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Abstract. The ongoing disintegration of large ice shelf parts which we derived from the break-up events that happened at
in Antarctica raise the need for a better understanding of thehe Wilkins Ice Shelf in 2008/200®B¢aun et al. 2009.
physical processes that trigger critical crack growth in ice Fracture mechanical concepts investigate the criticality of
shelves. Finite elements in combination with configurationalcracks by determining the stress intensity fackgrat the
forces facilitate the analysis of single surface fractures in icecrack tip and comparing it with critical valugg, obtained
under various boundary conditions and material parameterdy experimentsRist et al. (2002 performed three-point-
The principles of linear elastic fracture mechanics are appliedbending and short-rod fracture tests on samples taken from a
to show the strong influence of different depth dependentcore of the Ronne Ice Shelf that contained meteoric as well as
functions for the density and the Young's modulus on themarine ice. The measurdd; show a strong dependence on
stress intensity factak| at the crack tip. Ice, for this purpose, density or porosity, respectively. Further experimental values
is treated as an elastically compressible solid and the consder K| were assembled b§chulson and DuvgR009.
guences of this choice in comparison to the predominant in- The vertical propagation of crevasses has been investi-
compressible approaches are discussed. The computed stregated for more than 50 yNye (1955 argued that crevasses
intensity factorsK| for dry and water filled cracks are com- propagate vertically to the point where the normal stegss
pared to critical valuex,; from measurements that can be changes sign. The first one to assume elastic material be-
found in literature. haviour for the analysis of vertical crevasses in glaciers was
Weertman(1973. He used dislocation distribution functions
to evaluate the characteristics of dry and water filled sin-
gle crevassesSmith (1976 was the first who applied meth-
1 Introduction ods of linear elastic fracture mechanics for the evaluation of
stress intensity factors of dry and water filled surface cracks
Eight of twelve ice shelves in the Antarctic Peninsula havejn ice shelves. He simplified the crack geometry and bound-
retreated or disintegrated in the past decad@sok and  5ry conditions (BCs) to facilitate the use of tabulated values
Vaughan 201Q Braun et al. 2009. The processes that lead gajined from semianalytical methods Bgda et al(1973
to break-up events at ice shelves are all linked to fracturing ofgnd Sih (1973. The method ofSmith (1976 was adapted
weakened polycrystalline ice. Causes for the weakening argng extended byan der Veer(1997), who discussed the im-
surface cracks forming due to bending stresses at the Surfa%rtance of depth dependent density profiles Rigd et al.
and crevasses, formed by tensile stresses, originating at she@yooa who additionally analysed depth dependent tensile
margins or along the ice front. These cracks might initially stresses. The model tyist et al.(2002 has been repeat-
be stable, but additional loads may let them become criti-gqly used for the analysis of bottom and surface crevasses,

cal. Our analysis of cracks, based on well established fracs . pyNath and Vaugha(2003 andLuckman et al(2011),
ture mechanical concepts, is focused on simplified scenarios
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974 C. Plate et al.: Evaluation of the criticality of cracks in ice shelves

and will be used here as a benchmark for our finite elemen2 Model
simulations.

A different approach was introduced Bifeiss (2004 In order to analyse the dependence of the criticality at the
who argued that critical crack growth can not explain slow crack tip on different depth dependent material parameters
crevasse propagation. He therefore analysed subcritical cracknd various BCs, finite element (FE) simulations are used.
growth for very simplified geometries, boundary conditions This provides the basis for further simulations with advanced
and material parameters. 2-D and 3-D geometries. The advantage of the FE method in

Stress intensity factors for the analysis of horizontal crackcomparison to semi-analytical methods or other numerical
propagation have been used Blammann and Sandger ~ methods like finite differences lies primarily in its flexibility
(2003 and Hulbe et al.(2010. Hammann and Sandgger  and in its selectable accuracy via mesh refinement.

(2003 used a numerical model of ice shelf dynamics to com- . .
pute stresses within the ice shelf that are then used as id-1 Basic equations
?;é{%r :?:afgslltjﬁélci)geogzt:?:;rnt;g?t?é f;aglticéﬂilr?; 322& theCreep dominates the long-term behaviour of ice. Therefore,

. ... In most ice dynamical analyses, ice is modelled as viscous
boundary element method for the analysis of crack criticality, . . ; i .
and growth. fluid. On the short time scale, ice can be considered as lin-

The qualification of a linear elastic model to describe ear elastic solid. A combination of both rheologies results

. . .~ .~ in a visco-elastic model. A first and very simplified visco-
the ice rheology for fracture mechanical purposes is dis-

) e : . . elastic representation for a fluid-like visco-elastic material
cussed controversially within the glaciological community. . - ! .
is the Maxwell element consisting of a serial coupling of a

Therefore, different approaches exist to investigate the flow_ . 2 . .
induced strain rate and/or stress fields in ice shelves ang" 9 and a dashpot. The equmpnum condition yields that
e stress in both components is the same. If a Maxwell

glaciers and to formulate yield stress or strain rate criteria for : . . .
the nucleation and propagation of cradkarour et al (2004 element is subjected to a stress, the elastic component in-

and Albrecht and Levermani2012 analyse the evolution stap taneoqsly responds.by a t|m¢ mdep.endent elastic strain
while the viscous strain is a function of time. Therefore, on

of crevasse fields or single crevasses based on ice dynam||- : . . i
. _large time scales, the viscous answer predominates, while on

cal simulations. Fracture is then understood as a so1‘ten|ngne short time scale, the elastic response is important. The

parameter or an enhancement factdufbert et al. 2009 present analysis concerns the influence of different parame-

leading to higher velocities within the ice shelf or glacier. . T ) .
. - " ters on brittle fracture, which is a short time process. For this
These methods require less knowledge about the material pa-

. . o . feason, only the elastic response of ice, e.g. fractures due to
rameters of the ice and are a valid approximation for fields of . 7 .
elf’;\snc strain, is considered.

closely spaced crevasses, where the stress concentration &a . L . .
Our analysis of the criticality of certain crack scenarios is

the crack tip is reduced. However, these approaches do n(Hased on the evaluation of the crack driving force at the tip of

g?r\]/édsu?p%?fgﬂuerX:rrglr;:itlson of fracture processes Wh'Cha sharp Griffith crackl{awn and Wilshaw1977), where the

This study investigates the effect of different BCs, Ioads,maX'mum distance between the crack faces is much smaller

density profiles, Young’s moduli and Poisson’s ratios on thethan the crack depth.

T ; . Thus, we consider a static, linear elastic plane strain model
criticality of a single surface crevasse. For this purpose, themc an edge crack as depicted in Fig.. The equation for the
adequate model is presented in SettThe plane strain 9 P : g

i ) : L .solution of the boundary value problem for a linear elastic
model with the corresponding equations is introduced 'nsolid in equilibrium is
Sect.2.1 Section.2and2.3explain the finite element dis-
cretisation and the resulting discrete configurational forces g, L f=0, 1)
Valid BCs and a satisfying numerical model are identified in
Sects.2.4 and2.5 followed by the validation using the well with the volume forcesf and the Cauchy stress. The

known model ofRist et al.(2002) in Sect.2.6. Cauchy stress is obtained by the constitutive equation
The results of the numerical simulations are presented and
discussed in SecB and4. In Sect.3, we study the influence o = Ce, (2

of depth varying material properties on the stress intensity . . ] )
factor of dry cracks. For this purpose, we first show the effectWhereC is the stiffness tensor andis the symmetric part of
of different BCs in Sect3.1 The results for the different the displacement gradient
varied material parameters are presented in Se2to 3.4. 1
Two scenarios for water filled cracks are discussed in gect. € = Viu = > (Vu + (Vu)T) . 3)
followed be the summary in Seé&.
For the isotropic case, the stiffness ten§bdepends on
only two independent constants, the Young’s moduftend
the Poisson’s ratio. For further details see any textbook on
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elasticity or fracture mechanics, e@ross and Seeli@011). by multiplication with a test functiom and integration over
The solution of Eq. 1) with Egs. @) and @) in conjunction  the bodyB,

with proper BCs yields the displacementsand the stress

field o, which are required for the subsequent calculation of | (dive + f) -y dV =0. (10)
the crack driving force and the stress intensity factor. B

. For the evaluation of the grack _dnvmg force, conﬂggra— Integration by parts with application of the Gauss’ theorem
tional forces are used. Configurational forces can be inter;

: . leads to
preted as a negative energy release rate. The benefit of con-

figurational forces in comparison with the J-integral is thatn/a Ve dV = /t* - dA +/f g dv, (11)
these forces can be evaluated at every nodal point withi A

the FE mesh. They provide a measure for the integrity of
the material structure and allow the consideration of inclu-With the applied traction vectaf = o -n on the stress bound-
sions, cracks or inhomogeneous changes of material propeﬁ.l’iesalg;. FE discretisation of the test function and the dis-
ties. The evaluation of the configurational forces follows the placement vectoe yields

method presented iMuller et al.(2002. Here, the authors _ _

introduce the Eshelby stress tensor "= XI:NI Mo Vel = XI: Vi, (12)

T =Ul-(Vu)o @) w=) Nyus, Viu=3) ViNyuy,
J J

5;

as a function of the strain energy,= 3¢ : (Ce)!, the iden-  where N; and N, are the standard shape functions for the
tity tensorl, the transposed displacement gradighi)” and  applied elements. Insertion of EQ.3) in Eq. (11) results in

the Cauchy stress tenser With the definition of a configu-

rational volume force Zm/(Vle)TCZ(VsNJ)quV

g — ¥l 4 gith (5) ' B !

the configurational balance equation can be written as = Zn, / Nit*dA + / N fdv |. (13)
divs +g"' + g =o0. (6) | OB o

The integral on the left hand side represents the vector of
The configurational volume forcg"®' considers the con- internal forces Fi”‘) and the integrals on the right hand side
tribution of the physical volume forcg to the configura- the vector of the externaIF(FXt) and volume forcesl(}’o'),
tional force balance respectively. The solution of the residual equation

g =)'y, 7) Fi(uy) = —Fi|nt + FPy F}’OI =0 (14)

provides the nodal displacememtsg.
The discretisation of Eq9j follows analogous. Using the
function¢ with ¢ = 0 on a5 as test function, the weak form

while the contributions of inhomogeneous material proper-
ties as, e.g. due to a spatial dependencg ef C(x, y), are

given by of Eq. () takes the form
; oUu 1 oC
LU I—— (—e) (8) /(UI—(Vu)Ta):VqS dV+/((Vu)Tf>-¢dV
ox inh 2 ox
B B
Insertion of Eqs.4), (7) and g) in Eq. (6) leads to 1 aC
— . —_— . = . 1
. o +/<23 <8x€)> ¢dv =0 (15)
div(Ul — (Vu)T o) — (Vu)Tf ——e: <—e) =0, (9)
2 dx The FE discretisation of the test functions leads to

a form of the configurational balance equation that holds T _ T T
within the boundaries of a continuous material. /(VN') Wl = (V) o) dV+/N| ((Vu) f) av
B B

2.2 Finite element discretisation G _G"™
i i i ' 1 aC
The sqlutlon of Eq.1) |s_obta|ned by using the FE method. +/N| e (Ze)) dv=—g. (16)
For this purpose, Eqlj is transformed into the weak form 2 ax
Ia:B= A;j B;; represents the scalar product of two second or- G
I

der tensors.
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976 C. Plate et al.: Evaluation of the criticality of cracks in ice shelves

As residual equation, Eql) can be written as 1958. The bottom boundary is loaded by the water pressure
nt vol - at the respective depth of the undeformed body. Further trac-
Gi(uy)=—-G"+G~ +G|. (17)  tion BCs are eventually applied on the crack faces to consider

water filled crevasses.

2.3 Interpretation of discrete configurational forces 2.5 Numerical model

With the application of FE, the continuous E§) (s frans-  The stresses and displacements in the rectangular domain are

formed into a discrete form, wheg (u) # Ois ameasure  getermined by solving Eqs1)~(3), using the commercial

for the dISCOI’thInUIt)_/ at_every node of the EE mesh. The mearg program COMSOR. The crack driving force and the re-

sure of the discontinuity at the crack tip (index “ct’) can be gjting stress intensity factors are evaluated in postprocessing

interpreted as the crack driving for€e= Get(u ;). routines in MATLABS. As the stress intensity and therefore
From the predominant vertical component of the crack g at the crack tip highly depends on the element size in the

driving force at the crack tip;, = G - €y, the stress inten-  icinity of the crack tip, as well as on the distribution of el-

sity factor K is calculated using the interrelation ements within the geometry, the appropriate mesh has to be
chosen carefully. Figurgc shows the difference between the
E simulatedk, at the crack tip and a semianalytical solution
K =,/G, (18) (Gross and Seelj@011, p. 79) for an edge crack under linear

loading for different discretisations. The black curve with an
Further information on configurational forces, stresse€lementedge length of@25 m at the crack tip shows satis-
intensity factors and their relation can be found in fying results for reasonable computation time. Computation
Muller et al. (2002, Gross and Seelid2011), Maugin time is saved by cutting the model geometry along the crack
(1993, Steinmann and Maugi2010, Gurtin (1999 and  and using half the geometry with symmetry BCs. Figlioe

Kienzler and Herrman(2000). illustrates the discretisation assigned to the black curve. All
simulations are conducted using 6-node triangular elements
2.4 Geometry, load and boundary conditions with quadratic shape functions. The resulting total number of

_ _ . _ _ elements for the meshed geometry is about 8400 for a crack
In reality, the ice shelf is subjected to gravity, as well tjp |ocated in the domain centre.

as to different boundary tractions (tension, pressure and

shear). The modelled ice shelf consists of a vertical cut2.6 Benchmark

through a finite section of an “infinite” ice shelf, which

is replaced by a sufficiently long rectangular domain The FE model is validated using the geometry and material
(I =2000 m b = 250 m) under plane strain conditions, see Parameters presentedRist et al.(2002. The authors intro-
F|g 1a. The model On|y considers the gravity induced pres_duce a Semianalytical approach for the evaluation of stress in-
sure and horizontal strain due to the ice flow. In-plane-sheat€nsity factors for cracks in ice shelves, taking a 422 m thick
is neglected as fractures tend to align perpendicular to th@art of the Ronne Ice Shelf as an example. They assume that
first principal stress direction, which is shear free. In a suffi- the stress intensity factor at the crack tip depends on the total
cient distance from the grounding line, the horizontal veloci- Stress acting on the flaw. Using a usual power law for the ice
ties and displacements in an ice shelf are depth-independeffow (Glen 1958 and balance equations, followiryeert-
(Greve and Blatter2009. This constraint can not be ful- mMan(1957), a distribution of the normal stress, is derived
filled using traction BCs at the vertical boundaries, as thoseas a function of the vertical positianin the ice shelf:

would allow tilting of the vertical boundaries. Therefore, s s s 2
unless stated differently, the vertical boundaries are loaded B g
with prescribed vertically constant displacemefts Using oxx(2) =5 g//p(z)dz_ 2psw /p(z)dz
Hooke’s law for an uncracked homogeneous body under uni- JBdz | b % b
axial tensiong = E’s, with E’ = Ejce in the case of plane b s
stress and’ = Eice/(1— v?) for plane strain, the magnitude
of the boundary displacement on one side of the model _g/p(z)dz‘ (20)
ice shelf is related to the horizontal stresst the ice shelf z
surface by Herep(z) is the depth-dependent density of the ice, which
is parametrized by
I o(l—1v?1 .
Au=es=—p—7 @9 p)= (9185396t ) kg, 21)

The stress field at the ice shelf surface is evaluated from the 2www.comsol.com
flow velocity in the ice shelf using Glen’s flow lawG(en Swww.mathworks.com
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Fig. 1. (a)Model geometry for dry crackgb) Discretization in entire geometry with focus at crack {ig). Difference between numerical
simulation and analytical result for different mesh sizesx & element edge length at crack tip).

(2002 and two FE simulations: (1) a crack which has solely

K;[10Pa /m] o
- o0 ——1 2 % - & ! been loaded on its faces by tractions given by Ef) Gnd
%100’””””iiiiiiiiiiiiliiiimog s {0)) the_same geometry Ioaded by gravity, a vertically_con-
2 < = ; . stant displacement BC, equivalent to the non-cryostatic part
% 500 200 % % 100 : —semianalytical K; [Rist02] .
E L | FEM, o distribution of of the stress in Eq.20) and the water pressure as stress BC
=00 0 L at the ice shelf bottom. As the stress function of E2)(
2 oo T ol =08 " assumes incompressibility, the FE simulation in (Il) is con-

4 3 2 A 0 0 1 2 3 ducted with a Poisson’s ratio of— 0.5. The results are in a

0 [N/m?] x10° Ki[Paym]  xq0° : ; ; P :

() (b) good agreement, taking numerical inaccuracies in the semi-

analytical results and the FE simulation into account.
Fig. 2. (a)Resulting horizontal stress and stress intensity factors.
(b) Comparison of the numerical model to resultsRift et al.
(2002. 3 Drycracks

Dry cracks are simulated to validate the model and to anal-

) 3. yse the influence of different material parameters and loading

based on measurements of ice coreg, = 1028kgn™is  gcenarios on the stress intensity factor at the crack tip. The

the density of salt water anBl is the temperature dependent gy gies first concentrate on the evaluation of the appropriate
and therefore depth-dependent rate factor. type of BCs for further simulations. Then the influence of the

_Further information on the applied temperature and den-ppjied load, Poisson’s ratios, density profiles and Young's
sity profile can be found irRist et al.(2009. Rist et al.  ,oquliis analysed.

(2002 use the weight function method presentedBireck-

ner (1970 to evaluate the stress intensity factér based 3.1 Study A: dependence on type of boundary

onoy,. The normal stress,, and the resulting stress inten- conditions

sity factor K| are shown in Fig2a. The diagram shows that

the critical stress intensity factdf,., which ranges between Rist et al.(2002, Van der Veer(1997) andWeertman(1973
(100-400) kPg/m (Rist et al, 2002, is reached at larger use stress BCs at the vertical boundaries of the ice shelf.
depth than the depth where in the uncracked body the norTherefore, the constant or depth varying tensile normal stress
mal stress,, changes sign. The assumption that cracks willis superposed by the cryostatic pressure of the ice. This ap-
only propagate to a depth where the stresses change sign, psoach requires a hydrostatic stress state within the ice shelf
presented bilye (1955, turns out to be an underestimation. that is only valid if ice can be understood as incompress-
Figure 2b shows a comparison of the resultsRit et al.  ible (v =0.5). This is a good approximation for the long

www.the-cryosphere.net/6/973/2012/ The Cryosphere, 6, 9784, 2012



978 C. Plate et al.: Evaluation of the criticality of cracks in ice shelves

term behaviour of ice. In contrast, a fracture event in a brittle

medium occurs on a rather short time scale. The measure- O s wnconstr.
ments inRist et al.(2002 indicate brittle material properties 5 ;Bjiz"

for ice. Therefore, it seems more reasonable to take material e s
properties from short time measurements into account, as can § 19 E 100

be found inGreve and Blatte(2009 andSchulson and Du- =S

val (2009, wherev ranges between®-04. Poisson’s ratios A 190

of v #£ 0.5 have been used in elastic analyses of icdrist 200

et al.(1999, Hulbe et al (2010 andKonovalov(2011). The ? lg

influence of the Poisson’s ratio on the choice of BCs will be X TTTIIIITIIIIITT 85 2 15 -1 05 o0
presented in the following chapter, while the influence on the (a) (b) o2z [Pa] x10°

K, is analysed in Sec8.2 . i .
! Y Fig. 3. (a)Uncracked model for the evaluation of proper BCs, with

constrained (upper geometry) and unconstrained (lower geometry)

3.1.1 Boundary conditions and scale effects vertical boundariegb) Normal stress ., for the uncracked model.

Figure 3a shows two uncracked example geometries of a
homogeneous isotropic body, i.e= const., with different
horizontal BCs (upper geometry: constrained, lower geom-depth/length ratios and stress BCs indicated that a ratio larger
etry: unconstrained). Additionally, the vertical displacementthan% is sufficient to yield a crack tip field that is indepen-
at the basal boundary is constrained in both configurationsgdent of the disturbance introduced by the boundaries. Dif-
u,(z =0) =0. The geometries are solely loaded by gravity. ferent results can be expected for constrained boundaries
Figure3b shows the resulting the normal stress for dif- (dashed and dotted lines) where the dependence on the do-
ferent Poisson’s ratios and BCs. The stress composignt main length affects the stress intensity at the crack tip in
that can also be referred to as the ice overburden pressuta/o ways. To identify the factors that induce a length de-
is identical for all simulated Poisson’s ratios and BCs. It pendence, the cracked domain is on the one hand loaded by
equals the horizontal stress for the constrained boundariegdisplacement BCAu and on the other hand loaded by stress
and v = 0.499 (dot-and-dashed line). The horizontal stressBC o with the additional constrain%% =0, which prevents
componenb,, is affected by both the changes in the Pois- tilting and bending of the vertical boundaries. The relation
son’s ratio and the BCs. A Poisson’s ratiowof 0.499, ap-  between the appliedu ando is evaluated via Eq.10) us-
proximating an incompressible material, leads to a cryostatidng the uncracked geometry. The displacemenisare kept
stress state for the horizontally constrained body, meaningonstant for all crack depths. The dashed and the dotted lines
that for every material point in the body, the normal stressin Fig. 4a show the resulting stress intensity factéfgd)
components are equal and shear stresses vanish. The valaensidering different domain lengthfor displacement and
v=0.499 is a good approximation of the incompressible stress BCs, respectively. For large crack deptha length
case ¢ = 0.5), which numerically can not be treated with dependent difference between the constrained (dotted line)
the applied constitutive law as it yields singularities in the and the unconstrained stress BC represented by the drawn
stiffness matrix. Fop = 0.3, the body is compressible. This through line becomes obvious. The difference is caused by
leads, for the horizontally constrained body, to stresggs  the crack closing bending moment induced by constrained
which are less than half of the stress comporent For a  boundaries. Fof reaching infinity, the influence of the con-
horizontally unconstrained body, the horizontal stress com-straints on the deflection in proximity of the crack becomes
ponento, . is identical zero. These results show that the as-negligibly small and thek, converge to the solution of the
sumption of incompressibility overestimates the crack clos-unconstrained problem with stress BCs.
ing pressure due to the weight of the ice by approximately a The difference between the dashed and the dotted lines for
factor two. geometries of equal lengflresults in the compliance effect

In a next step, we apply different BCs on a cracked geom-of deep cracks loaded by constant displacement BCs. If we
etry to analyse the effect of the type of boundary conditionimagine the ice shelf as a spring, the compliance due to the
on the stress concentration at the crack tip as well as posserack growth can be understood as a reduction of the spring
ble dependencies on the length of the model domain. To enstiffness. A reduction in stiffness yields a reduction in the re-
sure comparability to semi-analytical results, the simulationssulting stresses and therefore decreasing stress intensity fac-
are performed without additional gravity or bottom pressure.tors. The compliance effect becomes less obvious for values
Figure 4a shows that simulations with pure stress bound-of I approaching infinity and lim, .. (K (d)) yields the so-
ary conditions on a domain of 2 km length and 250 m depthlution of the unconstrained problem with stress BCs.
(green drawn through line) reproduce the semi-analytical re- The results show that constrained boundaries imply a de-
sults (black circles), which assume infinitely long domains pendence on the length of the cracked domain. For infinitely
(Gross and Seelj@011). Further simulations with different long domains the influence on the type of BC vanishes and
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0 .
o semi-analyt., o =100kPa a)o = 100k Pa
— | =2km, o0 =100kPa — ——b)Au =0 = 100kPa
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Fig. 4. (a)Stress intensity factors for different BC and domain lengths without volume fdtzeStress intensity factors for different BC,
1 = 2000 m and volume forceéc) Qualitative contour plot of the normal stress, for displacement and equivalent stress BC.

the solution of the pure stress BC is reached. The crack closand equivalent displacement BCs (no application of gravity
ing bending moment as well as the compliance due to theor water pressure at the bottom boundary). As displacement
application of displacement BCs are reasonable qualities oBCs prevent the ice from bending, a bending moment that
the chosen model, considering an ice shelf with a given verworks against the crack opening is induced and the stress
tically constant velocity field. intensity at the crack tip, especially for deeper cracks, is
Cracks in ice shelves are small-scale defects — crack depthmaller.
and crack opening are small in comparison to the lateral ex-
tend of the ice shelf. As we are interested in the local effect
of the crack we have to choose a model size that is Iarge3'l'2 Load
in comparison to the crack length but small in comparison
to the characteristic length of the ice shelf. In addition, theNext, different loads using displacement BCs are applied on
stress field in the shelf can vary over length scales of less thathe pre-cracked ice shelf. Here, the density is chosen as con-
10 km for which reason it is unrealistic to model cracked do- stant over depthy(= 910 kg n13) andv = 0.3. For the eval-
mains with lengths of more than 10 km. To this end, we choseuation of plausible load cases, the principal stresses in a part
a finite domain length af = 2 km for all further simulations, of the Wilkins Ice Shelf are calculated using the velocity
taking the length dependence due to displacement BCs intfield of Braun et al(2009. The resulting first principal stress
account. ranges from about400 kPa to 400 kPa. The purpose of this
Figure 4b illustrates the deviation in the resultirig for work is to analyse the criticality of fractures due to tension in
different BCs and realistic loading due to additional volume the open ice shelf. Therefore, only positive stresses to a max-
forces p =const.) and water pressure at the bottom of theimum of 300 kPa seem relevant. Figlsa shows the stress
shelf. intensity factors for displacement BCs equivalent to 0, 100,
The applied BCs consist of pure tension (a), the equiva-200 and 300 kPa. It is obvious that for zero boundary dis-
lent displacement boundary condition given by Etp)((b) placement only the ice overburden pressure is acting on the
and the superposition of tension and horizontal pressure (c)rack, leading to negative values f&f, which can be inter-
As for v = 0.3, the horizontal pressure is not equivalent to preted as crack closure. Non-zero load leads to poskfive
the ice overburden pressure (see Fi), it has to be eval- varying with the crack depth. For very small cracks, the stress
uated from the horizontal reaction forces of the horizontally intensity factors are low as there is enough unbroken area to
constrained body. For a small load of 100 kPa and resultingabsorb the load. For deeper initial cracks, the stress inten-
shallow cracks, the difference between the BCs (b) and (ckity factors grow until a maximum value is reached. Then
is marginal. Case (a), with pure tension represents a totallyK| decreases as the influence of the ice overburden pressure
different loading case. Even though the body is loaded bystarts to compensate the tensile stress arising from the BCs.
volume forces, they do not influence the horizontal stressesThe dashed red lines represent the range for measured val-
The stress intensity factors for higher loads are on the otheues of the critical stress intensity factfi,, seeRist et al.
hand more sensitive to the choice of the BC as (d) and(2002. Values of K| beyond the critical valu&)c are in-
(e) demonstrate. Figuréc shows a qualitative plot of the terpreted as crack growth, while values lower t&gpimply
horizontal normal stress,, and the deformed shape (exag- stable cracks. It appears that none of the simulated load cases
gerated presentation, scaled by a factor 100) for stress BCleads to penetration of initial cracks through the entire depth,
as K| becomes negative before the bottom of the ice shelf
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Fig. 5. (a) Stress intensity factors for different loadb) Stress
intensity factors resulting from different constant Poisson’s ratios.

Fig. 6. (a)Applied density profiles estimated from the densification
. . . . . _model ofHerron and Langway1980 and an additional constant
:Cisn;?r?ggig/h-glztzséléésam good agreement with prevlousprofile with p =917 kg m_%. (by) Str(e)ss intensity factors resulting

from different density profiles.

3.2 Study B: influence of Poisson’s ratio

. ) , ~summer and most likely refreezes in winter, so that the la-
Unlike the results for various constant Young's moduli tent heat increases the firn temperatugasithinbank(1989
(Sect.3.4), there is a big difference in the stress intensity fac- jeports a temperature measured in a drill hole .8t of
tors for different vertically constant Poisson’s ratios as can_s 5oc_ \We thus assume2.5°C as a maximum mean an-

. . . 3 * * . . i X

be seen in FigSb for a constant densityo(= 910kgnT>) 3| temperature, leading to an almost isothermal ice shelf.
the coupling between the stressesimndz-direction which 5 pe 05 ma 1 WE, based on a stake measurement over a
is influenced byv. In other words: for a Poisson’s ratio of short time period. Thus, we choose for this study addition-
v =0, the normal stress,, does not experience stress con- gjly 1.0 m a1 WE, to have an upper estimate.

tributions ofa., induced by the body loads. Fer— 0.5,the  Exponential fits of the estimated density profiles are pre-
stress state is hydrostatic for constrained vertical boundariesented in Figba. Additionally, a constant density profile is

There is hardly any reliable data on the depth dependencgresented for comparison reasons. Figiveshows the cor-

of the Poisson’s ratio. Therefore, only constant dlstrlbutlonsresponding stress intensity factors for a displacement load
were simulated to obtain a general understanding of the re|aequivalent t0 100 kPa and—= 0.3. It can be seen that small

tion betweenk; andv. differences in the density profiles lead to only marginal
. . ) i differences in thek;. Nevertheless, we observe that den-
3.3 Study C: influence of different density profiles sity profiles with larger values at lower depth (270d,=

. . . 0.5ma 1 WE) lead to lowerk, than more moderate profiles
Previous studies bRist et al.(2002, Van der Veen(1997), (264K, a, = 1ma L WE). This effect becomes more obvi-

Scambos et al2000 and Scambos et al2009 motvate g \yhen applying the constant profile, which leads to con-

the necessity to take depth-dependent density profiles intQjqeraply lowerk,. We conclude that higher densities lead to

account. The density of the ice is estimated from the den, pigher jce overburden pressure at the crack tip and therefore
sification model ofHerron and Langway1980. There are 4 |ggs tensile stresses which are known to be responsible for
different mechanism of densification, which contribute to thelargerK|. Rist et al.(1999 and Scambos et al2009 mo-

depth ranges under.considerat.ion here. The Qengification iBvate a density dependent examination of the critical stress
the upper regime, driven by grain growth and sintering, dOW”intensity factorK|c ranging fromkc = 50 kPa,/m, for low

to a density of 550kg m?, depends only on temperature. yaniy firn tok). = 150 kPa/m for meteoric ice. This, in
Below that the grains form bonds, allowing recrystallisation model, results in a change in the critical crack depth of

and deformation to become dominant and the density defegs than 10m. The variance due to different density profiles
pends on temperature and accumulation rate. As we are lacks

PEIYS Y )r elastic material parameters is larger, hence the depth de-
ing in-situ measurements of the mean annual surface tempendence oK. will not be considered.

perature and the accumulation rate of the Wilkins Ice Shelf,

we choose upper and lower bounds for both variables. Thes 4 Study D: influence of Young’s modulus variation

mean annual surface temperature of the Wilkins Ice Shelf

was proposed b¥orris and Vaughar{2003 to be —8°C. The stress field and the consequenkiatesulting from stress

However, the surface of the Wilkins Ice Shelf melts every boundary value problems in linear elastic solid mechanics
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Fig. 7. (a) Simulated depth-dependent Young's modulus functidibf Stress intensity factors resulting from different Young’s modulus
profiles with surface stresses equal to previous simulations (drawn throughling,100 kPa surface stress, dashed lina,= 300 kPa

surface stressjc) Stress intensity factors resulting from different Young's modulus profiles with resulting depth integrated tensile stresses
equal to previous simulations (drawn through line, = 100 kPa depth integrated tensile stress, dashedAiné; 300 kPa depth integrated
tensile stress).

are invariant to the choice of the material parametfeiand  zones where the Young’s modulus, and therefore the tensile
v. In contrast, for displacement BCs as chosen in the presergtress is larger. This results in a strong variation of the stress
studies, the value of andv has to be considered. Different intensity factors for all three profiles. Secondly, the displace-
constant Young’s moduli do not change the outcome of thement BC are adjusted by the average of the stress component
stress intensity factors, considering displacement BCs whiclw,, over the depth in an uncracked geometry without volume
are calculated by Eq10). Different results can be expected forces. The average stress is equal to the previously chosen
from depth dependent Young’s moduli. Figui® shows the  surface stress. Figui shows that this choice of BCs leads
different dependencies of the Young’s modulissed inthe  to smaller differences in the resultirig for both, a load of
simulations in which a constant, a linear and an exponentiallO0 kPa (solid line) and 300 kPa (dashed line).

shape are considereRist et al.(2002 motivate a density

related and therefore exponential dependency of the Young's 5 pry cracks: conclusion

modulus on the depth, which gives reason for a coupled anal-

ysis of the influence of both parameters. However, in order toOur results achieved by FE simulations on dry cracks support

compare the simulation results with former analyses apply-the general findings from previous studies Kye (1955

ing depth dependent density profiles and to separate eﬁecﬁ/eertman(lQ?E), Smith (1976, Van der Veen(1997 and

and mechanisms, we decided to lookmtand p indepen- : ! i
dently. To this end, the Poisson’s ratio and the density profileRISt et al.(2003: dry surface cracks under reasonable ten

L = 3 } sile loading won't reach the base of the ice shelf. The impor-
:\r/t;l;ept constant with = 0.3 andp = 910kg nT=, respec tance to consider depth dependent density profiles was af-
to , . firmed (Van der Veen1997 Rist et al, 2002. Our results
. Equauon (8) shows that thelYoung s modulus is included showed an increase of the crack depthrb§0 % in compar-
in the relation between stress intensity factors and the calcu-

) : . . ison to the constant profile. Our analyses differ from previ-
lated configurational forces. The S|mu_lat|ons presenteq her%us findings in the applied BCs and the associated choice of
use the Young's modulus at the crack tip for the evaluation Ofmaterial parameters. Here the influence of the chosen Pois-

K. As stated before, the Young’s modulus contributes to the

: . son’s ratio ofv = 0.3 has to be emphasised. The higher stress
?fﬁlhacer\?elnt E’C; E?Ale)ﬁ Th::nretl;or?, a: degurlzlalfr;:]me}?od concentration at the crack tip could only be marginally re-
or the evaluation ofAx has to be found for varying.. duced by the crack stabilizing effect of displacement BCs.

T o oL Cases A 1, & 95010ET v, i conclusio,lads o largr crac cepth under con
' rable geometry and loading conditions. Beyond that, for

the previous analysis, is simulated. The results are presentetP e first time, the influence of depth varying Young’s modull

in Fig. 7b. It shows that for a small surface load of 100 kPa and different vertically constant Poisson'’s ratios for cracks in

(sogdllln?) %nl); the eggoniﬁltlzl.f:unctlton folrt thE Your?.gﬁ ice was investigated. It shows that the influence of different
modulus ‘eads 1o considerably ditierent results. -or a highe oung’s modulus profiles is significant and strongly depends

load of 300 kPa (dashed line), the crack reaches into deepeorn the choice of BCs. The Poisson’s ratio proves to be the
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Fig. 8. (a) Model geometry for melt water filled crack@) Stress intensity factors for varying water levels in three different cracks of
constant depth and corresponding load{jeyStress intensity factors for 16m water level for varying crack depth and a lo&ad &f 100 kPa.
(d) Model geometry for brine infiltratior(e) Stress intensity factors for varying crack depth under different loads and brine infiltration.

most important parameter for the analysis of crack critical-4.1  Study A: surface melt water

ity. Values ofv ranging between .@ and 05 show results

varying from no crack growth to cracks only stabilizing at Figure 8a visualises the model for rising melt water within
70 m depth for equal loading. a crack. For the depth dependent density profile as shown
in Fig. 6 (Ty = 264K, a; = 0.5ma 1 WE) pore closure is
reached at about 50 m depth. We assume that melt water can
rise inside a crack as long as the water-legyglis below the
Jore closure. The simulation is conducted for three differ-
ent displacement BCs equivalent to 100, 200 and 300 kPa.
Eor these simulations, the crack depth is kept constant at the

sj[ress mtensny fact(_)rs at the crack tip, hardly any of thedepth for which the unfilled crack was about to reach crack
simulated configurations would cause a break through of an N . :
losure, which is indicated by negative values fqr. This

initial crevasse. It seems reasonable to consider some a(i?éads to a crack depth of 66 m for 100 kPa, 122 m for 200 kPa
dit.io.na_l Io_ading as for example QUe 0 wgter of different and 172 m for 300 kPa. Figugb shows thé resulting stress
?1%17'2) |r\1/s;rj1e dter;evgreer}/TSZ%S'RF;S\g?Zf (Z%ngaeilmrégﬁr_] intensity factors as a function of the water-level for the ap-

' ' ' plied loading. We find that the critical stress intensity factors
bos et al(200Q show that water pressure on the crack faCesare reached for only 10 to 20 m high water columns inside
can lead to a crevasse breaking the ice shelf. However, crack. The crack corresponding to a 100 kPa load can be
these studies have been conducted using a Poisson’s ratios]glnI ed up t'o hw = 16 m before the water reaches permeable

- . . W=
v =05, th_e influence of the ice overbgrden pressuteas a ice. As for this water level the stress intensity factors are crit-
crack closing factor has been overestimated. This leads to the

conclusion that for reasonable tensile loadings, a deep crac gal, itis mte_restmg FO eyaluate how dee_p th|s.crack would
had to be almost entirely filled to break through. The follow- penetrate. Figur8c visualises the stress intensity factor for

ing simulations show that for different material properties, various crack depths, considering an equivalent to 100 kPa

even less water leads to critical situations. The simulationstenSIIe loading and 16 m water filling, starting at a crack

) . . gepth of 66 m.K| increases for few more meters before
are conducted using the depth-dependent density profile %he influence of the ice overburden pressure starts to domi-
Fig. 6 (T, = 264 K,a, = 0.5ma 1 WE), a constant Young's P

. ) . : nate the stress state at the crack tip and the stress intensity
modulus and a Poisson'’s ratiowt= 0.3 unless stated differ- .
ently factor decreases. Crack closure is reached before the crack
‘ can break through. Sufficient additional melt water supply at
deeper crack depths will, however, lead to crevasse penetra-
tion.

4 \Wet cracks

The results above show that even though changing mat
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Table 1. Critical water level (WL) at 249 m crack depthina250m 5 Summary
thick ice shelf for different loads and Poisson’s ratios.
Finite elements in combination with configurational forces

load v=05 v=03 proved to be a comfortable numerical tool for the evalua-
Au=0kPa WL=210m WL=119m tion of crack criticality under different setups. The choice
AuZ=100kPa WL=202m WL=110m of a valid rheological model for cracks in ice in combination
Au=200kPa WL=194m WL=101m with appropriate BCs and material parameters turned out to
Au=300kPa WL=185m WL=91m be crucial for a physical understanding the of fracture mech-

anism that lead to disintegration of ice shelves. We showed
that especially the Poisson’s ratio and the associated com-
pressible or incompressible treatment of ice during fracture
4.2 Study B: brine infiltration plays an important role that has hardly been discussed so far.
Schulson and DuvgR009 andRist et al.(2002 showed a
Cracks in a closer proximity to the calving front can be ex- density and therefore depth dependence of the Young’s mod-
posed to brine infiltration through porous firn. These cracksulus. The use of finite elements allowed us to evaluate the in-
are therefore always filled up to sea level as visualised influence of the depth dependence on the criticality of cracks.
Fig. 8d. Nevertheless, the pressure of brine inside the icet showed that for the prescribed surface stress, the depth de-
shelf, as well as on the crack faces, tobetween the sea pendent and therefore exponential function for the Young’s
level and pore closure depth compensates and does not ifmodulus doubled the critical crack depth. However, depth de-
crease the stress intensity at the crack tip. The load on thgendent Young’s moduli raised the questions which choice of
crack faces therefore rises linearly from the constant load3Cs is appropriate for cracks in floating ice shelves and how
of pc = (hw — hpc)pswg at pore closure depth to the maxi- the interaction between ice dynamics and linear elastic frac-
mum load ofpc = hwpswg at the crack tip. Figur8e shows  ture mechanics should be formulated. Despite the different
the resulting stress intensity factors starting/at 0m. The  choice of BCs and material parameters, the studies showed
stress intensity factors for crack depths less tHaa50m  that for the applied loading, dry surface cracks will not pene-
are equivalent to those for the unfilled cracks with expo-trate an ice shelf. Also the general findings of previous stud-
nentially fitted density profiles. Cracks below pore closurejes on water filled surface cracks could be affirmed. Never-
are exposed to water pressure and therefore show increasingeless our choice of the appropriate Poisson’s ratio lead to
stress intensity factors. By trend, all these cracks would break- 50 % less water required for crevasse penetration.
through.
This leads to the question: How much water is required for
a crevasse to break through? Table 1 shows the water lev@lcknowledgementsThis study was supported by the German
required to reach critical stress intensity factors for 249 mResearch Foundation (DFG) under grants MU 1370/4-1 and
deep cracks. the Cluster of Excellence CIliSAP at the KlimaCampus of the
We find that increasing the load within the applicable University of Hamburg.
range of 300 kPa only leads to a decrease in the required
water level for penetration of less than 30 m for both sim- Edited by: E. Larour
ulated magnitudes of Poisson’s ratio. On the other hand, a
decreasing Poisson’s ratio from= 0.5tov = 0.3 leads to a
decrease in the required water levekof0 m representing a
decrease by 50 % for all simulated loads.
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