Calcification acidifies the microenvironment of a benthic foraminifer (Ammonia sp.)

Martin S. Glas a,⁎, Gerald Langer b,c, Nina Keul c

a Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
b Department of Earth Sciences, Cambridge University, Cambridge CB2 3EQ, United Kingdom
c Alfred Wegener Institute for Polar and Marine Research, Am Handelskai 12, D-27570 Bremerhaven, Germany

ARTICLE INFO

Article history:
Received 12 January 2012
Received in revised form 3 May 2012
Accepted 7 May 2012
Available online xxxxx

Keywords:
Biomineralization
Calcite
Calcium
Microsensor
pH

ABSTRACT

Calcereous foraminifera are well known for their CaCO3 shells. Yet, CaCO3 precipitation acidifies the calcifying fluid. Calcification without pH regulation would therefore rapidly create a negative feedback for CaCO3 precipitation. In unicellular organisms, like foraminifera, an effective mechanism to counteract this acidification could be the externalization of H+ from the site of calcification. In this study we show that a benthic symbiont-free foraminifer Ammonia sp. actively decreases pH within its extracellular microenvironment only while precipitating calcite. During chamber formation events the strongest pH decreases occurred in the vicinity of a newly forming chamber (range of gradient ~100 μm) with a recorded minimum of 6.31 (<10 μm from the shell) and a maximum duration of 7 h. The acidification was actively regulated by the foraminifera and correlated with shell diameters, indicating that the amount of protons removed during calcification is directly related to the volume of calcite precipitated. The here presented findings imply that H+ expulsion as a result of calcification may be a wider strategy for maintaining pH homeostasis in unicellular calcifying organisms.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Foraminifera are abundant marine calcifiers found in virtually all marine habitats. There are approximately 10,000 extant species (Vickerman, 1992) and calcareous wall structures radiated in the Paleozoic (Ross and Ross, 1991; Tappan and Loeblich, 1988) making their calcium carbonate shells important index fossils. Together with coccolithophores, foraminifera are the major pelagic producers of calcium carbonate (Baumann et al., 2004). Their fossilization, abundance and global distribution moreover make calcareous foraminifera an important model organism for paleoceanographic reconstructions. The (trace) element and stable isotope control of the timing, rate and geometry of precipitation as well as the pH of the calcifying fluid needs to be maintained throughout the calcifying period. In addition, to form the delicate structures of foraminiferal shells, strict control of the timing, rate and geometry of precipitation as well as the degree of super-saturation is required (Nielsen, 1964).

It is well established that calcite precipitation strongly decreases the pH of the calcifying fluid (Zeebe and Wolf-Gladrow, 2001). Thus, biological regulated calcification, taking place in confined compartments (as in foraminifera), would rapidly shift the carbonate system towards a lower calcite saturation state without active pH compensation and thereby create a negative feedback for calcite precipitation.

We hypothesize that during chamber formation the degree of CaCO3 super-saturation is controlled by active export of protons from the calcifying fluid. This excess acidification does not appear inside the cell as intracellular pH is highly regulated (reviewed in Alberts et al., 2002; Madshus, 1988). Therefore, the protons must either be neutralized or externalized. The latter mechanism implies that the proton discharge should result in an acidification of the microenvironment around the newly forming calcite.
within the microenvironment of calcifying and non-calcifying foraminiferal specimens at different life stages with microsensors. To exclude the effect of photosynthesis, which is known to influence pH microenvironments (Rink et al., 1998), we conducted our experiments with specimens of the benthic, symbiont-free, non-phototrophic genus Ammonia (Cushman, 1926).

2. Materials and methods

2.1. Sampling and culturing

Specimens of a single morphotype of Ammonia were collected from North Sea tidal flats near Dorum, Germany (53°40’28”N 8°30’57”E) between August 2009 and June 2010. Sediments were sieved (mesh size 630 μm) to remove larger meiofauna and stored in seawater at 10 °C in the dark. Prior to experiments, adult individuals were isolated from the sediment by additional sieving through a 230 μm mesh. Reproduction decreases were assessed using Pearson product-moment correlation coefficient (R) and a general linear regression model. Regressions and statistical analyses were performed with the statistical analyses software SigmaPlot 10.0 (Systat Inc., USA).

3. Results

3.1. Microsensor measurements

During chamber formation strong pH decreases were detected near the primary organic sheet (POS) of newly calcifying chambers and in its vicinity (as illustrated by Fig. 1A) in all specimens (Fig. 2). The strongest pH decreases originated from the newly forming chambers but also extended to the neighboring chambers (Fig. 1A, indicated as point X). The difference between the maximum pH decreases recorded at the surface of the POS (Fig. 1A) and that of the surrounding seawater, denoted as ΔpH, was positively linearly correlated with the diameter of the individuals and ranged from −0.06 to −1.774 (Fig. 3). The pH decreases only occurred when chamber formation had progressed beyond the initial stage of rhizopodial network formation (~1 h) and construction of the primary organic sheet (POS; 1–3 h; Fig. 4). The onset of calcite precipitation could not be timed accurately (>3 min accuracy) by light microscopy, but was associated with an instant decrease in extracellular pH (~1 min precision). The acidification persisted while the formation of pores within the calcite wall became apparent about 1–2 h
after the onset of calcification. The end of the chamber formation process was reached when foraminifera extended their pseudopodia and resumed movement. Shortly before and sometimes during the extension of larger rhizopodia the pH microenvironment around the foraminifera reverted back to seawater levels (Fig. 4). The timing of pH acidification of the foraminiferal microenvironment therefore exactly matched with visual signs of calcite precipitation (Fig. 4). Complete chamber formation events could be recorded in 19 cases and acidification lasted between 1 h 10 min and 7 h (Fig. 5). Durations also exhibited a positive linear correlation with the diameter of the individuals (Fig. 5).

Thickness and form of the pH gradients measured from the POS surface and extending into the surrounding seawater (i.e. the ‘diffusive boundary layers’ = DBLs) were highly variable (50–500 μm) and strongly depended on the orientation of the new chamber in respect to flow direction and gathering of food particles, which hampered and distorted linear diffusion (data not shown). Calcification rates derived from mass balance calculations (n = 19) were 0.028 ± 0.002 (SE) μg h⁻¹ and ranged from 0.015 to 0.045 μg h⁻¹.

During periods between two chamber formation events only small pH variations (0 to −0.08) were detectable (−0.040 ± 0.003 (mean ± SE)). These small pH decreases were not localized specifically to the surface of the shell, but recorded on all plasma membranes including rhizopodia (Fig. 2).

The established proton flux was highly regulated by the foraminifera as disturbance of the POS by gently nudging the microsensors resulted in an instant pH increase (Fig. 4), thus interrupting H⁺ pumping. A complete breakdown of H⁺ pumping was observed if disturbances persisted or occurred near the end of the chamber formation process. Small oscillations in pH were present in about 1/3 of all chamber formation events and persisted throughout lowered pH conditions (Fig. 4).

ΔCa²⁺ measured on top of the POS was variable between (4±65 μM (mean ± SE)) and during (−146±135 μM (mean ± SE)) chamber formation (Fig. 2). In contrast to pH dynamics, Ca²⁺ did not change significantly during chamber formation when averaged over all tested individuals compared to the surrounding seawater (paired t-test: t = 1.081, df = 14, P = 0.298, n = 15).

4. Discussion

4.1. Acidification due to calcification

The exact congruence of timing of the measured microenvironmental acidification with visual signs of calcite precipitation (Fig. 4), together with the fact that acidification could not be detected in periods in between two chamber formation events (Fig. 2), indicates that the pH drops are a direct consequence of localized proton removal from the site of calcification during calcite precipitation (Fig. 1B).
An additional indicator for this is the observed significant correlation between foraminiferal diameter and ΔpH changes (Fig. 3), following a trend of increased calcite precipitation with size. The microenvironmental acidification in the vicinity of neighboring chambers (Fig. 1A as indicated by point X) is most likely caused by secondary laminating of older chambers during chamber formation. Yet, the strongest pH drops radiated from the newly forming chamber, as a result of the high volumetric concentrations of calcite being precipitated in this region (Fig. 1A) (Hansen, 1999; Hansen and Reiss, 1971). Due to this fact, differentiating acidifications between primary and secondary layering around foraminifera was difficult.

4.2. Calcification rates

Calcification rates obtained by the measurements (0.028 ± 0.002 (mean ± SE) μg h⁻¹) represent, to the best of our knowledge, the first estimates of calcification rates for Ammonia sp. They are lower than rates obtained by Ca²⁺ labeling experiments of symbiotic planktonic foraminifera (0.04 μg h⁻¹ (dark) to 0.11 μg h⁻¹ (light) (Erez, 1983), 0.39 to 0.87 μg h⁻¹ (light) (Anderson and Faber, 1984), 0.06 μg h⁻¹ (dark) to 0.32 μg h⁻¹ (light) (Lea et al., 1995)). Yet, cell diameters of Ammonia sp. are small compared to planktonic species, suggesting decreased calcification rates with decreasing size as in coccolithophores (Langer et al., 2006; Stoll et al., 2002). Also, compared to the above labeling experiments, calcification rates determined geometrically from the formation of the ultimate chamber did not take secondary layering of the complete shell into account and thereby underestimated the amount of total calcite precipitated. Yet, calcification rates are less variable than in symbiotic foraminifera, indicating that photosynthesis is most likely the cause for increased variability of calcification rates as suggested by Lea et al. (1995).

4.3. Calcium dynamics

The variability of ΔCa²⁺ between and during chamber formation events (Fig. 2) is in accordance with previous microsensor measurements, showing high spatial variability of Ca²⁺ microgradients in Amphistegina lobifera and Marginopora vertebrales (Koehler-Rink and Kuehl, 2000) and among specimens in Orbitolina universa (Koehler-Rink and Kuehl, 2005). This indicates that Ca²⁺ uptake varies temporally and spatially over the shell surface of Ammonia sp. (Koehler-Rink and Kuehl, 2000). The absence of an overall significant calcium gradient during chamber formation in the microenvironment can be explained in two ways: 1) Ca²⁺ was not transported from the external seawater into the DBS via channel-pumping, but supplied via an intracellular calcium pool as shown by Anderson and Faber (1984), ter Kuile and Erez (1988) and ter Kuile et al. (1989). 2) Ca²⁺ was transported over the complete surface of the shell (Angell, 1979). Due to the high surface area, Ca²⁺ concentrations of North Sea seawater would only require a small concentration gradient to establish a high enough flux to sustain a constant rate of calcite precipitation at calcite supersaturated conditions (Ωcalcite > 1). In both cases calcium

Fig. 4. Example of pH and Ca²⁺ dynamics of an adult Ammonia sp. individual (diameter 320 μm) during a chamber formation event. Upward arrows indicate the moments of deliberate nudging of the POS to trigger the interruption of active proton pumping for ~5 min. Ambient water conditions: salinity 26, temperature 18 °C; incident light: 10 μmol photons m⁻² s⁻¹; friction velocity: 0.2 cm s⁻¹.

Fig. 5. Relationship between foraminiferal diameter and duration of pH decreases during chamber formation events that could be recorded completely and their linear regression (n = 19).
gradients measured within the foraminiferal microenvironment would be small, which is in accordance with the measurements.

4.4. Trans-membrane transport of H^+

We confirm that the site of calcification (i.e. the ‘delimited bio-mineralization space’) must be delineated from the bulk seawater (Angell, 1979; Be et al., 1979; Erez, 2003), as explained in the following. The microenvironment around the newly forming chamber is most likely low- or under-saturated in respect to calcite, due to the observed acidification (see also (Wolf-Gladrow and Riebesell, 1997; Wolf-Gladrow et al., 1999)). It is therefore unlikely that calcite precipitation proceeds directly from bulk seawater during chamber formation, considering the measured high calcification rates (see above). Also, if protons could diffuse freely between DBS and bulk seawater, so would other ions, e.g. Ca$^{2+}$, Mg$^{2+}$ and Sr$^{2+}$. However, measured Mg- and Sr-fractionation factors in Ammonia sp. cannot be explained assuming inorganic fractionation (Dissard et al., 2010), but are consistent with the hypothesis that these ions are transported across membranes before entering the calcifying fluid. It is therefore inferred that trans-membrane transport across the pseudopodial network is the means of proton removal during chamber formation (Fig. 1B). Voltage-gated H$^+$-channels have recently been discovered in the protoplasm membrane of coccolithophores and are present in a wide variety of eukaryotic protists (Taylor et al., 2011).

An instant halt of trans-membrane transport of protons can also explain the pH increase in the microenvironment upon mechanical disturbance of the individual during chamber formation (Fig. 4). Another explanation could be a temporary rupture of the pseudopodial network upon mechanical disturbance and a consequent efflux of pH elevated calcifying fluid into the surrounding seawater (Fig. 1B). Yet, the acid characteristics near the newly forming chamber were equally rapidly restored if the mechanical disturbance was not prolonged or too severe (Fig. 4). This shows that foraminifera strongly regulate calcite precipitation and/or H$^+$ removal. After the initial drop in pH during chamber formation, pH-underwent cyclic changes (Fig. 4). It can only be speculated what this pH-fluctuation might be. One possibility could be a temporary opening of the pseudopodial network around the calcifying chamber causing mixing of the high pH fluid from the DBS with the lower pH fluid of the microenvironment. The function of such a temporary opening, however, remains unclear. A replenishment of the DBS with Ca$^{2+}$ and/or dissolved inorganic carbon (DIC) cannot be the main function because such a Ca$^{2+}$-pathway would not fractionate strongly against Mg$^{2+}$ and weakly for Sr$^{2+}$ (Dissard et al., 2010), as discussed above. Another possibility could be the additional cyclic exocytosis of low pH fluid vesicles to maintain cellular pH homeostasis. Such low pH compartments have previously been identified in other benthic rotalid foraminifera during calcification (Bentov et al., 2009; de Nooijer et al., 2009a). A third explanation could be related to temporary ion transport across the plasma membrane of the pseudopodial network. Cyclic H$^+$ conductive transport pathways would hereby allow for short periods of net H$^+$-uptake and therefore extracellular temporal alkalinization (reviewed in Lukacs et al., 1993). Active H$^+$ removal from the DBS does not only result in a pH decrease in the microenvironment of a newly forming chamber, but also in a comparatively increased pH within the DBS (Fig. 1B). An advantage of such a pH increase within the DBS is related to the driving force for CO$_2$ transport. A twofold pH gradient established between the DBS, the external seawater and cytosol would strongly enhance molecular diffusion of CO$_2$ from the acidic cytosol (see also (Angell, 1979; Zeebe and Sanyal, 2002)) and external seawater into the DBS on a micro scale (0.1–5 μm distance, Fig. 1B). Such a mechanism has already been suggested for high pH seawater vacuoles during chamber formation in other species of benthic rotalid foraminifera (Bentov et al., 2009; de Nooijer et al., 2009a). Also, diffusion is the limiting factor for DIC uptake in Amphistegina lobifera and calcification in Amphisborsus herrichii (ter Kuile et al., 1989). Hence, by maintaining an increased pH to increase super-saturation with respect to calcite within the DBS, a highly efficient DIC trap would be created at the same time, facilitating bilateral diffusion of CO$_2$ into the DBS (Fig. 1B).

5. Conclusions

Our results show that calcification during chamber formation strongly influences the extracellular pH in the microenvironment (range of gradient ~100 μm) of the benthic foraminifer Ammonia. Additionally, within their natural habitats, i.e. tidal flat surface sediments with strongly decreased diffusivity compared with natural seawater, this pH effect is expected to be more pronounced. The here presented findings might suggest that excess H$^+$ expulsion due to calcification could be a widespread strategy for maintaining pH homeostasis in other species of calcareous rotalid foraminifera.

Acknowledgments

We in particular wanted to thank Raphaela Schoon for the technical support with the microsensor measurements, setup and critical input to the experimental design. We also wanted to thank Gabrielle Eickert, Ines Schröder and Anja Niclas, who helped with the microsensor construction. Dirk deBeer, Jelle Bijma and the Alfred Wegener Institute in Bremerhaven are thanked for the financial support and access to the inverted backlight microscope. We are grateful to Lubos Polerecky and Dirk deBeer for their fruitful comments on the manuscript. Peter Stief is thanked for the very helpful comments on the data presentation. This research was funded by the Max Planck Institute for Marine Microbiology and the Alfred Wegener Institute through the Bioacid Projects (Martin Glas FKZ: 03F0608C, Gerald Langer FKZ: 03F0608) and the European Community’s Seventh Framework Programme under grant agreement 265103 (Gerald Langer, Project MedSea). This work contributes to EPOCA “European Project on Ocean Acidification” under grant agreement 211384. This work was funded in part by The European Research Council (ERC grant 2010–NEWLOG ADC-267931 HE). Nina Keul is the beneficiary of a doctoral grant from the AXA Research Fund.

References

