Evaluation of simulated Arctic cloud cover and PBL heights with satellite observations

D. Klaus, K. Dethloff, W. Dorn, A. Rinke, and M. Mielke
(Daniel.Klaus@awi.de)

Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany

January 16, 2013
Arctic: Energy sink of the Earth

- Strong anthropogenic signal (Polar Amplification) and decadal variability
- Insufficient availability of measurements in polar regions
- Global Earth System Models (GESMs) show largest biases in polar regions
- Arctic regional climate model (RCM) as magnifier (higher resolution)
- Added value: Development of adapted/improved model physics
Arctic: Energy sink of the Earth

- Strong anthropogenic signal (Polar Amplification) and decadal variability
- Insufficient availability of measurements in polar regions
- Global Earth System Models (GESMs) show largest biases in polar regions
- Arctic regional climate model (RCM) as magnifier (higher resolution)
- Added value: Development of adapted/improved model physics
Arctic: Energy sink of the Earth

- Strong anthropogenic signal (Polar Amplification) and decadal variability
- Insufficient availability of measurements in polar regions
- Global Earth System Models (GESMs) show largest biases in polar regions
- Arctic regional climate model (RCM) as magnifier (higher resolution)
- Added value: Development of adapted/improved model physics
Arctic: Energy sink of the Earth

- Strong anthropogenic signal (Polar Amplification) and decadal variability
- Insufficient availability of measurements in polar regions
- Global Earth System Models (GESMs) show largest biases in polar regions
 - Arctic regional climate model (RCM) as magnifier (higher resolution)
 - Added value: Development of adapted/improved model physics
Arctic: Energy sink of the Earth

- Strong anthropogenic signal (Polar Amplification) and decadal variability
- Insufficient availability of measurements in polar regions
- Global Earth System Models (GESMs) show largest biases in polar regions
- Arctic regional climate model (RCM) as magnifier (higher resolution)
- Added value: Development of adapted/improved model physics
Arctic: Energy sink of the Earth

- Strong anthropogenic signal (Polar Amplification) and decadal variability
- Insufficient availability of measurements in polar regions
- Global Earth System Models (GESMs) show largest biases in polar regions
- Arctic regional climate model (RCM) as magnifier (higher resolution)
- Added value: Development of adapted/improved model physics
AWI as part of the Helmholtz Association

Programs in the research field “Earth and Environment”

<table>
<thead>
<tr>
<th>Energy</th>
<th>Earth and Environment</th>
<th>Health</th>
<th>Aeronautics, Space and Transport</th>
<th>Key Technologies</th>
<th>Structure of Matter</th>
</tr>
</thead>
</table>

Geosystem: The Changing Earth

- **Atmosphere and Climate**
- **Marine, Coastal + Polar Systems**
- **Terrestrial Environment**

Helmholtz Association

- 8 German research centers in the research field "Earth and Environment"

- **AWI** - Alfred Wegener Institute for Polar and Marine Research
- **FZJ** - Research Center Jülich
- **GEOMAR** - Helmholtz Center for Ocean Research Kiel
- **KIT** - Karlsruhe Institute of Technology
- **GFZ** - Helmholtz Center Potsdam, German Research Center for Geo-sciences
- **HZG** - Helmholtz Center Geesthacht, Center for Materials and Coastal Research
- **HMGU** - Helmholtz Center Munich, German Research Center for Environmental Health
- **UFZ** - Helmholtz Center for Environmental Research (Leipzig)

- Networking to resolve highly complex environmental and climate problems
AWI as part of the Helmholtz Association

<table>
<thead>
<tr>
<th>Energy</th>
<th>Earth and Environment</th>
<th>Health</th>
<th>Aeronautics, Space and Transport</th>
<th>Key Technologies</th>
<th>Structure of Matter</th>
</tr>
</thead>
</table>

Programs in the research field “Earth and Environment“

- Geosystem: The Changing Earth
- Atmosphere and Climate
- Marine, Coastal + Polar Systems
- Terrestrial Environment

Helmholtz Association

- **8 German research centers in the research field ”Earth and Environment”**
 - **AWI** Alfred Wegener Institute for Polar and Marine Research
 - **FZJ** Research Center Jülich
 - **GEOMAR** Helmholtz Center for Ocean Research Kiel
 - **KIT** Karlsruhe Institute of Technology
 - **GFZ** Helmholtz Center Potsdam, German Research Center for Geo-sciences
 - **HZG** Helmholtz Center Geesthacht, Center for Materials and Coastal Research
 - **HMGU** Helmholtz Center Munich, German Research Center for Environmental Health
 - **UFZ** Helmholtz Center for Environmental Research (Leipzig)

- Networking to resolve highly complex environmental and climate problems
AWI as part of the Helmholtz Association

<table>
<thead>
<tr>
<th>Energy</th>
<th>Earth and Environment</th>
<th>Health</th>
<th>Aeronautics, Space and Transport</th>
<th>Key Technologies</th>
<th>Structure of Matter</th>
</tr>
</thead>
</table>

Programs in the research field “Earth and Environment“

- Geosystem: The Changing Earth
- Atmosphere and Climate
- Marine, Coastal + Polar Systems
- Terrestrial Environment

Helmholtz Association

- **8 German research centers in the research field "Earth and Environment"**
 - AWI Alfred Wegener Institute for Polar and Marine Research
 - FZJ Research Center Jülich
 - GEOMAR Helmholtz Center for Ocean Research Kiel
 - KIT Karlsruhe Institute of Technology
 - GFZ Helmholtz Center Potsdam, German Research Center for Geo-sciences
 - HZG Helmholtz Center Geesthacht, Center for Materials and Coastal Research
 - HMGU Helmholtz Center Munich, German Research Center for Environmental Health
 - UFZ Helmholtz Center for Environmental Research (Leipzig)

- Networking to resolve highly complex environmental and climate problems
AWI research units

- Sylt
- Helgoland
- Bremerhaven Am Handelshafen
- Bremerhaven Columbusstraße
- Potsdam
AWI research unit Potsdam (Telegrafenberg)
AWI research unit Potsdam (Telegrafenberg)
AWI research unit Potsdam (Telegraafenberg)
AWI research unit Potsdam (Telegrafenberg)

- ... started work in 1992
- ... accommodates two sections: Atmospheric Circulations and Periglacial Research
- ... employs 105 staff members
Goal: Integration of atmospheric observations/measurements and model simulations of climate processes into the coupled atmosphere-ocean-cryosphere (permafrost-soil, sea-ice) system
Goal: Integration of atmospheric observations/measurements and model simulations of climate processes into the coupled atmosphere-ocean-cryosphere (permafrost-soil, sea-ice) system
AWI research platforms
AWI research platforms

- Tethered balloon, Lidar, ozone-/radiosonde, etc. measurements at land stations (e.g. AWIPEV, Svalbard) or drifting sea-ice stations (e.g. NP-35) to reduce polar data gap
AWI research platforms
Validation of CryoSat sea-ice thickness with EM-Bird on board of the Polar 5 aircraft
Polar components of the Earth system at AWI

- The "three poles" of the Earth in our atmospheric RCM simulations
- In this talk: Focus on the pan-Arctic integration domain
Polar components of the Earth system at AWI

- The "three poles" of the Earth in our atmospheric RCM simulations
- In this talk: Focus on the pan-Arctic integration domain
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Outline</th>
<th>Model description</th>
<th>Results from HIRHAM5-SCM</th>
<th>Results from HIRHAM5</th>
<th>Summary/Outlook</th>
</tr>
</thead>
</table>

Motivation
Motivation

HIRHAM5
Regional Climate Model of the Arctic atmosphere
Motivation

HIRHAM5
Regional Climate Model of the Arctic atmosphere

HIRHAM5-SCM
Single-column Climate Model

reduce complexity (switch off dynamics)
Motivation

HIRHAM5
Regional Climate Model of the Arctic atmosphere

- **HIRHAM5-SCM**
 Single-column Climate Model

 - Parameterizations (Cloud Scheme)
 - reduce complexity (switch off dynamics)
 - understand subgrid-scale physical processes
Motivation

HIRHAM5
Regional Climate Model of the Arctic atmosphere

HIRHAM5-SCM
Single-column Climate Model

Parameterizations (Cloud Scheme)

reduce complexity (switch off dynamics)

understand subgrid-scale physical processes

Tuning Parameters Source Code

sensitivity studies or modification of physics
Motivation

HIRHAM5
Regional Climate Model
of the Arctic atmosphere

HIRHAM5-SCM
Single-column Climate Model

Observations
(e.g. MODIS)

Parameterizations
(Cloud Scheme)

Tuning Parameters
Source Code

reduce complexity
(switch off dynamics)

understand subgrid-scale
physical processes

adjust parameters or
validate changed code

sensitivity studies or
modification of physics
Motivation

HIRHAM5
Regional Climate Model of the Arctic atmosphere

Reduce complexity (switch off dynamics)

HIRHAM5-SCM
Single-column Climate Model

Understand subgrid-scale physical processes

Observations (e.g. MODIS)

Improved cloud-radiation interaction

Parameterizations (Cloud Scheme)

Sensitivity studies or modification of physics

Tuning Parameters Source Code

Adjust parameters or validate changed code
Motivation

HIRHAM5
Regional Climate Model of the Arctic atmosphere

HIRHAM5-SCM
Single-column Climate Model

- implement improved model physics
- reduce complexity (switch off dynamics)

Observations (e.g. MODIS)

Parameterizations (Cloud Scheme)

- understand subgrid-scale physical processes
- sensitivity studies or modification of physics

Tuning Parameters
Source Code

- adjust parameters or validate changed code
- improved cloud-radiation interaction
- observations
Motivation

- Evaluation of HIRHAM5ctrl (with NP-35, SHEBA, MODIS, GPS-RO, CALIOP, ...)
- Compare HIRHAM5ctrl with HIRHAM5sens

HIRHAM5
Regional Climate Model of the Arctic atmosphere

HIRHAM5-SCM
Single-column Climate Model

Adapt model physics through:
- improved cloud-radiation interaction
- adjust parameters or validate changed code

Reduce complexity (switch off dynamics) through:
- sensitivity studies or modification of physics

Parameterizations
(Cloud Scheme)

Tuning Parameters
Source Code

Observations
(e.g. MODIS)

understand subgrid-scale physical processes

Implementation:
- implement improved model physics
Model description

- Regional climate model HIRHAM5
- Single-column climate model HIRHAM5-SCM

Results from HIRHAM5-SCM

- Modeled vs. observed total cloud cover
- Parameter sensitivity studies
- Modification of the PS-Scheme

Results from HIRHAM5

- Used observational PBL height datasets
- Calculation of PBL height in HIRHAM5
- Definition of PBL height in observational datasets
- General performance of HIRHAM5
- Shortcomings in satellite PBL heights over land
- Evaluation of simulated PBL heights I + II

Summary/Outlook
Outline

1. Model description
 - Regional climate model HIRHAM5
 - Single-column climate model HIRHAM5-SCM

2. Results from HIRHAM5-SCM
 - Modeled vs. observed total cloud cover
 - Parameter sensitivity studies
 - Modification of the PS-Scheme

3. Results from HIRHAM5
 - Used observational PBL height datasets
 - Calculation of PBL height in HIRHAM5
 - Definition of PBL height in observational datasets
 - General performance of HIRHAM5
 - Shortcomings in satellite PBL heights over land
 - Evaluation of simulated PBL heights I + II

4. Summary/Outlook
Outline

1. Model description
 - Regional climate model HIRHAM5
 - Single-column climate model HIRHAM5-SCM

2. Results from HIRHAM5-SCM
 - Modeled vs. observed total cloud cover
 - Parameter sensitivity studies
 - Modification of the PS-Scheme

3. Results from HIRHAM5
 - Used observational PBL height datasets
 - Calculation of PBL height in HIRHAM5
 - Definition of PBL height in observational datasets
 - General performance of HIRHAM5
 - Shortcomings in satellite PBL heights over land
 - Evaluation of simulated PBL heights I + II

Summary/Outlook
Outline

1. Model description
 - Regional climate model HIRHAM5
 - Single-column climate model HIRHAM5-SCM

2. Results from HIRHAM5-SCM
 - Modeled vs. observed total cloud cover
 - Parameter sensitivity studies
 - Modification of the PS-Scheme

3. Results from HIRHAM5
 - Used observational PBL height datasets
 - Calculation of PBL height in HIRHAM5
 - Definition of PBL height in observational datasets
 - General performance of HIRHAM5
 - Shortcomings in satellite PBL heights over land
 - Evaluation of simulated PBL heights I + II

4. Summary/Outlook
Regional climate model HIRHAM5

- Atmospheric RCM with pan-Arctic integration domain (> 53.5°N)
- Comprises dynamical core of the HIRLAM NWP model and physical parameterizations of the ECHAM5 GCM coupled by an interface

HIRLAM (Undén et al., 2002)

- Hydrostatic model solves 7 prognostic equations
 - Surface pressure (p_s)
 - Temperature (T)
 - Horizontal wind (u,v)
 - Specific humidity (q)
 - Cloud water content (q_l)
 - Cloud ice content (q_i)
- 0.25° horizontal resolution (~25 km)
- 40 hybrid levels (≤ 10 hPa; 10 in PBL)
- Semi-implicit Euler time scheme ($\Delta t = 2$ min)
- ERA-Interim initialization/lateral boundary forcing

ECHAM5 (Roeckner et al., 2003)

Subgrid-scale parameterizations:

- SW and LW radiation transfer
- Stratiform cloud scheme
- Cumulus convection
- Surface fluxes and vertical diffusion
- Sea and sea-ice surface processes
- Land surface processes
- Gravity wave drag
Regional climate model HIRHAM5

- Atmospheric RCM with pan-Arctic integration domain (> 53.5°N)
- Comprises dynamical core of the HIRLAM NWP model and physical parameterizations of the ECHAM5 GCM coupled by an interface

HIRLAM (Undén et al., 2002)

- Hydrostatic model solves 7 prognostic equations
 - Surface pressure (p_s)
 - Temperature (T)
 - Horizontal wind (u, v)
 - Specific humidity (q)
 - Cloud water content (q_l)
 - Cloud ice content (q_i)
- 0.25° horizontal resolution (~ 25 km)
- 40 hybrid levels (≤ 10 hPa; 10 in PBL)
- Semi-implicit Euler time scheme ($\Delta t = 2$ min)
- ERA-Interim initialization/lateral boundary forcing

ECHAM5 (Roeckner et al., 2003)

- Subgrid-scale parameterizations:
 - SW and LW radiation transfer
 - Stratiform cloud scheme
 - Cumulus convection
 - Surface fluxes and vertical diffusion
 - Sea and sea-ice surface processes
 - Land surface processes
 - Gravity wave drag
Regional climate model HIRHAM5

- Atmospheric RCM with pan-Arctic integration domain (> 53.5°N)
- Comprises dynamical core of the HIRLAM NWP model and physical parameterizations of the ECHAM5 GCM coupled by an interface

HIRLAM (Undén et al., 2002)
- Hydrostatic model solves 7 prognostic equations
 - Surface pressure (p_s)
 - Temperature (T)
 - Horizontal wind (u, v)
 - Specific humidity (q)
 - Cloud water content (q_l)
 - Cloud ice content (q_i)
- 0.25° horizontal resolution (~25 km)
- 40 hybrid levels (≤ 10 hPa; 10 in PBL)
- Semi-implicit Euler time scheme ($\Delta t = 2$ min)
- ERA-Interim initialization/lateral boundary forcing

ECHAM5 (Roeckner et al., 2003)
- Subgrid-scale parameterizations:
 - SW and LW radiation transfer
 - Stratiform cloud scheme
 - Cumulus convection
 - Surface fluxes and vertical diffusion
 - Sea and sea-ice surface processes
 - Land surface processes
 - Gravity wave drag
Single-column climate model HIRHAM5-SCM

Model description

- **Predefined geographic location**
- **60 hybrid levels (≤ 0.1 hPa; 10 in PBL)**
- **Euler forward time scheme (Δt = 10 min)**
- **Initialization with ERA-Interim data set**
- **Physical tendencies explicitly computed by ECHAM5 parameterizations**
- **ρ_s** and dynamical tendencies of T, q, u, and v are prescribed 3-hourly from ERA-Interim

Cloud cover parameterization

- Prognostic equations for vapor, liquid, and ice phase
- Bulk cloud microphysics according to Lohmann and Roeckner (1996)
- Relative humidity cloud scheme (RH-Scheme; Sundquist et al., 1989)
- Prognostic statistical cloud scheme (PS-Scheme; Tompkins, 2002)
Single-column climate model HIRHAM5-SCM

Model setup
- Predefined geographic location
- 60 hybrid levels ($\leq 0.1\text{hPa}; 10$ in PBL)
- Euler forward time scheme ($\Delta t = 10\text{ min}$)
- Initialization with ERA-Interim data set
- Physical tendencies explicitly computed by ECHAM5 parameterizations
- p, and dynamical tendencies of T, q, u, and v are prescribed 3-hourly from ERA-Interim

Cloud cover parameterization
- Prognostic equations for vapor, liquid, and ice phase
- Bulk cloud microphysics according to Lohmann and Roeckner (1996)
- Relative humidity cloud scheme (RH-Scheme; Sundquist et al., 1989)
 Prognostic statistical cloud scheme (PS-Scheme; Tompkins, 2002)
Modeled vs. observed total cloud cover

Monthly means of C^{tot} at NP-35 start position (102.81°E; 81.40°N)

- MODIS features moderate (high) cloudiness during winter period (summer period)
- In general, HIRHAM5-SCM agrees qualitatively but systematically overestimates C^{tot}
- PS-Scheme shows reduced biases and good agreement from November 2007 to January 2008
- Transition seasons worst reproduced with largest biases in October 2007 and May 2008

Best (worst) agreement between MODIS and HIRHAM5-SCM(PS) (ERA-Interim) but systematic overestimation of cloudiness regardless of whether model or reanalysis
Modeled vs. observed total cloud cover

- **MODIS** features moderate (high) cloudiness during winter period (summer period)
- In general, **HIRHAM5-SCM** agrees qualitatively but systematically overestimates C_{tot}
- **PS-Scheme** shows reduced biases and good agreement from November 2007 to January 2008
- **Transition seasons** worst reproduced with largest biases in October 2007 and May 2008

- **Best (worst) agreement** between MODIS and **HIRHAM5-SCM(PS) (ERA-Interim)** but systematic overestimation of cloudiness regardless of whether model or reanalysis
Modeled vs. observed total cloud cover

Monthly means of C_{tot} at NP-35 start position (102.81°E; 81.40°N)

- MODIS features moderate (high) cloudiness during winter period (summer period)
- In general, HIRHAM5-SCM agrees qualitatively but systematically overestimates C_{tot}
- PS-Scheme shows reduced biases and good agreement from November 2007 to January 2008
- Transition seasons worst reproduced with largest biases in October 2007 and May 2008

- Best (worst) agreement between MODIS and HIRHAM5-SCM(PS) (ERA-Interim) but systematic overestimation of cloudiness regardless of whether model or reanalysis
Modeled vs. observed total cloud cover

Monthly means of C_{tot} at NP-35 start position (102.81° E; 81.40° N)

- MODIS features moderate (high) cloudiness during winter period (summer period)
- In general, HIRHAM5-SCM agrees qualitatively but systematically overestimates C_{tot}
- PS-Scheme shows reduced biases and good agreement from November 2007 to January 2008
- Transition seasons worst reproduced with largest biases in October 2007 and May 2008

Best (worst) agreement between MODIS and HIRHAM5-SCM(PS) (ERA-Interim) but systematic overestimation of cloudiness regardless of whether model or reanalysis
Modeled vs. observed total cloud cover

Monthly means of C_{tot} at NP-35 start position ($102.81^\circ E; 81.40^\circ N$)

- MODIS features moderate (high) cloudiness during winter period (summer period)
- In general, HIRHAM5-SCM agrees qualitatively but systematically overestimates C_{tot}
- PS-Scheme shows reduced biases and good agreement from November 2007 to January 2008
- Transition seasons worst reproduced with largest biases in October 2007 and May 2008

Best (worst) agreement between MODIS and HIRHAM5-SCM(PS) (ERA-Interim) but systematic overestimation of cloudiness regardless of whether model or reanalysis
Modeled vs. observed total cloud cover

Monthly means of C_{tot} at NP-35 start position (102.81° E; 81.40° N)

- **MODIS** features moderate (high) cloudiness during winter period (summer period)
- In general, HIRHAM5-SCM agrees qualitatively but systematically overestimates C_{tot}
- PS-Scheme shows reduced biases and good agreement from November 2007 to January 2008
- Transition seasons worst reproduced with largest biases in October 2007 and May 2008

- **Best (worst) agreement** between MODIS and HIRHAM5-SCM(PS) (ERA-Interim) but systematic overestimation of cloudiness regardless of whether model or reanalysis
Modulated vs. observed total cloud cover

Monthly means of C_{tot} at NP-35 start position (102.81°E; 81.40°N)

- MODIS features moderate (high) cloudiness during winter period (summer period)
- In general, HIRHAM5-SCM agrees qualitatively but systematically overestimates C_{tot}
- PS-Scheme shows reduced biases and good agreement from November 2007 to January 2008
- Transition seasons worst reproduced with largest biases in October 2007 and May 2008

Best (worst) agreement between MODIS and HIRHAM5-SCM(PS) (ERA-Interim) but systematic overestimation of cloudiness regardless of whether model or reanalysis
Modeled vs. observed total cloud cover

Monthly means of C_{tot} at NP-35 start position (102.81° E; 81.40° N)

- MODIS features moderate (high) cloudiness during winter period (summer period)
- In general, HIRHAM5-SCM agrees qualitatively but systematically overestimates C_{tot}
- PS-Scheme shows reduced biases and good agreement from November 2007 to January 2008
- Transition seasons worst reproduced with largest biases in October 2007 and May 2008

Best (worst) agreement between MODIS and HIRHAM5-SCM(PS) (ERA-Interim) but systematic overestimation of cloudiness regardless of whether model or reanalysis
Parameter sensitivity studies

Monthly means of C^{tot} at NP-35 start position

(a) Lower \tilde{q}_0 ($\tilde{q}_0^{\text{def}} = 2$)

(b) Higher CW_{min} ($\text{CW}_{\text{min}}^{\text{def}} = 0.1 \text{ mg kg}^{-1}$)

(c) Higher γ_1 ($\gamma_1^{\text{def}} = 15$)

(d) Lower γ_{thr} ($\gamma_{\text{thr}}^{\text{def}} = 0.5 \text{ mg kg}^{-1}$)

Suitable tuning parameters

\tilde{q}_0 – Shape parameter threshold
Controls the shape of the symmetric beta distribution acting as probability density function (PDF)

CW_{min} – Cloud water threshold
Avoids negative cloud water/ice contents and controls the occurrence of clear-sky conditions in the PS-Scheme

γ_1 – Autoconversion rate
Controls the efficiency of rain drop formation by collision and coalescence

γ_{thr} – Cloud ice threshold
Controls the efficiency of the Bergeron-Findeisen process

- Reduction of C^{tot} through higher CW_{min} or γ_1 as well as lower \tilde{q}_0 or γ_{thr}
- Most significant improvement through lower γ_{thr} that also correct the ratio of liquid to solid water content
Parameter sensitivity studies

Monthly means of C_{tot} at NP-35 start position

Suitable tuning parameters

\tilde{q}_0 — Shape parameter threshold
Controls the shape of the symmetric beta distribution acting as probability density function (PDF)

CW_{min} — Cloud water threshold
Avoids negative cloud water/ice contents and controls the occurrence of clear-sky conditions in the PS-Scheme

γ_1 — Autoconversion rate
Controls the efficiency of rain drop formation by collision and coalescence

γ_{thr} — Cloud ice threshold
Controls the efficiency of the Bergeron-Findeisen process

- Reduction of C_{tot} through higher CW_{min} or γ_1 as well as lower \tilde{q}_0 or γ_{thr}
- Most significant improvement through lower γ_{thr} that also corrects the ratio of liquid to solid water content
Parameter sensitivity studies

Monthly means of C_{tot} at NP-35 start position

Suitable tuning parameters

- \tilde{q}_0 — Shape parameter threshold
 Controls the shape of the symmetric beta distribution acting as probability density function (PDF)

- CW_{min} — Cloud water threshold
 Avoids negative cloud water/ice contents and controls the occurrence of clear-sky conditions in the PS-Scheme

- γ_1 — Autoconversion rate
 Controls the efficiency of rain drop formation by collision and coalescence

- γ_{thr} — Cloud ice threshold
 Controls the efficiency of the Bergeron-Findeisen process

- Reduction of C_{tot} through higher CW_{min} or γ_1 as well as lower \tilde{q}_0 or γ_{thr}

- Most significant improvement through lower γ_{thr} that also correct the ratio of liquid to solid water content

Parameter sensitivity studies

Monthly means of C_{tot} at NP-35 start position

- **(a) Lower \tilde{q}_0 ($\tilde{q}_0^{\text{def}} = 2$)**
 - Reduction of C_{tot} through higher CW_{\min} or γ_1 as well as lower \tilde{q}_0 or γ_{thr}
 - Most significant improvement through lower γ_{thr} that also correct the ratio of liquid to solid water content
- **(b) Higher CW_{\min} (CW_{\min}^{\text{def}} = 0.1 \text{ mg kg}^{-1})**
 - Suitable tuning parameters
- **(c) Higher γ_1 ($\gamma_1^{\text{def}} = 15$)**
 - Suitable tuning parameters
- **(d) Lower γ_{thr} ($\gamma_{\text{thr}}^{\text{def}} = 0.5 \text{ mg kg}^{-1}$)**
 - Suitable tuning parameters

Suitable tuning parameters

- \tilde{q}_0 — **Shape parameter threshold**
 - Controls the shape of the symmetric beta distribution acting as probability density function (PDF)
 - $\tilde{q}_0^{\text{def}} = 2$
- CW_{\min} — **Cloud water threshold**
 - Avoids negative cloud water/ice contents and controls the occurrence of clear-sky conditions in the PS-Scheme
 - $\text{CW}_{\min}^{\text{def}} = 0.1 \text{ mg kg}^{-1}$
- γ_1 — **Autoconversion rate**
 - Controls the efficiency of rain drop formation by collision and coalescence
- γ_{thr} — **Cloud ice threshold**
 - Controls the efficiency of the Bergeron-Findeisen process
 - $\gamma_{\text{thr}}^{\text{def}} = 0.5 \text{ mg kg}^{-1}$

Klaus et al. (2012): Evaluation of Two Cloud Parameterizations and Their Possible Adaptation to Arctic Climate Conditions, *Atmosphere* 2012, 3, 419–450.
Modification of the PS-Scheme

Default formulation
- Tompkins (2002)
- \(\bar{p} = \bar{q}_0 = 2 (\bar{q} \geq \bar{p}) \)
- positively skewed or symmetrical \(G(q_t) \)

Changed formulation
- Tompkins’ idea
- \(\bar{p} = F(\bar{q}) = \frac{\bar{q} + 1}{\bar{q} - 1} \)
- now negatively skewed \(G(q_t) \) permitted, too
Modification of the PS-Scheme

Default formulation

- Tompkins (2002)
- \(\bar{p} = \bar{q}_0 = 2 \ (\bar{q} \geq \bar{p}) \)
- positively skewed or symmetrical \(G(q_t) \)

```
\[ \bar{q} = \bar{q}_0 = 2 \ (\bar{q} \geq \bar{p}) \]
```

Changed formulation

- Tompkins' idea
- \(\bar{p} = F(\bar{q}) = \frac{\bar{q} + 1}{\bar{q} - 1} \)
- now negatively skewed \(G(q_t) \) permitted, too

```
\[ \bar{p} = F(\bar{q}) = \frac{\bar{q} + 1}{\bar{q} - 1} \]
```
Modification of the PS-Scheme

Default formulation
- Tompkins (2002)
- \(\bar{p} = \bar{q}_0 = 2 (\bar{q} \geq \bar{p}) \)
- positively skewed or symmetrical \(G(q_t) \)

\[G(q_t) \]

\[\bar{p} \]

\[\bar{q} \]

\[q_t \]

\[G(q_t) \]

\[\bar{q} > \bar{p} \]

\[\bar{q} < \bar{p} \]

Changed formulation
- Tompkins’ idea
- \(\bar{p} = F(\bar{q}) = \frac{\bar{q}+1}{\bar{q}-1} \)
- now negatively skewed
- \(G(q_t) \) permitted, too

Monthly means of \(C^{\text{tot}} \) at NP-35 start position

(e) Permit negative skewness, i.e. \(\bar{p} = F(\bar{q}) \)

- Reduction of clouds through the introduction of negatively skewed beta distributions is of the same order of magnitude as for lower \(\gamma_{\text{thr}} \)
Modification of the PS-Scheme

Default formulation
- Tompkins (2002)
- \(\tilde{p} = \bar{q}_0 = 2\) (\(\bar{q} \geq \tilde{p}\))
- positively skewed or symmetrical \(G(q_t)\)

Changed formulation
- Tompkins’ idea
- \(\tilde{p} = F(\bar{q}) = \frac{\bar{q}+1}{\bar{q}-1}\)
- now negatively skewed \(G(q_t)\) permitted, too

Monthly means of \(C^{\text{tot}}\) at NP-35 start position

(e) Permit negative skewness, i.e. \(\tilde{p} = F(\bar{q})\)

(f) Lower \(\gamma_{\text{thr}}\) and negative skewness

- Reduction of clouds through the introduction of negatively skewed beta distributions is of the same order of magnitude as for lower \(\gamma_{\text{thr}}\)
- Combined effect of lower \(\gamma_{\text{thr}}\) and permitted negatively skewed \(G(q_t)\) can be used to adapt the PS-Scheme to Arctic climate conditions
Used observational PBL height datasets

HIRHAM5
- Atmospheric RCM (control run → ctrl)
- pan-Arctic integration domain (> 53.5°N)
- 0.25° × 0.25° horizontal resolution
- 01/01/1979 – 12/31/2011 (33 yrs)

ERA-Interim
- Most recent ECMWF reanalysis
- Global coverage from 90°S to 90°N
- 0.75° × 0.75° horizontal resolution
- 01/01/1979 – 12/31/2011 (33 yrs)

GPS-RO
- Global Positioning System - Radio Occultation
- Detects PBL heights under all-sky conditions
- Dataset provided by F. Xie
- Global coverage from 88°S to 88°N
- 5° × 4° horizontal resolution
- 01/01/2007 – 12/31/2009 (3 yrs)

CALIOP
- Cloud-Aerosol Lidar with Orthogonal Polarisation
- Detects PBL height under clear-sky conditions
- Dataset provided by E. McGrath-Spangler
- Global coverage from 82°S to 82°N
- 1.25° × 1.25° horizontal resolution
- 06/13/2006 – 12/31/2011 (5 1/2 yrs)

- Interpolation of observational datasets on rotated HIRHAM5 grid
- Comparison of multi-year seasonal mean PBL heights
 - HIRHAM5 vs. ERA-Interim → Jun 2006 – Dec 2011
 - HIRHAM5 vs. GPS-RO → Jan 2007 – Dec 2009
 - HIRHAM5clr vs. CALIOP → Jun 2006 – Dec 2011
- HIRHAM5clr considers only PBL heights associated with $C_{tot} < 10\%$
Used observational PBL height datasets

HIRHAM5
- Atmospheric RCM (control run → ctrl)
- Pan-Arctic integration domain (> 53.5°N)
- 0.25° × 0.25° horizontal resolution
- 01/01/1979 – 12/31/2011 (33 yrs)

ERA-Interim
- Most recent ECMWF reanalysis
- Global coverage from 90°S to 90°N
- 0.75° × 0.75° horizontal resolution
- 01/01/1979 – 12/31/2011 (33 yrs)

GPS-RO
- Global Positioning System - Radio Occultation
- Detects PBL heights under all-sky conditions
- Dataset provided by F. Xie
- Global coverage from 88°S to 88°N
- 5° × 4° horizontal resolution
- 01/01/2007 – 12/31/2009 (3 yrs)

CALIOP
- Cloud-Aerosol Lidar with Orthogonal Polarisation
- Detects PBL height under clear-sky conditions
- Dataset provided by E. McGrath-Spangler
- Global coverage from 82°S to 82°N
- 1.25° × 1.25° horizontal resolution
- 06/13/2006 – 12/31/2011 (5 1/2 yrs)

- Interpolation of observational datasets on rotated HIRHAM5 grid
- Comparison of multi-year seasonal mean PBL heights
 - HIRHAM5 vs. ERA-Interim → June 2006 – December 2011
 - HIRHAM5 vs. GPS-RO → January 2007 – December 2009
 - HIRHAM5clr vs. CALIOP → June 2006 – December 2011
- HIRHAM5clr considers only PBL heights associated with $C_{\text{tot}} < 10\%$
Used observational PBL height datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Description</th>
<th>Coverage</th>
<th>Resolution</th>
<th>Time Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIRHAM5</td>
<td>Atmospheric RCM (control run → ctrl)</td>
<td>pan-Arctic integration domain (> 53.5°N)</td>
<td>0.25° × 0.25° horizontal resolution</td>
<td>01/01/1979 – 12/31/2011 (33 yrs)</td>
</tr>
<tr>
<td>ERA-Interim</td>
<td>Most recent ECMWF reanalysis</td>
<td>Global coverage from 90°S to 90°N</td>
<td>0.75° × 0.75° horizontal resolution</td>
<td>01/01/1979 – 12/31/2011 (33 yrs)</td>
</tr>
<tr>
<td>GPS-RO</td>
<td>Global Positioning System - Radio Occultation</td>
<td>Detects PBL heights under all-sky conditions</td>
<td>Global coverage from 88°S to 88°N</td>
<td>5° × 4° horizontal resolution</td>
</tr>
<tr>
<td>CALIOP</td>
<td>Cloud-Aerosol Lidar with Orthogonal Polarisation</td>
<td>Detects PBL height under clear-sky conditions</td>
<td>Global coverage from 82°S to 82°N</td>
<td>1.25° × 1.25° horizontal resolution</td>
</tr>
</tbody>
</table>

- Interpolation of observational datasets on rotated HIRHAM5 grid
- Comparison of multi-year seasonal mean PBL heights
 - HIRHAM5 vs. ERA-Interim → Jun 2006 – Dec 2011
 - HIRHAM5 vs. GPS-RO → Jan 2007 – Dec 2009
 - HIRHAM5clr vs. CALIOP → Jun 2006 – Dec 2011
- HIRHAM5clr considers only PBL heights associated with C_{tot} < 10%
Used observational PBL height datasets

HIRHAM5
- Atmospheric RCM (control run → ctrl)
- pan-Arctic integration domain (> 53.5°N)
- 0.25° × 0.25° horizontal resolution
- 01/01/1979 – 12/31/2011 (33 yrs)

ERA-Interim
- Most recent ECMWF reanalysis
- Global coverage from 90°S to 90°N
- 0.75° × 0.75° horizontal resolution
- 01/01/1979 – 12/31/2011 (33 yrs)

GPS-RO
- Global Positioning System - Radio Occultation
- Detects PBL heights under all-sky conditions
- Dataset provided by F. Xie
- Global coverage from 88°S to 88°N
- 5° × 4° horizontal resolution
- 01/01/2007 – 12/31/2009 (3 yrs)

CALIOP
- Cloud-Aerosol Lidar with Orthogonal Polarisation
- Detects PBL height under clear-sky conditions
- Dataset provided by E. McGrath-Spangler
- Global coverage from 82°S to 82°N
- 1.25° × 1.25° horizontal resolution
- 06/13/2006 – 12/31/2011 (5 1/2 yrs)
Used observational PBL height datasets

HIRHAM5
- Atmospheric RCM (control run → ctrl)
- pan-Arctic integration domain (> 53.5°N)
- \(0.25° \times 0.25°\) horizontal resolution
- 01/01/1979 – 12/31/2011 (33 yrs)

ERA-Interim
- Most recent ECMWF reanalysis
- Global coverage from 90°S to 90°N
- \(0.75° \times 0.75°\) horizontal resolution
- 01/01/1979 – 12/31/2011 (33 yrs)

GPS-RO
- Global Positioning System - Radio Occultation
- Detects PBL heights under all-sky conditions
- Dataset provided by F. Xie
- Global coverage from 88°S to 88°N
- \(5° \times 4°\) horizontal resolution
- 01/01/2007 – 12/31/2009 (3 yrs)

CALIOP
- Cloud-Aerosol Lidar with Orthogonal Polarisation
- Detects PBL height under clear-sky conditions
- Dataset provided by E. McGrath-Spangler
- Global coverage from 82°S to 82°N
- \(1.25° \times 1.25°\) horizontal resolution
- 06/13/2006 – 12/31/2011 (5 1/2 yrs)

Interpolation of observational datasets on rotated HIRHAM5 grid

- Comparison of multi-year seasonal mean PBL heights
 - HIRHAM5 vs. ERA-Interim \(\rightarrow\) Jun 2006 – Dec 2011
 - HIRHAM5 vs. GPS-RO \(\rightarrow\) Jan 2007 – Dec 2009
 - HIRHAM5clr vs. CALIOP \(\rightarrow\) Jun 2006 – Dec 2011

- HIRHAM5clr considers only PBL heights associated with \(C^{\text{tot}} < 10\%\)
Used observational PBL height datasets

HIRHAM5
- Atmospheric RCM (control run → ctrl)
- Pan-Arctic integration domain (> 53.5°N)
- 0.25° × 0.25° horizontal resolution
- 01/01/1979 – 12/31/2011 (33 yrs)

ERA-Interim
- Most recent ECMWF reanalysis
- Global coverage from 90°S to 90°N
- 0.75° × 0.75° horizontal resolution
- 01/01/1979 – 12/31/2011 (33 yrs)

GPS-RO
- Global Positioning System - Radio Occultation
- Detects PBL heights under all-sky conditions
- Dataset provided by F. Xie
- Global coverage from 88°S to 88°N
- 5° × 4° horizontal resolution
- 01/01/2007 – 12/31/2009 (3 yrs)

CALIOP
- Cloud-Aerosol Lidar with Orthogonal Polarisation
- Detects PBL height under clear-sky conditions
- Dataset provided by E. McGrath-Spangler
- Global coverage from 82°S to 82°N
- 1.25° × 1.25° horizontal resolution
- 06/13/2006 – 12/31/2011 (5 1/2 yrs)

- Interpolation of observational datasets on rotated HIRHAM5 grid
- Comparison of multi-year seasonal mean PBL heights
 - HIRHAM5 vs. ERA-Interim → Jun 2006 – Dec 2011
 - HIRHAM5 vs. GPS-RO → Jan 2007 – Dec 2009
 - HIRHAM5clr vs. CALIOP → Jun 2006 – Dec 2011
- HIRHAM5clr considers only PBL heights associated with $C_{tot} < 10\%$
Used observational PBL height datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIRHAM5</td>
<td>- Atmospheric RCM (control run → ctrl)</td>
</tr>
<tr>
<td></td>
<td>- pan-Arctic integration domain (> 53.5°N)</td>
</tr>
<tr>
<td></td>
<td>- 0.25° × 0.25° horizontal resolution</td>
</tr>
<tr>
<td></td>
<td>- 01/01/1979 – 12/31/2011 (33 yrs)</td>
</tr>
<tr>
<td>ERA-Interim</td>
<td>- Most recent ECMWF reanalysis</td>
</tr>
<tr>
<td></td>
<td>- Global coverage from 90°S to 90°N</td>
</tr>
<tr>
<td></td>
<td>- 0.75° × 0.75° horizontal resolution</td>
</tr>
<tr>
<td></td>
<td>- 01/01/1979 – 12/31/2011 (33 yrs)</td>
</tr>
<tr>
<td>GPS-RO</td>
<td>- Global Positioning System - Radio Occultation</td>
</tr>
<tr>
<td></td>
<td>- Detects PBL heights under all-sky conditions</td>
</tr>
<tr>
<td></td>
<td>- Dataset provided by F. Xie</td>
</tr>
<tr>
<td></td>
<td>- Global coverage from 88°S to 88°N</td>
</tr>
<tr>
<td></td>
<td>- 5° × 4° horizontal resolution</td>
</tr>
<tr>
<td></td>
<td>- 01/01/2007 – 12/31/2009 (3 yrs)</td>
</tr>
<tr>
<td>CALIOP</td>
<td>- Cloud-Aerosol Lidar with Orthogonal Polarisation</td>
</tr>
<tr>
<td></td>
<td>- Detects PBL height under clear-sky conditions</td>
</tr>
<tr>
<td></td>
<td>- Dataset provided by E. McGrath-Spangler</td>
</tr>
<tr>
<td></td>
<td>- Global coverage from 82°S to 82°N</td>
</tr>
<tr>
<td></td>
<td>- 1.25° × 1.25° horizontal resolution</td>
</tr>
<tr>
<td></td>
<td>- 06/13/2006 – 12/31/2011 (5 1/2 yrs)</td>
</tr>
</tbody>
</table>

- Interpolation of observational datasets on rotated HIRHAM5 grid
- Comparison of multi-year seasonal mean PBL heights
 - HIRHAM5 vs. ERA-Interim → Jun 2006 – Dec 2011
 - HIRHAM5 vs. GPS-RO → Jan 2007 – Dec 2009
 - HIRHAM5clr vs. CALIOP → Jun 2006 – Dec 2011

- HIRHAM5clr considers only PBL heights associated with $C_{\text{tot}} < 10\%$
Calculation of PBL height in HIRHAM5

a) **Dynamical height** (Ekman layer height)

\[h_{\text{dyn}} = C \cdot \frac{u_*}{f} \]

- \(C = 0.3 \) \(\rightarrow \) Dimensionless parameter
- \(u_* = \sqrt{\frac{\tau_0}{\rho}} \) \(\rightarrow \) Friction velocity as defined by Charnock (1955), where \(\tau_0 \) = surface drag and \(\rho \) = density of air
- \(f \) \(\rightarrow \) Coriolis parameter

First model level above \(h_{\text{dyn}} \) defines level number of dynamical PBL height \(h_{\text{PBL,d}} \)

b) **Dry convective level** (Using dry static energy)

\[s = c_{pd} (1 + (\delta - 1)q) \cdot T + g \cdot z = c_p \cdot T + \Phi \]

- \(\delta = \frac{c_{pv}}{c_{pd}} \) \(\rightarrow \) Ratio of specific heat capacities for water vapor and dry air
- \(q, T \) \(\rightarrow \) Specific humidity and air temperature
- \(\Phi = g \cdot z \) \(\rightarrow \) Geopotential

First model level where \(s \) exceeds value of the lowermost model level defines level number of convective PBL height \(h_{\text{PBL,c}} \)

PBL height is then calculated in 3 steps

\[h_{\text{PBL}} = \text{MIN}(h_{\text{PBL,d}}, h_{\text{PBL,c}}) \]

\[\Phi_{\text{PBL}} = \text{MIN}(50,000 \text{ m}^2\text{s}^{-2}, \Phi(h_{\text{PBL}})) \]

\[H_{\text{PBL}} = \Phi_{\text{PBL}} / g_n \]

with standard gravity \(g_n = 9.80665 \text{ m s}^{-2} \)
Calculation of PBL height in HIRHAM5

a) Dynamical height (Ekman layer height)

\[h_{\text{dyn}} = C \cdot \frac{u_*}{f} \]

- \(C = 0.3 \) → Dimensionless parameter
- \(u_* = \sqrt{\frac{\tau_0}{\rho}} \) → Friction velocity as defined by Charnock (1955), where \(\tau_0 \) = surface drag and \(\rho \) = density of air
- \(f \) → Coriolis parameter

First model level above \(h_{\text{dyn}} \) defines level number of dynamical PBL height \(h_{\text{PBL,d}} \)

b) Dry convective level (Using dry static energy)

\[s = c_{pd}(1 + (\delta - 1)q) \cdot T + g \cdot z = c_p \cdot T + \Phi \]

- \(\delta = \frac{c_{pv}}{c_{pd}} \) → Ratio of specific heat capacities for water vapor and dry air
- \(q, T \) → Specific humidity and air temperature
- \(\Phi = g \cdot z \) → Geopotential

First model level where \(s \) exceeds value of the lowermost model level defines level number of convective PBL height \(h_{\text{PBL,c}} \)

PBL height is then calculated in 3 steps

- \(h_{\text{PBL}} = \text{MIN}(h_{\text{PBL,d}}, h_{\text{PBL,c}}) \)
- \(\Phi_{\text{PBL}} = \text{MIN}(50,000 \text{ m}^2\text{s}^{-2}, \Phi(h_{\text{PBL}})) \)
- \(H_{\text{PBL}} = \frac{\Phi_{\text{PBL}}}{g_n} \)

with standard gravity \(g_n = 9.80665 \text{ m}^2\text{s}^{-2} \)
Calculation of PBL height in HIRHAM5

a) **Dynamical height** (Ekman layer height)

\[h_{\text{dyn}} = C \cdot \frac{u_*}{f} \]

- \(C = 0.3 \) → Dimensionless parameter
- \(u_* = \sqrt{\tau_0 / \rho} \) → Friction velocity as defined by Charnock (1955), where \(\tau_0 \) = surface drag and \(\rho \) = density of air
- \(f \) → Coriolis parameter

First model level above \(h_{\text{dyn}} \) defines level number of dynamical PBL height \(h_{\text{PBL,d}} \)

b) **Dry convective level** (Using dry static energy)

\[s = c_{pd}(1 + (\delta - 1)q) \cdot T + g \cdot z = c_p \cdot T + \Phi \]

- \(\delta = c_{pv} / c_{pd} \) → Ratio of specific heat capacities for water vapor and dry air
- \(q, T \) → Specific humidity and air temperature
- \(\Phi = g \cdot z \) → Geopotential

First model level where \(s \) exceeds value of the lowermost model level defines level number of convective PBL height \(h_{\text{PBL,c}} \)

PBL height is then calculated in 3 steps

- \(h_{\text{PBL}} = \text{MIN}(h_{\text{PBL,d}}, h_{\text{PBL,c}}) \)
- \(\Phi_{\text{PBL}} = \text{MIN}(50,000 \, \text{m}^2\text{s}^{-2}, \Phi(h_{\text{PBL}})) \)
- \(H_{\text{PBL}} = \Phi_{\text{PBL}} / g_n \)

with standard gravity \(g_n = 9.80665 \, \text{ms}^{-2} \)
Definition of PBL height in observational datasets

ERA-Interim

- **Bulk Richardson number-based approach**

\[
R_{iB} = \frac{\text{buoyancy production/consumption}}{\text{shear production}} = \frac{g}{\theta_v} \frac{\Delta \bar{\theta}_v \Delta z}{[(\Delta u)^2 + (\Delta \bar{v})^2]}
\]

- turbulent flow if \(R_{iB} < 0 \), laminar flow if \(R_{iB} > 0.25 \)
- PBL height is defined as level where \(R_{iB} \) exceeds critical value of 0.25
Definition of PBL height in observational datasets

ERA-Interim
- **Bulk Richardson number-based approach**

\[
Ri_B = \frac{\text{buoyancy production/consumption}}{\text{shear production}} = \frac{g}{\bar{\theta}_v} \frac{\Delta \bar{\theta}_v \Delta z}{[\Delta u^2 + (\Delta v)^2]}
\]

- Turbulent flow if \(Ri_B < 0\), laminar flow if \(Ri_B > 0.25\)
- PBL height is defined as level where \(Ri_B\) exceeds critical value of 0.25

GPS-RO
- **Maximum refractivity gradient method**
 → described e.g. by Anthes et al. (2008)
- GPS receiver on a low Earth orbiting (LEO) satellite detects signal of GPS transmitter
- Vertical refractivity profile depends on temperature, pressure, water vapor pressure, and electron density: \(N = N(T, p, e, n_e)\)
- Level with maximum refractivity gradient defines PBL height

http://www.newscientist.com
Definition of PBL height in observational datasets

ERA-Interim

- **Bulk Richardson number-based approach**

\[
Ri_B = \frac{\text{buoyancy production/consumption}}{\text{shear production}} = \frac{g}{\theta_v} \frac{\Delta \bar{\theta}_v \Delta z}{[(\Delta u)^2 + (\Delta v)^2]}
\]

- turbulent flow if \(Ri_B < 0 \), laminar flow if \(Ri_B > 0.25 \)
- PBL height is defined as level where \(Ri_B \) exceeds critical value of 0.25

GPS-RO

- **Maximum refractivity gradient method**
 → described e.g. by Anthes et al. (2008)
- GPS receiver on a low Earth orbiting (LEO) satellite detects signal of GPS transmitter
- Vertical refractivity profile depends on temperature, pressure, water vapor pressure, and electron density: \(N = N(T, p, e, n_e) \)
- Level with maximum refractivity gradient defines PBL height

CALIOP

- **Maximum variance technique**
 → described e.g. by Jordan et al. (2010)
- Assumption that at the top of the PBL there exists a maximum in the vertical standard deviation of Lidar backscatter (Melfi et al., 1985)
- First level (lowest altitude) of maximum in standard deviation and backscatter defines PBL height
General performance of HIRHAM5

Mean sea level pressure (top = Jan2007 and bottom = Jul2007)

HIRHAM5 and ERA-Interim basically show the same large-scale circulation
General performance of HIRHAM5

Mean sea level pressure (top = Jan2007 and bottom = Jul2007)

HIRHAM5 and ERA-Interim basically show the same large-scale circulation
Shortcomings in satellite PBL heights over land

Arctic PBL heights during winter

- Unrealistic behavior over (high) orography
- Reason: Algorithm of Xie et al. (2012)
- Only RO profiles that penetrate 500 m (above mean sea level) have been used for computing PBL heights

Land points need to be masked out
Shortcomings in satellite PBL heights over land

Arctic PBL heights during winter

GPS-RO
- Unrealistic behavior over (high) orography
- Reason: Algorithm of Xie et al. (2012)
- Only RO profiles that penetrate 500 m (above mean sea level) have been used for computing PBL heights

Land points need to be masked out
Shortcomings in satellite PBL heights over land

Arctic PBL heights during winter

GPS-RO
- Unrealistic behavior over (high) orography
- Reason: Algorithm of Xie et al. (2012)
- Only RO profiles that penetrate 500 m (above mean sea level) have been used for computing PBL heights
- Land points need to be masked out

CALIOP
- Generally unrealistic behavior over land
- PBL heights always > 1500 m during MAM, JJA, and SON (not shown)
- No improvement through subtraction of topography → other reason ???
- Land points are masked out for now
Shortcomings in satellite PBL heights over land

Arctic PBL heights during winter

GPS-RO
- Unrealistic behavior over (high) orography
- Reason: Algorithm of Xie et al. (2012)
- Only RO profiles that penetrate 500m (above mean sea level) have been used for computing PBL heights
- Land points need to be masked out

CALIOP
- Generally unrealistic behavior over land
- PBL heights always > 1500m during MAM, JJA, and SON (not shown)
- No improvement through subtraction of topography → other reason ???
- Land points are masked out for now
Evaluation of simulated PBL heights I

Arctic PBL heights during winter

- ERAint shows systematically lower H_{PBL} (especially over land)
- ERAint low bias already shown by von Engeln and Teixeira (2011)
- ECMWF H_{PBL} rather cloud base height (Janssen and Bidlot, 2003)
Evaluation of simulated PBL heights I

Arctic PBL heights during winter

- ERAint shows systematically lower H_{PBL} (especially over land)
- ERAint low bias already shown by von Engeln and Teixeira (2011)
- ECMWF H_{PBL} rather cloud base height (Janssen and Bidlot, 2003)
Evaluation of simulated PBL heights I

Arctic PBL heights during winter

- ERAint shows systematically lower H_{PBL} (especially over land)
- ERAint low bias already shown by von Engeln and Teixeira (2011)
- ECMWF H_{PBL} rather cloud base height (Janssen and Bidlot, 2003)

- Spatial patterns agree well
- HIRHAM5 negative bias over North Atlantic, Greenland and Barents Sea but positive bias otherwise
Evaluation of simulated PBL heights I

Arctic PBL heights during winter

- ERAint shows systematically lower H_{PBL} (especially over land)
- ERAint low bias already shown by von Engeln and Teixeira (2011)
- ECMWF H_{PBL} rather cloud base height (Janssen and Bidlot, 2003)

- Spatial patterns agree well
- HIRHAM5 **negative bias** over North Atlantic, Greenland and Barents Sea but **positive bias** otherwise

- Spatial patterns agree except for North Atlantic and along seashores
- Tendency to HIRHAM5 **positive bias** over North Atlantic, Greenland and Barents Sea but **negative bias** otherwise
Evaluation of simulated PBL heights II

Arctic PBL heights during summer

- ERAint shows mainly lower H_{PBL}
- More areas with equal or slightly higher H_{PBL} compared with DJF
Evaluation of simulated PBL heights II

Arctic PBL heights during summer

- ERAint shows mainly lower H_{PBL}
- More areas with equal or slightly higher H_{PBL} compared with DJF

- Spatial patterns disagree
- GPS-RO shows much higher H_{PBL}
- GPS-RO seems to be biased
- Biases in SON, too (not shown)
Evaluation of simulated PBL heights II

Arctic PBL heights during summer

- ERAint shows mainly lower H_{PBL}
- More areas with equal or slightly higher H_{PBL} compared with DJF

- Spatial patterns disagree
- GPS-RO shows much higher H_{PBL}
- GPS-RO seems to be biased
- Biases in SON, too (not shown)

- Spatial patterns agree well but large differences along seashores
- Tendency to HIRHAM5 negative bias over Greenland, Norwegian, Barents, and Kara Sea but positive bias otherwise
Summary

- PS-Scheme performs better than RH-Scheme but systematic overestimation of C_{tot}
- Combined effect of lower γ_{thr} and permitted negative skewness of $G(q_t)$ significantly reduces biases relative to MODIS
- HIRHAM5, ERA-Interim, and CALIOP show same annual cycle of H_{PBL} but GPS-RO seems to be biased in JJA and SON
- Found low bias of ERA-Interim H_{PBL} consistent with e.g. von Engeln and Teixeira (2011) and Xie et al. (2012)
- In part contrary patterns of relative differences between HIRHAM5 and GPS-RO (CALIOP)

Outlook

- Comparison of HIRHAM5 model variables with (satellite) observations
 i) More detailed investigation of simulated Arctic PBL heights (Monthly means, Scatter plots)
 ii) Validation of cloud variables (C, C_{tot}, LWP, IWP, CRF)
 → Prepared gridded datasets are welcome

- Sensitivity run with HIRHAM5 (2006 – 2011)
 i) Use $\gamma_{thr} = 0.05$ mg/kg and permitting negative skewness of $G(q_t)$
 ii) Comparison of control (HIRHAM5ctrl) and sensitivity (HIRHAM5sens) simulations
 → Also improved performance in the 3D model version?
Summary

- PS-Scheme performs better than RH-Scheme but systematic overestimation of C_{tot}
- Combined effect of lower γ_{thr} and permitted negative skewness of $G(q_t)$ significantly reduces biases relative to MODIS
- HIRHAM5, ERA-Interim, and CALIOP show same annual cycle of H_{PBL} but GPS-RO seems to be biased in JJA and SON
- Found low bias of ERA-Interim H_{PBL} consistent with e.g. von Engeln and Teixeira (2011) and Xie et al. (2012)
- In part contrary patterns of relative differences between HIRHAM5 and GPS-RO (CALIOP)

Outlook

- Comparison of HIRHAM5 model variables with (satellite) observations
 - More detailed investigation of simulated Arctic PBL heights (Monthly means, Scatter plots)
 - Validation of cloud variables (C, C_{tot}, LWP, IWP, CRF)
 → Prepared gridded datasets are welcome
- Sensitivity run with HIRHAM5 (2006 – 2011)
 - Use $\gamma_{\text{thr}} = 0.05\text{mg/kg}$ and permitting negative skewness of $G(q_t)$
 - Comparison of control (HIRHAM5ctrl) and sensitivity (HIRHAM5sens) simulations
 → Also improved performance in the 3D model version?
Summary

- PS-Scheme performs better than RH-Scheme but systematic overestimation of C_{tot}
- Combined effect of lower γ_{thr} and permitted negative skewness of $G(q_t)$ significantly reduces biases relative to MODIS
- HIRHAM5, ERA-Interim, and CALIOP show same annual cycle of H_{PBL} but GPS-RO seems to be biased in JJA and SON
- Found low bias of ERA-Interim H_{PBL} consistent with e.g. von Engeln and Teixeira (2011) and Xie et al. (2012)
- In part contrary patterns of relative differences between HIRHAM5 and GPS-RO (CALIOP)

Outlook

- Comparison of HIRHAM5 model variables with (satellite) observations

 i) More detailed investigation of simulated Arctic PBL heights (Monthly means, Scatter plots)

 ii) Validation of cloud variables (C, C_{tot}, LWP, IWP, CRF)
 → Prepared gridded datasets are welcome

- Sensitivity run with HIRHAM5 (2006 – 2011)

 i) Use $\gamma_{\text{thr}} = 0.05\,\text{mg/kg}$ and permitting negative skewness of $G(q_t)$

 ii) Comparison of control (HIRHAM5ctrl) and sensitivity (HIRHAM5sens) simulations
 → Also improved performance in the 3D model version?
Summary

- PS-Scheme performs better than RH-Scheme but systematic overestimation of C_{tot}
- Combined effect of lower γ_{thr} and permitted negative skewness of $G(q_t)$ significantly reduces biases relative to MODIS
- HIRHAM5, ERA-Interim, and CALIOP show same annual cycle of H_{PBL} but GPS-RO seems to be biased in JJA and SON
- Found low bias of ERA-Interim H_{PBL} consistent with e.g. von Engeln and Teixeira (2011) and Xie et al. (2012)
- In part contrary patterns of relative differences between HIRHAM5 and GPS-RO (CALIOP)

Outlook

- Comparison of HIRHAM5 model variables with (satellite) observations
 - More detailed investigation of simulated Arctic PBL heights (Monthly means, Scatter plots)
 - Validation of cloud variables (C, C_{tot}, LWP, IWP, CRF)
 → Prepared gridded datasets are welcome
- Sensitivity run with HIRHAM5 (2006 – 2011)
 - Use $\gamma_{thr} = 0.05 \text{mg/kg}$ and permitting negative skewness of $G(q_t)$
 - Comparison of control (HIRHAM5ctrl) and sensitivity (HIRHAM5sens) simulations
 → Also improved performance in the 3D model version?
Summary

- PS-Scheme performs better than RH-Scheme but systematic overestimation of C_{tot}
- Combined effect of lower γ_{thr} and permitted negative skewness of $G(q_t)$ significantly reduces biases relative to MODIS
- HIRHAM5, ERA-Interim, and CALIOP show same annual cycle of H_{PBL} but GPS-RO seems to be biased in JJA and SON
- Found low bias of ERA-Interim H_{PBL} consistent with e.g. von Engeln and Teixeira (2011) and Xie et al. (2012)
- In part contrary patterns of relative differences between HIRHAM5 and GPS-RO (CALIOP)

Outlook

- Comparison of HIRHAM5 model variables with (satellite) observations

 i) More detailed investigation of simulated Arctic PBL heights (Monthly means, Scatter plots)

 ii) Validation of cloud variables (C, C_{tot}, LWP, IWP, CRF)
 → Prepared gridded datasets are welcome

- Sensitivity run with HIRHAM5 (2006 – 2011)

 i) Use $\gamma_{thr} = 0.05 \text{mg/kg}$ and permitting negative skewness of $G(q_t)$

 ii) Comparison of control (HIRHAM5ctrl) and sensitivity (HIRHAM5sens) simulations
 → Also improved performance in the 3D model version?
Summary

- PS-Scheme performs better than RH-Scheme but systematic overestimation of C_{tot}
- Combined effect of lower γ_{thr} and permitted negative skewness of $G(q_t)$ significantly reduces biases relative to MODIS
- HIRHAM5, ERA-Interim, and CALIOP show same annual cycle of H_{PBL} but GPS-RO seems to be biased in JJA and SON
- Found low bias of ERA-Interim H_{PBL} consistent with e.g. von Engeln and Teixeira (2011) and Xie et al. (2012)
- In part contrary patterns of relative differences between HIRHAM5 and GPS-RO (CALIOP)

Outlook

- Comparison of HIRHAM5 model variables with (satellite) observations
 i) More detailed investigation of simulated Arctic PBL heights (Monthly means, Scatter plots)
 ii) Validation of cloud variables (C, C_{tot}, LWP, IWP, CRF) → Prepared gridded datasets are welcome

- Sensitivity run with HIRHAM5 (2006 – 2011)
 i) Use $\gamma_{thr} = 0.05\,\text{mg/kg}$ and permitting negative skewness of $G(q_t)$
 ii) Comparison of control (HIRHAM5ctrl) and sensitivity (HIRHAM5sens) simulations → Also improved performance in the 3D model version?
Summary

- PS-Scheme performs better than RH-Scheme but systematic overestimation of C^{tot}
- Combined effect of lower γ_{thr} and permitted negative skewness of $G(q_t)$ significantly reduces biases relative to MODIS
- HIRHAM5, ERA-Interim, and CALIOP show same annual cycle of H_{PBL} but GPS-RO seems to be biased in JJA and SON
- Found low bias of ERA-Interim H_{PBL} consistent with e.g. von Engeln and Teixeira (2011) and Xie et al. (2012)
- In part contrary patterns of relative differences between HIRHAM5 and GPS-RO (CALIOP)

Outlook

- **Comparison of HIRHAM5 model variables with (satellite) observations**
 - i) More detailed investigation of simulated Arctic PBL heights (Monthly means, Scatter plots)
 - ii) Validation of cloud variables (C, C^{tot}, LWP, IWP, CRF)
 → Prepared gridded datasets are welcome

- **Sensitivity run with HIRHAM5 (2006 – 2011)**
 - i) Use $\gamma_{\text{thr}} = 0.05 \text{mg/kg}$ and permitting negative skewness of $G(q_t)$
 - ii) Comparison of control (HIRHAM5ctrl) and sensitivity (HIRHAM5sens) simulations
 → Also improved performance in the 3D model version?
Summary

- PS-Scheme performs better than RH-Scheme but systematic overestimation of C_{tot}
- Combined effect of lower γ_{thr} and permitted negative skewness of $G(q_t)$ significantly reduces biases relative to MODIS
- HIRHAM5, ERA-Interim, and CALIOP show same annual cycle of H_{PBL} but GPS-RO seems to be biased in JJA and SON
- Found low bias of ERA-Interim H_{PBL} consistent with e.g. von Engeln and Teixeira (2011) and Xie et al. (2012)
- In part contrary patterns of relative differences between HIRHAM5 and GPS-RO (CALIOP)

Outlook

- **Comparison of HIRHAM5 model variables with (satellite) observations**
 - i) More detailed investigation of simulated Arctic PBL heights (Monthly means, Scatter plots)
 - ii) Validation of cloud variables (C, C_{tot}, LWP, IWP, CRF)
 → Prepared gridded datasets are welcome

- **Sensitivity run with HIRHAM5 (2006 – 2011)**
 - i) Use $\gamma_{\text{thr}} = 0.05\,\text{mg/kg}$ and permitting negative skewness of $G(q_t)$
 - ii) Comparison of control (HIRHAM5ctrl) and sensitivity (HIRHAM5sens) simulations
 → Also improved performance in the 3D model version?
A1: Polar Amplification

Snow/Ice Albedo Feedback

- temperature increase
- melting ice and snow
- reduced solar reflection
- open water forms
- water vapor – cloud feedback changes

Feedback +
A2: Use of dynamical tendencies in HIRHAM5-SCM

Dynamical tendencies from ERA-Interim

- Dynamical tendencies of $\psi_i = T, q, u, v$ as dynamical forcing

- ERA-Interim provides:
 1. 3-hourly total tendency of ψ_i
 2. 3-hourly physical tendency from forecast run

- Problem: accumulated data and 12-hourly reinitialization

Linear interpolation of 3-hourly dynamical tendencies available at every time step

[Equations and diagrams related to dynamical tendencies and linear interpolation]
A3: Parameterization of stratiform clouds

Fractional cloud cover C
- parameterization consists of three components:
 1. prognostic equations for the vapor (q), liquid (q_l), and ice (q_i) phase
 2. cloud microphysics according to Lohmann and Roeckner (1996), which considers water phase changes and precipitation processes
 3. selectable cloud cover scheme ...

Relative Humidity Scheme
(RH-Scheme; Sundquist et al., 1989)
- diagnostic relation to the grid box mean of relative humidity (RH)
 \[C = 1 - \sqrt{\frac{1 - RH}{1 - RH_{\text{crit}}}} \]
- RH_{crit} is the critical threshold according to Lohmann et al. (1999), controlling the onset of cloud formation

Prognostic Statistical Scheme
(PS-Scheme; Tompkins, 2002)
- subgrid-scale variability of total water content $q_t = q + q_l + q_i$ is explicitly specified by the beta distribution $G(q_t)$ acting as PDF
- Integral over the supersaturation range ($q_t > q_s$) below $G(q_t)$ yields
 \[C = \int_{q_s}^{b} G(q_t) dq_t \]

Total cloud cover C^{tot}
- computed by use of the Maximum-Random Overlap Assumption
Table 1: Notation, default value, regarded parameter range (co-domain), and description of parameter (Meaning)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Co-domain</th>
<th>Description (Meaning)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{q}_0</td>
<td>2</td>
<td>$1.00001 \leq \tilde{q}_0 \leq 20$</td>
<td>determines the shape of the symmetric beta distribution, which is used as PDF in the PS-Scheme</td>
</tr>
<tr>
<td>CW_{min}</td>
<td>0.1 mg kg$^{-1}$</td>
<td>$(0 \leq CW_{\text{min}} \leq 750) \text{ mg kg}^{-1}$</td>
<td>avoids negative cloud water and ice contents and additionally controls the occurrence of clear-sky conditions in the PS-Scheme</td>
</tr>
<tr>
<td>γ_1</td>
<td>15</td>
<td>$0 \leq \gamma_1 \leq 500$</td>
<td>determines the efficiency of rain drop formation by collision and coalescence of cloud drops (autoconversion rate)</td>
</tr>
<tr>
<td>γ_{thr}</td>
<td>0.5 mg kg$^{-1}$</td>
<td>$(0 \leq \gamma_{\text{thr}} \leq 5) \text{ mg kg}^{-1}$</td>
<td>cloud ice threshold, which determines the efficiency of the Bergeron-Findeisen process</td>
</tr>
</tbody>
</table>

where C_s is a tunable constant. Since the mixing will also reduce the skewness of the distribution, tending toward a symmetric one, the same relaxation is applied to the skewness parameter q

\[
\left(\frac{\partial q}{\partial t}\right)_{\text{diss}} = (q_0 - q) \left(\tau_v^{-1} + \tau_h^{-1}\right) \tag{10.22}
\]

where q_0 defines the shape of the final distribution.
A5: Modified tuning parameters II

\[CW_{\text{min}} \]

This parameter is not mentioned by Roeckner et al. (2003).

\[\gamma_1 \]

\[Q_{\text{aut}} = C \gamma_1 \left[a_2 n^{-b_2} (10^{-6} N_i)^{-b_3} (10^{-3} \rho r_i)^{b_4} \right] / \rho \]

(10.45)

where \(a_2 = 6 \cdot 10^{28} \), \(n = 10 \) is the width parameter of the initial droplet spectrum described by a gamma distribution, \(b_2 = 1.7 \), \(b_3 = 3.3 \), \(b_4 = 4.7 \), and \(\gamma_1 \) is a tunable parameter which determines the efficiency of the autoconversion process and, hence, cloud lifetime.

\[\gamma_{\text{thr}} \]

models and cannot be applied to large-scale models without adjustment. The parameter \(\gamma_{\text{thr}} \) is a cloud ice threshold which decides on either condensational growth of supercooled cloud droplets or depositional growth of ice crystals (see (10.34) and (10.35)). The following values are used in ECHAM5: \(\gamma_1 = 15 \); \(0 \leq \gamma_2 \leq 0.5 \) depending on model resolution; \(\gamma_3 = 95 \); \(\gamma_4 = 0.1 \); \(\gamma_{\text{thr}} = 5 \cdot 10^{-7} \) kgkg\(^{-1} \).
Spatial patterns of the geopotential agree well between HIRHAM5 and ERA-Interim.
A7: General performance of HIRHAM5 III

2m air temperature (top = Jan2007 and bottom = Jul2007)

HIRHAM5 and ERA-Interim 2m temperatures differ in part significantly.