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Calcareous foraminifera are well known for their CaCO3 shells. Yet, CaCO3 precipitation acidifies the calcifying
fluid. Calcification without pH regulation would therefore rapidly create a negative feedback for CaCO3 precipi-
tation. In unicellular organisms, like foraminifera, an effective mechanism to counteract this acidification could
be the externalization of H+ from the site of calcification. In this studywe show that a benthic symbiont-free for-
aminifer Ammonia sp. actively decreases pH within its extracellular microenvironment only while precipitating
calcite. During chamber formation events the strongest pH decreases occurred in the vicinity of a newly forming
chamber (range of gradient ~100 μm) with a recorded minimum of 6.31 (b10 μm from the shell) and a maxi-
mumduration of 7 h. The acidificationwas actively regulated by the foraminifera and correlatedwith shell diam-
eters, indicating that the amount of protons removed during calcification is directly related to the volume of
calcite precipitated. The here presented findings imply that H+ expulsion as a result of calcification may be a
wider strategy for maintaining pH homeostasis in unicellular calcifying organisms.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Foraminifera are abundant marine calcifiers found in virtually all ma-
rine habitats. There are approximately 10,000 extant species (Vickerman,
1992) and calcareous wall structures radiated in the Paleozoic (Ross and
Ross, 1991; Tappan and Loeblich, 1988) making their calcium carbonate
shells important index fossils. Together with coccolithophores, foraminif-
era are themajor pelagic producers of calcium carbonate (Baumann et al.,
2004). Their fossilization, abundance and global distribution moreover
make calcareous foraminifera an important model organism for pale-
oceanographic reconstructions. The (trace) element and stable isotope
compositions of their calcite shells are used as proxies to estimate past
seawater parameters, such as temperature (Lea, 2003), salinity (Rohling,
2000), pH (Spero et al., 1997; Spivack et al., 1993) and nutrients
(Elderfield and Rickaby, 2000; Rickaby and Elderfield, 1999). A process-
based understanding of foraminiferal calcification is therefore essential
to better interpret proxy signals.

Foraminifera grow in discrete steps of new chamber additions.
Calcite precipitation in benthic rotalid foraminifera is believed to pro-
ceed in a confined space termed delimited biomineralization space
(DBS). This space is actively created by the rhizopodial network
around the newly forming chamber during chamber formation events
(Fig. 1, model based on Erez, 2003). CaCO3 precipitation is catalyzed
on the surface of an organic template termed primary organic sheet
(POS), being formed after establishment of the DBS (reviewed in
: +49 421 2028 690.
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Erez, 2003; Goldstein, 1999). In benthic rotalid foraminifera calcite
wall thickening proceeds in two layers, termed ‘primary calcite’ on
the POS of the newly forming chamber and a secondary layer termed
‘secondary calcite’ ((Angell, 1967), reviewed in Erez, 2003; Hansen,
1999). This secondary calcite is excreted over the complete shell sur-
face of the foraminifera during chamber formation, resulting in a fine
lamination of older chambers (Hansen, 1999).

Central to calcite precipitation by foraminifera (as in all calcifiers)
is a strict control over the carbonate chemistry of the calcifying fluid.
To promote CaCO3 precipitation, super-saturation of the calcifying
fluid needs to be maintained throughout the calcifying period. In ad-
dition, to form the delicate structures of foraminiferal shells, strict
control of the timing, rate and geometry of precipitation as well as
the degree of super-saturation is required (Nielsen, 1964).

It is well established that calcite precipitation strongly decreases
the pH of the calcifying fluid (Zeebe and Wolf-Gladrow, 2001).
Thus, biological regulated calcification, taking place in confined com-
partments (as in foraminifera), would rapidly shift the carbonate sys-
tem towards a lower calcite saturation state without active pH
compensation and thereby create a negative feedback for calcite
precipitation.

We hypothesize that during chamber formation the degree of
CaCO3 super-saturation is controlled by active export of protons
from the calcifying fluid. This excess acidification does not appear in-
side the cell as intracellular pH is highly regulated (reviewed in
Alberts et al., 2002; Madshus, 1988). Therefore, the protons must ei-
ther be neutralized or externalized. The latter mechanism implies
that the proton discharge should result in an acidification of the mi-
croenvironment around the newly forming calcite.
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Fig. 1. A) Measurement settings for combined pH and Ca2+ measurements of Ammonia
sp. during chamber formation. Area affected by low pH gradient (idealized shape) is
colored in dark blue (thickness reduced to ~1/3 for clarity). Spikes indicate the fine
pseudopodial network (PN=yellow) established during chamber formation and forming
the delimited biomineralization space (DBS=red). B) Close up of calcifying fluid and DBS.
Increased pHwithin the DBS and calcification (reduction of DIC) would strongly enhance
the molecular diffusion of CO2 into the DBS from both the cytosol and the surrounding
seawater (SW). POS=primary organic sheet (light blue), CC=CaCO3 (calcite),
dashed arrows indicate molecular diffusion, solid arrows indicate the active transport
of ions.
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We tested this hypothesis by measuring pH and Ca2+ dynamics
within the microenvironment of calcifying and non-calcifying forami-
niferal specimens at different life stages with microsensors. To exclude
the effect of photosynthesis, which is known to influence pHmicroenvi-
ronments (Rink et al., 1998), we conducted our experiments with spec-
imens of the benthic, symbiont-free, non-phototrophic genus Ammonia
(Cushman, 1926).

2. Materials and methods

2.1. Sampling and culturing

Specimens of a single morphotype of Ammonia were collected from
North Sea tidal flats near Dorum, Germany (53°40′28″N 8°30′57″E) be-
tween August 2009 and June 2010. Sediments were sieved (mesh size
630 μm) to remove larger meiofauna and stored in seawater at 10 °C in
the dark. Prior to experiments, adult individuals were isolated from the
sediment by additional sieving through a 230 μm mesh. Reproduction
was stimulated by cultivating these individuals at 25 °C and reduced
salinity (to about 26) and by feeding them with sterile, heat-treated
(photosynthetically inactive) microalgae of the species Dunaliella salina.
Within 7 days about 10% of the adults reproduced asexually, yielding ap-
proximately 50–200 single-chambered juveniles (Ø~50 μm) per event,
which were used for the experiments.

2.2. Experimental setup

Microsensor measurements were performed in a large Petri dish
under a backlit microscope (ZeissAxiovert 200 M) equipped with a
camera (AxioCamMRc5). The Petri dishwasfilledwith natural seawater
of reduced salinity (to about 26) and contained >30 individuals. The
friction velocity at the bottom of the Petri dish was adjusted to
0.2 cm s−1 by measuring particle movement over the bottom and
directing an air jet onto the water surface, to emulate natural flow
conditions of tidal flat sediment surfaces (Huettel and Gust, 1992;
Shimeta et al., 2001). Temperature and pH (total scale) in the bulk
seawater were measured using a micro-thermometer and a handheld
pH meter (WTW pH 330i), respectively.

pH LIX (precision 0.005), Ca2+ LIX (precision 5 μM), and glass pH
microelectrodes (precision 0.001) were prepared, calibrated and used
as previously described (Ammann et al., 1987; De Beer, 2000; De Beer
et al., 2000; Revsbech and Jorgensen, 1986). A detailed description of
the measurement setup can be found in Polerecky et al. (2007). Micro-
sensors had a tip diameter of b20 μm andwere positioned around fora-
minifera using a robotic arm (Eppendorf PatchManNP2 system) with a
precision of 50 nm.

2.3. Experimental procedure

Microscalemeasurements of pH and Ca2+were performed in close vi-
cinity (b10 μm) around foraminifera and away from the calcite shell in
the bulk seawater between and during chamber formation events
(Fig. 2). Ca2+ measurements were done simultaneously with pH mea-
surements, with sensor tips separated by ~10 μm(Fig. 1A). All time series
recordings of pH and Ca2+ stated in Figs. 3, 4 and 5were performedwith-
in the rhizopodial network for >30min on top of the POS (b10 μm dis-
tance) as illustrated by Fig. 1A. Chamber formation was visually
detected by observing pseudopodial retraction and gathering of food par-
ticles around the shell and spacewhere the new chamberwas going to be
formed (reviewed in Goldstein, 1999). Throughout chamber formation,
individuals remained in a fixed position attached to the bottom of the
Petri dish, allowing accurate placement of themicrosensor tips andensur-
ing a stable position of the electrode during chamber formation. The di-
mensions of the specimen and of the newly forming chambers were
measured from the acquired time series images (software Zeiss, Axio-
Vision 4.8.1).

2.4. Mass balance calculations

Calcification rates [μg h−1] were estimated from the amount of pre-
cipitated calcite and duration of the individual chamber formation
events that could be recorded completely (n=19). The amount of cal-
cite was calculated by assuming the newly formed chamber as 2/3 of
an ellipsoid with radii derived from measured chamber dimensions,
wall thickness of 3 μm (de Nooijer et al., 2009b) and tabulated calcite
densities (DeFoe and Compton, 1925).

2.5. Data analyses

Linear regressions between specimen diameter (measured as larg-
est possible diameter of individuals) and pH decreases, duration of pH
decreases were assessed using Pearson product–moment correlation
coefficient (R) and a general linear regression model. Regressions
and statistical analyses were performed with the statistical analyses
software SigmaPlot 10.0 (Systat Inc., USA).

3. Results

3.1. Microsensor measurements

During chamber formation strong pH decreases were detected near
the primary organic sheet (POS) of newly calcifying chambers and in its
vicinity (as illustrated by Fig. 1A) in all specimens (Fig. 2). The strongest
pH decreases originated from the newly forming chambers but also ex-
tended to the neighboring chambers (Fig. 1A, indicated as point X). The
difference between themaximum pH decreases recorded at the surface
of the POS (Fig. 1A) and that of the surrounding seawater, denoted as
ΔpH,was positively linearly correlatedwith the diameter of the individ-
uals and ranged from−0.060 to−1.774 (Fig. 3). The pH decreases only
occurred when chamber formation had progressed beyond the initial
stage of rhizopodial network formation (~1 h) and construction of the
primary organic sheet (POS; 1–3 h; Fig. 4). The onset of calcite precipi-
tation could not be timed accurately (>3 min accuracy) by lightmicros-
copy, but was associated with an instant decrease in extracellular pH
(b1 min precision, Fig. 4). The acidification persisted while the forma-
tion of pores within the calcite wall became apparent about 1–2 h
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Fig. 2. Differences between A) pH- and B) Ca2+-decreases and the bulk seawater (denoted as ΔpH and ΔCa2+) recorded around (b10 μm from the shell) replicated (n) foraminiferal
specimens between and during chamber formation events. Box plots show the 25th, 50th and 75th percentiles (horizontal bars). Error bars indicate the 90th and 10th percentiles.
Means are indicated as dotted lines.
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after the onset of calcification. The end of the chamber formation pro-
cess was reached when foraminifera extended their pseudopodia and
resumed movement. Shortly before and sometimes during the exten-
sion of larger rhizopodia the pHmicroenvironment around the forami-
nifera reverted back to seawater levels (Fig. 4). The timing of pH
acidification of the foraminiferal microenvironment therefore exactly
matched with visual signs of calcite precipitation (Fig. 4). Complete
chamber formation events could be recorded in 19 cases and acidifica-
tion lasted between1 h 10 min and 7 h (Fig. 5). Durations also exhibited
a positive linear correlationwith the diameter of the individuals (Fig. 5).
Thickness and form of the pH gradients measured from the POS surface
and extending into the surrounding seawater (i.e. the ‘diffusive bound-
ary layers’=DBLs) were highly variable (50–500 μm) and strongly
depended on the orientation of the new chamber in respect to flow
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Fig. 3. Relationship between foraminiferal diameter and decreases of pH during cham-
ber formation events and their linear regression (n=44).
direction and gathering of food particles, which hampered and dis-
torted linear diffusion (data not shown). Calcification rates derived
from mass balance calculations (n=19) were 0.028±0.002 (SE)
μg h−1 and ranged from 0.015 to 0.045 μg h−1.

During periods between two chamber formation events only small pH
variations (0 to −0.08) were detectable (−0.040±0.003 (mean±SE)).
These small pH decreases were not localized specifically to the surface
of the shell, but recorded on all plasma membranes including rhizopodia
(Fig. 2).

The established proton flux was highly regulated by the foraminif-
era as disturbance of the POS by gently nudging the microsensors
resulted in an instant pH increase (Fig. 4), thus interrupting H+

pumping. A complete breakdown of H+ pumping was observed if dis-
turbances persisted or occurred near the end of the chamber forma-
tion process. Small oscillations in pH were present in about 1/3 of
all chamber formation events and persisted throughout lowered pH
conditions (Fig. 4).

ΔCa2+ measured on top of the POS was variable between (4±
65 μM (mean±SE)) and during (−146±135 μM (mean±SE)) cham-
ber formation (Fig. 2). In contrast to pH dynamics, Ca2+ did not change
significantly during chamber formation when averaged over all tested
individuals compared to the surrounding seawater (paired t-test:
t=1.081, df=14, P=0.298, n=15).

4. Discussion

4.1. Acidification due to calcification

The exact congruence of timing of the measured microenviron-
mental acidification with visual signs of calcite precipitation (Fig. 4),
together with the fact that acidification could not be detected in pe-
riods in between two chamber formation events (Fig. 2), indicates
that the pH drops are a direct consequence of localized proton remov-
al from the site of calcification during calcite precipitation (Fig. 1B).



Fig. 4. Example of pH and Ca2+ dynamics of an adult Ammonia sp. individual (diameter 320 μm) during a chamber formation event. Upward arrows indicate the moments of de-
liberate nudging of the POS to trigger the interruption of active proton pumping for ~5 min. Ambient water conditions: salinity 26, temperature 18 °C; incident light: 10 μmol pho-
tons m−2 s−1; friction velocity: 0.2 cm s−1.
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An additional indicator for this is the observed significant correlation
between foraminiferal diameter and ΔpH changes (Fig. 3), following a
trend of increased calcite precipitation with size. The microenviron-
mental acidification in the vicinity of neighboring chambers (Fig. 1A
as indicated by point X) is most likely caused by secondary lamination
of older chambers during chamber formation. Yet, the strongest pH
drops radiated from the newly forming chamber, as a result of the
high volumetric concentrations of calcite being precipitated in this re-
gion (Fig. 1A) (Hansen, 1999; Hansen and Reiss, 1971). Due to this
fact, differentiating acidifications between primary and secondary
layering around foraminifera was difficult.

4.2. Calcification rates

Calcification rates obtained by the measurements (0.028±0.002
(mean±SE) μg h−1) represent, to the best of our knowledge, the first
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Fig. 5. Relationship between foraminiferal diameter and duration of pH decreases dur-
ing chamber formation events that could be recorded completely and their linear re-
gression (n=19).
estimates of calcification rates for Ammonia sp. They are lower than
rates obtained by Ca2+ labeling experiments of symbiotic planktonic fo-
raminifera (0.04 μg h−1 (dark) to 0.11 μg h−1 (light) (Erez, 1983), 0.39
to 0.87 μg h−1 (light) (Anderson and Faber, 1984), 0.06 μg h−1 (dark)
to 0.32 μg h−1 (light) (Lea et al., 1995)). Yet, cell diameters of Ammonia
sp. are small compared to planktonic species, suggesting decreased cal-
cification rates with decreasing size as in coccolithophores (Langer et
al., 2006; Stoll et al., 2002). Also, compared to the above labeling exper-
iments, calcification rates determined geometrically from the formation
of theultimate chamber did not take secondary layering of the complete
shell into account and thereby underestimated the amount of total cal-
cite precipitated. Yet, calcification rates are less variable than in symbi-
otic foraminifera, indicating that photosynthesis ismost likely the cause
for increased variability of calcification rates as suggested by Lea et al.
(1995).
4.3. Calcium dynamics

The variability of ΔCa2+ between and during chamber formation
events (Fig. 2) is in accordance with previous microsensor measure-
ments, showing high spatial variability of Ca2+ microgradients in
Amphistegina lobifera and Marginopora vertebralis (Koehler-Rink and
Kuehl, 2000) and among specimens in Orbulina universa (Koehler-
Rink and Kuehl, 2005). This indicates that Ca2+ uptake varies tempo-
rally and spatially over the shell surface of Ammonia sp. (Koehler-Rink
and Kuehl, 2000). The absence of an overall significant calcium gradi-
ent during chamber formation in the microenvironment can be
explained in two ways: 1) Ca2+ was not transported from the exter-
nal seawater into the DBS via channel-pumping, but supplied via an
intracellular calcium pool as shown by Anderson and Faber (1984),
ter Kuile and Erez (1988) and ter Kuile et al. (1989). 2) Ca2+ was
transported over the complete surface of the shell (Angell, 1979).
Due to the high surface area, Ca2+ concentrations of North Sea seawa-
ter would only require a small concentration gradient to establish a
high enough flux to sustain a constant rate of calcite precipitation at
calcite supersaturated conditions (Ωcalcite>1). In both cases calcium
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gradients measured within the foraminiferal microenvironment would
be small, which is in accordance with the measurements.

4.4. Trans-membrane transport of H+

We confirm that the site of calcification (i.e. the ‘delimited bio-
mineralization space’) must be delineated from the bulk seawater
(Angell, 1979; Be et al., 1979; Erez, 2003), as explained in the follow-
ing. The microenvironment around the newly forming chamber is
most likely low- or under-saturated in respect to calcite, due to the
observed acidification (see also (Wolf-Gladrow and Riebesell, 1997;
Wolf-Gladrow et al., 1999)). It is therefore unlikely that calcite pre-
cipitation proceeds directly from bulk seawater during chamber for-
mation, considering the measured high calcification rates (see
above). Also, if protons could diffuse freely between DBS and bulk
seawater, so would other ions, e.g. Ca2+, Mg2+ and Sr2+. However,
measured Mg- and Sr-fractionation factors in Ammonia sp. cannot
be explained assuming inorganic fractionation (Dissard et al., 2010),
but are consistent with the hypothesis that these ions are transported
across membranes before entering the calcifying fluid. It is therefore
inferred that trans-membrane transport across the pseudopodial net-
work is the means of proton removal during chamber formation
(Fig. 1B). Voltage gated H+-channels have recently been discovered
in the protoplasma membrane of coccolithophores and are present
in a wide variety of eukaryotic protists (Taylor et al., 2011).

An instant halt of trans-membrane transport of protons can also
explain the pH increase in the microenvironment upon mechanical
disturbance of the individual during chamber formation (Fig. 4). An-
other explanation could be a temporary rupture of the pseudopodial
network upon mechanical disturbance and a consequent efflux of
pH elevated calcifying fluid into the surrounding seawater (Fig. 1B).
Yet, the acidic characteristics near the newly forming chamber were
equally rapidly restored if the mechanical disturbance was not pro-
longed or too severe (Fig. 4). This shows that foraminifera strongly
regulate calcite precipitation and/or H+ removal.

After the initial drop in pH during chamber formation, pH under-
went cyclic changes (Fig. 4). It can only be speculated what this pH-
fluctuation might be. One possibility could be a temporary opening
of the pseudopodial network around the calcifying chamber causing
mixing of the high pH fluid from the DBS with the lower pH fluid of
the microenvironment. The function of such a temporary opening,
however, remains unclear. A replenishment of the DBS with Ca2+

and/or dissolved inorganic carbon (DIC) cannot be the main function
because such a Ca2+-pathway would not fractionate strongly against
Mg2+ and weakly for Sr2+ (Dissard et al., 2010), as discussed above.
Another possibility could be the additional cyclic exocytosis of low
pH fluid vesicles to maintain cellular pH homeostasis. Such low pH
compartments have previously been identified in other benthic rotalid
foraminifera during calcification (Bentov et al., 2009; de Nooijer et al.,
2009a). A third explanation could be related to temporary ion transport
across the plasma membrane of the pseudopodial network. Cyclic H+

conductive transport pathways would hereby allow for short periods
of net H+-uptake and therefore extracellular temporal alkalization
(reviewed in Lukacs et al., 1993).

Active H+ removal from the DBS does not only result in a pH de-
crease in the microenvironment of a newly forming chamber, but also
in a comparatively increased pHwithin the DBS (Fig. 1B). An advantage
of such a pH increase within the DBS is related to the driving force for
CO2 transport. A twofold pH gradient established between the DBS,
the external seawater and cytosol would strongly enhance molecular
diffusion of CO2 from the acidic cytosol (see also (Angell, 1979; Zeebe
and Sanyal, 2002)) and external seawater into the DBS on a micro
scale (0.1–5 μm distance, Fig. 1B). Such a mechanism has already been
suggested for high pH seawater vacuoles during chamber formation in
other species of benthic rotalid foraminifera (Bentov et al., 2009; de
Nooijer et al., 2009a). Also, diffusion is the limiting factor for DIC uptake
in Amphistegina lobifera and calcification in Amphisorus hemprichii
(ter Kuile et al., 1989). Hence, bymaintaining an increased pH to increase
super-saturationwith respect to calcite within the DBS, a highly efficient
DIC trapwould be created at the same time, facilitating bilateral diffusion
of CO2 into the DBS (Fig. 1B).

5. Conclusions

Our results show that calcification during chamber formation
strongly influences the extracellular pH in the microenvironment
(range of gradient ~100 μm) of the benthic foraminifer Ammonia sp.
Additionally, within their natural habitats, i.e. tidal flat surface sedi-
ments with strongly decreased diffusivity compared with natural sea-
water, this pH effect is expected to be more pronounced. The here
presented findings might suggest that excess H+ expulsion due to
calcification could be a widespread strategy for maintaining pH ho-
meostasis in other species of calcareous rotalid foraminifera.
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