• Browse
    • Author
    • Year
    • Platform
    • Organizations
    • Programs
    • Research Networks
    • Type
  • Search
    • Simple
    • Advanced
  • About
    • About
    • Policies
    • Citation Guide
  • Login
    Logo Alfred Wegener Institut
    Logo Alfred Wegener Institut
    Alfred-Wegener-Institut
    Helmholtz-Zentrum für Polar-
    und Meeresforschung
    • Imprint
    • Contact
    • OAI
    • RSS 2.0

    EPIC.awi.de

    Home
    • Browse
      • Author
      • Year
      • Platform
      • Organizations
      • Programs
      • Research Networks
      • Type
    • Search
      • Simple
      • Advanced
    • About
      • About
      • Policies
      • Citation Guide
    • Login
      Login

      Basal melting at the Ekström Ice Shelf, Antarctica, estimated from mass flux divergence

      Edit Item Edit Item

      General Information:

      Citation:
      Neckel, N. , Drews, R. , Rack, W. and Steinhage, D. (2012): Basal melting at the Ekström Ice Shelf, Antarctica, estimated from mass flux divergence , Annals of Glaciology, 53 (60), pp. 294-302 . doi: 10.3189/2012AoG60A167
      Cite this page as:
      hdl:10013/epic.40157
      DOI:
      10.3189/2012AoG60A167
      Official URL:
      http://www.igsoc.org
      Contact Email:
      daniel.steinhage@awi.de
      Related Data:

      Abstract:

      We characterize the basal mass balance of the Ekstr ¨om Ice Shelf, Dronning Maud Land, Antarctica, using interferometrically derived surface velocities and ice thickness measurements from radio-echo sounding (RES). The surface velocities are based on data from European Remote-sensing Satellites-1 and -2 (ERS-1/2) during 1994–97. The ice thickness grid consists of 136 RES profiles acquired between 1996 and 2006. Mass fluxes are calculated along selected RES profiles where possible, to reduce uncertainties from ice thickness interpolation. Elsewhere large-scale mass fluxes are calculated using interpolated ice thickness data. Themass flux into the Ekstr ¨om Ice Shelf from themain grounded drainage basins is estimated to be 3.19±0.4Gt a−1. The mass flux near the ice shelf front is 2.67±0.3Gt a−1. Assuming steady state, and based on the equation of continuity, we interpret the residual mass flux as a combined effect of snow accumulation and subglacial melting/refreezing. Using net snow accumulation rates from previous studies, we link the mass flux divergence in irregular-shaped polygons to processes beneath the ice shelf. The highest subglacial melt rates of ∼1.1ma−1 are found near the grounding zone of two main inflow glaciers, and around the German station Neumayer III. The detection of unlikely refreezing in a small area ∼15 km west of Neumayer III is attributed to both dataset inaccuracies and a (possibly past) violation of the steady-state assumption. In general, the method and input data allow mapping of the spatial distribution of basal melting and the results are in good agreement with several previous studies.

      Further Details:

      Item Type:
      Article
      Authors:
      Neckel, Niklas ; Drews, Reinhard ; Rack, Wolfgang ; Steinhage, Daniel
      Divisions:
      AWI Organizations > Geosciences > Glaciology
      AWI Organizations > Geosciences > Junior Research Group: LIMPICS
      Programs:
      Helmholtz Research Programs > PACES I (2009-2013) > TOPIC 1: The Changing Arctic and Antarctic > WP 1.1: Role of Ice Sheets in the Earth System
      Eprint ID:
      31349
      Logo Alfred Wegener Institut
      Alfred-Wegener-Institut
      Helmholtz-Zentrum für Polar-
      und Meeresforschung
      Logo Helmholtz

      • Browse
        • Author
        • Year
        • Platform
        • Organizations
        • Programs
        • Research Networks
        • Type
      • Search
        • Simple
        • Advanced
      • About
        • About
        • Policies
        • Citation Guide
      • Imprint
      • Contact
      • OAI
      © Alfred-Wegener-Institut