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a b s t r a c t

Digital image processing provides powerful tools for fast and precise analysis of large image data sets in

marine and geoscientific applications. Because of the increasing volume of georeferenced image and

video data acquired by underwater platforms such as remotely operated vehicles, means of automatic

analysis of the acquired image data are required. A new and fast-developing application is the

combination of video imagery and mosaicking techniques for seafloor habitat mapping. In this article

we introduce an approach to fully automatic detection and quantification of Pogonophora coverage in

seafloor video mosaics from mud volcanoes. The automatic recognition is based on textural image

features extracted from the raw image data and classification using machine learning techniques.

Classification rates of up to 98.86% were achieved on the training data. The approach was extensively

validated on a data set of more than 4000 seafloor video mosaics from the Håkon Mosby Mud Volcano.

& 2011 Published by Elsevier Ltd.
1. Introduction

Taking, analyzing, and processing digital images have become
important tasks for marine scientists to cope with photographs,
satellite images, and geographic information systems (GIS) techni-
ques, caused by a significant increase in image data describing the
seafloor. Seabed mapping has been on the rise since the widespread
implementation of multibeam sonar, providing marine scientists
with georeferenced three-dimensional depictions of seafloor mor-
phology and sediment properties. Multibeam sonar combined with
high-resolution digital video information obtained from underwater
vehicles such as remotely operated vehicles (ROVs), autonomous
underwater vehicles (AUVs), and submersibles enable the creation
of benthic habitat maps. These maps are essential to enhance
knowledge about and protection of the ocean, as well as its
sustainable management. Compared with bathymetric measure-
ments, high-resolution video images provide much more detailed
and small-scale information about the seafloor. Also, bathymetric
multibeam sonar surveys can cover much larger areas than video
surveys, which require a low speed of the research vessel. Therefore,
the spatial coverage of video material is unavoidably more fragmen-
tary than bathymetric maps. Compared to the amount of valuable
image and video material, only a small portion—often only defined
sequences—is analyzed manually in a time-consuming way.
Elsevier Ltd.
The increasing application of ROVs and AUVs for scientific and
engineering objectives results in multimedia information requir-
ing cost-efficient and effective annotation and content-based
retrieval methods. Thus, the development of automatic content-
based analysis methods for georeferenced image data from the
underwater domain came to the fore of marine science. This study
focuses on further developments of the analysis framework that
we introduced in Jerosch et al. (2007), involving the application of
machine learning techniques for feature detection, combined
with scientific visualization and analysis tools such as GIS, for
recognition of characteristic seafloor features at submarine mud
volcanoes. Submarine mud volcanoes are characterized by
upward flow of mud from deeper geological strata, enhanced
temperatures, high inventories and fluxes of methane and other
hydrocarbons, and occurrence of specific chemoautotrophic com-
munities (Hjelstuen et al., 1999; Kopf, 2002; Milkov, 2000).

The enhancements of the software target the detection not only
of bacterial mats (Jerosch et al., 2007) but also of tube worms
living on the seafloor at the Håkon Mosby Mud Volcano (HMMV),
located at a depth of 1250 m in the center of the most recent Bear
Island fan slide valley (see Fig. 1). Both bacterial mats (Beggiatoa)
and tube worms (Pogonophora) are strongly related to the enzy-
matic oxidation of reduced compounds of microbial anaerobic
methane oxidation (AOM; Boetius et al., 2000). Detecting and
quantifying AOM areas is an essential task, as AOM is a major
biological sink of methane in marine sediments. It is crucial in
maintaining a sensitive balance of the greenhouse gas content of
the Earth’s atmosphere (Hinrichs and Boetius, 2002).
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Fig. 1. The Håkon Mosby Mud Volcano is about 1.4 km in diameter at water

depths of 1250–1266 m (Vogt et al., 1997). It is a concentric morphologic structure

with highly gas-saturated sediments. A flat central area of gray fluid-like mud

with a high geothermal gradient (Kaul et al., 2006) is surrounded by a zone of

bacterial mats. This center is surrounded by elevated sediment features (relief-rich

zone) densely populated by Pogonophora tube worms (Jerosch et al., 2006a). This

inset shows location of the Håkon Mosby Mud Volcano northwest of Norway.

1 See http://www.ifremer.fr/fleet/systemes_sm/engins/victor.htm.
2 See http://www.cs.waikato.ac.nz/ml/weka.
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2. Related work

One of the major objectives in the field of automatic image
analysis applied to marine sciences is to detect, identify, and track
various marine species and seafloor characteristics in underwater
video footage acquired by fixed or towed cameras. This includes
the possibility of using these techniques for future work on ROVs
and AUVs.

The analysis of still photographs and videos in marine sciences
is mostly performed manually (e.g., Jerosch et al., 2006b; Kostylev
et al., 2001). Automatic feature detection is not often applied in
marine sciences (Guinan et al., 2009; Jerosch et al., 2007; Kohler
and Gill, 2006; Zhanga et al., 2005) since the implementation of
suitable algorithms is particularly complicated. If the video data
come from a towed system, algorithms have to deal with sparse
and unstable lighting due to the limitation of energy, and varying
speed, angle, and altitude of the camera above the seafloor. The
quality of a video stream coming from a ROV is enhanced by a
more stable speed, more constant height over ground, and more
homogeneous lighting conditions (no energy limitations). For
both systems, the algorithms have to track a broad spectrum of
known and unknown features occurring at the seafloor.

Due to the variety of technical conditions, quality, and resolu-
tion an automatic analysis either is not possible or is more
laborious than its benefit justified. In the case of the HMMV, the
development of an automatic analysis system was appropriate
because of the large amount of acquired image data. Furthermore,
the HMMV is one of the well-known submarine mud volcanoes of
high latitudes and is the focus of marine scientists from all over
the world.

The HMMV is a site of ongoing fundamental research regarding its
geology (Feseker et al., 2008; Hjelstuen et al., 1999, 2007; Kaul et al.,
2006; Milkov et al., 2004; Perez-Garcia et al., 2009; Vogt et al., 1997,
1999), marine geochemistry (Damm and Budéus, 2003; Lein et al.,
1999; Sauter et al., 2007), (micro-)biology (de Beer et al., 2006;
Gebruk et al., 2003; Lösekann et al., 2007, 2008; Niemann et al., 2006;
Omoregie et al., 2008; Pimenov et al., 1999; Purser et al., 2009;
Smirnov, 2000; Soltwedel et al., 2005), and biogeochemical habitats
(Jerosch et al., 2006a; Milkov et al., 1999). Several expeditions have
been and will be undertaken considering the HMMV as a long-term
case study.
3. Acquisition of the underlying image data set

w?>During six dives by the ROV Victor1 (IFREMER, France),
image data were recorded and processed using MATISSE
(mosaicking advanced technologies integrated in a single soft-
ware environment; Allais et al., 2004; Vincent et al., 2003; see
Fig. 2). This software, developed by IFREMER, creates mosaics
from a video stream provided by a camera mounted vertically on
the ROV and accomplishes these images with navigation data
supplied by acoustic USBL (ultrashort baseline) positioning
(Vincent et al., 2003).

To ensure high-quality imagery, the surveys were performed at
an altitude of 3 m above the seafloor. Since the aperture of the
camera is 601, the width of the mosaics is about 3 m. The image size
varies due to the mosaicking process. On average, the scale is at
0.9162�0.9162 cm per pixel, varying slightly due to varying height
over ground. The speed of the ROV was 0.3 m/s at maximum.
A single mosaic consists of 500 merged images collected within half
a minute during the mosaicking process. It covers an area of about
3� (6–7) m. As the mosaics are not rectangular in general, the
output images contain regions where no data is available. Such
regions are marked black (see Fig. 3b). Within a treatment (a row of
consecutive images), successive images overlap in small parts of
their data regions (see Fig. 4). The entire image data set consists of
4108 georeferenced video mosaics and covers � 8% of the HMMV
area (see Fig. 1).
4. Learning visual properties of image regions with
Pogonophora coverage

Recognition of Pogonophora seafloor coverage is achieved by
supervised machine learning. Data items are represented by so-
called features vectors, vectors of numerical image features
extracted from the raw data in our case. A classification function
using feature vectors as input and a class as output is inferred
based on supervised (manually prepared) training data. Four
commonly applied machine learning classifiers of different types
have been evaluated on the data set (see also Table 1):
1.
 Support vector machines (Vapnik, 1995): A functional classifier
based on the construction of discriminating hyperplanes in high-
dimensional spaces to which the feature vectors are transformed.
2.
 K-nearest-neighbors classifier (Aha and Kibler, 1991): An
instance-based learning scheme based on distances of instances
to classify to training instances.
3.
 C4.5 decision trees (Quinlan, 1993): A ‘‘divide-and-conquer,’’
tree-based statistical classifier.
4.
 Naive Bayes classifier (John and Langley, 1995): A probabilistic
classifier based on Bayes’s rule.

All implementations have been taken from the WEKA machine
learning toolkit2 (Witten and Frank, 2005). All of the above learning
schemes have in common that—using different techniques—

a partition of the feature space is computed for classification. While
support vector machines are probably the most popular choice

http://www.ifremer.fr/fleet/systemes_sm/engins/victor.htm
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Fig. 2. Examples of different habitat types at HMMV (Beggiatoa and Pogonophora marked with labels ‘‘B’’ and ‘‘P’’): (a) Beggiatoa patches 20–50%, (b) Beggiatoa mats

450%, (c) Beggiatoa patches o20% and Pogonophora 50–80%, (d) Pogonophora 480%, (e) 100% structured mud, and (f) 100% smooth mud with ripples. Images recorded

by Victor6000/IFREMER.

Fig. 3. (a) Sample seafloor video mosaic with Pogonophora presence in parts of the image data region. (b) Class labels manually assigned to grid cells during the training

phase. Cells marked green indicate presence of Pogonophora coverage; cells marked red indicate absence of Pogonophora coverage. Cells not marked have not been

annotated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Changing areas of tube worms and bacterial mats within a 20-m video mosaicking stripe northwest of the center of HMMV (Beggiatoa and Pogonophora samples

marked with labels ‘‘B’’ and ‘‘P’’). Five single georeferenced video mosaics have been concatenated by overlay applying a GIS.
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and we expect the best classification performance here, other
approaches are typically much faster in training. Thus, not only
classification accuracy but also training speed are compared.

The following sections describe the image feature extraction,
the preparation of training data, the selection of relevant features,
and the process of selecting appropriate parameters for the
machine learning schemes applied.

4.1. Image feature extraction

Automatic recognition of Pogonophora tube worms is achieved
by learning visual properties of image regions with Pogonophora
coverage described by numeric image features. Therefore, the data
region of each image is partitioned into a regular grid (see Fig. 3).
Image features are extracted and classification is performed based
on cells. Classification is a two-class problem then: for each cell
Pogonophora coverage is either present or absent.

A set of 49 numerical image features is extracted per cell
describing visual low-level properties such as contrast, roughness
and linelikeness. Image features are classical statistical and struc-
tural textural features (Tamura et al., 1978; Haralick et al., 1973;
Haralick, 1979; Wu and Chen, 1992) widely applied for image
classification tasks in different domains. Image features are listed
with brief descriptions in Table 2. A cell size of 20�20 pixels



Table 1
Classifiers applied and parameter configurations tested per classifier.

Classifier Parameters

Support vector machine

(Vapnik, 1995)

Complexity constant C:

log2ðCÞ ¼ i,i¼�5,�3, . . . ,15

RBF (radial basis function) kernel with g:

log2ðgÞ ¼ i,i¼�15,�13, . . . ,3

(110 runs per set)

K-nearest-neighbors (Aha

and Kibler, 1991)

Number of neighbors k:

k¼ 2,5,10,20,50,100,500,1000

With/without inverse distance weighting

Search algorithms: Brute force (linear), Ball tree

(Omohundro, 1989; Uhlmann, 1991), Cover tree

(Beygelzimer et al., 2006), KD tree (Friedman

et al., 1977)

(64 runs per set)

C4.5 decision tree

(Quinlan, 1993)

With/without pruning

With/without Laplacian smoothing of predicted

probabilities

Minimum instances per leaf m: m¼ 1,2, . . . ,20

Pruning confidence threshold c:

c¼ 0:05,0:1, . . . ,0:5

(440 runs per set)

Naive Bayes (John and

Langley, 1995)

With kernel density estimator or normal

distribution for numeric attributes

With/without supervised discretization of

numeric attributes for normal distribution

(3 runs per set)

Table 2
Image features extracted per grid cell.

Image
feature

Description

f1 Minimum gray level

f2 Maximum gray level

f3 Mean gray level

f4 Number of gray levels used

f5 Gray level standard deviation

f6 Polarization of gray-level distribution, Tamura et al. (1978)

f7 Texture contrast, Tamura et al. (1978)

f8 Texture directionality, Tamura et al. (1978)

f9 Texture linelikeness, Tamura et al. (1978)

f10 Roughness of texture, as defined in Wu and Chen (1992)

f11,12,13 Contrast computed from GLCM (meanjminjmax over all

directions, see below; same in the following),

Haralick et al. (1973)

f14,15,16 Variance computed from GLCM, Haralick et al. (1973)

f17,18,19 Entropy computed from GLCM, Haralick et al. (1973)

f20,21,22 Correlation computed from GLCM, Haralick et al. (1973)

f23,24,25 Angular second moment computed from GLCM,

Haralick et al. (1973)

f26,27,28 Inverse difference moment computed from GLCM,

Haralick et al. (1973)

f29,30,31 Sum average computed from GLCM, Haralick et al. (1973)

f32,33,34 Sum variance computed from GLCM, Haralick et al. (1973)

f35,36,37 Sum entropy computed from GLCM, Haralick et al. (1973)

f38,39,40 Difference variance computed from GLCM, Haralick et al. (1973)

f41,42,43 Difference entropy computed from GLCM, Haralick et al. (1973)

f44,45,46 Information measure of correlation I computed from GLCM,

Haralick et al. (1973)

f47,48,49 Information measure of correlation II computed from GLCM,

Haralick et al. (1973)

Notes: In case of directed features extracted from GLCM (gray-level co-occurrence

matrix, directions : 01, 451, 901, 1351; Haralick et al., 1973) we use the mean,

maximum, and minimum feature values over the four directions.
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(or � 18� 18 cm for the given camera aperture and height over
ground) was chosen for images of the underlying data set. This
allows the computation of meaningful statistical image features
while preserving good localization of detections. Many of the
numerical image features are calculated on the basis of co-occurring
gray levels expressed in terms of a so-called gray-level co-occurrence
matrix (GLCM, Haralick et al., 1973; Haralick, 1979). For 8-bit input
images this matrix has dimensions of 256�256. With decreasing
cell size this matrix becomes sparsely populated up to a point where
computation of statistical features becomes useless. On the other
hand, with increasing cell-size classes tend to mix within cells (see
example in Fig. 5c) leading to ambiguities. Further note that the
models trained for recognition are specific to the imaging system as
described in Section 3, especially regarding pixel scale.

4.2. Preparation of training data

The complete data set (see Section 3) consists of 4108
georeferenced video mosaics in total. By partitioning the image
data regions into cells (see Fig. 3b), we get 632,350 cells, so the
average number of cells per image is � 154. For the training
process 25,020 cells have been labeled manually with class labels
Pogonophora_present and Pogonophora_absent. This complies with
� 4% of the data set or � 162 images if completely annotated.

The labeling of cells was performed by a human expert. There
was no restriction and also no automatic support in the selection of
sample images or cells during manual annotation, leaving these
decisions purely up to the human expert and leading to a mostly
random distribution of training samples across the investigation
area. 2047 cells (� 8:2%) have been labeled with Pogonophora_pre-

sent, while 22,973 (� 91:8%) have been labeled with Pogonophor-

a_absent. The process took less than 1 day.

4.3. Feature selection

The presence of irrelevant or redundant features can have a
negative impact on machine learning schemes (Witten and Frank,
2005). Therefore, a subset of features is often selected prior to
learning. While support vector machines (Vapnik, 1995) are
known to be robust regarding classification accuracy, the naive
Bayes classifier of John and Langley (1995) is an example of a
learning scheme that suffers from correlation of input features.
Furthermore, besides classification accuracy, the training speed is
also affected.

There are two classes of approaches commonly applied to
feature subset selection. While scheme-independent approaches
reduce the dimensionality of the feature space based on general
characteristics of the data, scheme-dependent approaches (often
referred to as ‘‘wrapper’’ methods) employ the specific machine
learning scheme in that process. In this study, we apply the
correlation-based, scheme-independent method introduced in Hall
and Smith (1998) for feature subset selection, as
1.
 Hall and Smith (1998) have shown its equal performance
compared to ‘‘wrapper’’ methods on standard machine learn-
ing data sets while being much faster. Moreover,
2.
 by application of a scheme-independent method for feature
selection, it is ensured that the subset of selected features is
the same for all classifiers in the subsequent experiments.

To test whether the classifiers suffer from irrelevance or
redundancy of features, we perform two experiments. One is
based on the full feature set and the other on a subset of selected
features. The subset of six selected features is {f1: minimum gray
level, f20: mean correlation (Haralick, 1979), f21: maximum corre-

lation (Haralick, 1979), f26: mean inverse difference moment

(Haralick, 1979), f27: maximum inverse difference moment

(Haralick, 1979), f10: roughness of texture (Wu and Chen, 1992)}.



Fig. 5. Examples of missing or false detections (colored cells indicate detections, (a)–(d) missing detections, arrows point to undetected Pogonophora; (e)–(i) all colored

cells false detections). (a) Undetected sparse Pogonophora coverage, (b) overexposure causing undetected Pogonophora coverage, (c) missing detections due to Beggiatoa

mixing with Pogonophora inside cells, (d) missing detections due to mosaicking artifacts, (e) misdetections inside smooth mud, (f) misdetections at mud structures,

(g) misdetections inside Beggiatoa field, (h) misdetections at small holes in sediment, (i) false detections due to unknown objects at the seafloor. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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4.4. Parameter selection

Selecting optimal or near-optimal parameters is crucial for
good performance of machine learning classifiers. The usual
approach to parameter optimization is grid like exploration of
the parameter space (Witten and Frank, 2005). Classifiers have
been tested in various configurations listed in Table 1. For each
configuration, a stratified 10-fold cross validation was performed
on the training data and the models were ranked by overall
(average) accuracy. In cases of multiple best configurations with
equal accuracy, the fastest in training was chosen.
5. Results

In this section, results obtained by application of the different
machine learning classifiers (see Table 1) to the training data are
compared. Table 3 lists the best classification rate achieved per
classifier using a set of parameters selected as described in
Section 4.4 for both feature sets. The best classification rate of
98.86% has been achieved by application of support vector
machines (Vapnik, 1995) to the full feature set. These also
perform best on the set of selected features.

The K-nearest-neighbors (Aha and Kibler, 1991) and C.45
decision tree classifier (Quinlan, 1993) perform nearly equal. As
support vector machines, they perform slightly better on the full
feature set. The naive Bayes classifier (John and Langley, 1995)
obviously suffers from correlation of features in the full set. This
results in much better classification performance on the set of
selected features, while still performing worse than the other
classifiers.

Support vector machines performed less well than the other
classifiers regarding training speed, whereas the training time is
still acceptable for the targeted application. The best choices in
speed are the K-nearest-neighbors and C.45 decision tree
classifiers.

Using the best model on the training data (support vector
machines applied to the full feature set, see Table 3) the complete
image data set has been analyzed. The results are visualized
in Fig. 6.
6. Discussion

In the following sections we further discuss the results of the
proposed approach. Section 6.1 presents tests based on a different
reference data set, where larger regions have been annotated
manually by a domain expert. While being annotated more
roughly in terms of exact localization of seafloor features, this
data set covers much more of the overall investigation area than



Table 3
Best classification rates achieved per classifier applied to the full feature set and

the set of selected features.

Classifier Correctly
classified

False
positives

False
negatives

Time
(s)

All features

Support vector

machinea

24,734 118 168 10,871

(98.86%) (0.47%) (0.67%)

K-nearest-neighborsb 24,498 131 391 83

(97.91%) (0.52%) (1.56%)

C.45 decision treec 24,469 186 365 40

(97.8%) (0.74%) (1.46%)

Naive Bayesd 19,833 307 4880 473

(79.27%) (1.23%) (19.5%)

Selected features
Support vector

machinee

24,201 229 590 14,583

(96.73%) (0.92%) (2.36%)

K-nearest-neighorsf 24,148 261 611 13

(96.51%) (1.04%) (2.44%)

C.45 decision treeg 24,119 323 578 4

(96.4%) (1.29%) (2.31%)

Naive Bayesh 23,807 555 658 1

(95.15%) (2.22%) (2.63%)

a Vapnik (1995), log2ðCÞ ¼ 11, RBF kernel with log2ðgÞ ¼ �3.
b Aha and Kibler (1991), k¼10, inverse distance weighting, Cover Tree search

(Beygelzimer et al., 2006).
c Quinlan (1993), m¼16, with pruning, c¼0.1, with Laplacian smoothing.
d John and Langley (1995), with kernel density estimator.
e Vapnik (1995), log2ðCÞ ¼ 7,log2ðgÞ ¼ 3.
f Aha and Kibler (1991), k¼20, inverse distance weighting, Ball Tree search

(Omohundro, 1989; Uhlmann, 1991).
g Quinlan (1993), m¼10, with pruning, c¼0.3, without Laplacian smoothing.
h John and Langley (1995), normal distribution, without supervised discretization.

Fig. 6. Spatial distribution of Pogonophora coverage obtained by automatic image

analysis of the complete data set (all 4108 video mosaics). Overlain on the HMMV

bathymetry visualized as a hill-shading map.
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the training data. This is followed by a detailed analysis of the
causes of misdetections in Section 6.2.

6.1. Quality assessment by comparison with visually inspected

field data

The data we refer to in further tests described in this section is
a shape file consisting of 1578 polygons covering � 60% of the
overall image data (in contrast to only � 4% for the training data).
A single polygon does not necessarily correspond to the data
region of an image, but typically covers a larger area. Polygons
cover regions of similar density regarding Pogonophora coverage.
The following coverage classes have been assigned manually to
polygons of the reference data set: No Pogonophora coverage, less

than20% Pogonophora coverage, 20–50% Pogonophora coverage,
50–80% Pogonophora coverage, and more than80% Pogonophora

coverage. The reference data set covers an area of � 45,994 m2

and is visualized in Fig. 7a.
This data set covers much more of the investigation area and

implicitly contains information on the local neighborhoods of
detections. It allows a better assessment of
�
 the degree of generalization of the models learned (is a model
performing � 122% better in a cross validation on the training
data really better or does the difference in measured classifi-
cation rates result from pure overfitting to the training
data?), and

�
 the influence of density of Pogonophora coverage (are there

more misdetections in, e.g., very densely or sparsely covered
areas?).

Furthermore, considering larger polygons with approximately
equal Pogonophora coverage instead of single cells, it was feasible
to perform a statistical evaluation of the causes of misdetections.

To be able to compare the estimated coverage degree anno-
tated by the domain expert with the cell-based detections, we
need to cumulate detections across polygonal regions. The cover-
age degree for a single polygon is obtained as follows:
1.
 From the set of all intersection segments of image data regions
with the reference polygon we compute a set of atomic

segments associated with a distinct set of image regions.
(Assume a reference polygon covering two intersecting image
data regions A and B. This would result in three atomic

segments, one containing the part of the intersection of image
data region A with the reference polygon excluding the
intersection area with the data region B, the same for image
data region B, and the intersection area of A and B.)
2.
 For each atomic segment we independently compute the
coverage degree as the average ratio of all contained cells
with detections to the overall number of contained cells from
all associated image regions.
3.
 The coverage of the complete polygon is then computed as a
combination of the coverage of atomic segments weighted by
segment areas.

The comparison with reference polygons is then based on the
measurable deviation from the annotated coverage interval. E.g.,
in the case of a polygon annotated with 50–80% Pogonophora

coverage and a coverage degree of 45% obtained by automatic
analysis, underestimation of 5% is assumed.

Deviations of results from automatic image analysis using the
model that performed best on the training data (support vector
machine applied to the full feature; see Table 1) compared to the
reference polygons are visualized in Fig. 7b. For 1207 of the 1578
polygons there was no measurable error (green polygons in the
visualization), while for the rest of the polygons there were
mostly only minor deviations (near-white polygons).

Table 4 presents a more detailed analysis of measurable
deviations for the best models of all classifiers tested and both

underlying feature sets. The average measurable error is pre-
sented per coverage class and for the complete reference data set.
Also, here, the average of errors among polygons are computed as
a combination of single errors weighted by shape area. Again, the
best result, with an average measurable error of 1.52%, was
obtained by application of support vector machines to the full
feature set. Error rates here are also the most constant across
different coverage classes, while the other classifiers tend to
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produce higher errors in more densely covered areas. For all
classifiers except naive Bayes (see Section 4.4), results based on
the full feature set are better on average. Performance of the
K-nearest-neighbors classifier and C.45 decision trees is again
comparable. In contrast to the results on the training data, the
C.45 classifier performs slightly better. As on the training data, the
Naive Bayes classifier performs worse than the other classifiers
tested on both feature sets. In general, the tendencies obtained in
Fig. 7. (a) Coverage degree obtained through visual inspection. (b) Deviations of

result from automatic image analysis. Green: no measurable difference (auto-

matically detected Pogonophora coverage lies in the range of the coverage class

annotated by the domain expert). White to red: Pogonophora coverage was

overestimated. White to blue: Pogonophora coverage was underestimated. (Both

overlain on the HMMV bathymetry visualized as a hill-shading map.) (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Table 4
Average measurable error per coverage class (see Section 6.1) and overall.

Classifier Coverage class

None o20%

All features (avg. measurable error [%])

Support vector machine 1.40 0.77

K-nearest-neighbors 1.06 0.54

C.45 decision tree 1.16 0.51

Naive Bayes 13.33 7.86

Selected features (avg. measurable error [%])

Support vector machine 0.62 0.14

K-nearest-neighbors 0.55 0.13

C.45 decision tree 0.93 0.23

Naive Bayes 1.58 0.41

Area (m2)

– 13,719 7632
the tests on the training data are approved. This leads to the
conclusion that the better classification rates result from better
generalization rather than from overfitting to the training data.
6.2. Causes of misdetection

While error rates obtained by automatic image analysis are
generally low (see Sections 5 and 6.1), there are still misdetection.
To further identify the causes of misdetections, another experi-
ment was carried out. For all polygons where a deviation to the
reference data set occurred (see Section 6.1 and Fig. 7b), images
and detections have been revised and misdetections have been
assigned to error classes. Again, results from the best-performing
model (support vector machines applied to the full feature set)
were used as reference results for automatic image analysis.
Obviously, in these tests we might miss a small number of errors
in cases where the domain expert and the automatic image
analysis produced the same false estimation, but since a reason-
ably small error rate can be assumed for both, such cases are very
unlikely.

The resulting error classes and the fractions of the overall error
caused by misdetections of the respective classes are listed in
Table 5. Fig. 5 displays example images.
7. Conclusions

Related to the investigation of methane discharge at the Håkon
Mosby Mud Volcano, an approach to automatic detection of
Pogonophora coverage in georeferenced seafloor video mosaics
was developed. The recognition is based on textural features
extracted on the basis of cells obtained by partitioning the mosaic
data regions into a regular grid. For classification, four state-of-the
art machine learning schemes have been applied, with classifica-
tion rates up to 98.86% in a cross validation on the training data.
Further tests based on a larger reference data set covering � 60%
of the overall investigation area revealed an average measurable
error of � 1:52%.

Means of automatic image analysis are essential to cope with
the increasing volume of georeferenced image data acquired by
mobile underwater platforms such as ROVs and AUVs. These
enable scientists to gain insight into newly acquired data without
time-consuming manual analysis. Moreover, such means of auto-
matic ad hoc analysis can be particularly useful for operations
planning during an ongoing expedition or on fully autonomous
platforms.
Overall

20–50% 50–80% 480%

0.83 2.45 1.44 1.52

1.52 4.93 5.62 2.64

1.73 4.62 4.25 2.46

5.69 3.36 2.53 7.32

4.68 10.96 13.97 5.52

4.44 11.76 15.56 5.86

3.75 8.75 10.52 4.49

3.17 8.92 12.95 4.94

6512 13,164 4967 45,994



Table 5
Classes of misdetections and fractions of the overall error.

Error class Error
(%)

Causes of underestimation

[U1] Sparse Pogonophora coverage has partly not been detected.

From the visual impression this is typically very close to smooth

mud. Fig. 5a displays an example. In comparison to Fig. 5e you can

see how small the difference from smooth mud is in certain regions.

34.12

[U2] In rare cases images with overexposure occur, leading to

significant undetected Pogonophora coverage (see Fig. 5b). This is

probably due to the ROV being too close to the seafloor (also, the

scale in the world files indicates that)

6.90

[U3] Regions occur where Pogonophora mix with Beggiatoa inside

cells (see Fig. 5c). In such cases feature values can be influenced to a

degree leading to undetected Pogonophora

5.96

[U4] Pogonophora coverage has party not been detected due to

mosaicking artifacts (see Fig. 5d)

1.95

Causes of overestimation
[O1] No false detections could be identified. Such errors are caused

by the fact that cells classified as Pogonophora_present are not 100%

covered (see Figs. 5a and b). While the human annotator tends to

take this into account, this cannot be distinguished by the automatic

detection, leading to an overestimation

23.05

[O2] Pogonophora coverage has been detected inside smooth mud.

This can be regarded as the counterpart of class [U1]. Fig. 5e displays

an example

10.80

[O3] False detections at mud structures or relief. Fig. 5f displays an

example

8.41

[O4] Rarely occurring false detections at Beggiatoa. Fig. 5g displays an

example

4.66

[O5] Misdetection at small holes in sediment. See Fig. 5h for an

example

3.15

[O6] Misdetections due to mosaicking artifacts. Such artifacts can

cause both false and missing detections. Fig. 5d displays an example

of missing detections

0.27

[O7] Misdetection caused by objects seldom occurring (e.g., fishes,

waste) and therefore not part of the training set. Fig. 5i displays an

example of waste on the seafloor

0.21

Special cases
Annotated region or atomic segments too small. None or few cells fit 0.52
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Jerosch, K., Schlüter, M., Pesch, R., 2006b. Spatial analysis of marine categorical
information using indicator kriging applied to georeferenced video mosaics of
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A. Lüdtke et al. / Computers & Geosciences 39 (2012) 120–128128
Omoregie, E.O., Niemann, H., Mastalerz, V., de Lange, G.J., Stadnitskaia, A., Mascle,
J., Foucher, J.-P., Boetius, A., 2008. Microbial methane oxidation and sulfate
reduction at cold seeps of the deep Eastern Mediterranean Sea. Marine
Geology 261, 114–127.

Perez-Garcia, C., Feseker, T., Mienert, J., Berndt, C., 2009. The Håkon Mosby Mud
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