thus, favorable light conditions for algal growth are

present for only 2–3 months per year.

In contrast to the strong seasonality of the light conditions, seawater

temperatures in the sublittoral vary only slightly between �1.8�C in winter and

2.2�C in summer in the Antarctic Peninsula region (Drew and Hastings 1992). At

the boundary of the temperate region, maximum temperatures can reach 5�C in the

Antarctic and 8–10�C in the Arctic (Wiencke et al. 2007). Temperature variation is,

however, stronger in eulittoral and supralittoral communities. On King George

Island, temperatures can go up to 14�C in tide pools while seaweeds exposed to

air in the supralittoral experience temperatures up to nearly 30�C in summer and

down to �27�C in winter (Zacher et al. 2011).

Although the current water temperatures in both polar regions are similar, the

Arctic Oceans differ considerably in their cold-water history and their genesis.

Whereas the water temperatures in the Southern Ocean have been low for

14 million years, glaciation and a winter sea-ice cover did not develop earlier than

two million years in the Arctic (Crame 1993; Zachos et al. 2001; Zacher et al.

2011). Other differences between both polar regions refer to the connection with the

temperate regions and to the nutrient levels in the seawater. Whereas the Antarctic

region is strongly isolated, the Arctic region is continuously connected to temperate

coasts. With respect to the nutrients, levels of nitrate and phosphate are high

throughout the year in the Southern Ocean (Drew and Hastings 1992; Ducklow

et al. 2007), while there is a strong seasonal variation of these levels in the Arctic.

Here, nutrient levels are usually high during winter only and drop suddenly after

sea-ice breakup (Chapman and Lindley 1980; Aguilera et al. 2002).

Seaweeds growing in such an extreme environment have to be adapted to these

conditions. Their seasonal development must be tuned to the strong seasonality of

the light conditions. Species from the Arctic must furthermore be adapted to the

seasonal changes of the nutrient concentrations. An important prerequisite for

seaweeds from polar waters is their capability to utilize the—for most parts of the

year—prevailing low light conditions and, on the other hand, to sustain and use as

efficient as possible the high light conditions during spring for photosynthesis.

The difference in the cold-water history of both polar regions has forced

seaweeds in the Antarctic to reduce their temperature demands considerably com-

pared to species from the Arctic (Gómez et al. 2011). Moreover, in conjunction with

the strong geographic isolation of the Antarctic region, this has had great effects on

biodiversity: Whereas in the Arctic only few endemic species occur, endemism is

high in the Southern Ocean (Wulff et al. 2011). These environmental forcings

influenced also the biotic interactions between seaweeds and their associated

organisms. As we will discuss below, all these factors are important determinants

of the functioning of polar seaweed communities.
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13.2 Biodiversity and Biogeographical Relationships

of Antarctic and Arctic Seaweeds

As mentioned above, both polar regions differ considerably with respect to their

genesis and cold-water history. Antarctica is an ice-covered continent surrounded

by the Southern Ocean without any land connection to temperate regions since the

Mesozoic (Lawver et al. 1985). The Antarctic Circumpolar Current (ACC), which

started to develop at about 32 Ma and became persistent around 15 Ma, amplifies

this separation further (Hommersand et al. 2011). Driven by westerly winds, it

flows clockwise around the continent. In contrast, the Arctic Ocean is a “mediter-

ranean” sea surrounded by continental land masses and is continuously connected

to the temperate coasts of Eurasia and America. The Arctic Polar Front is discon-

tinuous and there is a strong influx of warm North Atlantic water into the Arctic

through the Fram Strait between Spitsbergen and Greenland (Zacher et al. 2011). In

contrast, the Antarctic region is sharply delimited to the north by the forceful

Antarctic Polar Front. A second feature differentiating the two polar regions is

their cold-water history. Whereas Antarctica became glaciated 14 million years ago

(Crame 1993), a perennial ice cover over the Arctic Ocean did not develop before

0.7–2.0 Ma (Clarke 1990). So, seawater temperatures have been low for a much

longer time in the Antarctic compared to the Arctic (Zacher et al. 2011).

These differences have resulted in strongly different biodiversity patterns in both

polar regions. In the Antarctic region, 35% of the species are endemic, whereas only

few endemic Arctic species have been identified so far (Wiencke and Clayton 2002;

Wulff et al. 2011). In the Antarctic, 44% of the Heterokontophyta (Phaeophyceae and

Chrysophyceae), 36% of the Rhodophyta, and 18% of the Chlorophyta are endemic

and the number of endemic species is continuously increasing. Only recently,

Hommersand et al. (2011) described four new genera and five new endemic red

algal species. There is also one endemic order, the brown algal order Ascoseirales.

Conspicuous and ecologically important endemic species include the brown algae

Himantothallus grandifolius, Desmarestia anceps, D. menziesii, Cystosphaera
jacquinotii,Ascoseiramirabilis, and the red algaeMyriogrammemanginii,Georgiella
confluens, Phycodrys antarctica, Trematocarpus antarcticus, and others. The red

algae Palmaria decipiens and Iridaea cordata occur from the Ross Sea in the south

to a few sub-Antarctic islands in the north (Wiencke and Clayton 2002).

In contrast to the high degree of endemism in Antarctica, only very few seaweed

species endemic to the Arctic have been detected (Wilce 1990; Wilce et al. 2009).

These include the brown algae Chukchia pedicellata, C. endophytica, Punctaria
glacialis, Platysiphon verticillatus, the red alga Petrocelis polygyna, and the green

alga Acrosiphonia incurva. Most species from the Arctic have a distribution that

extends well into the temperate region, e.g., the red algae Devaleraea ramentacea,
Turnerella pennyi, Dilsea integra, and Pantoneura baerii. This is also the case for

the kelp Laminaria solidungula, but this species is regarded as a true Arctic species
as its occurrence in the temperate region is restricted to cold, deep waters (M€uller
et al. 2011).
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A general characteristic of the floras of both polar regions is their low species

richness. In the Antarctic, about 130 species have been documented (Wulff et al.

2011) and in the Arctic about 150 species have been recorded (Wilce 1994). These

numbers will likely increase with increased exploration of these remote areas of our

planet. In Antarctica, species richness is highest in the Antarctic Peninsula region

and lowest in the southernmost part of the Ross Sea at 77�S (Wiencke and Clayton

2002). In the Arctic, species richness peaks with about 70 species around Svalbard,

followed by the Canadian High Arctic (mainly Baffin Bay area) with 55 species.

The Russian Arctic principally harbors an impoverished Svalbard flora. Similarly,

species richness decreases in eastern Greenland from the south to the north.

Whereas the seaweed flora in southernmost Greenland is relatively rich (Pedersen

1976), in the Alaskan Beaufort Sea shelf west of the Canadian Arctic Archipelago

only 15 species were recorded (Dunton and Schonberg 2000; Wulff et al. 2011).

Two other characteristics of the Antarctic seaweed flora must be mentioned here:

First, a conspicuous feature of the Antarctic seaweed flora, compared to temperate

regions, is the scarcity of small macroalgal epiphytes. Such epiphytes are, however,

not absent. Rather, they occur as endophytes in larger seaweeds (Peters 2003; see

also Chap. 11 by Potin and Chap. 9 by Amsler). Second, the order Desmarestiales,

which ecologically replaces the Laminariales (kelps) in Antarctica, is considered to

have its evolutionary center in the Southern Ocean and subsequently radiated into

the Northern hemisphere (Peters et al. 1997).

In contrast to the earlier assumption that Arctic seaweeds are mostly of Atlantic

origin (Wilce 1990; Dunton 1992), recent molecular data obtained on six red algal

species and of Laminaria solidungula from the Arctic indicate that Arctic and

Atlantic subarctic species are evolutionary based in the North Pacific (Adey et al.

2008). Another example of an Arctic invader from the Pacific may be the green alga

Acrosiphonia arcta (van Oppen et al. 1994). The species is—as is also Desmarestia
viridis/confervoides—a good example for the evolution and spread of bipolar

distributed species. According to molecular studies, the biogeographic disjunctions

of both species date back to the maximum of the W€urm/Wisconsin glaciation

18,000 years ago (van Oppen et al. 1993). The dispersal phases were presumably

microscopic stages which, due to a high temperature tolerance, were able to cross

the tropics (Peters and Breeman 1993; Bischoff andWiencke 1995; see also Chap. 18

by Bartsch et al.).

13.3 Physiological Adaptations to the Environment

13.3.1 Seasonal Development and Physiological Performance

In polar regions, adaptation to the strong seasonality of the light regime is one of the

most important prerequisites for the ecological success of seaweeds (Wiencke et al.

2011). There are two different growth strategies classified as season anticipators
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and season responders sensu Kain (1989). The season anticipators begin growing

under short-day conditions in late winter/spring, often under the sea-ice. Some

species even reproduce in winter. Maximal growth rates occur in spring. Growth

and reproduction in these species are presumably based on circannual rhythms and

photoperiodism, synchronized or triggered by daylength, as shown for some Ant-

arctic (Wiencke 1990a; Wiencke et al. 1996) and for many cold-temperate species

(L€uning 1988, 1991; L€uning and Kadel 1993; Schaffelke and L€uning 1994). The

season responders, in contrast, start growth and reproduction later, not before

favorable light conditions are present in spring and summer. Species of this group

react directly to the primary factors in their environment and show an opportunistic

life strategy (Wiencke 1990a).

Typical Antarctic season anticipators are the brown algae Desmarestia
menziesii, D. anceps, D. antarctica, Himantothallus grandifolius, Ascoseira
mirabilis (Wiencke 1990a; Drew and Hastings 1992; Gómez et al. 1995, 1996;

Gómez and Wiencke 1997) and the red algae Palmaria decipiens, Delesseria
salicifolia, Gymnogongrus antarcticus, G. turquetii, Hymenocladiopsis crustigena,
Trematocarpus antarcticus, and Phyllophora ahnfeltioides (Wiencke 1990b;

Weykam et al. 1997; Dummermuth and Wiencke 2003). Typical Antarctic season

responders are Adenocystis utricularis (Wiencke 1990a), the red algae Iridaea
cordata (Weykam et al 1997) and Gigartina skottsbergii (Wiencke 1990b), and

the green algae Ulva hookeriana and Acrosiphonia arcta (Wiencke 1990b).

In contrast to the Southern Ocean in the Arctic there is not only a strong seasonal

variation of the light regime, but also of the levels of the macronutrients nitrate and

phosphate, which are high in winter and low in summer (see Chap. 4 by Gordillo).

Arctic season anticipators like Laminaria solidungula and Saccharina latissima
(L. saccharina) take full advantage of these conditions (Chapman and Lindley 1980;

Dunton 1985). New blades start to form in L. solidungula in fall under decreasing

daylengths. Optimum growth rates occur in late winter/spring under thick ice. In

comparison, S. latissima grows mostly during a brief period in late spring, when the

first light penetrates into the water during sea-ice breakup.

As most endemic Antarctic and Arctic seaweeds are season anticipators, this

type of life strategy is therefore regarded as the typical adaptation to the seasonally

changing conditions in polar seas. In contrast, season responders are mostly

distributed also in the adjacent temperate regions. Another difference between

both groups is their depth distribution. Polar season anticipators occur almost

exclusively in the sublittoral, whereas many polar season responders can grow

also in the eulittoral.

As for biomass formation, photosynthetic performance shows also a strong

seasonal pattern (Wiencke et al. 2011). In large brown algal season anticipators,

photosynthetic rates are highest in late winter/spring (Drew and Hastings 1992;

Gómez et al. 1995). As shown in several kelp and kelp-like species, respiration rates

increase indicating growth activity in the basal meristem powered by remobiliza-

tion of carbohydrates from the distal thallus part. An extreme example is Laminaria
solidungula, in which the mobilization occurs during the 9 months period of

darkness under the ice, when the alga completes over 90% of its annual growth.
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During this time, up to 30% of its original total carbon content is depleted before

photosynthetic production begins in spring. During summer, high photosynthetic

rates are used for carbon storage and not for biomass formation (Dunton and Schell

1986; see also Chap. 2 by Gómez and Huovinen).

In the Antarctic red algal season anticipator Palmaria decipiens, photosynthetic
rates are—like the growth rates—highest in spring. There is a positive correlation

between the phycobilin content, photosynthetic capacity and efficiency, which are

highest in fall, winter, and spring. During summer, the alga reduces the photosyn-

thetic apparatus to a minimum (L€uder et al. 2001a). The presence of two

phycobilisome forms with different aggregation states has been regarded as special

advantage for a rapid acclimation to changing environmental light conditions

(L€uder et al. 2001b; see also Chap. 1 by Hanelt and Figueroa).

The effect of darkness on physiological performance has been studied in

Palmaria decipiens and Iridaea cordata. In P. decipiens, the light harvesting

phycobilisomes and later, the chl a containing inner antennae are degraded during

long-term exposure to darkness. After 6 months, the alga has lost its ability to

photosynthesize. Following reexposure to light, pigments are rapidly synthesized

and after a week photosynthesis recovers to normal levels (L€uder et al. 2002;

Weykam et al. 1997). In contrast, the season responder I. cordata maintains a

functional photosynthetic apparatus during dark-exposure and is therefore better

suited to grow in places with less predictable light conditions (Weykam et al. 1997;

see also Chap. 1 by Hanelt and Figueroa).

Overall, seasonal development and physiological performance exhibit many

similarities with temperate seaweeds. Although there is no unique mechanism

occurring only in polar species, their efficient adaptations to low light, however,

allow Arctic and Antarctic species to thrive with great success in polar waters.

13.3.2 Radiation Climate and Depth Zonation

In polar regions, the radiation climate imposes severe constraints not only with

respect to seasonal light availability but also with respect to the irradiance level in

different water depths ultimately determining seaweed zonation. As polar algae are

mainly sublittoral, low light tolerance is a prerequisite for distribution down to great

depths. This becomes obvious when the minimum light requirement for completion

of the life history is considered, which is lower in polar seaweeds compared to

temperate, morphologically similar species. For Antarctic Desmarestiales, the

minimum annual light demand is 31 moles photons m�2 (Wiencke 1990a) and for

Laminaria solidungula 45–49 moles m�2 (Chapman and Lindley 1980; Dunton

1990). In contrast, L. hyperborea from the North Sea requires 71 moles m�2 per

year (L€uning and Dring 1979).

Another prerequisite for algal life in polar waters is a capacity to tolerate long

periods of darkness. Various polar seaweeds tolerate darkness for up to 18 months

(tom Dieck 1993; Wiencke 1990a). Growth in the microscopic stages of Antarctic
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seaweeds is light-saturated at photon fluence rates as low as 4–12 mmol photons

m�2 s�1 (Wiencke 1990a). In young sporophytes of Antarctic Desmarestiales the

values are somewhat higher, at 15–20 mmol photons m�2 s�1 (Wiencke and Fischer

1990).

As with growth, the light demands for photosynthesis are also very low. Species

from both polar regions show a high photosynthetic efficiency (a), low respiratory

rates, low saturation points for photosynthesis (Ek), and low compensation points

for photosynthesis (Ec; Gómez et al. 2011). Ek values range between 3 and 100

mmol photons m�2 s�1, and Ec values between <1 and 15 mmol photons m�2 s�1,

values usually lower than for species from temperate regions (L€uning 1990).

Generally, Ek values for photosynthesis are higher than the irradiances required

for saturation of growth. This represents an important ecological advantage for

coping with the strong fluctuations of incident irradiance during the open water

period. While growth is saturated at low irradiances, the photon fluence rates above

the saturation point for growth can be used for purposes other than growth, e.g., for

formation of storage compounds. For example, Antarctic seaweeds growing at

depths below 20 m are often exposed to irradiances around 80 mmol photons

m�2 s�1 during late winter/spring (Gómez et al. 1997) allowing considerable

carbon fixation, fuelling—aside from growth—other metabolic processes.

The light requirements for photosynthesis are an important factor for the deter-

mination of zonation patterns. If one relates the daily light course of the irradiance

to the Ek value, it is possible to estimate the average daily period of light saturation,

called Hsat. The obtained metabolic daily carbon balance is regarded as a physio-

logical indicator for the ability to live in deep waters. Laminaria solidungula in the
Alaskan Beaufort Sea at 70�Nwas for example exposed in 1986 to totalHsat periods

of 148 h (Dunton 1990), corresponding to an average daily Hsat of 3 h. For five red

and brown algae from King George Island (Antarctica), Hsat determined during the

clear water period in spring decreases with depth from values close to 14 h at 10 m

to values between 7 and 12 h at 30 m depths (Gómez et al. 1997). For the red algal

species Palmaria decipiens, Trematocarpus antarcticus, and Gigartina skottsbergii
the carbon balance was between 1.7 and 2.5 mg C g FW �1 d�1 at 10 m depth and

between 0.6 and 0.8 mg C g FW �1 d�1 at 30 m depths, setting the lower depth limit

at >30 m. For the kelp-like brown alga Himantothallus grandifolius, the daily

carbon balance varied between 0.6 and 1.0 mg C g FW �1 d�1 over the studied

range of 10–30 m, indicating that this species can potentially occur even deeper,

which is actually the case. In contrast, in the brown alga Desmarestia anceps the
negative (!) carbon balance of �1.9 mg C gFW�1 d�1 limits the alga to depths of

about 30 m at this location (Gómez et al. 1997). Based on photosynthetic

measurements, the lower depth distribution limit of the red alga Myriogramme
manginii at Signy Island (South Orkney Islands) has been predicted to be at approx.
23 m water depth (Brouwer 1996a).

Polar seaweeds are not only strongly shade-adapted but can also cope with high

light conditions in summer because of their ability for dynamic photoinhibition, a

photoprotective mechanism, by which excessive energy absorbed is rendered

harmless by thermal dissipation (see Chap. 1 by Hanelt and Figueroa).
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Deep water species are strongly photoinhibited when exposed to high light

conditions and recover during subsequent exposure to favorable light only slightly

and slowly (Hanelt 1998; Karsten et al. 2001), whereas in eulittoral and upper

sublittoral species the decrease in photosynthetic activity is less pronounced and

usually a strong and quick recovery is recorded.

Similarly, UV radiation is also regarded as key factor affecting the depth zonation

of seaweeds (Karsten et al. 2011). As explained in Chap. 20 byBischof and Steinhoff,

UV-B radiation has damaging effects on various cellular structures and processes,

among those on the DNA and photosynthesis. However, damage can be repaired and

there are also protective mechanisms to prevent damage. The result can be impaired

growth or impaired reproductive capacity. The life-history stages of seaweeds most

susceptible to UV radiation are spores. Field experiments have clearly shown that the

upper depth distribution limit of Arctic kelps is determined by the UV susceptibility

of their spores (Wiencke et al. 2006). Consequently, the succession of polar seaweed

communities also depends on the UV radiation regime as explained below. Certainly,

metabolic carbon balance and UV radiation are not the only factor controlling the

lower and upper depth distribution limits. Substrate, ice abrasion, and competition

play besides other factors important roles.

13.3.3 Temperature Requirements and Geographic Distribution

Polar seaweeds are well adapted to the low seawater temperatures, and Antarctic

seaweeds more strongly than Arctic species due to the longer cold-water history of

the Southern Ocean (see Chap. 18 by Bartsch et al.). Sporophytes of endemic

Antarctic Desmarestiales, for example, grow up to 5�C and exhibit upper survival

temperatures (USTs) of 11–13�C. Their gametophytes grow up to 10 or 15�C with

USTs between 15 and 18�C (Wiencke et al. 1994). The Antarctic red algae

Georgiella confluens, Gigartina skottsbergii, and Plocamium cartilagineum grow

at 0�C, but not at 5�C and have USTs as low as 7–11�C (Bischoff-B€asmann and

Wiencke 1996). Antarctic cold-temperate species, especially from the eulittoral, are

characterized by higher temperature ranges (Wiencke et al. 1994; Gómez et al.

2011).

In contrast, sporophytes of the endemic Arctic kelp Laminaria solidungula grow
up to temperatures of 15�C with optimum growth rates at 5–10�C and an UST of

16�C. The gametophytes of this species exhibit an UST of 20�C (Bolton and L€uning
1983; tom Dieck 1992). No data are available on the temperature demands of other

endemic Arctic species. The Arctic cold-temperate red alga Devaleraea
ramentacea grows at temperatures up to 10�C and exhibits USTs of 18–20�C
(Novaczek et al. 1990; Bischoff and Wiencke 1993). Clearly, more data are needed

also on the temperature dependence of other processes in the life history.

The strong adaptation of Antarctic seaweeds to low temperatures is also reflected

in their photosynthetic performance. Maximum photosynthetic rates of endemic

Antarctic species are at 0�C in a similar range compared to temperate species

272 C. Wiencke and C.D. Amsler



measured at higher temperatures. Moreover, the temperature optima for photosyn-

thesis in the few tested Antarctic species are well below values determined in

temperate species (Gómez et al. 2011). Likewise, the optimum temperature for

photosynthesis in zoospores of Alaria esculenta, Laminaria digitata, and

Saccharina latissima from Arctic Spitsbergen is with 7–13�C relatively low

(Roleda 2009). In contrast, the optima for respiration are clearly located at higher

temperatures. Photosynthesis:respiration (P:R) ratios in Antarctic species are

highest at the lowest tested temperature (0�C) and decrease with increasing

temperatures due to different Q10 values for photosynthesis (1.4–3.5) and respira-

tion (2.5–5.1; Gómez et al. 2011). The high P:R ratios at low temperatures explain

the high growth rates of polar species at low temperatures, which in the end

determine the geographic distribution.

The northern distribution of endemic Antarctic species is often limited by the

temperature demands for growth. Endemic Antarctic Desmarestiales for example

occur only south of the Antarctic Polar Front in areas with maximum temperatures

�5�C allowing sufficient growth of their sporophytes (Wiencke et al. 1994; M€uller
et al. 2011; see also Chap. 18 by Bartsch et al.). The southern distribution of Arctic-

North Atlantic species is often limited both by the USTs and the upper limit of

gametogenesis (van den Hoek 1982a, b). In the West Atlantic distribution limits are

determined by lethal, high summer temperatures, whereas in the East Atlantic they

are determined by high winter temperatures inhibiting reproduction. Examples for

species from this group are Laminaria digitata, Chorda filum, and Halosiphon
tomentosus.

During the ice ages, both the Arctic and the Antarctic were not hospitable for

seaweeds. In the southern hemisphere, sub-Antarctic islands and the southern tip of

South America have probably served as refugia. Migration of species from

Antarctica to South America and vice versa probably took place along the Scotia

Arc (Wiencke et al. 1994). In the northern hemisphere, the distribution area of

Atlantic seaweeds was extremely reduced during the ice ages. In the north, their

distribution was limited by the glaciers and in the south by the 10–15�C winter

isotherm, their southern reproduction boundary. This most probably explains the

present depauperate flora in the North West Atlantic. A comparable situation did

not exist in the Pacific, probably a major reason for the richness of the cold North

Pacific (Wiencke et al. 1994). The temperature decrease during the ice ages allowed

polar species to extend their distribution limits toward the equator. Some species

even crossed the equator during the maximum of the last glaciations (see Chap. 18

by Bartsch et al.; Wiencke et al. 1994).

13.3.4 Effect of Salinity, Temperature, and Desiccation
on Supra- and Eulittoral Seaweeds

Information on osmotic acclimation of supra- and eulittoral seaweeds during salin-

ity changes is available only for green algae from the Antarctic. Eulittoral species

survive salinities between 7 and 102 psu and grow between 7 and 68 psu.

13 Seaweeds and Their Communities in Polar Regions 273



The supralittoral species Prasiola crispa has even a broader growth range between

0.3 and 105 psu (Karsten et al. 1991a, b; Jacob et al. 1991). The general mechanisms

of osmotic acclimation are the same as also in species from other regions (Kirst

1990; Wiencke et al. 2007; see Chap. 5 by Karsten). Major inorganic osmolytes are

potassium, sodium, and chloride. These osmolytes are used during short-term

osmotic regulation. Long-term osmotic stress is counterbalanced by various com-

patible organic solutes, among them b-dimethylsulphoniumproprionate (DMSP),

the imino acid proline, and sucrose (Karsten et al. 1991b; Jacob et al. 1991).

Decreasing temperatures also strongly stimulate the biosynthesis and accumula-

tion of DMSP in Antarctic green algae stabilizing the structure of the enzymes

lactate dehydrogenase and malate dehydrogenase of Acrosiphonia arcta (Karsten

et al. 1996). Ice-binding proteins (IBP) that modify the shape of growing intracel-

lular ice crystals during freezing were recently detected in Antarctic Prasiola and

sea-ice diatoms (Raymond and Fritsen 2001). Presumably, IBPs prevent damage to

membranes by the inhibition of the recrystallization of ice (Raymond and Knight

2003).

The low temperatures in the eulittoral and supralittoral represent a challenge to

algal physiology because they are often combined with high irradiances in summer.

At low temperatures enzyme activities and turnover velocity of the D1 reaction

center protein in photosystem II are reduced (Andersson et al. 1992; Aro et al.

1993), which may result in increased electron pressure in photosynthesis and

ultimately in the generation of reactive oxygen species (Dring 2006). The

consequences of increased oxidative stress are chronic photoinhibition/photoinac-

tivation, bleaching of photosynthetic pigments, peroxidation of membrane lipids,

and enhanced degradation of D1 protein (see Chap. 6 by Bischof and

Rautenberger). Eulittoral species, such as the green algae Urospora penicilliformis
and Ulva hookeriana, the red alga Porphyra endiviifolia, and the brown alga

Adenocystis utricularis may overcome radiation stress at low temperatures by

their ability for dynamic photoinhibition/photoprotection, which proceeds much

faster than in sublittoral algae (Hanelt et al. 1994, 1997). In the upper sublittoral red

alga Palmaria decipiens, for example, there was a persistent impairment of photo-

synthetic activity at 0�C combined with irradiances of 400 mmol photons m�2 s�1,

but not at 200 mmol photons m�2 s�1. In contrast, photosynthesis was not impaired

under both light intensities at 8�C (Becker et al. 2011).

The effects of freezing in combination with high light intensities on photosyn-

thesis were studied in the Arctic eulitttoral brown alga Fucus distichus. There was a
marked decrease of optimum quantum yield with decreasing temperatures down to

�10/�15�C and a rapid recovery as soon as the temperatures increased again

(Becker et al. 2011). While photosynthetic activity was zero at 15�C in this species,

in the Antarctic green alga Prasiola photosynthetic activity was observed down to

�15�C (Becker 1982). The physiological basis of this extraordinary capacity is not

known.

Desiccation is a strong stress parameter in supralittoral species (see also Chap. 5

by Karsten). Thalli of Prasiola crispa lose 75% of the cellular water during the first

6 h of exposure to air (Jacob et al. 1992). Irreversible damage occurred after a water
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loss of more than 90%. Growth rates after reimmersion in seawater depend on the

thallus water content and the length of the desiccation period. Few ultrastructural

changes were found after desiccation, but the very thick cell walls of the species and

the absence of vacuoles are regarded as prerequisites for surviving periods of

desiccation (Jacob et al. 1992).

13.4 Ecology of Polar Seaweed Communities

13.4.1 Biomass, Depth Distribution, and Productivity

As a result of the harsh environmental conditions, most seaweeds of the polar

regions occur almost entirely in the sublittoral. In Antarctica, seaweeds dominate

shallow benthic communities on hard substrates along the northern portion of the

western Antarctic Peninsula and adjacent islands, often covering over 80% of the

bottom with standing biomass levels in the range of 5–10 wet kg m�2, which is

comparable to temperate kelp forests (Amsler et al. 1995; Brouwer et al. 1995;

Quartino et al. 2001; Quartino and Boraso de Zaixso 2008). Low intertidal pools

and crevices in the upper sublittoral are frequently colonized by the red algae

Iridaea cordata and Palmaria decipiens. Below this zone several species of large,

perennial brown algae are particularly abundant.Desmarestia menziesii (shallower)
and/or D. anceps (deeper) typically dominate in waters from 2 to 3 m down to

approximately 10–20 m with D. anceps sometimes the dominant species to 30 m or

more. Himantothallus grandifolius typically dominates from whatever depth at

which the Desmarestia spp. thin out down to 40 m or greater (DeLaca and Lipps

1976; Zielinski 1990; Kl€oser et al. 1994; Amsler et al. 1995; Brouwer et al. 1995;

Quartino et al. 2001) with productivity estimates in the northern part of its range

estimated as 16–56 g C m�2 year�1 (Drew and Hastings 1992). Cystosphaera
jacquinotii often co-dominates with H. grandifolius or D. anceps below 20 m in

relatively wave-exposed areas (Zielinski 1990; Chung et al. 1994; Amsler personal

observations). These brown algal stands are accompanied by various undergrowth

species, besides the mentioned P. decipiens and I. cordata, the red algae Gigartina
skottsbergii, Myriogramme manginii, M. smithii, Trematocarpus antarcticus,
Gymnogongrus turquetii, Georgiella confluens, and others (Wiencke and Clayton

2002; Wulff et al. 2011). In total, over 100 species of seaweeds are found in shallow

water along the Antarctic Peninsula (Moe and DeLaca 1976; Kl€oser et al. 1996;
Wiencke and Clayton 2002).

This general pattern of seaweed dominance is reported from numerous locations

along the western Antarctic Peninsula region from its northeastern limit at Signy

Island (60�S latitude) south to Anvers Island (64�S; e.g., Neushul 1965; Delépine
et al. 1966; DeLaca and Lipps 1976; Lamb and Zimmerman 1977; Rakusa-

Suszczewski and Zielinski 1993; Amsler et al. 1995; Brouwer et al. 1995; Kl€oser
et al. 1996; Quartino et al. 2001). However, the limited reports of seaweed
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abundance and distribution on the southern half of the western Antarctic Peninsula

describe a drop off in both species richness and biomass as one moves south from

Anvers Island (DeLaca and Lipps 1976; Moe and DeLaca 1976; Barnes and

Brockington 2003; Bowden 2005). Moe and DeLaca (1976) hypothesized that the

decreases in biomass and diversity in more southerly sites are largely due to

increases in annual ice cover. This relative decrease in biomass and coverage is

not unique to the southern Antarctic Peninsula since the same qualitative patterns

are described at other locations of similar latitude throughout most of the coast of

Antarctica (e.g., Zaneveld 1966; Dhargalkar et al. 1988; Kirkwood and Burton

1988; Johnston et al. 2007). However, even at these locations seaweeds can

dominate their communities. For example in East Antarctica, Irving et al. (2005)

reported that Himantothallus grandifolius covered approximately 80% of the bot-

tom at 12 m depth at two sites with the red seaweed, Palmaria decipiens, covering
nearly all the remaining substrate and in another area Johnston et al. (2007) reported

80–90% cover of Desmarestia sp. and P. decipiens at 6 m depth and approximately

80% cover of H. grandifolius at 12 m.

In the southern-most Antarctic seaweed habitats in the Ross Sea, communities

dominated by the frondose red seaweeds Iridaea cordata and Phyllophora
antarctica and the crustose coralline alga Phymatolithon foecundum have been

studied at Terra Nova Bay (74�, 400 S; reviewed by Cattaneo-Vietti et al. 2000;

Cormaci et al. 2000) and in McMurdo Sound (77� 40–500 S Miller and Pearse

1991). I. cordata is more abundant in the 2–10 m depth range with densities up to

4,000 individuals m�2 and wet biomass levels up to 3.5 kg m�2 (Cattaneo-Vietti

et al. 2000). P. antarctica dominates from 10 to 20 m depth with densities up to

10,000 individuals m�2, wet biomass levels up to 1.6 kg m�2, and percent cover up

to 90% of the benthos (Miller and Pearse 1991; Cattaneo-Vietti et al. 2000).

P. foecundum includes several coralline alga species previously reported from the

Ross Sea (Alongi et al. 2002) and occurs to depths of 70 m (Cormaci et al. 2000). In

McMurdo Sound, it is present at most sites which have been observed by divers

whereas the foliose red algae occur at only a minority of locations (Miller and

Pearse 1991; Amsler, personal observations). Both P. foecundum (Miller and

Pearse 1991) and I. cordata (R. Robbins, personal communication) occur at Cape

Armitage in McMurdo Sound, which is the southern-most point in the world where

open ocean occurs over waters shallow enough to support seaweeds.

In the Arctic, several studies have documented seaweed communities growing

on boulders as well as smaller rock and shell hard substrates in the Alaskan

Beaufort Sea. These communities are dominated by the kelp Laminaria solidungula
along with lesser numbers of the kelps Saccharina latissima and Alaria esculenta,
six species of foliose red seaweeds, and crustose coralline red algae (Dunton et al.

1982; Busdosh et al. 1983). Wet biomass values for the kelps range from means of

0.067 kg m�2 where only 10–25% of the bottom is covered by rock to 0.26 kg m�2

where rock covers >25% of the bottom (Dunton et al. 1982). Kelp densities are

higher in summer than winter, with maximum densities of 6–30 individuals m�2 in

patches with high percentages of rock (Busdosh et al. 1983). The total mean wet

biomass of red seaweeds is approximately 0.12 kg m�2 (Dunton et al. 1982).
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L. solidungula productivity in this system has been estimated as 6–10 g C

m�2 year�1 (Dunton and Schell 1986) compared to an estimate of up to 20 g C

m�2 year�1 in the Canadian High Arctic (Chapman and Lindley 1980). In this area,

however, there are no intertidal algae and seaweeds are restricted to small areas on

hard substrata protected from ice scour (Dunton and Schonberg 2000).

At another Arctic location, at Hansneset in the middle part of Kongsfjorden in

Svalbard, seaweed communities are better developed and include a greater diversity

of species. The intertidal zone supports Fucus distichus and smaller brown algae

while the shallow subtidal down to 2.5 m is characterized by several annual or

pseudo-perennial seaweeds (Hop et al. 2002; Wulff et al. 2011). Important species

are the green algae Acrosiphonia spp., Spongomorpha spp., and the brown algae

Chordaria flagelliformis and Chorda filum (Wulff et al. 2011). The zone between 5

and 15 m is dominated by kelps including Saccorhiza dermatodea, Alaria
esculenta, Laminaria digitata, and Saccharina latissima, along with a diversity of

smaller red, green, and brown seaweeds (Wiencke et al. 2004). Overall, over 70

seaweed species occur here with wet biomass values ranging from 0.02 to

21 kg m�2 (Hop et al. 2002). Below this zone of kelps and kelp-like species

Desmarestia aculeata and D. viridis can be very frequent (Beuchel and Gulliksen

2008). At greater depths red algae dominate the community, in particular

Coccotylus truncatus and Phycodrys rubens, the latter growing down to as deep

as 60 m (Wiencke, unpublished data). The endemic Arctic Laminaria solidungula
occurs in deep water in the inner (colder) part of Kongsfjorden or as undergrowth

species in the kelp forest. The inner part of the fjord is characterized by high

sedimentation rates (Svendsen et al. 2002) and consequently by a much lower

biodiversity. The described zonation pattern is in principle also typical for the

Russian Arctic coast, eastern Greenland, and the Canadian high Arctic (Wulff

et al. 2011).

The few studies on succession in polar seaweed communities were recently

summarized by Campana et al. (2011). Succession starts with rapid colonizers, e.g.,

diatoms and ephemeral seaweeds and goes on with a recruitment of annual and

perennial seaweed species in late winter–spring. Colonization is severely affected

by physical disturbance and seasonal changes in abiotic conditions including UV

stress (see Chap. 20 by Bischof and Steinhoff; Karsten et al. 2011) as well as by

biotic factors, such as grazing (Zacher et al. 2007).

13.4.2 Elemental and Nutritional Content

Compared to seaweeds in almost all other parts of the world, Antarctic seaweeds

have relatively low Carbon to Nitrogen (C:N) elemental ratios and relatively high

tissue nitrogen levels (Dhargalkar et al. 1987; Weykam et al. 1996; Dunton 2001;

Peters et al. 2005). This indicates that they are unlikely to be growth limited by

nitrogen, which is probably a result of the relatively high nitrogen and other nutrient

levels present in Antarctic coastal waters throughout the year (Weykam et al. 1996;
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Peters et al. 2005; see Chap. 4 by Gordillo). Not surprisingly then, protein levels in

Antarctic macroalgae are also higher than reported for most other places in the

world (Peters et al. 2005). Since protein levels are important determinants of the

nutritional value and palatability of seaweeds to herbivores (e.g., Horn and

Neighbors 1984), this suggests that were it not for the common occurrence of

chemical defenses in these algae they would likely be more valuable foods for

herbivores than seaweeds from other regions. In the only study we are aware of in

the Arctic, L. solidungula and S. latissimawere shown to also have relatively low C:

N ratios early in the growing season which increased as stored nitrogen was used for

biomass gain during the summer (Henley and Dunton 1995).

13.4.3 Defenses Against Herbivory and Biofouling in Polar
Seaweeds

Many seaweeds deter herbivores with organic compounds that make them unpalat-

able and/or interfere with the animals’ digestion, and similar compounds can also

be used to deter the settlement of biofouling spores or larvae (see also Chap. 8 by

Iken and Chap. 9 by Amsler). In addition or as an alternative to chemical defenses,

seaweeds can also decrease their palatability to herbivores by increasing their

physical toughness (e.g., Lowell et al. 1991).

Chemical defenses against herbivores are very common in Antarctic seaweeds

(Amsler et al. 2005a, 2008, 2011; Aumack et al. 2010). All of the dominant brown

seaweeds along the western Antarctic Peninsula described and most of the common

red seaweeds in the subtidal community elaborate chemical defenses against

herbivores. Although physical toughness may play a role in some species, particu-

larly against amphipods, chemical defenses appear to be far more important overall

in deterring herbivory (Amsler et al. 2005a, 2008, 2011). Hence, although these

communities are similar to temperate kelp forests in being dominated by large,

perennial brown seaweeds, they differ from many such communities in that the

seaweeds are able to resist herbivory directly rather than relying on top-down

control of herbivores by their predators (e.g., Elner and Vadas 1990; Estes and

Duggins 1995).

Both of the dominant red seaweeds in the Ross Sea, I. cordata and P. antarctica,
are also chemically defended against a sea urchin which is the most obvious

potential algal consumer in that system (Amsler et al. 1998). However, the sea

urchins preferentially cover themselves with detached seaweeds when they are

available, which in turn provides a physical barrier for defense against their main

predator, large sea anemones (Amsler et al. 1999). This benefits the seaweeds since

it keeps a large population of drift algae in the photic zone where they continue to

photosynthesize and reproduce (Amsler et al. 1999; Schwarz et al. 2003).

The palatability of 19 seaweeds to herbivorous sea urchins and amphipods has

been examined in the Arctic at Svalbard (Wessels et al. 2006). Of these, 17 seaweed
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species were unpalatable. By comparing assays on fresh seaweed thallus with

artificial foods which removed physical defenses, it was concluded that 15 of the

17 seaweeds rely primarily on physical toughness to deter herbivores and that only

two elaborate chemical defenses (Wessels et al. 2006). In one of these chemically

defended seaweeds, Desmarestia viridis, the defensive compound has been shown

to be sulfuric acid (Molis et al. 2008). D. viridis provides associational defense to
other seaweeds growing near because it so strongly repels sea urchins (Molis et al.

2008).

To date, no studies—we are aware of—have examined polar seaweed chemical

defenses against biofouling in an ecologically relevant context (see also Chap. 9 by

Amsler). However, Antarctic seaweeds do produce compounds which are toxic to

epiphytic diatoms in vitro (Amsler et al. 2005b; Iken et al. 2011; Sevak 2010).

Grazing amphipods appear to be very important in reducing diatom fouling of these

seaweeds in nature (see also Chap. 8 by Iken). However, when held in experimental

mesocosms without amphipods, one of four species, Desmarestia anceps, still had
only very low diatom coverage even though the other three species were heavily

fouled (Aumack et al. 2011). D. anceps is one of the many species which have anti-

diatom bioactivity in vitro, and it is possible that some of these compounds are also

playing a role in controlling fouling in nature.

13.4.4 Trophic Interactions

Antarctic seaweeds appear to play important roles in benthic food webs in both

shallow and deeper waters along the northern portion of the Antarctic Peninsula and

they are likely to be of particular importance to benthic detrital food chains. A

majority of the mid-water and, in particular, deep water carbon flux along the

western Antarctic Peninsula can be composed of seaweed material, which also

forms a significant part of the sediments (Liebezeit and von Bodungen 1987;

Reichardt 1987; Fischer and Wiencke 1992). Seaweeds are also important in

Antarctic coastal and maritime detrital food chains along the western Antarctic

Peninsula (Zielinski 1981; Dawson et al. 1985). Drift seaweeds can be abundant in

pockets on the coastal sea floor (Neushul 1965; Brouwer 1996b; Amsler, personal

observations). A major portion of the primary production of Himantothallus
grandifolius is lost as blade erosion and, in contrast to phytoplankton, this carbon

input to the detrital communities continues throughout the year (Dieckmann et al.

1985). Although living, drift Desmarestia anceps decays fairly slowly via fragmen-

tation, carbon from dead D. anceps is recycled relatively quickly (Brouwer 1996b).
Stable isotope techniques have shown that macroalgal carbon makes important

contributions to invertebrates via the detrital food webs in both shallow hard bottom

communities where they grow (Dunton 2001) and in nearby, soft bottom

communities (Corbisier et al. 2004) along the western Antarctic Peninsula. In

McMurdo Sound, Phyllophora antarctica appears to be a similar, important source
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of carbon to hard and soft bottom communities, likely via the detrital food web

(Norkko et al. 2004).

Antarctic seaweeds also provide food and cover to large numbers of

invertebrates and fishes (e.g., DeLaca and Lipps 1976; Richardson 1977; Iken

1999; Huang et al. 2007; Zamzow et al. 2011). Amphipods occur on these seaweeds

at exceptionally high densities. Richardson (1977) reported over 10,000 amphipods

per single Desmarestia anceps while Amsler et al. (2008), combining datasets from

the same community collected by Amsler et al. (1995) and Huang et al. (2007),

estimated densities of amphipods in solid stands of D. menziesii at over 300,000
individuals m�2 of the benthos with densities in solid stands of D. anceps and

Plocamium cartilagineum of approximately 30,000 individuals m�2. All the sea-

weed species that have been reported with very high amphipod densities are also

chemically defended against amphipod herbivory (Amsler et al. 2005a; Huang et al.

2007; Aumack et al. 2010) and as such are almost certainly not being consumed by

the amphipods. Instead, the amphipods are grazing epiphytic diatoms and other

macroalgae, as well as filamentous algal epiphytes and emergent filaments from

algal endophytes (Aumack et al. 2011). Removing these biofouling algae undoubt-

edly benefits the host seaweeds. The amphipods also benefit from associating with

the chemically defended seaweeds as they are much less likely to be consumed by

omnivorous fish (Zamzow et al. 2010). Therefore, the seaweeds, which are the

dominant, habitat-forming organisms in the community and the amphipods, which

are by far the most numerous animals in the community, exist in a community-

wide, mutualistic relationship.

Filamentous algae growing as epiphytes are very rare along the western Antarc-

tic Peninsula (Peters 2003). However, filamentous algae growing as endophytes

within the larger, chemically defended seaweeds are unusually common, which has

probably been selected for as a refuge from the dense amphipod assemblage (Peters

2003; Amsler et al. 2009; see also Chap. 9 by Amsler and Chap. 11 by Potin).

Although endophytes do not necessarily harm their hosts, serious pathogenic effects

of filamentous algal endophytes on their seaweed hosts are well known (e.g., Apt

1988; Correa and Sánchez 1996; Peters and Schaffelke 1996). Whether or not, and

if so how frequently, the abundant algal endophytes in Antarctic seaweeds are

deleterious to their hosts and whether or not Antarctic seaweeds use chemical

defenses against endophytes are important areas for future study.

Although seaweeds in Arctic Spitsbergen support a diversity of macrofauna

(Lippert et al. 2001; Włodarska-Kowalczuk et al. 2009), only 2 of 19 such species

examined were shown to consume the seaweeds (Wessels et al. 2006). However, it

is likely that, as in Antarctica, seaweed carbon is important in this system via the

detrital food web (Hop et al. 2002). In the Alaskan Beaufort Sea, stable isotope

techniques have shown that kelps are an important carbon source to many inverte-

brate species including direct herbivores and animals deriving the carbon via

detritus (Dunton and Schell 1987).
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13.5 Impact of Global Climate Changes on Seaweeds

and Their Communities

As stratospheric ozone depletion is highest in polar regions, numerous studies were

performed on the effect of enhanced UV radiation (UVR) on seaweeds from the

Arctic and Antarctic (see Chap. 20 by Bischof and Steinhoff; Karsten et al. 2011).

The most UV-susceptible stages in the life history of seaweeds are their spores

(Roleda et al. 2007). Spores of shallow water species exhibit a high UV tolerance,

whereas spores of mid- and lower sublittoral species are increasingly UV suscepti-

ble (Wiencke et al. 2006). Tolerance of spores to UVR is a major if not one of the

most important factors determining the upper depth distribution limit of kelps and

kelp-like species. Enhanced UVR due to stratospheric ozone depletion may lead to

changes in the depth distribution of seaweeds which may cause significant

snowballing effects.

As temperature is one of the most important factors controlling biogeographic

distribution of seaweeds, distributional shifts are an inevitable effect of global

warming, especially in polar and cold-temperate regions (see Chap. 18 by Bartsch

et al.). Modeled temperature changes through the end of twenty-first century

indicate that North Atlantic-polar to cold-temperate seaweeds will extend their

range into the high Arctic, but retreat along the northeastern Atlantic coasts. In

contrast, many Antarctic seaweeds will presumably not strongly alter latitudinal

distributions due to changes in temperature (M€uller et al. 2011). Clearly, the

distributional changes of key species as so-called ecological engineers will provoke

substantial and cascading effects in polar and cold-temperate transition areas with

strong consequences for biodiversity and ecosystem functioning.

Although increasing temperatures due to climate change may not affect the

latitudinal distribution of Antarctic seaweeds directly, it very likely is doing so

indirectly via changes in sea-ice extent and duration, particularly along the southern

portion of the western Antarctic Peninsula. Sea-ice cover in this region has been

dramatically changed by increases in air temperatures over the past 30 years,

advancing nearly 2 months later in winter and retreating approximately 1 month

earlier in spring (Smith and Stammerjohn 2001; Stammerjohn et al. 2008). These

changes are likely to continue and are thought to be significantly impacting marine

communities (Clarke et al. 2007; Ducklow et al. 2007; McClintock et al. 2008).

The marked decrease in seaweed biomass and species richness historically

observed along the southern portion of the Antarctic Peninsula is thought to be a

result of the increasing sea-ice coverage as one moves south. It seems likely that

seaweed communities typical of the northern portion of the western Antarctic

Peninsula are expanding southward. Unfortunately, seaweed floras in the area

between Anvers and Adelaide Islands (64�S–67�350S) are very poorly studied,

both historically and currently, so the extent to which such changes have and are

occurring is unknown.

Polar regions are not only affected by stratospheric ozone depletion and global

warming, but certainly also threatened by ocean acidification as a result of human
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use of fossil fuels (see Chap. 19 by Roleda and Hurd). When CO2 enters the ocean

surface, CO2 and bicarbonate concentrations will increase, and in contrast, pH and

carbon ion concentrations will decrease (Feely et al. 2004). As the solubility of

gases is higher in colder waters, polar regions will be most strongly affected. In

general, effects of ocean acidification on seaweeds and their communities are

poorly understood. Elevated CO2 levels may support primary production, although

species with a carbon concentrating mechanism (Giordano et al. 2005) may show

less strong responses. Calcification of calcareous algae will be impaired (Leclerc

et al. 2000). For polar waters, there is only one publication addressing this impor-

tant question (McClintock et al. 2009). Therefore, we need to study the responses of

polar seaweeds to elevated CO2 levels and ocean acidification in more detail and

also investigate possible acclimation processes.

13.6 Conclusion

In the above summary of our present knowledge about polar seaweeds, gaps are

clearly apparent. The biodiversity of polar algae must be studied more intensively

to better understand their evolutionary history, biogeographical relationships, and

their physiological performance. With respect to their phenology, an open question

is the perception of daylength, which controls seasonal growth and reproduction in

endemic Antarctic and Arctic seaweeds. Storage of photosynthetic products, their

remobilization and translocation to the meristems, and prerequisites for growth in

darkness and low light are not fully explored. Moreover, it is necessary to identify

the thresholds of tolerance to low and high light, UV radiation, temperature,

freezing, and other stresses and to quantify the related physiological processes by

genomic, proteomic, and metabolomic approaches in order to better understand the

ecology of individual species.

In seaweed communities from the Antarctic, the function of secondary

metabolites in chemical defense and functioning of these systems need to be studied

more intensively, not only with respect to herbivory, but also to biofouling. The

putative photoprotective role of phlorotannins needs to be studied in greater detail.

As the molecular structure of phlorotannins is still obscure, more studies are

necessary also in this field. An improved knowledge of these compounds should

allow us to investigate the effects of these brown algal secondary metabolites on

grazers in a better way. In particular, the effects on the digestive system of

consumers should come into the focus of science. Compared to Antarctic seaweeds,

much less is known about seaweed–herbivore relationships in the Arctic, which

therefore need to be studied much more intensively. Finally, the effect of global

climate changes, especially of global warming and ocean acidification on seaweeds

and their communities, must urgently be studied in order to develop scenarios about

changes in the functioning of polar seaweed systems. In this respect, special

emphasis should be laid on interactive effects between temperature, CO2 level,

pH, and radiation conditions to obtain a more plastic picture of future trends.
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