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Abstract

The operational ocean prediction model for the North and Baltic Seas of

the German Maritime and Hydrographic Agency (BSH) is augmented with a

multivariate data assimilation (DA) system. We report on the implementa-

tion and performance of the scheme which is based on ensemble forecasting.

Here we apply the localized Singular Evolutive Interpolated Kalman (SEIK)

filter for assimilating the NOAA AVHRR-derived sea surface temperature

(SST) data.

Results are presented for two periods: October 2007 is used for calibration

and March 2011 for the analysis of the performance in a pre-operational

phase. The major forecast improvement is found to be a reduction in the

local temperature bias. As compared with the regular BSH forecast without

assimilation, the root mean square difference between the predicted SST and

satellite observations is reduced on average from 0.87oC to 0.53oC for March
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2011. The quality of the predicted fields that were not assimilated (velocities,

sea level and salinity) is preserved as is confirmed by independent in situ data.

The results have required adjustment of the conditional data error statistics.

The experiments conducted with different timing and frequency of data

assimilation and variable forecasting periods show that the DA system cor-

rects systematic model uncertainties and, due to memory to the corrections,

improves prediction over periods of up to 5 days. The results also explicitly

illustrate a lower quality of the AVHRR daytime product and reveal low in-

formative influence of the data on the forecasting system when daytime SSTs

are assimilated additionally to midnight observations.

Keywords: data assimilation, ensemble Kalman filtering, operational

forecasting

1. Introduction

Over the last two decades many Earth’s system observing programs have

been established in order to monitor, investigate and understand the changes

in Earth’s climate and the influence of human activities on the environment.

A number of satellite missions have been launched to observe the state of

the Earth’s subsystems, including the global ocean. Additional information

about the ocean state is provided by in situ data, e.g. from deployed floats.

A combination of the data with numerical modeling via assimilation proves

to be a powerful tool either for just interpolation and (re)analysis of the

sometimes still sparse data, or for the design of monitoring strategies, as well

as for long- and short-term system state forecasts.

A number of operational ocean forecasting systems with data assimilation
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(DA) demonstrated remarkable progress during the past 10 years (e.g. Brus-

dal et al., 2003; Bertino and Lisæter, 2008; Brasseur et al., 2005; Cummings

et al., 2009; Storkey et al., 2010; Kurapov et al., 2011; Stanev et al., 2011).

In vein with this general line, a new data assimilative forecasting system has

been recently developed to operate for the North and Baltic Seas. Since 1

January 1999, the German Maritime and Hydrographic Agency (BSH) has

been operationally running a circulation model for the North and Baltic Seas

coupled with an ice model. On a daily basis, up to 72 hour forecasts of sea

surface elevation, currents, water temperature and salinity, as well as fore-

cast of sea ice concentration and thickness are produced. Within the project

DeMarine-Environment — as a part of the GMES initiative (Ryder, 2007)

— the operational system of the BSH has been extended by including a data

assimilation component, in particular, for assimilating NOAA’s (National

Oceanic and Atmospheric Administration) satellite sea surface temperature

(SST) data into the BSH circulation model. Previously, She et al. (2007)

and Larsen et al. (2007) noted that the satellite data, due to their temporal

and spatial coverage, are better suited for the North and Baltic Seas SST

reconstruction (Høyer and She, 2007) than in situ measurements.

The aim of this paper is to investigate whether and under which opti-

mal setting the satellite sea surface temperature data assimilation gives one

an opportunity to improve the forecasting service provided by the BSH. Im-

proved SST fields on their own are required for monitoring climate change and

for the specification of oceanic boundary conditions for atmospheric models

and to provide initial conditions for ocean/sea circulation models. Moreover,

proper SST forecasting skills are of importance when predicting sea-ice. Pri-
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mary productivity and water quality— for instance, harmful algal bloom and

oxygen hypoxia events — are also influenced by temperature either directly,

through the dependence of physiology and gas exchange processes on it, or

indirectly via changes in mixing conditions and stratification in the upper

mixed layer, in which phytoplankton grows. It is worth noting, however,

that, optimizing the data assimilation system, one has to consider not only

the system’s forecasting skills with respect to SST, but also the performance

in simulating sea surface elevation, current velocities and salinity, which are

vital for other applications.

The degree of the forecast quality improvement due to data assimilation

crucially depends on our prior assumptions on model and data error statistics

and on how the statistics evolve in space and time. The latter is, to a large

extent, determined by data assimilation algorithms. In this study, the Singu-

lar Evolutive Interpolated Kalman (SEIK) filter (Pham et al., 1998; Pham,

2001) is used. This ensemble-based method is suboptimal as many practical

Kalman-type filters. It requires a substantial calibration effort given a par-

ticular dynamical system and data (for more details see the next section).

Moreover, as a rule, we know little about model error statistics, and the

prior information on data errors is also missing in our application. These

circumstances make the problem of optimizing the BSH operational data

assimilative system rather challenging. They also change the context of sta-

tistical terms with respect to the system error statistics. In absence of precise

information about the reality, the model and data errors, considered relative

to this reality, are linked to each other. In this work, we focus on assump-

tions about data errors and discuss SST data assimilation results obtained
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with several different (with respect to timing, period, frequency) forecasting

schemes, based on the forcing and data collected for October 2007. We pro-

pose that data assimilation may teach us about error statistics and eventually

allows us a posteriori estimate the model uncertainties and draw conclusions

about data. Let us emphasize, however, that we do not intend to provide

quantitative estimates of the data errors, but rather to evaluate the relative

quality of this information source about the reality. Thus, in this paper, we

demonstrate that:

1. By carefully selecting the radius of the data influence in a local SEIK

filter implementation and functions approximating the data error corre-

lations, the forecast skills of the BSH model can be markedly improved.

2. The calibrated data assimilation system is capable of correcting the

systematic model uncertainties and keeps the corrections and model

trajectories in the right direction over more than 100 hours. This opens

perspectives for long-term forecasting over several days and is also im-

portant in the presence of many data gaps at different locations in the

North and Baltic Seas caused by clouds.

3. It is possible to infer on data quality via assimilation.

The next section describes the system including the BSH operational

model of the North and Baltic Seas, the data and the implemented data as-

similation approach. In section 3 we explain the experiment design. Results

of data assimilation system calibration and results of pilot real-time experi-

ments are presented in section 4. The last section provides a summary and

some conclusions.
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There are still some aspects of the system development which are left

beyond the scope of the paper but are indeed crucial. Based on system

evaluation over a one year period (October 2007 – September 2008), we

have found that plausible estimates or hypothesis on model errors and their

seasonal variability are necessary for keeping the improvement of sea ice

and bottom temperature forecast on a long term. In a separate paper, we

discuss the sensitivity of the system performance to the initial model error

specification and consider possible evaluation of the plausibility of the filter

analysis and error statistics.

2. Pre-operational System

BSH operational circulation model

The operational circulation model of the BSH (BSHcmod, Kleine, 1994;

Dick, 1997; Dick et al., 2001) is a three-dimensional hydrostatic primitive-

equation circulation model formulated in spherical horizontal and generalised

vertical coordinates (Kleine, 2003), with mixing length formulation for hori-

zontal and vertical turbulence.

The model domain extends from 4oW to 30,5oE and from 48,5oN to 60,5oN

in the North Sea and to 66oN in the Baltic Sea. The horizontal grid spac-

ing is ∼5 km, 5’ in longitude and 3’ in latitude. The vertical dimension is

discretized into 44 vertical layers, with layer thickness increasing from ∼2 m

at the top to ∼3 m close to the bottom. The operational version of BSHc-

mod uses a two-way nested high resolution (∼ 900 m) grid, which covers

the German Bight and the western Baltic Sea. For this study the model is

run without nesting in order to reduce the computational cost. Judging on
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existing dynamics, the exclusion of the high resolution nested grid has minor

influence on the results with respect to SST. It may, however, have a strong

impact on the Baltic Sea salinity as discussed later.

The northern open boundary in the North Sea is closed with a sponge

layer. Within this layer, the temperature and salinity are restored towards

monthly mean climatological values. A similar sponge region is included at

the entrance to the English Channel. External surges at the open bound-

aries are provided by a two-dimensional BSH model for the North East At-

lantic with coarser resolution of ∼10 km. 14 tidal constituents are used to

implement tidal forcing, and flooding and drying of tidal flats is applied.

Atmospheric forcing at the surface is based on meteorological forecast data

— hourly values of air temperature and humidity, air pressure, wind veloc-

ity and total cloud cover — provided by German Weather Service (DWD).

River runoff is prescribed as freshwater fluxes at the boundaries opened in

the regions of main rivers.

To account for ice formation processes at the sea surface, the BSH circu-

lation model is coupled with a sea ice model that describes sea ice thermo-

dynamics and incorporates Hibler-type dynamics (Hibler, 1979).

Operationally, the BSHcmod is integrated once per day over up to 72

hours with the time step of 30 s.

Despite the fact that the BSH coupled sea/ocean circulation-ice model

accounts for and describes many physical processes observed in reality, the

model is, as any others, just an approximation of the real world. We ex-

pect that the quality of hydrographic characteristics forecast provided by

the model can still be improved by assimilating observational data.
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Observational Data

The observational data are 12 hourly — centered around 00:00 and 12:00,

— composites of SST data measured by the Advanced Very High Resolution

Radiometer (AVHRR) aboard polar orbiting NOAA satellites and processed

and gridded by the BSH satellite data service. Here, we focus on the data

collected over October 2007 (DA tuning period) and over March 2011 (a real-

time experiment period). Only the satellite data for these particular periods

were taken into account.

Data Assimilation approach

We use data assimilation to estimate and predict a system state x(t) given

observations and a dynamical model evolving with time t according to

dx

dt
= L(x, t) + F(t) , (1)

where L is the model operator describing internal processes and F is the

external forcing. One has to consider several approximations for this process:

1. The dynamical model is always an approximation to some natural phe-

nomena. It possesses uncertainties in the external forcing F and initial

condition x(0), and in some internal parameterization. Given these un-

certainties it is worth presenting the system forecast as a set of prob-

able predictions x(t) of state Xt, x(t) ∈ Xt. Thus, the forecast can

be expressed in terms of probability density function (PDF), ρ
f
t (x(t)),

defined over Xt,

ρ
f
t (x(t)) = Cρf (x(t)|x(0))ρ0(x(0)) . (2)
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Here C is the normalization constant, ρ0 is the PDF describing un-

certainties in the initial condition, and ρf(x(t)|x(0)) is the conditional

PDF evolving in time, in accordance with the so-called Fokker-Planck-

Kolmogorov (FPK) equation, which corresponds to the stochastic dy-

namical model
dx

dt
= L(x, t) + F(t) + ε , (3)

where ε is a stochastic process with the statistics describing the model

errors. The statistics is, indeed, a priori poorly known.

2. The observations are also imperfect and contain some errors. Their

probability density function is introduced through the conditional PDF

ρd(d|x) of the data d to be observed if the true system state is x.

3. The problem of state estimation, i.e. combining the uncertain model

and imperfect data, formulated globally over the space of model tra-

jectories X = ⊕Xt can be considered as the search for most probable

realisations of model trajectories given the data. This reduces to es-

timating the conditional PDF ρa(x|d), with is also called the analysis

PDF. It expresses our knowledge about the model state when data are

observed and can be found with the Bayesian theorem (van Leeuwen

and Evensen, 1996)

ρa(x|d) = Cρd(d|x)ρ(x) . (4)

With a discrete analogue of system (3), equation (4) gives

ρ(x) = Cρ0(x(0))ΠM
k=1ρ

f(x(k∆t)|x((k − 1)∆t)) , (5)

where M is the number of time steps of the length ∆t. Solving Eq. (5)

requires calculations in the space of dimension Mdim(Xt). This dimen-
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sion is, however, huge for many oceanographic applications (Brusdal

et al., 2003; Penduff et al., 2002; Testut et al., 2003).

To reduce the dimension of control space by factor M one can either

neglect the model errors (strong constraint variational techniques) or

consider the problem of data assimilation sequentially (statistical meth-

ods). With the last approach, we integrate the FPK equation just from

initial time till the time the observation becomes available. Then, we

use the evolved forecast PDF (ρf
t (x(t1)) as prior when calculating the

analysis PDF ρa
t

ρa
t (x(t1)|d1) = Cρd(d1|x(t1))ρ

f
t (x(t1)) . (6)

4. Integrating the FPK equation explicitly is only feasible for very small

systems. For larger systems the computation of ρ
f
t has to be approx-

imated. One possibility is to apply the Kalman Filter (see, Ghil and

Malonotte-Rizzoli, 1991) or the Extended Kalman filter (Jazwinski,

1970). These filters assume Gaussian statistics and use only the covari-

ance matrix corresponding of the full PDF. They are optimal only for

linear systems. Furthermore, applying the Extended Kalman Filter for

non-linear systems can be problematic due to a linearisation of FPK

equation around the current analysis state (see Evensen, 1994).

No linearization is required if the continuous PDF is approximated with

an ensemble of model states. The forecast error statistics, in these so-

called Monte Carlo based algorithms, is derived from the ”cloud” of

ensemble members evolving in accordance to the stochastic dynamical

model (3). At the analysis step, given the observations, one can do

10



sampling based either on full statistics of the PDF (particle filtering,

see e.g., Gordon et al., 1993; Kivman, 2003; van Leeuwen, 2009, 2010)

or, under the assumption of Gaussian statistics, just use the forecast

error covariance matrix as in the Kalman Filter (Ensemble Kalman

filter EnKF by Evensen, 1994).

The convergence rate of the Monte Carlo methods depends on the num-

ber (N) and distribution of nodes sampling the space. Increasing N

improves the approximation of the PDF.

5. The computational cost of an assimilation method is widely determined

by the time to integrate the ensemble of model states. Thus, sampling

strategies that allow one to use an ensemble of minimum size are of par-

ticular relevance. The singular evolutive interpolated Kalman (SEIK)

filter (Pham et al, 1998, Pham, 2001) similarly to the ensemble trans-

form Kalman filter (ETKF by Bishop et al., 2001) can be considered

as a variant of the EnKF ”using a minimum number of ensemble mem-

bers” (Pham, 2001). At the analysis step, this, still of Kalman-type,

reduced rank square root filter spans the control space based on the

empirical orthogonal functions (EOFs) of the ensemble.

6. One more approximation applied in order to reduce the ensemble size

is localization (for overview see Janjić et al., 2011), in other words,

sampling which is optimal to each particular subspace (fragment of

space Xt), rather than to the global space. In practice, localisation

algorithms applied in ensemble-based Kalman filters introduce a radius

of data influence and a weighting of the observation influence based on

an assumed correlation function (Nerger et al., 2006; Hunt et al., 2007;
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Miyoshi and Yamane, 2007). Such an approximation, as a rule, needs

calibration of the algorithm with respect to the radius and the function

describing the data error correlations.

These considerations show that success of any data assimilation system

is based on properly solving the problems of presentation of probable model

uncertainties, data error approximation and propagation of these model and

data error statistics in time with the used data assimilation algorithm. In this

study, we sequentially (3) combine the information about the hydrographic

characteristics provided by the BSH circulation model and SST satellite mea-

surements by implementing the ensemble based (4) SEIK filter (5) with sec-

ond order exact sampling (Pham, 2001) coded within the Parallel Data As-

similation Framework (PDAF, Nerger et al., 2005; Nerger and Hiller, 2012).

While using the SEIK filter makes the DA problem tractable with a relative

small ensemble, one can reach noticeable improvement in the performance of

the data assimilation system by applying SEIK filtering locally (6, LSEIK)

as in the study by Nerger et al. (2006), but with different data error cor-

relation functions or, in other words, with different ways of data weighting.

Keeping in mind all the aforementioned approximations (1–6) and the fact

that, indeed, a priori we know little about the model and data errors (1, 2)

it is worth emphasizing that in practice, to assimilate the satellite-derived

SST data into BSHcmod, we need to calibrate the data assimilation system

with respect to assumed initial model error statistics and localization con-

ditions when filtering based on the ensemble of a certain (small) size and

with given observational errors. In this paper we address aspects of the DA

system optimization concerning the sensitivity of the system performance to
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our assumptions about the data error statistics.

3. Experiment design

For validating the developed data assimilative BSH forecasting system

and performing required sensitivity experiments, we have been provided with

atmospheric and river run-off data as well as with assimilated NOAA SSTs

over the period of 1 October 2007 – 30 September 2008. Because of compu-

tational cost (1 model day required 1.5 hours of computer time), calibration

of the system had been done for the first month of the model integration. As

soon as the DA system had been developed (end of 2010) and passed over to

the BSH, pre-operational simulations had been started. For this period, the

very first real-time data assimilation experiment performed in March 2011 is

presented, too. These results are considered as additional validation of the

BSH North and Baltic Seas forecasting system augmented with SST data

assimilation.

3.1. Model and data error statistics

Initial model error covariances

The initial model error covariance matrix, approximating ρ0, has been

computed with 12 hourly model snapshots at 0:00 and 12:00 of a model in-

tegration for the three months October to December 2007. The model was

initialized on 19 September 2007 with a monthly mean climatology. Such a

12-hourly sampling well corresponds to the observed dynamics in the pres-

ence of tides. Nevertheless, this step already involves approximations. In-

deed, here we replace the real initial model error statistics by variability of
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the prescribed model dynamics under variable atmospheric forcing. The de-

gree of its closeness to the real set of probable uncertainties in initial states

determines the quality of sampling and, thus, the time evolution of the statis-

tics.

The first 8 EOFs of the model variability sampled by the noon and mid-

night snapshots have been used to generate an ensemble of initial model

states (temperature, salinity, current velocities, sea surface elevation). The

initial ensemble of 8 members spreads around the mean state and dynam-

ically evolves in time. Such an approximation of model error covariances

by an ensemble of a small size is quite crude, but works sufficiently well

if the system is characterized by few strongly dominated dynamical modes

(which is the case for the North Sea) and the filter analysis is performed

under certain localization conditions. Results of an additional experiment

with a bigger ensemble (16 members, not shown), under otherwise identi-

cal conditions, did not improve the agreement of the forecast with the SST

observations and independent data.

Observational errors

The SST data used in this study have been provided without prior infor-

mation on the error statistics ρd(d|x(t)). However, Høyer and She (2007),

report a standard error of the SST satellite product (σsst) provided by the

BSH of ∼0.7oC. This value can be used to partly account for ρd(d|x(t)). An

additional source of the errors is due to the model representativeness. For in-

stance, at the analysis and forecast steps, we compare the model state each 12

hours against satellite observations, which are cumulative over the 12 hours

window. We stress, however, that σsst in the data assimilation algorithm

14



is not just the standard deviation of the data errors, but — due to the link

between model uncertainties and data errors relative to the reality — reflects

and therefore determines the ratio between model and data quality, which

we are not confident about. In other words, when the reality is unknown and

is to be estimated based on available information (model and data), which

quality is neither well known, the error statistics of the information sources

are always conditional.

No information is available about the data error correlation. The corre-

lation length scale, to some extent, depends on the dynamics of the basin,

more precisely, on the Rossby radius of deformation, which varies from ∼200

km in the barotropic mode to ∼10 km or even less in the baroclinic mode

(Alenius et al., 2003; Fennel et al., 1991). In every particular location of

the North and Baltic Seas, the SST data error correlation length scale might

be determined by the energy superposition of the baroclinic and barotropic

flows. The dependencies of the data error correlation on the system dynam-

ics is brought about by the algorithm used to convert the signal detected by

satellite sensors to the bulk temperature at 1m depth. The algorithms are

based on regression analysis relating the signal to in situ observations avail-

able just at a limited number of locations but spread over large areas with

different local dynamics. Indirectly, the data errors depend on the system

dynamics due to representativeness of the satellite data interpolated from

the original resolution of 1.5 km to the coarser model grid.

Through the dependence on system dynamics, the data error correlation

length scale could be linked to the localization radius. From the point of

view of the local SEIK filter algorithm, the localisation radius should be small
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enough to allow the small ensemble to approximate, by different combinations

of the members, the error covariance matrix in such a way that the matrix,

being still of low rank locally for the subspace, on the whole, would describe

the uncertainties in a higher dimensional space (Hunt et al., 2007; Nerger

et al., 2006). On the other hand, the localisation radius should be large

enough to account for a sufficient amount of sparse data.

In our study, the following assumptions on data error have been consid-

ered. We have tested σsst equal to 1.8 oC, 0.8 oC and 0.5 oC. To approximate

the error correlation, we have weighted the data within the radius of 150 km,

100 km and 50 km assuming exponential, quasi Gaussian (Gaspari and Cohn,

1999) or uniform dependence of the weights on the distance from the anal-

ysed grid point. We stress once again that values here do not pertain to

quantitative estimates of the data error statistics, they rather express condi-

tional data quality. It turned out that the choice of σsst = 0.8 oC and the

exponential form of data error correlation within 100 km (we refer to this

setup as ”main experiment”) were the best among others tested. Below we

only discuss the impact of our assumptions about data error statistics on

the SST forecast and illustrate their influence on salinity simulations when

comparing the main experiment against those with uniform data weighting

within 50 km.

3.2. Different timing and period of LSEIK analyses and forecasts

Developing an operational forecasting system including data assimila-

tion, one has to address one more aspect of data product statistics such as

frequency and spatial coverage of available information. To evaluate the sys-

tem’s forecasting skills in the presence of spatial and temporal satellite SST
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data gaps, four basic experiments, differing with respect to DA frequency

and the forecast period, have been carried out:

1. 12 hours forecast when assimilating SST data at 0:00 and 12:00;

2. assimilation followed by long forecasts over 48 and 120 hours;

3. 12 and 24 hours forecast with LSEIK filter applied every 24 hours at

0:00

4. 12 and 24 hours forecast with LSEIK filter applied every 24 hours at

12:00.

Since the implemented data assimilation approach assumes a dynami-

cally evolving forecast error covariance matrix, the system was initialized for

all experiments with the same ensemble of states based on the covariances

described above.

4. Results

4.1. Main experiment: improving the agreement of the analysis/forecast with

the observations

Figures 1 and 2 demonstrate the improvement of the BSH system SST

forecasting skill on 14 and 27 October 2007 respectively when assimilating

the SST data every 12 hours. The top left panels depict the absolute devia-

tion of SST model solution from satellite data when no DA is applied. The

top left panel of Figure 1 shows that the model has difficulties in reproducing

the observed SST in the interior region of the Baltic Sea, over the area of

the Inner Silver Pit and in the English Chanel, while the ensemble mean of

model temperature updated after the local SEIK filter analysis much better
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agrees with the satellite-derived data (bottom left panel of Figure 1). This

reinitialization of the system at the analysis step has allowed us to reduce

the deviation of the SST ensemble mean forecast from the observations (top

right panel). The bottom right panels of Figures 1 and 2 show the differences

between the respective top right and left panels, which characterises the im-

provement of forecast. Apparently, with SST observational data assimilation,

we reduce the deviation of model 12 hours forecast from the satellite data

by more than 1oC. Figure 2 also illustrates how sparse the satellite data

sometimes are.

Figure 3 compares the temporal evolution of root mean square (RMS)

estimates of the SST forecast-data deviation over October 2007 obtained

by the BSH circulation model with and without data assimilation and av-

eraged over the full model domain. The black curve represents the RMS

estimates without assimilation, while the blue curve and the dots are those

obtained with the local SEIK filter applied every 12 hours. With data assim-

ilation, the deviation of the forecasted SST from the satellite measurements

is significantly, ∼27 %, reduced and approaching to 0.5oC. Looking at the

differences between the forecast and analysis (the dashed red curves) one can

get an impression about the real forecast quality or, in other words, model

uncertainties which have also reduced in comparison with BSHcmod without

DA.

4.2. Influence of data errors and localization radius

The results presented above pertain to the main experiment. As com-

pared, for instance, with the case of uniform data weights over the radius

of 50 km, the SST forecast in the main experiment is improved by a max-
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imum 10% (Fig. 4). Very similar SST forecast quality to that of the main

experiment has been obtained with the LSEIK filter using the quasi-Gaussian

data error correlation function (Gaspari and Cohn, 1999) within 50 km and

σsst = 0.8oC (not shown). However, the degree of closeness of the predicted

SST to those observed was not the only criterion of the BSH service improve-

ment we considered. The sea surface height, current velocities and salinity

simulations were also under the control. The sea surface elevation of LSEIK

analysis and forecast were always sufficiently close to the BSH forecast with-

out DA, which, on its own, is in a good agreement with tide gauge data (Dick

et al., 2001). The maximum differences between the SSH forecast with and

without SST data assimilation are less than 2 cm. Deviations of the velocity

components (u and v) obtained with regular BSHcmod from those in the DA

setup based on local SEIK filtering under conditions of the main experiment

were also quite small (∼1.5 cm/s maximum), at least over the considered

time period. Using other localisation parameters mentioned in Section 3 —

including the quasi-Gaussian correlation function — at the analysis step,

however, led to u and v with a higher noise component (not shown).

Comparison with independent data

Faithful modelling of salinity presents a really tough criterion for the

forecasting system performance as the horizontal and vertical salinity dis-

tribution is a key factor determining the Baltic See stratification, ventila-

tion processes and important environmental conditions for a unique marine

ecosystem. It turned out that salinity is rather sensitive to the configuration

details of the LSEIK filter algorithm.

Figure 5 shows that the assumption on data error statistics in the main
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experiment is superior for the salinity simulation (red curve). The surface

and bottom salinity at the MARNET station Arkona Basin in the Baltic Sea

(located at 54o53′ N , 13o52′ E) obtained by assimilating the SST data in the

main experiment is compared with simulations performed without DA (blue

curve) and with DA (black dashed) using a 50 km radius of data influence,

σsst = 1.8oC and uniform data weights. Independent time series data at

the MARNET station are given by the green curve. One can see that the

forecast quality for salinity crucially depends on the assumptions about the

model and data error statistics. We have to, however, mention that it is

rather difficult to correctly reproduce the system dynamics in the location of

the MARNET stations. In the presence of realistic bathymetry, the dynamics

are characterized by very strong and sporadic interactions between the North

and Baltic Seas, which the used version of the BSH circulation model with

the 5 km resolution does not always properly predict.

Table 1 summarises the statistics of the surface salinity forecast deviation

from independent observations at a number of MARNET stations. At the

two stations Darss Sill and Fehmarn Belt, the SST data assimilation just

slightly improved the salinity forecast. The predicted SST based on LSEIK

analysis is, however, in a very good agreement with all the MARNET SST

observations (see Tab. 2). At the MARNET locations, the deviation of the

predicted SST from the independent time series is much less in case with DA

than without it and even less than the differences between the satellite SST

and the MARNET data.

20



4.3. Bias reduction and long forecasts in the presence of data gaps

Figure 6 illustrates the ability of the DA system to correct systematic

model errors. It depicts spatial distribution of deviation of the sea surface

temperature forecast from the satellite data obtained without DA (top panel)

and with 12-hourly implemented local SEIK filter (bottom panel) averaged

over the period October 2007. As shown in the top panel, over the period

considered, the BSH circulation model underestimates surface temperature

in the Skagerrak and Kattegat straits, in the Darss Sill and the Arkona Basin.

Larger deviations are also visible in the Norwegian Trench and the Gulf of

Bothnia. In the English Chanel, over the area of the Inner Silver Pit and

in the interior region of the Baltic Sea, the predicted surface temperature

is more than 1oC less than the observed one. The model state corrections

we have obtained after the local SEIK analysis step were sufficient to keep

the model trajectories in the right direction and, therefore, to improve the

forecast over 12 hours (Fig. 6, bottom panel). Averaged over the basin mean

deviation of the model SST from the NOAA observations decreased from

0.56oC to 0.20oC when local SEIK filtering was applied.

An important question is how long the model is able to keep the right

course. Figure 7 depicts the temporal evolution of RMS estimates (RMSE)

of the differences between SST data and a 5-day forecast initialized by the

LSEIK analysis on 16 October 2007 (green curve). The estimates are com-

pared with those obtained for the forecast without DA (black curve) and the

ensemble mean forecast with 12-hourly DA (blue curves/dots). It is worth

noting that, over the entire period of 120 hours, the quality of the model fore-

cast based on LSEIK update just at the beginning of the integration period

21



is better than regular the BSHcmod SST forecast performed without any

DA, and close — especially over the first 48 hours — to the forecast quality

of the system with DA every 12 hours. Similar results have been obtained

when carrying out a real-time data assimilation experiment over March 2011:

48-hour forecasts initialized after the LSEIK analysis on 23 March 2011, 25

March 2011 and 27 March 2011 turned out to be of the same quality as the

forecast based on DA every 12 hours (Fig. 8). Overall, the reduction of the

RMS error of SST forecasts achieved during the real-time data assimilation

experiment is from 0.87oC to 0.53oC (Fig. 9).

4.4. Filtering with different timing and frequency: bias of the daytime satel-

lite data product

Figure 10 displays RMS forecast-minus-data estimates of DA experiments

with different timings. In particular, we compare the RMSE of the deviation

of SST forecast from the observations obtained with DA every 24 hours at

12:00 (blue curve) against the case of only ’midnight’ data assimilation (every

24 hours at 0:00, green curve) and every 12 hours LSEIK filtering (red curve).

The black curve is again the SST forecast-minus-data RMSE temporal evo-

lution for the BSHcmod without DA. The red and green curves indicate that

adding the daytime data to midnight data does not bring any significant in-

formation into the forecasting system with respect to improving the forecast

quality. Moreover, the blue curve shows that assimilation of only daytime

SST can make the forecast even worse. Indeed, this result is an illustration

of AVHRR-derived daytime data bias due to spatial thermostratification of

the upper few millimeters ocean/sea layer forming during daytime under low-

wind speed conditions (Donlon et al., 2002). The existence of such a diurnal
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warm layer makes the relation of sea surface skin temperature, measured

by the sensors, to the subsurface 1 m depth temperature quite complicated.

In our case, the amplitude of the satellite-derived temperature daily cycle

is up to 3.5oC. Several methods of removing the effect of diurnal warming

have been proposed based on wind and surface heat-flux data (Gentemann

et al., 2003; Stuart-Menteth et al., 2004; Nardelli et al., 2004). However,

seemingly, there is no well established parameterization of the ”skin effect”

for the North and Baltic Seas. We see the results of Figure 10 as remarkable

illustration of the capability of a calibrated DA system to pick up a relevant

part of information from otherwise noisy data.

5. Summary and Conclusions

A data assimilation (DA) system based on a variety of localized ensemble

Kalman filter has been coupled to the operational BSH circulation model of

the North and Baltic Seas. The method was successfully applied for assim-

ilation of NOAA’s satellite sea surface temperature data. We demonstrate

that, over the period of October 2007, the agreement of the SST forecast

with the satellite observation has been improved by ∼27% in comparison

with the regular BSH forecast without DA. To a large extent, this improve-

ment has been achieved by implementing the ensemble based filter locally

under assumption of an observation error of 0.8oC and using an exponential

function to approximate the data error correlation within the 100 km radius

and with ensemble size of 8 members. The system’s forecasting skills are

sensitive to the assumptions on data error statistics. The statistics is, never-

theless, conditional as is related to the reality which is, indeed, unknown and
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is estimated based on the model and data. Adjustment of the radius of data

influence as well as the data error correlation function has been required to

obtain better agreements of the salinity prediction in the Arkona basin with

independent data. Further tuning of the data assimilation system could be

done by introducing a spatially variable localisation radius, that would cor-

respond to the data error correlation length scale. This is in agreement with

Høyer and She (2007) who noted the dependence of the SST error correlation

length scale on the bathymetry and dynamics of the basin.

The major improvements in the SST forecast have been achieved due to

the fact that, after the filter analysis and update, the model states possessed

much less systematic errors in comparison with model solution obtained with-

out DA. The system dynamics kept the memory about the corrections and

drove the model trajectories in the ”right” direction over up to 120 hours,

which is valuable in the presence of SST satellite data gaps and also provides

an opportunity for improving up to 5 days-long forecasts.

We have also reported on a real-time data assimilation experiment carried

out in March 2011. Over this period, the assimilation of the AVHRR-derived

SST data every 12 hours allowed the BSH system to reduce the deviation of

the SST forecast in the North and Baltic Seas from observations by ∼39%.

On average, RMS estimates of the differences have been reduced from 0.87oC

to 0.53oC. It is worth mentioning that the forecast’s quality with respect to

the observation remained good during up to 48 hours after the DA analysis.

Results of data assimilation with different timing and frequency reveal low

informative influence of daytime AVHRR data when assimilating the satellite

SST (including midnight data) every 12 hours, but highlight the problem of
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filter performance if only the 12 hours composites around 12:00 are used. This

can be considered as an apparent illustration of the fact that the AVHRR

daytime product for the North and Baltic Seas does not properly account

for skin temperature effects. To this end, it is worth noting that despite the

high sensitivity of the forecast quality improvement to assumptions about

model uncertainties and data errors, statistics of which are not always, if

ever, known a priori, the combination of the information from the model and

the data by data assimilation might itself improve our understanding of both

these sources and help to optimize the system.

The potential for further optimisation and extension of the operational

BSH system by assimilating additional data sets — such as radar data, MAR-

NET time series, sea ice thickness and concentration — open attractive per-

spectives for future research, including the North and Baltic Seas hydro-

graphic state reanalysis.
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Figure 1: SST forecast skill improvement on 14 October 2007 at 00:00: Absolute deviation

from NOAA SST data of BSHcmod forecast without DA (top left), LSEIK 12-hour forecast

(top right), analysis (bottom left) and improvement as difference of the absolute deviations

without and with DA (bottom right).

32



Figure 2: SST forecast skill improvement on 27 October 2007 at 00:00: Absolute deviation

from NOAA SST data of BSHcmod forecast without DA (top left), LSEIK 12-hour forecast

(top right), analysis (bottom left) and improvement as difference of the absolute deviations

without and with DA (bottom right).
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Figure 3: Temporal evolution of RMS differences between satellite SST data and BSHcmod

forecast (black), LSEIK analysis (red) and mean of ensemble forecast (blue) based on 12-

hourly LSEIK analysis over the period 1 October 2007 – 27 October 2007.
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Figure 4: Temporal evolution of RMS deviation of SST model forecast from satellite SST

data over the period 1 October 2007 – 19 October 2007: Forecast without data assimilation

(black solid); mean of ensemble forecasts based on 12-hourly LSEIK analysis with uniform

data weighting within 50 km and σsst = 1.8oC (black dashed), with uniform data weighting

within 50 km and σsst of 0.8oC (blue) and with exponential data weighting within 100 km

and σsst of 0.8oC (red).
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Figure 5: Surface (top panel) and bottom (bottom panel) salinity at the MARNET station

“Arkona Basin”: observation (green), model solution without DA (blue), forecast based

on local SEIK analysis with uniform data weighting (black) and LSEIK forecast with

exponential data weighting (red).

36



Figure 6: Mean deviation of the SST forecast from the satellite observations averaged over

the period 1 October 2007 – 27 October 2007: Without DA (top) and with LSEIK filter

(bottom).
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Figure 7: RMS error temporal evolution over the period 16 October 2007 – 21 October

2007 for simulated SST without DA (black curve); LSEIK analysis (red); mean of ensemble

forecast based on 12-hourly analysis (blue) and 5 days forecast (green curve) initialized

with the analysis state obtained on 16 October 2007.
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Figure 8: RMS error temporal evolution over the period 22 March 2011 – 29 March 2011 for

simulated SST without DA (black curve); LSEIK analysis (red); mean of ensemble forecast

based on 12-hourly analysis (blue) and 2-day forecasts (blue dashed curve) initialized with

the analysis on 23 March 2011, 25 March 2011 and 26 March 2011.
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Figure 9: Temporal evolution of RMS differences between satellite SST data and BSHcmod

forecast (black), local SEIK analysis (red) and SST ensemble mean forecast (blue) based

on 12-hourly LSEIK analysis over the period 1 March 2011 – 31 March 2011.
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Figure 10: Temporal evolution of SST RMS error for BSHcmod forecast without DA

(black); LSEIK forecast with DA every 12 hours at 0:00 and 12:00 (red); LSEIK forecast

with the analysis every 24 hours at 0:00 (green); LSEIK forecast when assimilating the

data every 24 hours at 12:00 (blue).
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Table 1: Deviation of the sea surface salinity predicted with and without DA from the

MARNET observations over the period of October 2007.

RMS (psu) Mean (psu)

Station Location BSHcmod LSEIK BSHcmod LSEIK

Arkona 54o53′ N , 13o52′ E 0.61 0.36 0.53 0.26

Darss 54o42′ N , 12o42′ E 4.86 4.63 4.59 4.32

Oder 54o05′ N , 14o10′ E 0.59 0.50 0.48 0.39

Fehmarn 54o36′ N , 11o09′ E 5.82 5.82 5.73 5.71

nsb 55o00′ N , 06o20′ E 0.13 0.12 -0.09 -0.07

Germ. Bight 54o10′ N , 07o27′ E – – – –

Table 2: Deviation of the SST predicted with and without DA and AVHRR-derived tem-

perature from the MARNET observations over the period of October 2007.

RMS (oC) Mean (oC)

Station BSHcmod LSEIK NOAA BSHcmod LSEIK NOAA

Arkona 0.80 0.33 0.42 0.69 0.09 0.11

Darss 0.67 0.35 0.45 0.39 0.02 0.05

Oder 0.27 0.20 0.46 0.22 0.13 0.09

Fehmarn 0.26 0.22 0.40 0.06 0.06 0.01

Germ. Bight 0.39 0.33 0.36 0.23 0.13 0.05
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