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Abstract. The ongoing disintegration of large ice shelf parts
in Antarctica raise the need for a better understanding of the
physical processes that trigger critical crack growth in ice
shelves. Finite elements in combination with configurational
forces facilitate the analysis of single surface fractures in ice
under various boundary conditions and material parameters.
The principles of linear elastic fracture mechanics are applied
to show the strong influence of different depth dependent
functions for the density and the Young’s modulus on the
stress intensity factorKI at the crack tip. Ice, for this purpose,
is treated as an elastically compressible solid and the conse-
quences of this choice in comparison to the predominant in-
compressible approaches are discussed. The computed stress
intensity factorsKI for dry and water filled cracks are com-
pared to critical valuesKIc from measurements that can be
found in literature.

1 Introduction

Eight of twelve ice shelves in the Antarctic Peninsula have
retreated or disintegrated in the past decades (Cook and
Vaughan, 2010; Braun et al., 2009). The processes that lead
to break-up events at ice shelves are all linked to fracturing of
weakened polycrystalline ice. Causes for the weakening are
surface cracks forming due to bending stresses at the surface
and crevasses, formed by tensile stresses, originating at shear
margins or along the ice front. These cracks might initially
be stable, but additional loads may let them become criti-
cal. Our analysis of cracks, based on well established frac-
ture mechanical concepts, is focused on simplified scenarios

which we derived from the break-up events that happened at
the Wilkins Ice Shelf in 2008/2009 (Braun et al., 2009).

Fracture mechanical concepts investigate the criticality of
cracks by determining the stress intensity factorKI at the
crack tip and comparing it with critical valuesKIc, obtained
by experiments.Rist et al. (2002) performed three-point-
bending and short-rod fracture tests on samples taken from a
core of the Ronne Ice Shelf that contained meteoric as well as
marine ice. The measuredKIc show a strong dependence on
density or porosity, respectively. Further experimental values
for KIc were assembled bySchulson and Duval(2009).

The vertical propagation of crevasses has been investi-
gated for more than 50 yr.Nye (1955) argued that crevasses
propagate vertically to the point where the normal stressσxx

changes sign. The first one to assume elastic material be-
haviour for the analysis of vertical crevasses in glaciers was
Weertman(1973). He used dislocation distribution functions
to evaluate the characteristics of dry and water filled sin-
gle crevasses.Smith (1976) was the first who applied meth-
ods of linear elastic fracture mechanics for the evaluation of
stress intensity factors of dry and water filled surface cracks
in ice shelves. He simplified the crack geometry and bound-
ary conditions (BCs) to facilitate the use of tabulated values
gained from semianalytical methods byTada et al.(1973)
and Sih (1973). The method ofSmith (1976) was adapted
and extended byVan der Veen(1997), who discussed the im-
portance of depth dependent density profiles andRist et al.
(2002) who additionally analysed depth dependent tensile
stresses. The model byRist et al.(2002) has been repeat-
edly used for the analysis of bottom and surface crevasses,
e.g. byNath and Vaughan(2003) andLuckman et al.(2011),
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and will be used here as a benchmark for our finite element
simulations.

A different approach was introduced byWeiss (2004)
who argued that critical crack growth can not explain slow
crevasse propagation. He therefore analysed subcritical crack
growth for very simplified geometries, boundary conditions
and material parameters.

Stress intensity factors for the analysis of horizontal crack
propagation have been used byHammann and Sandhäger
(2003) and Hulbe et al.(2010). Hammann and Sandhäger
(2003) used a numerical model of ice shelf dynamics to com-
pute stresses within the ice shelf that are then used as in-
put for the evaluation of stress intensity factors.Hulbe et al.
(2010) treated the ice as linear elastic solid and used the
boundary element method for the analysis of crack criticality
and growth.

The qualification of a linear elastic model to describe
the ice rheology for fracture mechanical purposes is dis-
cussed controversially within the glaciological community.
Therefore, different approaches exist to investigate the flow
induced strain rate and/or stress fields in ice shelves and
glaciers and to formulate yield stress or strain rate criteria for
the nucleation and propagation of cracks.Larour et al.(2004)
and Albrecht and Levermann(2012) analyse the evolution
of crevasse fields or single crevasses based on ice dynami-
cal simulations. Fracture is then understood as a softening
parameter or an enhancement factor (Humbert et al., 2009)
leading to higher velocities within the ice shelf or glacier.
These methods require less knowledge about the material pa-
rameters of the ice and are a valid approximation for fields of
closely spaced crevasses, where the stress concentration at
the crack tip is reduced. However, these approaches do not
provide a physical examination of fracture processes which
is the purpose of our analysis.

This study investigates the effect of different BCs, loads,
density profiles, Young’s moduli and Poisson’s ratios on the
criticality of a single surface crevasse. For this purpose, the
adequate model is presented in Sect.2. The plane strain
model with the corresponding equations is introduced in
Sect.2.1. Sections2.2and2.3explain the finite element dis-
cretisation and the resulting discrete configurational forces.
Valid BCs and a satisfying numerical model are identified in
Sects.2.4 and2.5 followed by the validation using the well
known model ofRist et al.(2002) in Sect.2.6.

The results of the numerical simulations are presented and
discussed in Sect.3 and4. In Sect.3, we study the influence
of depth varying material properties on the stress intensity
factor of dry cracks. For this purpose, we first show the effect
of different BCs in Sect.3.1. The results for the different
varied material parameters are presented in Sect.3.2 to 3.4.
Two scenarios for water filled cracks are discussed in Sect.4
followed be the summary in Sect.5.

2 Model

In order to analyse the dependence of the criticality at the
crack tip on different depth dependent material parameters
and various BCs, finite element (FE) simulations are used.
This provides the basis for further simulations with advanced
2-D and 3-D geometries. The advantage of the FE method in
comparison to semi-analytical methods or other numerical
methods like finite differences lies primarily in its flexibility
and in its selectable accuracy via mesh refinement.

2.1 Basic equations

Creep dominates the long-term behaviour of ice. Therefore,
in most ice dynamical analyses, ice is modelled as viscous
fluid. On the short time scale, ice can be considered as lin-
ear elastic solid. A combination of both rheologies results
in a visco-elastic model. A first and very simplified visco-
elastic representation for a fluid-like visco-elastic material
is the Maxwell element consisting of a serial coupling of a
spring and a dashpot. The equilibrium condition yields that
the stress in both components is the same. If a Maxwell
element is subjected to a stress, the elastic component in-
stantaneously responds by a time independent elastic strain
while the viscous strain is a function of time. Therefore, on
large time scales, the viscous answer predominates, while on
the short time scale, the elastic response is important. The
present analysis concerns the influence of different parame-
ters on brittle fracture, which is a short time process. For this
reason, only the elastic response of ice, e.g. fractures due to
elastic strain, is considered.

Our analysis of the criticality of certain crack scenarios is
based on the evaluation of the crack driving force at the tip of
a sharp Griffith crack (Lawn and Wilshaw, 1977), where the
maximum distance between the crack faces is much smaller
than the crack depth.

Thus, we consider a static, linear elastic plane strain model
of an edge crack as depicted in Fig.1a. The equation for the
solution of the boundary value problem for a linear elastic
solid in equilibrium is

divσ + f = 0, (1)

with the volume forcesf and the Cauchy stressσ . The
Cauchy stress is obtained by the constitutive equation

σ = Cε, (2)

whereC is the stiffness tensor andε is the symmetric part of
the displacement gradient

ε = ∇su =
1

2

(
∇u + (∇u)T

)
. (3)

For the isotropic case, the stiffness tensorC depends on
only two independent constants, the Young’s modulusE and
the Poisson’s ratioν. For further details see any textbook on
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elasticity or fracture mechanics, e.g.Gross and Seelig(2011).
The solution of Eq. (1) with Eqs. (2) and (3) in conjunction
with proper BCs yields the displacementsu and the stress
field σ , which are required for the subsequent calculation of
the crack driving force and the stress intensity factor.

For the evaluation of the crack driving force, configura-
tional forces are used. Configurational forces can be inter-
preted as a negative energy release rate. The benefit of con-
figurational forces in comparison with the J-integral is that
these forces can be evaluated at every nodal point within
the FE mesh. They provide a measure for the integrity of
the material structure and allow the consideration of inclu-
sions, cracks or inhomogeneous changes of material proper-
ties. The evaluation of the configurational forces follows the
method presented inMüller et al.(2002). Here, the authors
introduce the Eshelby stress tensor

6 = U I − (∇u)T σ (4)

as a function of the strain energy,U =
1
2ε : (Cε)1, the iden-

tity tensorI , the transposed displacement gradient(∇u)T and
the Cauchy stress tensorσ . With the definition of a configu-
rational volume force

g = gvol
+ ginh, (5)

the configurational balance equation can be written as

div6 + gvol
+ ginh

= 0. (6)

The configurational volume forcegvol considers the con-
tribution of the physical volume forcef to the configura-
tional force balance

gvol
= −(∇u)T f , (7)

while the contributions of inhomogeneous material proper-
ties as, e.g. due to a spatial dependence ofC = C(x,y), are
given by

ginh
= −

∂U

∂x

∣∣∣∣
inh

= −
1

2
ε :

(
∂C
∂x

ε

)
. (8)

Insertion of Eqs. (4), (7) and (8) in Eq. (6) leads to

div(U I − (∇u)T σ ) − (∇u)T f −
1

2
ε :

(
∂C
∂x

ε

)
= 0, (9)

a form of the configurational balance equation that holds
within the boundaries of a continuous material.

2.2 Finite element discretisation

The solution of Eq. (1) is obtained by using the FE method.
For this purpose, Eq. (1) is transformed into the weak form

1A : B = AijBij represents the scalar product of two second or-
der tensors.

by multiplication with a test functionη and integration over
the bodyB,∫
B

(divσ + f ) · η dV = 0. (10)

Integration by parts with application of the Gauss’ theorem
leads to∫
B

σ : ∇sη dV =

∫
∂Bt

t∗
· η dA +

∫
B

f · η dV, (11)

with the applied traction vectort∗
= σ ·n on the stress bound-

aries∂Bt . FE discretisation of the test function and the dis-
placement vectoru yields

η =

∑
I

NIηI, ∇sη =

∑
I

∇sNIηI, (12)

u =

∑
J

NJ uJ , ∇su =

∑
J

∇sNJ uJ ,

whereNI andNJ are the standard shape functions for the
applied elements. Insertion of Eq. (12) in Eq. (11) results in∑

I

ηI

∫
B

(∇sNI)
T C

∑
J

(∇sNJ )uJ dV

=

∑
I

ηI

∫
∂Bt

NIt
∗dA +

∫
B

NIf dV

 . (13)

The integral on the left hand side represents the vector of
internal forces (F int

I ) and the integrals on the right hand side
the vector of the external (F ext

I ) and volume forces (F vol
I ),

respectively. The solution of the residual equation

FI(uJ ) = −F int
I + F ext

I + F vol
I = 0 (14)

provides the nodal displacementsuJ .
The discretisation of Eq. (9) follows analogous. Using the

functionφ with φ = 0 on ∂B as test function, the weak form
of Eq. (9) takes the form∫
B

(U I − (∇u)T σ ) : ∇φ dV +

∫
B

(
(∇u)T f

)
· φ dV

+

∫
B

(
1

2
ε :

(
∂C
∂x

ε

))
· φ dV = 0. (15)

The FE discretisation of the test functions leads to∫
B

(∇NI)
T (U I − (∇u)T σ ) dV

︸ ︷︷ ︸
Gint

I

+

∫
B

NI

(
(∇u)T f

)
dV

︸ ︷︷ ︸
−Gvol

I

+

∫
B

NI

(
1

2
ε :

(
∂C
∂x

ε

))
dV

︸ ︷︷ ︸
−Ginh

I

= −GI . (16)
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As residual equation, Eq. (16) can be written as

GI(uJ ) = −Gint
I + Gvol

I + Ginh
I . (17)

2.3 Interpretation of discrete configurational forces

With the application of FE, the continuous Eq. (9) is trans-
formed into a discrete form, whereGI(uJ ) 6= 0 is a measure
for the discontinuity at every node of the FE mesh. The mea-
sure of the discontinuity at the crack tip (index “ct”) can be
interpreted as the crack driving forceG = Gct(uJ ).

From the predominant vertical component of the crack
driving force at the crack tip,Gy = G · ey , the stress inten-
sity factorKI is calculated using the interrelation

KI =

√
Gy

E

1− ν2
. (18)

Further information on configurational forces, stress
intensity factors and their relation can be found in
Müller et al. (2002), Gross and Seelig(2011), Maugin
(1993), Steinmann and Maugin(2010), Gurtin (1999) and
Kienzler and Herrmann(2000).

2.4 Geometry, load and boundary conditions

In reality, the ice shelf is subjected to gravity, as well
as to different boundary tractions (tension, pressure and
shear). The modelled ice shelf consists of a vertical cut
through a finite section of an “infinite” ice shelf, which
is replaced by a sufficiently long rectangular domain
(l = 2000 m, b = 250 m) under plane strain conditions, see
Fig. 1a. The model only considers the gravity induced pres-
sure and horizontal strain due to the ice flow. In-plane-shear
is neglected as fractures tend to align perpendicular to the
first principal stress direction, which is shear free. In a suffi-
cient distance from the grounding line, the horizontal veloci-
ties and displacements in an ice shelf are depth-independent
(Greve and Blatter, 2009). This constraint can not be ful-
filled using traction BCs at the vertical boundaries, as those
would allow tilting of the vertical boundaries. Therefore,
unless stated differently, the vertical boundaries are loaded
with prescribed vertically constant displacements1u. Using
Hooke’s law for an uncracked homogeneous body under uni-
axial tension,σ = E′ε, with E′

= Eice in the case of plane
stress andE′

= Eice/(1−ν2) for plane strain, the magnitude
of the boundary displacement1u on one side of the model
ice shelf is related to the horizontal stressσ at the ice shelf
surface by

1u = ε
l

2
=

σ(1− ν2)

Eice

l

2
. (19)

The stress field at the ice shelf surface is evaluated from the
flow velocity in the ice shelf using Glen’s flow law (Glen,

1958). The bottom boundary is loaded by the water pressure
at the respective depth of the undeformed body. Further trac-
tion BCs are eventually applied on the crack faces to consider
water filled crevasses.

2.5 Numerical model

The stresses and displacements in the rectangular domain are
determined by solving Eqs. (1)–(3), using the commercial
FE program COMSOL2. The crack driving force and the re-
sulting stress intensity factors are evaluated in postprocessing
routines in MATLAB3. As the stress intensity and therefore
KI at the crack tip highly depends on the element size in the
vicinity of the crack tip, as well as on the distribution of el-
ements within the geometry, the appropriate mesh has to be
chosen carefully. Figure1c shows the difference between the
simulatedKI at the crack tip and a semianalytical solution
(Gross and Seelig, 2011, p. 79) for an edge crack under linear
loading for different discretisations. The black curve with an
element edge length of 0.0125 m at the crack tip shows satis-
fying results for reasonable computation time. Computation
time is saved by cutting the model geometry along the crack
and using half the geometry with symmetry BCs. Figure1b
illustrates the discretisation assigned to the black curve. All
simulations are conducted using 6-node triangular elements
with quadratic shape functions. The resulting total number of
elements for the meshed geometry is about 8400 for a crack
tip located in the domain centre.

2.6 Benchmark

The FE model is validated using the geometry and material
parameters presented inRist et al.(2002). The authors intro-
duce a semianalytical approach for the evaluation of stress in-
tensity factors for cracks in ice shelves, taking a 422 m thick
part of the Ronne Ice Shelf as an example. They assume that
the stress intensity factor at the crack tip depends on the total
stress acting on the flaw. Using a usual power law for the ice
flow (Glen, 1958) and balance equations, followingWeert-
man(1957), a distribution of the normal stressσxx is derived
as a function of the vertical positionz in the ice shelf:

σxx(z) =
B

s∫
b

Bdz

g

s∫
b

s∫
z

ρ(z)dz −
g

2ρsw

 s∫
b

ρ(z)dz

2


− g

s∫
z

ρ(z)dz. (20)

Hereρ(z) is the depth-dependent density of the ice, which
is parametrized by

ρ(z) =

(
918− 539 e

z−h
32.5

)
kg m−3, (21)

2www.comsol.com
3www.mathworks.com
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Fig. 1. Model geometry for dry cracks.
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Fig. 2. (a) Difference between numerical simulation and analytical result for different mesh
sizes. (∆x = element edge length at crack tip). (b) Discretization in entire geometry with focus
at crack tip.
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Fig. 1. (a)Model geometry for dry cracks.(b) Discretization in entire geometry with focus at crack tip.(c) Difference between numerical
simulation and analytical result for different mesh sizes. (1x = element edge length at crack tip).
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Fig. 2. (a) Resulting horizontal stress and stress intensity factors.
(b) Comparison of the numerical model to results ofRist et al.
(2002).

based on measurements of ice cores,ρsw = 1028 kg m−3 is
the density of salt water andB is the temperature dependent
and therefore depth-dependent rate factor.

Further information on the applied temperature and den-
sity profile can be found inRist et al. (2002). Rist et al.
(2002) use the weight function method presented inBueck-
ner (1970) to evaluate the stress intensity factorKI based
on σxx . The normal stressσxx and the resulting stress inten-
sity factorKI are shown in Fig.2a. The diagram shows that
the critical stress intensity factorKIc, which ranges between
(100–400) kPa

√
m (Rist et al., 2002), is reached at larger

depth than the depth where in the uncracked body the nor-
mal stressσxx changes sign. The assumption that cracks will
only propagate to a depth where the stresses change sign, as
presented byNye(1955), turns out to be an underestimation.
Figure 2b shows a comparison of the results ofRist et al.

(2002) and two FE simulations: (I) a crack which has solely
been loaded on its faces by tractions given by Eq. (20) and
(II) the same geometry loaded by gravity, a vertically con-
stant displacement BC, equivalent to the non-cryostatic part
of the stress in Eq. (20) and the water pressure as stress BC
at the ice shelf bottom. As the stress function of Eq. (20)
assumes incompressibility, the FE simulation in (II) is con-
ducted with a Poisson’s ratio ofν → 0.5. The results are in a
good agreement, taking numerical inaccuracies in the semi-
analytical results and the FE simulation into account.

3 Dry cracks

Dry cracks are simulated to validate the model and to anal-
yse the influence of different material parameters and loading
scenarios on the stress intensity factor at the crack tip. The
studies first concentrate on the evaluation of the appropriate
type of BCs for further simulations. Then the influence of the
applied load, Poisson’s ratios, density profiles and Young’s
moduli is analysed.

3.1 Study A: dependence on type of boundary
conditions

Rist et al.(2002), Van der Veen(1997) andWeertman(1973)
use stress BCs at the vertical boundaries of the ice shelf.
Therefore, the constant or depth varying tensile normal stress
is superposed by the cryostatic pressure of the ice. This ap-
proach requires a hydrostatic stress state within the ice shelf
that is only valid if ice can be understood as incompress-
ible (ν = 0.5). This is a good approximation for the long

www.the-cryosphere.net/6/973/2012/ The Cryosphere, 6, 973–984, 2012
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term behaviour of ice. In contrast, a fracture event in a brittle
medium occurs on a rather short time scale. The measure-
ments inRist et al.(2002) indicate brittle material properties
for ice. Therefore, it seems more reasonable to take material
properties from short time measurements into account, as can
be found inGreve and Blatter(2009) andSchulson and Du-
val (2009), whereν ranges between 0.2–0.4. Poisson’s ratios
of ν 6= 0.5 have been used in elastic analyses of ice byRist
et al.(1999), Hulbe et al.(2010) andKonovalov(2011). The
influence of the Poisson’s ratio on the choice of BCs will be
presented in the following chapter, while the influence on the
KI is analysed in Sect.3.2.

3.1.1 Boundary conditions and scale effects

Figure 3a shows two uncracked example geometries of a
homogeneous isotropic body, i.e.ρ = const., with different
horizontal BCs (upper geometry: constrained, lower geom-
etry: unconstrained). Additionally, the vertical displacement
at the basal boundary is constrained in both configurations,
uz(z = 0) = 0. The geometries are solely loaded by gravity.
Figure3b shows the resulting the normal stressσxx for dif-
ferent Poisson’s ratios and BCs. The stress componentσzz

that can also be referred to as the ice overburden pressure
is identical for all simulated Poisson’s ratios and BCs. It
equals the horizontal stress for the constrained boundaries
and ν = 0.499 (dot-and-dashed line). The horizontal stress
componentσxx is affected by both the changes in the Pois-
son’s ratio and the BCs. A Poisson’s ratio ofν = 0.499, ap-
proximating an incompressible material, leads to a cryostatic
stress state for the horizontally constrained body, meaning
that for every material point in the body, the normal stress
components are equal and shear stresses vanish. The value
ν = 0.499 is a good approximation of the incompressible
case (ν = 0.5), which numerically can not be treated with
the applied constitutive law as it yields singularities in the
stiffness matrix. Forν = 0.3, the body is compressible. This
leads, for the horizontally constrained body, to stressesσxx

which are less than half of the stress componentσzz. For a
horizontally unconstrained body, the horizontal stress com-
ponentσxx is identical zero. These results show that the as-
sumption of incompressibility overestimates the crack clos-
ing pressure due to the weight of the ice by approximately a
factor two.

In a next step, we apply different BCs on a cracked geom-
etry to analyse the effect of the type of boundary condition
on the stress concentration at the crack tip as well as possi-
ble dependencies on the length of the model domain. To en-
sure comparability to semi-analytical results, the simulations
are performed without additional gravity or bottom pressure.
Figure 4a shows that simulations with pure stress bound-
ary conditions on a domain of 2 km length and 250 m depth
(green drawn through line) reproduce the semi-analytical re-
sults (black circles), which assume infinitely long domains
(Gross and Seelig, 2011). Further simulations with different
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Fig. 3. (a)Uncracked model for the evaluation of proper BCs, with
constrained (upper geometry) and unconstrained (lower geometry)
vertical boundaries.(b) Normal stressσxx for the uncracked model.

depth/length ratios and stress BCs indicated that a ratio larger
than 1

2 is sufficient to yield a crack tip field that is indepen-
dent of the disturbance introduced by the boundaries. Dif-
ferent results can be expected for constrained boundaries
(dashed and dotted lines) where the dependence on the do-
main length affects the stress intensity at the crack tip in
two ways. To identify the factors that induce a length de-
pendence, the cracked domain is on the one hand loaded by
displacement BCs1u and on the other hand loaded by stress
BC σ with the additional constraint∂u

∂z
= 0, which prevents

tilting and bending of the vertical boundaries. The relation
between the applied1u andσ is evaluated via Eq. (19) us-
ing the uncracked geometry. The displacements1u are kept
constant for all crack depths. The dashed and the dotted lines
in Fig. 4a show the resulting stress intensity factorsKI(d)

considering different domain lengthl for displacement and
stress BCs, respectively. For large crack depthsd, a length
dependent difference between the constrained (dotted line)
and the unconstrained stress BC represented by the drawn
through line becomes obvious. The difference is caused by
the crack closing bending moment induced by constrained
boundaries. Forl reaching infinity, the influence of the con-
straints on the deflection in proximity of the crack becomes
negligibly small and theKI converge to the solution of the
unconstrained problem with stress BCs.

The difference between the dashed and the dotted lines for
geometries of equal lengthl results in the compliance effect
of deep cracks loaded by constant displacement BCs. If we
imagine the ice shelf as a spring, the compliance due to the
crack growth can be understood as a reduction of the spring
stiffness. A reduction in stiffness yields a reduction in the re-
sulting stresses and therefore decreasing stress intensity fac-
tors. The compliance effect becomes less obvious for values
of l approaching infinity and liml→∞(KI(d)) yields the so-
lution of the unconstrained problem with stress BCs.

The results show that constrained boundaries imply a de-
pendence on the length of the cracked domain. For infinitely
long domains the influence on the type of BC vanishes and
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Fig. 4. (a)Stress intensity factors for different BC and domain lengths without volume forces.(b) Stress intensity factors for different BC,
l = 2000 m and volume forces.(c) Qualitative contour plot of the normal stressσxx for displacement and equivalent stress BC.

the solution of the pure stress BC is reached. The crack clos-
ing bending moment as well as the compliance due to the
application of displacement BCs are reasonable qualities of
the chosen model, considering an ice shelf with a given ver-
tically constant velocity field.

Cracks in ice shelves are small-scale defects – crack depth
and crack opening are small in comparison to the lateral ex-
tend of the ice shelf. As we are interested in the local effect
of the crack we have to choose a model size that is large
in comparison to the crack length but small in comparison
to the characteristic length of the ice shelf. In addition, the
stress field in the shelf can vary over length scales of less than
10 km for which reason it is unrealistic to model cracked do-
mains with lengths of more than 10 km. To this end, we chose
a finite domain length ofl = 2 km for all further simulations,
taking the length dependence due to displacement BCs into
account.

Figure4b illustrates the deviation in the resultingKI for
different BCs and realistic loading due to additional volume
forces (ρ = const.) and water pressure at the bottom of the
shelf.

The applied BCs consist of pure tension (a), the equiva-
lent displacement boundary condition given by Eq. (19) (b)
and the superposition of tension and horizontal pressure (c).
As for ν = 0.3, the horizontal pressure is not equivalent to
the ice overburden pressure (see Fig.3b), it has to be eval-
uated from the horizontal reaction forces of the horizontally
constrained body. For a small load of 100 kPa and resulting
shallow cracks, the difference between the BCs (b) and (c)
is marginal. Case (a), with pure tension represents a totally
different loading case. Even though the body is loaded by
volume forces, they do not influence the horizontal stresses.
The stress intensity factors for higher loads are on the other
hand more sensitive to the choice of the BC as (d) and
(e) demonstrate. Figure4c shows a qualitative plot of the
horizontal normal stressσxx and the deformed shape (exag-
gerated presentation, scaled by a factor 100) for stress BCs

and equivalent displacement BCs (no application of gravity
or water pressure at the bottom boundary). As displacement
BCs prevent the ice from bending, a bending moment that
works against the crack opening is induced and the stress
intensity at the crack tip, especially for deeper cracks, is
smaller.

3.1.2 Load

Next, different loads using displacement BCs are applied on
the pre-cracked ice shelf. Here, the density is chosen as con-
stant over depth (ρ = 910 kg m−3) andν = 0.3. For the eval-
uation of plausible load cases, the principal stresses in a part
of the Wilkins Ice Shelf are calculated using the velocity
field of Braun et al.(2009). The resulting first principal stress
ranges from about−400 kPa to 400 kPa. The purpose of this
work is to analyse the criticality of fractures due to tension in
the open ice shelf. Therefore, only positive stresses to a max-
imum of 300 kPa seem relevant. Figure5a shows the stress
intensity factors for displacement BCs equivalent to 0, 100,
200 and 300 kPa. It is obvious that for zero boundary dis-
placement only the ice overburden pressure is acting on the
crack, leading to negative values forKI , which can be inter-
preted as crack closure. Non-zero load leads to positiveKI ,
varying with the crack depth. For very small cracks, the stress
intensity factors are low as there is enough unbroken area to
absorb the load. For deeper initial cracks, the stress inten-
sity factors grow until a maximum value is reached. Then
KI decreases as the influence of the ice overburden pressure
starts to compensate the tensile stress arising from the BCs.
The dashed red lines represent the range for measured val-
ues of the critical stress intensity factorKIc, seeRist et al.
(2002). Values ofKI beyond the critical valueKIc are in-
terpreted as crack growth, while values lower thanKIc imply
stable cracks. It appears that none of the simulated load cases
leads to penetration of initial cracks through the entire depth,
asKI becomes negative before the bottom of the ice shelf
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Fig. 5. (a) Stress intensity factors for different loads.(b) Stress
intensity factors resulting from different constant Poisson’s ratios.

is reached. This result is in good agreement with previous
findings byRist et al.(2002).

3.2 Study B: influence of Poisson’s ratio

Unlike the results for various constant Young’s moduli
(Sect.3.4), there is a big difference in the stress intensity fac-
tors for different vertically constant Poisson’s ratios as can
be seen in Fig.5b for a constant density (ρ = 910 kg m−3)
and a displacement BC equivalent to 100 kP. This is due to
the coupling between the stresses inx- andz-direction which
is influenced byν. In other words: for a Poisson’s ratio of
ν = 0, the normal stressσxx does not experience stress con-
tributions ofσzz induced by the body loads. Forν → 0.5, the
stress state is hydrostatic for constrained vertical boundaries.

There is hardly any reliable data on the depth dependence
of the Poisson’s ratio. Therefore, only constant distributions
were simulated to obtain a general understanding of the rela-
tion betweenKI andν.

3.3 Study C: influence of different density profiles

Previous studies byRist et al.(2002), Van der Veen(1997),
Scambos et al.(2000) and Scambos et al.(2009) motivate
the necessity to take depth-dependent density profiles into
account. The density of the ice is estimated from the den-
sification model ofHerron and Langway(1980). There are
different mechanism of densification, which contribute to the
depth ranges under consideration here. The densification in
the upper regime, driven by grain growth and sintering, down
to a density of 550 kg m−3, depends only on temperature.
Below that the grains form bonds, allowing recrystallisation
and deformation to become dominant and the density de-
pends on temperature and accumulation rate. As we are lack-
ing in-situ measurements of the mean annual surface tem-
perature and the accumulation rate of the Wilkins Ice Shelf,
we choose upper and lower bounds for both variables. The
mean annual surface temperature of the Wilkins Ice Shelf
was proposed byMorris and Vaughan(2003) to be−8 ◦C.
However, the surface of the Wilkins Ice Shelf melts every
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Fig. 6. (a)Applied density profiles estimated from the densification
model ofHerron and Langway(1980) and an additional constant
profile with ρ = 917 kg m−3. (b) Stress intensity factors resulting
from different density profiles.

summer and most likely refreezes in winter, so that the la-
tent heat increases the firn temperatures.Swithinbank(1988)
reports a temperature measured in a drill hole at 5.5m of
−2.5 ◦C. We thus assume−2.5 ◦C as a maximum mean an-
nual temperature, leading to an almost isothermal ice shelf.
The accumulation rate was given byVaughan et al.(1993)
to be 0.5 m a−1 WE, based on a stake measurement over a
short time period. Thus, we choose for this study addition-
ally 1.0 m a−1 WE, to have an upper estimate.

Exponential fits of the estimated density profiles are pre-
sented in Fig.6a. Additionally, a constant density profile is
presented for comparison reasons. Figure6b shows the cor-
responding stress intensity factors for a displacement load
equivalent to 100 kPa andν = 0.3. It can be seen that small
differences in the density profiles lead to only marginal
differences in theKI . Nevertheless, we observe that den-
sity profiles with larger values at lower depth (270 K,as =

0.5 m a−1 WE) lead to lowerKI than more moderate profiles
(264 K, as = 1 m a−1 WE). This effect becomes more obvi-
ous when applying the constant profile, which leads to con-
siderably lowerKI . We conclude that higher densities lead to
a higher ice overburden pressure at the crack tip and therefore
to less tensile stresses which are known to be responsible for
largerKI . Rist et al.(1999) andScambos et al.(2009) mo-
tivate a density dependent examination of the critical stress
intensity factorKIc ranging fromKIc = 50 kPa

√
m, for low

density firn toKIc = 150 kPa
√

m for meteoric ice. This, in
our model, results in a change in the critical crack depth of
less than 10m. The variance due to different density profiles
or elastic material parameters is larger, hence the depth de-
pendence ofKIc will not be considered.

3.4 Study D: influence of Young’s modulus variation

The stress field and the consequentialKI resulting from stress
boundary value problems in linear elastic solid mechanics
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Fig. 7. (a) Simulated depth-dependent Young’s modulus functions.(b) Stress intensity factors resulting from different Young’s modulus
profiles with surface stresses equal to previous simulations (drawn through line,1u =̂ 100 kPa surface stress, dashed line,1u =̂ 300 kPa
surface stress).(c) Stress intensity factors resulting from different Young’s modulus profiles with resulting depth integrated tensile stresses
equal to previous simulations (drawn through line,1u =̂ 100 kPa depth integrated tensile stress, dashed line,1u =̂ 300 kPa depth integrated
tensile stress).

are invariant to the choice of the material parametersE and
ν. In contrast, for displacement BCs as chosen in the present
studies, the value ofE andν has to be considered. Different
constant Young’s moduli do not change the outcome of the
stress intensity factors, considering displacement BCs which
are calculated by Eq. (19). Different results can be expected
from depth dependent Young’s moduli. Figure7a shows the
different dependencies of the Young’s modulusE used in the
simulations in which a constant, a linear and an exponential
shape are considered.Rist et al.(2002) motivate a density
related and therefore exponential dependency of the Young’s
modulus on the depth, which gives reason for a coupled anal-
ysis of the influence of both parameters. However, in order to
compare the simulation results with former analyses apply-
ing depth dependent density profiles and to separate effects
and mechanisms, we decided to look atE andρ indepen-
dently. To this end, the Poisson’s ratio and the density profile
are kept constant withν = 0.3 andρ = 910 kg m−3, respec-
tively.

Equation (18) shows that the Young’s modulus is included
in the relation between stress intensity factors and the calcu-
lated configurational forces. The simulations presented here
use the Young’s modulus at the crack tip for the evaluation of
KI . As stated before, the Young’s modulus contributes to the
displacement BC, Eq. (19). Therefore, an equivalent method
for the evaluation of1u has to be found for varyingE. It
seems reasonable to look at two cases. At first, a displace-
ment BC, for which the surface stress remains the same as in
the previous analysis, is simulated. The results are presented
in Fig. 7b. It shows that for a small surface load of 100 kPa
(solid line) only the exponential function for the Young’s
modulus leads to considerably different results. For a higher
load of 300 kPa (dashed line), the crack reaches into deeper

zones where the Young’s modulus, and therefore the tensile
stress is larger. This results in a strong variation of the stress
intensity factors for all three profiles. Secondly, the displace-
ment BC are adjusted by the average of the stress component
σxx over the depth in an uncracked geometry without volume
forces. The average stress is equal to the previously chosen
surface stress. Figure7c shows that this choice of BCs leads
to smaller differences in the resultingKI for both, a load of
100 kPa (solid line) and 300 kPa (dashed line).

3.5 Dry cracks: conclusion

Our results achieved by FE simulations on dry cracks support
the general findings from previous studies byNye (1955),
Weertman(1973), Smith (1976), Van der Veen(1997) and
Rist et al.(2002): dry surface cracks under reasonable ten-
sile loading won’t reach the base of the ice shelf. The impor-
tance to consider depth dependent density profiles was af-
firmed (Van der Veen, 1997; Rist et al., 2002). Our results
showed an increase of the crack depth by≈ 50 % in compar-
ison to the constant profile. Our analyses differ from previ-
ous findings in the applied BCs and the associated choice of
material parameters. Here the influence of the chosen Pois-
son’s ratio ofν = 0.3 has to be emphasised. The higher stress
concentration at the crack tip could only be marginally re-
duced by the crack stabilizing effect of displacement BCs.
This, in conclusion, leads to larger crack depth under com-
parable geometry and loading conditions. Beyond that, for
the first time, the influence of depth varying Young’s moduli
and different vertically constant Poisson’s ratios for cracks in
ice was investigated. It shows that the influence of different
Young’s modulus profiles is significant and strongly depends
on the choice of BCs. The Poisson’s ratio proves to be the
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Fig. 8. (a) Model geometry for melt water filled cracks.(b) Stress intensity factors for varying water levels in three different cracks of
constant depth and corresponding loading.(c) Stress intensity factors for 16m water level for varying crack depth and a load of1u =̂ 100 kPa.
(d) Model geometry for brine infiltration.(e)Stress intensity factors for varying crack depth under different loads and brine infiltration.

most important parameter for the analysis of crack critical-
ity. Values ofν ranging between 0.2 and 0.5 show results
varying from no crack growth to cracks only stabilizing at
70 m depth for equal loading.

4 Wet cracks

The results above show that even though changing mate-
rial parameters and loadings have a strong influence on the
stress intensity factors at the crack tip, hardly any of the
simulated configurations would cause a break through of an
initial crevasse. It seems reasonable to consider some ad-
ditional loading as for example due to water of different
origin inside the crevasses. Previous studies byWeertman
(1973), Van der Veen(1997), Rist et al.(2002) andScam-
bos et al.(2000) show that water pressure on the crack faces
can lead to a crevasse breaking the ice shelf. However, as
these studies have been conducted using a Poisson’s ratios of
ν = 0.5, the influence of the ice overburden pressureσzz as a
crack closing factor has been overestimated. This leads to the
conclusion that for reasonable tensile loadings, a deep crack
had to be almost entirely filled to break through. The follow-
ing simulations show that for different material properties,
even less water leads to critical situations. The simulations
are conducted using the depth-dependent density profile of
Fig. 6 (Ts = 264 K,as = 0.5 m a−1 WE), a constant Young’s
modulus and a Poisson’s ratio ofν = 0.3 unless stated differ-
ently.

4.1 Study A: surface melt water

Figure8a visualises the model for rising melt water within
a crack. For the depth dependent density profile as shown
in Fig. 6 (Ts = 264 K, as = 0.5 m a−1 WE) pore closure is
reached at about 50 m depth. We assume that melt water can
rise inside a crack as long as the water-levelhw is below the
pore closure. The simulation is conducted for three differ-
ent displacement BCs equivalent to 100, 200 and 300 kPa.
For these simulations, the crack depth is kept constant at the
depth for which the unfilled crack was about to reach crack
closure, which is indicated by negative values forKI . This
leads to a crack depth of 66 m for 100 kPa, 122 m for 200 kPa
and 172 m for 300 kPa. Figure8b shows the resulting stress
intensity factors as a function of the water-level for the ap-
plied loading. We find that the critical stress intensity factors
are reached for only 10 to 20 m high water columns inside
the crack. The crack corresponding to a 100 kPa load can be
filled up to hw = 16 m before the water reaches permeable
ice. As for this water level the stress intensity factors are crit-
ical, it is interesting to evaluate how deep this crack would
penetrate. Figure8c visualises the stress intensity factor for
various crack depths, considering an equivalent to 100 kPa
tensile loading and 16 m water filling, starting at a crack
depth of 66 m.KI increases for few more meters before
the influence of the ice overburden pressure starts to domi-
nate the stress state at the crack tip and the stress intensity
factor decreases. Crack closure is reached before the crack
can break through. Sufficient additional melt water supply at
deeper crack depths will, however, lead to crevasse penetra-
tion.
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Table 1.Critical water level (WL) at 249 m crack depth in a 250 m
thick ice shelf for different loads and Poisson’s ratios.

load ν = 0.5 ν = 0.3

1u =̂ 0 kPa WL= 210 m WL= 119 m
1u =̂ 100 kPa WL= 202 m WL= 110 m
1u =̂ 200 kPa WL= 194 m WL= 101 m
1u =̂ 300 kPa WL= 185 m WL= 91 m

4.2 Study B: brine infiltration

Cracks in a closer proximity to the calving front can be ex-
posed to brine infiltration through porous firn. These cracks
are therefore always filled up to sea level as visualised in
Fig. 8d. Nevertheless, the pressure of brine inside the ice
shelf, as well as on the crack faces, forz between the sea
level and pore closure depth compensates and does not in-
crease the stress intensity at the crack tip. The load on the
crack faces therefore rises linearly from the constant load
of pc = (hw − hPC)ρswg at pore closure depth to the maxi-
mum load ofpc = hwρswg at the crack tip. Figure8e shows
the resulting stress intensity factors starting atd = 0 m. The
stress intensity factors for crack depths less thand = 50 m
are equivalent to those for the unfilled cracks with expo-
nentially fitted density profiles. Cracks below pore closure
are exposed to water pressure and therefore show increasing
stress intensity factors. By trend, all these cracks would break
through.

This leads to the question: How much water is required for
a crevasse to break through? Table 1 shows the water level
required to reach critical stress intensity factors for 249 m
deep cracks.

We find that increasing the load within the applicable
range of 300 kPa only leads to a decrease in the required
water level for penetration of less than 30 m for both sim-
ulated magnitudes of Poisson’s ratio. On the other hand, a
decreasing Poisson’s ratio fromν = 0.5 toν = 0.3 leads to a
decrease in the required water level of≈ 90 m representing a
decrease by≈ 50 % for all simulated loads.

4.3 Wet cracks: conclusion

The studies on wet cracks could confirm previous findings
on water filled cracks: water pressure on the crack faces
profoundly increases the criticality of cracks and can lead to
crack penetration where unfilled crevasses are stable. How-
ever, it has to be mentioned that continuous water supply is
needed as crevasses in an ice shelf of 250 m thickness need to
be filled up to 91 m–119 m, depending on the load, to reach
penetration. The study repeatedly showed that the choice of
the Poisson’s ratio is more crucial to the evaluation of crack
criticality than the applied load, a finding that has not been
discussed in previous studies.

5 Summary

Finite elements in combination with configurational forces
proved to be a comfortable numerical tool for the evalua-
tion of crack criticality under different setups. The choice
of a valid rheological model for cracks in ice in combination
with appropriate BCs and material parameters turned out to
be crucial for a physical understanding the of fracture mech-
anism that lead to disintegration of ice shelves. We showed
that especially the Poisson’s ratio and the associated com-
pressible or incompressible treatment of ice during fracture
plays an important role that has hardly been discussed so far.
Schulson and Duval(2009) andRist et al.(2002) showed a
density and therefore depth dependence of the Young’s mod-
ulus. The use of finite elements allowed us to evaluate the in-
fluence of the depth dependence on the criticality of cracks.
It showed that for the prescribed surface stress, the depth de-
pendent and therefore exponential function for the Young’s
modulus doubled the critical crack depth. However, depth de-
pendent Young’s moduli raised the questions which choice of
BCs is appropriate for cracks in floating ice shelves and how
the interaction between ice dynamics and linear elastic frac-
ture mechanics should be formulated. Despite the different
choice of BCs and material parameters, the studies showed
that for the applied loading, dry surface cracks will not pene-
trate an ice shelf. Also the general findings of previous stud-
ies on water filled surface cracks could be affirmed. Never-
theless our choice of the appropriate Poisson’s ratio lead to
≈ 50 % less water required for crevasse penetration.
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