An ensemble-based forecasting system for the North and Baltic Seas using the BSH circulation model and PDAF

Lars Nerger, Svetlana Loza, Jens Schröter
Alfred Wegener Institute for Polar and Marine Research
Bremerhaven, Germany

Silvia Massmann, Frank Janssen
Federal Maritime and Hydrographic Agency (BSH)
Hamburg, Germany
Outline

- Assimilation system with BSHcmod and PDAF
- Assimilation of satellite SST and in situ data
- Assimilation software

Related projects:

DeMarine
Development of the assimilation system (German GMES project)

SANGOMA
Unification of assimilation tools and new algorithms (EU FP7)
Operational BSH Model (BSHcmod), Version 4

Grid nesting:
- 10 km grid
- 5 km grid
- 900 m grid

Data assimilation:
5 km grid

BSSC 2007, F. Janssen, S. Dick, E. Kleine

Lars Nerger et al. – Forecasting with BSHcmod and PDAF
Assimilated Data - Satellite

- Surface temperature (from NOAA satellites)
- 12-hour composites
- Strong variation of data coverage (clouds)

Lars Nerger et al. – Forecasting with BSHcmod and PDAF
Assimilation Methodology

- Ensemble Kalman filter (local SEIK)
- 12-hour forecast/analysis cycles
- Ensemble size 8 (sufficient for good results)
- Assumed data errors (SST):
 - uncorrelated, 0.8°C (gave best results)
- Localization:
 - Weight on data errors
 - Exponential, e-folding at 100 km (tuned)
- Implementation:
 - Single program with PDAF (more later)
Deviation from NOAA Satellite Data

No assimilation
- RMSE of SST forecast (without DA)
 - RMS = 1.0577
- Bias of SST forecast (without DA)
 - RMS = 0.52981

Assimilation
- ensemble forecast (with LSEIK)
 - mean = 0.81149
- over 01.10.2007 - 30.09.2008
Improvement of long forecasts

RMS error over time

black: free model run

Blue/red: 12h assimilation/analysis cycles

green: 5 day forecast

→ Very stable 5-day forecasts

Figure 7: RMS error temporal evolution over the period 16 October 2007 – 21 October 2007 for simulated SST without DA (black curve); LSEIK analysis (red); mean of ensemble forecast based on 12-hourly analysis (blue) and 5 days forecast (green curve) initialized with the analysis state obtained on 16 October 2007.
Validation with independent data (only SST assim.)

MARNET station data

- Reduction of
 - Bias
 - RMS error

1 year mean over 6 stations:

<table>
<thead>
<tr>
<th></th>
<th>RMSe</th>
<th>bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>free</td>
<td>0.87</td>
<td>0.3</td>
</tr>
<tr>
<td>data</td>
<td>0.59</td>
<td>0.11</td>
</tr>
<tr>
<td>assim.</td>
<td>0.55</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Red: Assimilation 12h forecasts

Lars Nerger et al. – Forecasting with BSHcmd and PDAF
Independent salinity data

No salinity data assimilated

Success depends on localization method

Difficulties at the bottom (model resolution only 5 km)

Lars Nerger et al. – Forecasting with BSHcmod and PDAF
Assimilation of MARNET data

- **Salinity:** Significant improvement at surface and bottom
- **Success depends on localization parameters**

Lars Nerger et al. – Forecasting with BSHcmod and PDAF
Assimilation of MARNET data

Marnet station Darss Sill: Surface salinity

Marnet station Darss Sill: Bottom salinity

For details see Poster by Losa et al. (Board 26)

Also CTD and Scanfish data

Lars Nerger et al. – Forecasting with BSHcmod and PDAF
PDAF: A tool for data assimilation

PDAF - Parallel Data Assimilation Framework
- a software to provide assimilation methods
- an environment for ensemble assimilation
- for testing algorithms and real applications
- useable with virtually any numerical model
- also:
 - apply identical methods to different models
 - test influence of different observations
- makes good use of supercomputers
 (Fortran and MPI; tested on up to 4800 processors)

More information and source code available at
http://pdaf.awi.de
Logical separation of assimilation system

Model
- initialization
- time integration
- post processing

Filter
- Initialization
- analysis
- re-initialization

Core of PDAF

Observations
- obs. vector
- obs. operator
- obs. error

For online implementation:

- Explicit interface
- Indirect exchange (Fortran: module/common)

External Do-loop can be avoided – lower flexibility!
Building an assimilation system with PDAF

Don’t adapt the model to the assimilation system

→ Attach DA functionality to model

Very small changes to model code:

➢ Model time stepper not required to be subroutine
➢ Low abstraction level for optimal performance
➢ Elementary user-supplied routines
 (interfacing with model, observation handling)
➢ Model-sided configuration of assimilation system

→ Run assimilation system like model with additional parameters

Lars Nerger et al. – Forecasting with BSHcmod and PDAF
SANGOMA: Development of assimilation tools

- Tools are addition to assimilation frameworks
 (PDAF, OpenDA, OAK, SESAM, …)

- Past PDAF development focused on core part
 (framework & filter algorithms)

- In SANGOMA:
 - New filters for nonlinear assimilation
 - Addition of tools (collaborative development)

Diagnostics
Assess assimilation performance

Perturbations
Ensemble generation

Transformations
e.g. for Gaussianity

Utilities
e.g. for particular observations

More information
http://www.data-assimilation.net
and next talk by Jean-Marie Beckers

Lars Nerger et al. – Forecasting with BSHcmod and PDAF
Ongoing and future work

- Switch to HBM (HIROMB-BOOS model)
- Switch to ESTKF filter (Nerger et al., MWR, 2012)
- Include coastal mesh (900m resolution)
- Include Ecosystem model ERGOM
- Assimilation of ecosystem data

Posters:
- Losa et al. – board 26 – on in situ data assimilation
- S. Siiriä et al. – board 27 – Baltic Sea operational data assimilation
- Ehlert et al. – board 47 – Marine GMES Products for German Users

Lars Nerger et al. – Forecasting with BSHcmod and PDAF
Summary

- Assimilation system of BSHcmod and PDAF for operational use
- Successful assimilation of satellite SST & in situ data
- Flexible assimilation framework PDAF
- New tools and assimilation methods expected in SANGOMA

Thank you!

Lars.Nerger@awi.de