
Data Assimilation –  
Theoretical and Algorithmic Aspects 

Lars Nerger 
Alfred Wegener Institute for Polar and Marine Research 

Bremerhaven, Germany 

and  
Bremen Supercomputing Competence Center BremHLR 

Bremen, Germany 

Lars.Nerger@awi.de 

KIAPS, May 28, 2013 



Overview 

•  Data assimilation problem 

•  Variational data assimilation  

•  Sequential data assimilation 

•  Ensemble Kalman Filters 

•  Ensemble Square-root Filters 

•  Nonlinearity & current developments 

Data Assimilation algorithms –  
where are we and how did we get here? 

A review – with focus on ensemble data assimilation 



Data Assimilation 



Example: Chlorophyll in the ocean 

mg/m3 mg/m3 

Information: Model Information: Observation 
•  Generally correct, but has errors 

•  all fields, fluxes, … 
•  Generally correct, but has errors 

•  sparse information  
  (only surface, data gaps, one field) 



Data Assimilation 

  Optimal estimation of system state: 

•  initial conditions     (for weather/ocean forecasts, …) 

•  state trajectory  (temperature, concentrations, …) 

•  parameters             (growth of phytoplankton, …)  

•  fluxes                      (heat, primary production, …) 

•  boundary conditions and ‘forcing’       (wind stress, …) 
€ 

  Characteristics of system: 

•  high-dimensional numerical model - O(107-109) 

•  sparse observations 

•  non-linear 



Data Assimilation 

Consider some physical system (ocean, atmosphere,…) 

time 

observation 

truth 

model 

state 
Variational assimilation 

Sequential assimilation 

Two main approaches: 

Optimal estimate basically by least-squares fitting 



Data Assimilation – Model and Observations 

Two components: 

 

1.  State:  

 Dynamical model 

 

€ 

x 2 Rn

2.  Obervations: 

 Observation equation (relation of observation to state x): 

 

y 2 Rm

y = H [x]

xi = Mi�1,i [xi�1]



Some views on Data Assimilation 
 



Data Assimilation – an inverse problem 

Model provides a background state            (prior knowledge) 

Observation equation (relation of observation to state x): 

 

at some time instance 

Now solve for state: 

€ 

Issues: 

•  Compute              - or pseudo inverse                          

•  Inversion could be possible with regularization 

•  This formulation ignores model and observation errors 
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Data Assimilation – least squares fitting 

Background state	



Weight matrices (acknowledge different uncertainties):       

 for background state 

 for observations 

“Cost function”: 

€ 

x

b 2 Rn

B

R

Optimal      minimizes J:	



Requiring dJ/dx = 0 leads to: 

 

 

No explicit statistical assumptions required! 
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b) + (y �H [x])TR�1(y �H [x])
Background Observations 



Optimal Interpolation (OI) 

1.  Parameterize (prescribe) matrices      and   
(e.g. by using estimated decorrelation lengths) 

2.  Compute the optimal (variance-minimizing) state      as  

 

OI was quite common about 20-30 years ago. 

Several issues: 

•  Parameterized matrices 

•  Computing cost 

•  Optimality of solution 
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Data Assimilation – an estimation problem 

Probability density of x: 

Probability density of y: 

Likelihood of y given x:	



€ 

p (xi)

p (yi|xi)
p (yi)

p (xi|Yi) =
p (yi|xi) p (xi|Yi�1)

p (yi|Yi�1)

With prior knowledge: 

Probability of xi given all observations Yi up to time i  

p (xi|yi) =
p (yi|xi) p (xi)

p (yi)

Bayes law: Probability density of x given y 



Data Assimilation – Probabilistic Assumptions 

Assume Gaussian distributions:  

 
(fully described by mean and variance) 

€ 

N
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Observations:  

State:  N (x,P)

N (y,R)

Posterior state distribution 

 

With 

 

 

(same as for least squares – there are statistical assumptions!) 

p(xi|Yi) ⇠ ae�J(x)

J(x) = (x� x

b)TP�1(x� x

b) + (y �H [x])TR�1(y �H [x])



Variational Data Assimilation 
 

3D-Var, 4D-Var, Adjoint Method 



  Based on optimal control theory 

  Examples: “adjoint method”, “4D-Var”, “3D-Var” 

  Method: 

  1. Formulate “cost function” 

                         

  2. Minimize cost (by variational method) 

 

 

Variational Data Assimilation 

x: model state 
xb: background 
y: observation 
i:  time index 
C, D: weight  
        matrices 

                         Background                    Observation 

 

 
  3D-Var: Do this locally in time for each i 

  

J(x) =
kX

i=1

�
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  formulate cost J in terms of “control variable” 
   Example: initial state x0 

  Problem:  
   Find trajectory (defined by x0) that minimizes cost J while 
   fulfilling model dynamics 

  Use gradient-based algorithm: 

  e.g. quasi-Newton 

  Gradient for J[x0] is computed using adjoint  
    of tangent linear model operator 

  The art is to formulate the adjoint model 
    (No closed formulation of model operator) 

  Iterative procedure (local in control space) 

Adjoint Method - 4D-Var  



Adjoint method - 4D-Var algorithm 

1. Initialization: Choose initial estimate of x0 

2. Forward: Integrate model 
start from x0; store trajectory 

3. Compute cost function 
exit, if cost is below limit 

4. Backward: Integrate adjoint model backward in time  
start from final residual (y-x); use trajectory from 2. 

5. Optimizer: Update x0  
with optimization algorithm 



•  Coding of adjoint model 

•  Computing cost 

•  Method is iterative, limited parallelization possibilities 

•  Storage requirements  

•  Store full forward trajectory 

•  Limited size of time window in case of nonlinear model 

•  Parameterized weight matrices 

Issues of 4D-Var/3D-Var   



Sequential Data Assimilation 
 

Kalman filters 



Error propagation 

Linear stochastic dynamical model 

 

 

Assume that   

Also assume uncorrelated state errors and model errors  

Then  

 

With model error covariance matrix 

 

Error propagation builds the foundation of the Kalman filter 

More later… 
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Sequential Data Assimilation 

Consider some physical system (ocean, atmosphere,…) 

time 

observation 

truth 

model 

Sequential assimilation: correct model state 
estimate when observations are available 
(analysis); propagate estimate (forecast) state 

Size of correction 
determined by 
error estimates 

3D-Var is “sequential” but usually not called like it  



Probabilistic view: Optimal estimation 

Consider probability distribution of model and observations 

observation 

time 0 time 1 time 2 

analysis 

forecast 
Kalman Filter:  
Assume Gaussian distributions 



The Kalman Filter 

Assume Gaussian distributions 
fully described by 

•  mean state estimate 
•  covariance matrix  

➜  Strong simplification of estimation problem 

Analysis is combination auf two Gaussian distributions 
computed as 

•  Correction of state estimate 
•  Update of covariance matrix € 

−2 0 2 4 −2 0 2 4

Analysis 

observation state 



Kalman Filter (Kalman, 1960) 
Forecast: 

State propagation 
 

Propagation of error estimate 

 

€ 

xi = Mi�1,ixi�1 + ✏i

Pf
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a
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T +Qi�1

Analysis at time tk: 

State update 
 

Update of error estimate 

 

with “Kalman gain” 
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The KF (Kalman, 1960) 

Initialization: Choose initial state estimate x and 
corresponding covariance matrix P 

 

Forecast: Evolve state estimate with model. Evolve 
columns/rows of covariance matrix with model. 

 

Analysis: Combine state estimate with observations 
based on weights computed from error estimates of 
state estimate and observations. Update matrix P 

according to relative error estimates. 



The KF (Kalman, 1960) 

Initialization: Choose initial state estimate x and 
corresponding covariance matrix P 

 

Forecast: Evolve state estimate with model. Evolve 
columns/rows of covariance matrix with model. 

 

Analysis: Combine state estimate with observations 
based on weights computed from error estimates of 
state estimate and observations. Update matrix P 

according to relative error estimates. 

Forecast: Evolve state estimate with non-linear 
model. Evolve columns/rows of covariance matrix 

with linearized model. 

With nonlinear model: Extended Kalman filter 



•  Storage of covariance matrix can be unfeasible 
(n2 with n of O(107-109)) 

•  Evolution of covariance matrix extremely costly 

•  Linearized evolution (like in Extended KF) can be 
unstable (e.g. Evensen 1992, 1993) 

•  Adjoint model                 can be avoided using 
 

Issues of the Kalman Filter 

MT
i�1,i

Mi�1,i

�
Mi�1,iP

a
i�1

�T

 

  Need to reduce the cost 



Approaches to reduce the cost of the Kalman filter 
•  Simplified error evolution 

(constant, variance only) 
•  Reduce rank of P 
•  Reduce resolution of model  

(at least for the error propagation) 
•  Reduce model complexity 

Examples: 
•  „suboptimal schemes“, Todling & Cohn 1994 
•  Approximate KF, Fukumori & Malanotte, 1995 
•  RRSQRT, Verlaan & Heemink, 1995/97 
•  SEEK, Pham et al., 1998 

“Suboptimal” Filters 



Example: SEEK filter (Pham et al., 1998) 

Approximate                                      
(truncated eigendecomposition) 

Mode matrix       has size                          has size  

Low-rank approximation of P 

Vi n⇥ r r ⇥ r

Pa
i ⇡ ViUiV

T
i

Ui

Forecast of r „modes“: 

 

for nonlinear model 

 

Now use in analysis step:  

Vi+1 = Mi,i+1Vi

P̃f
k ⇡ VkUk�1V

T
k

Vi+1 ⇡ Mi,i+1 (Vi + [xa
i , . . . ,x

a
i ])�Mi,i+1 [x

a
i , . . . ,x

a
i ]



The SEEK filter (Pham, 1998) 

Initialization: Approximate covariance matrix by low-
rank matrix in the form P=VUVT. Choose state x. 

Forecast: Evolve state estimate with non-linear 
model. Evolve modes V of covariance matrix with 

linearized model. 

Analysis: Apply EKF update step to ensemble mean 
and the „eigenvalue matrix“ U. Covariance matrix 

represented by modes and U. 

Re-Initialization: Occasionally perform re-
orthogonalization of modes of covariance matrix 



Sampling Example 

€ 

Pt =

3.0 1.0 0.0
1.0 3.0 0.0
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Approximation in SEEK based on Gaussian distribution 

More general:  

•  Sample             by N random state realizations         : 

General sampling of probability distribution 

p(x)
x

(j)

•  State ensemble 

•  Ensemble mean 

 

X =
h
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Approximate 

 

(        holds ensemble mean in each column) 

Ensemble representation (approximation) of P 

Pa
i ⇡ 1

N � 1

�
Xi � X̄i

� �
Xi � X̄i

�T

X̄i

Forecast of N ensemble states: 

 

for nonlinear model 

 

Now use in analysis step: 
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Sampling Example 

€ 

Pt =

3.0 1.0 0.0
1.0 3.0 0.0
0.0 0.0 0.01

" 
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;
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•  Ensemble is not unique 

•  Gaussian assumption simplifies sampling 
(covariance matrix & mean state) 

More on sampling 

Example: 2nd-order exact sampling (Pham et al. 1998) 

Use                                      
(truncated eigendecomposition) 
Create ensemble states as 

 
      is random matrix with columns orthonormal and orthogonal 
to vector                      . Size   

Ensemble size  

Pa
i ⇡ ViSiV

T
i

⌦
(1, . . . , 1)T

X = X̄+
p
N � 1VS1/2⌦T

N ⇥ (N � 1)

N = r + 1



Sampling Example 

€ 

Pt =

3.0 1.0 0.0
1.0 3.0 0.0
0.0 0.0 0.01

" 

# 

$ 
$ $ 

% 
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' 
' ' 
;

€ 
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" 

# 
$ 

% 

& 
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Same as spherical simplex sampling (Wang et al., 2004) 



Collection of possible samplings 
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Symmetric Pairs

 

 

positive−negative pairs
True prob. ellipsoid



  Approximate state covariance matrix by low-rank matrix 

  Keep matrix in decomposed form (XXT, VUVT) 

Error Subspace Algorithms 

Lars Nerger et al., Tellus 57A (2005) 715-735 

Mathematical motivation: 
•  state error covariance matrix represents  
  error space at location of state estimate 

•  directions of different uncertainty 

•  consider only directions with largest  
  errors (error subspace) 
⇒  degrees of freedom for state correction 
in analysis: rank(P) 

 = span(v1,v2,…) 

x 

P = VUVT 

v2 v1 

Error space: 
E



Ensemble-based Kalman filters 



Ensemble-based Kalman Filters 

  Foundation: Kalman filter (Kalman, 1960) 
•  optimal estimation problem 

•  express problem in terms of state estimate x and  
  error covariance matrix P (normal distributions) 

•  propagate matrix P by linear (linearized) model 

•  variance-minimizing analysis 

  Ensemble-based Kalman filter: 

•  sample state x and covariance matrix P by ensemble of  
  model states 

•  propagate x and P by integration of ensemble states 

•  Apply linear analysis of Kalman filter 

First filter in oceanography: “Ensemble Kalman Filter”  
(Evensen, 1994), second: SEIK (Pham et al., 1998) 



Ensemble-based Kalman Filter 

Approximate probability distributions by ensembles 

observation 

time 0 time 1 time 2 

analysis 

ensemble 
forecast 

Questions: 

•  How to generate initial ensemble? 

•  How to resample after analysis? 

resampling 
initial 

sampling Please note: 

In general, this is  
not an approximation 
of the Kalman filter! 



Efficient use of ensembles 

€ 

        can be approximated by ensemble or modes: 

Analysis at time tk: 

 

Kalman gain 
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Costly inversion:                    matrix! 

 

Ensembles allow for cost reduction – if R is invertible at low 
cost 
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Efficient use of ensembles (2) 
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Kalman gain 
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Alternative form (Sherman-Morrison-Woodbury matrix identity) 

Looks worse:                 matrices need inversion n⇥ n

K̃k = X
0
h
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0
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0THTR�1

However: with ensemble 

 

 
Inversion of                  matrix 

(Ensemble perturbation matrix                            ) 

 

P̃f
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Ensemble transformations 

€ 

        can be approximated by ensemble or modes: 

 

Analysis at time tk: 

State update 
 

Update of error estimate 

We are missing the analysis ensemble Xa
k

Pf
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This is incomplete! 



Ensemble transformations (2) 

€ 

Possibilities to obtain 

 

1.  Monte Carlo analysis update 

•  Kalman update of each single ensemble member 

2.  Explicit ensemble transformation 

1.  Kalman update of ensemble mean state 

2.  Transformation of ensemble perturbations 

a.  Right sided: 

b.  Left sided: 

Xa
k

X
0a = ŴX

0f

X
0a = X

0fW

X
0
= X� X̄



Monte Carlo analysis update 

€ 

Used in Ensemble Kalman Filter (EnKF, Evensen 1994) 

 

•  Forecast ensemble 

•  Generate observation ensemble 

  

•  Update each ensemble member 

Xa
k = Xf

k + K̃k

⇣
Yk �HkX

f
k

⌘

Xf
k

y(j) = y + ✏(j)

Pro: 

•  Simple implementation 

Issues: 

•  Generation of observation ensemble 

•  Introduction of sampling noise through  ✏(j)



Right sided ensemble transformation 

€ 

 

 

Used in:  

•  SEIK (Singular Evolutive Interpolated KF, Pham et al. 1998) 

•  ETKF (Ensemble Transform KF, Bishop et al. 2001) 

•  EnsRF (Ensemble Square-root Filter, Whitaker/Hamill 2001) 

 

Very efficient:         is small (                ) 

X
0a = X

0fW

W N ⇥N



Ensemble Transform Kalman Filter - ETKF 

Ensemble perturbation matrix  

 

Analysis covariance matrix 

 

“Transform matrix” (in ensemble space) 

                                                                                             

Ensemble transformation 

 

Ensemble weight matrix 

 
•                     (symmetric square root) 
•      is identity or random orthogonal matrix with EV                   ) 

a. Analysis step of the ETKF

The ETKF has been introduced by Bishop et al. (2001). For the review of the analysis

step of the ETKF, we follow Yang et al. (2009) and Hunt et al. (2007).

The computations performed in the ETKF are based on a square root of the state covari-

ance matrix given by the ensemble perturbations X′. The analysis state covariance matrix

Pa can be written as a transformation of the forecast ensemble perturbations as

Pa = X
′fA(X

′f)T . (4)

Here, A is an m×m matrix defined by

A−1 := (N − 1)I+ (HX
′f)TR−1HX

′f . (5)

A is frequently denoted as ’transform matrix’. The factor γ is used to inflate the forecast

covariance matrix to stabilize the filter performance.

The state estimate is updated according to

xa = xf +X
′fwETKF (6)

with the weight vector

wETKF := A
(

HX
′f
)T

R−1
(

yo −Hxf
)

. (7)

The square root of the forecast state covariance matrix is given by the perturbation

matrix X
′f up to the scaling by (m− 1)−1. To obtain the square root of the analysis state

covariance matrix, X
′f is transformed as

X
′a = X

′f WETKF . (8)
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The ETKF and the SEIK filter are ensemble-based Kalman filters. The state of a physical

system, like the ocean or atmosphere, is estimated at time tk by the state vector xk of size

n and the corresponding error covariance matrix Pk. An ensemble of m vectors x(α), α =

1, . . . , m, of model state realizations represents these quantities. The state estimate is given

by the ensemble mean

xk :=
1

m

m
∑

i=1

x(i)
k . (1)

With the ensemble matrix

Xk :=
[

x(1)
k , . . . ,x(m)

k

]

, (2)

Pk is given as the ensemble covariance matrix

Pk :=
1

m− 1
X′

k (X
′
k)

T (3)

where X
′

k := Xk −Xk with Xk = [xk, . . . ,xk] is the matrix of ensemble perturbations.

A forecast is computed by integrating the state ensemble using the numerical model until

observations become available. The observations are available in form of the vector yo
k of

size p. The model state is related to the observations by yo
k = Hk(x

f
k) + εk where H is the

observation operator, which is assumed to be linear. The vector of observation errors, εk, is

assumed to be a white Gaussian distributed random process with covariance matrix R.

The analysis equations of the ETKF and the SEIK filter are discussed separately below.

As all operations are performed at the same time tk, the time index k is omitted.
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3

The weight matrix WETKF is computed from the square-root C with CCT = A as

WETKF :=
√
N − 1CΛ. (9)

Here, Λ is an arbitrary orthogonal matrix of size m × m or the identity. To preserve the

ensemble mean, the vector (1, . . . , 1)T has to be an eigenvector of Λ.

When the ETKF was introduced by Bishop et al. (2001), the form of the square-root C

was not further specified. Studies about the properties of the ensemble transformation in

different square-root filters (e.g., Wang et al. 2004; Sakov and Oke 2008) have shown that

a symmetric matrix C ensures that the ensemble mean is preserved during the ensemble

transformation. The use of the symmetric square root

Csym := US−1/2UT (10)

has been proposed also for the localized version of the ETKF (LETKF, Hunt et al. 2007).

Eq. (10) can be obtained from the singular value decomposition (SVD)USV = A−1. The use

of matrix Csym from Eq. (10) provides a minimum transformation of the ensemble because

the distance of the square-root from the identity matrix is minimized in the Frobenius norm

(see Yang et al. 2009).

For efficiency, the analysis update of the state estimate (Eq. 6) and the ensemble trans-

formation (Eq. 8) can be combined into a single transformation of X
′f as

Xa = Xf +X
′f
(

W
ETKF

+WETKF
)

. (11)

with W
ETKF

=
[

wETKF , . . . ,wETKF
]

. This formulation leads directly to the analysis en-

semble, without explicitly updating the state estimate by Eq. (6).
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SEIK Filter 

b. Analysis step of the SEIK filter

The SEIK filter has been introduced by Pham et al. (1998) and was described in more

detail by Pham (2001). This review follows Nerger et al. (2006). The original separation

of the analysis step into the state update (“analysis”) and ensemble transformation (“re-

sampling”) is followed here. The SEIK filter is then explicitly re-formulated as an ensemble

square-root filter analogously to the ETKF in section 2. Quantities that are similar but not

identical to those of the ETKF are marked using a tilde. It is assumed that the forecast

ensemble is identical to that used in the ETKF.

Analysis: The computations of the analysis step update the state estimate and implicitly

update the state covariance matrix from the forecast to the analysis matrix.

In the SEIK filter, the forecast covariance matrix Pf is treated in terms of the forecast

state ensemble Xf by

Pf = LGLT (12)

with

L := Xf T, (13)

G := (m− 1)−1
(

TTT
)−1

. (14)

Here, T̃ is an m × (m − 1) matrix with full rank and zero column sums. Previous studies

have always defined matrix T̃ as

T̃ :=









I(m−1)×(m−1)

01×(m−1)









−
1

m

(

1m×(m−1)

)

(15)

where 0 represents the matrix whose elements are equal to zero and I is the identity. The

elements of the matrix 1 are equal to one. Matrix T̃ implicitly subtracts the ensemble mean

5

when the matrix L is computed. In addition, T̃ removes the last column of X
′f , thus L is

an n× (m− 1) matrix that holds the first m− 1 ensemble perturbations.

The analysis update of the state estimate is given as a combination of the columns of the

matrix L by

x̃a = xf + LwSEIK. (16)

Here, the vector wSEIK of size m− 1 is given by

wSEIK := Ã (HL)T R−1
(

yo −Hxf
)

(17)

and the transform matrix Ã of size (m− 1)× (m− 1) is defined by

Ã−1 := (N − 1)TTT+ (HL)TR−1HL. (18)

In the SEIK filter, ρ̃ with 0 < ρ̃ ≤ 1 is referred to as the “forgetting factor”. It is the inverse

of the inflation factor γ used in Eq. (5) of the ETKF. The analysis covariance matrix is given

in factorized form by

P̃a = LÃLT (19)

but does not need to be explicitly computed.

For efficiency, the term HL is typically computed as (HXf)T̃. Thus, T̃ operates on the

p×m matrix HXf , while H operates on each ensemble state.

Resampling: After the analysis step, the “resampling” of the ensemble is performed.

Here, the forecast ensemble is transformed such that it represents x̃a and P̃a. The transfor-

mation is performed according to

X̃a = X̃a +
√
m− 1LC̃ΩT . (20)
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be written as

X̃a = X̃a + LWSEIK (21)

with

WSEIK :=
√
N − 1C̃ΩT . (22)

In addition, the state analysis update (16) can be combined with the ensemble transformation

(21) to

X̃a = Xf + L
(

W
SEIK

+WSEIK
)

, (23)

with W
SEIK

=
[

wSEIK, . . . ,wSEIK
]

.

Equation (23) performs a transformation of the matrix L analogous to the ensemble

transformation of the ETKF (Eq. 11). Matrix L is the square root of the covariance matrix

Pf used in the SEIK filter. With this, the SEIK filter is clearly an ensemble square-root

filter.

It is particular for the SEIK filter that the matrix L has only m−1 columns, while other

filters use a square-root with m columns. Using m− 1 columns is possible because the rank

of Pf is at most m − 1. The SEIK filter utilizes this property by accounting for the fact

that the sum of each row of the perturbation matrix X
′f is zero. Thus, while the columns

of X
′f are linearly dependent, the columns of L are linearly independent if the rank of Pf

is m− 1. In this case, they build a basis of the error subspace estimated by the ensemble of

model states (for a detailed discussion of the error subspace, see Nerger et al. (2005a)). In

contrast, X
′
can be regarded as a transformation from its m-dimensional column space to

the error subspace of dimension m− 1 (see Hunt et al. 2007).

While the equations of the SEIK filter are very similar to those of the ETKF this does not

8
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(n x n) 

In previous studies, the SEIK filter was always described to use a Cholesky decomposition

of the matrix Ã−1 to obtain (C̃−1)T C̃−1 = Ã−1. However, other forms of the square-root,

like the symmetric square root used in the ETKF, could be chosen. Section ?? will test the

influence of the chosen square root on the performance of the filter. The matrix Ω is an

m×(m−1) matrix whose columns are orthonormal and orthogonal to the vector (1, . . . , 1)T .

Traditionally, Ω is described to be a random matrix with these properties. However, using

a deterministic Ω is also valid. The procedure to generate a random Ω (Pham 2001; Hoteit

2001) and a procedure for generating a deterministic variant are provided in the Appendix.

For efficiency, the matrix L can be replaced by XfT̃ (Eq. 13). Then, the matrix T̃ can

be applied from the left to smaller matrices like the weight vector wSEIK or the matrix C̃.

The original formulation of the SEIK filter used the normalization m−1 for the matrix

Pf instead of using the sample covariance matrix that is normalized by (m − 1)−1. For

consistency with other ensemble-based Kalman filters, Nerger and Gregg (2007) introduced

the use of the sample covariance matrix in SEIK, which is also used here. In the SEIK

filter, the ensemble is generated to be consistent with the normalization of Pf . Hence, the

normalization acts only as a scaling factor that influences the equations (3) and (20) as well

as the definition of G in Eq. (14).

2. SEIK as an ensemble square-root filter

To identify the SEIK filter as an ensemble square-root filter, the analysis and resampling

steps of SEIK are combined as a transformation of the square root of Pf . Equation (20) can
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′f as
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semble, without explicitly updating the state estimate by Eq. (6).
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The SEIK filter (Pham, 1998) 

Initialization: Approximate covariance matrix by low-
rank matrix in the form P=VUVT. Generate ensemble 
of minimum size exactly representing error statistics. 

Forecast: Evolve each of the ensemble members with 
the full non-linear stochastic model. 

Analysis: Apply EKF update step to ensemble mean 
and the „eigenvalue matrix“ U. Covariance matrix 

approx. by ensemble statistics. 

Ensemble transformation: Transform state ensemble 
to exactly represent updated error statistics.  



Square root of covariance matrix (ensemble size N, state dim n) 
 
 
 
    T is specific for filter algorithm: 

 ETKF:  
  T removes ensemble mean 
      (usually, compute directly                       ) 
  Z has dimension  nN 

 SEIK: 
  T removes ensemble mean and drops last column 
  Z has dimension n(N-1) 

 
 
 
 
 
 

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(171)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(172)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(173)

G :=
1

N � 1
I (174)

xa
k = xf

k + Zf
kwk (175)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(176)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (177)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

P̌a
k = Zf

kAk(Z
f
k)

T (179)

A�1 = I + (HZ)TR�1HZf (180)

Pa = ZAZT (181)

Ensemble transformation

Xa = Xa + Xf
kW (182)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(183)

Wk =
⌃
wk, . . . ,wk

⌥
(184)

Pa
k =

1

N � 1
Za

k (Za
k)

T (185)

Za
k =

⇥
N � 1Zf

kA
1/2
k (186)

Za
k = Zf

kWk (187)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (188)

UkSkVk = A�1
k (189)

15

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

Pf = ZZT (171)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(172)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(173)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(174)

G :=
1

N � 1
I (175)

xa
k = xf

k + Zf
kwk (176)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(177)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (179)

P̌a
k = Zf

kAk(Z
f
k)

T (180)

A =
�
G + (HZ)TR�1HZ

⇥�1
(181)

Pa = ZAZT (182)

Ensemble transformation

Xa = Xa + Xf
kW (183)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(184)

Wk =
⌃
wk, . . . ,wk

⌥
(185)

Pa
k =

1

N � 1
Za

k (Za
k)

T (186)

Za
k =

⇥
N � 1Zf

kA
1/2
k (187)

Za
k = Zf

kWk (188)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (189)

UkSkVk = A�1
k (190)

15

Analysis

Xf
k =

⌃
xf(1)
k , . . . ,xf(N)

k

⌥
(168)

Xf
k =

⌃
xf
k , . . . ,x

f
k

⌥
(169)

Zf
k = Xf

k �Xf
k (170)

Z = X�X (171)

Z = XfT (172)

Pf = ZZT (173)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)
k � xf

k

⌅⇤
xf(l)
k � xf

k

⌅T

(174)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(175)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(176)

G :=
1

N � 1
I (177)

xa
k = xf

k + Zf
kwk (178)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo
k �Hkx

f
k

⌅
(179)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (180)

A�1
k = �(N � 1)I+ (HkZ

f
k)

TR�1
k HkZ

f
k (181)

P̌a
k = Zf

kAk(Z
f
k)

T (182)

A =
�
G+ (HZ)TR�1HZ

⇥�1
(183)

Pa = ZAZT (184)

Ensemble transformation

Xa = Xa +Xf
kW (185)

Xa ⇥ ZW (186)

WWT = A (187)

Xa
k = Xf

k + Zf
k

�
Wk +Wk

⇥
(188)

Wk =
⌃
wk, . . . ,wk

⌥
(189)

15

Computations in ensemble-spanned space 
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Transformation matrix in ensemble space (small matrix)  
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Analysis state covariance matrix 
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Computations in ensemble-spanned space 

Ensemble transformation based on square root of A	


 
 
Very efficient:  
Transformation matrix computed in space of dim. N or N-1 
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The SEIK filter - Properties 

  Computational complexity 

•  linear in dimension of state vector 

•  approx. linear in dimension of observation vector 

•  cubic with ensemble size 

  Low complexity due to explicit consideration of  
   error subspace: 

  Degrees of freedom given by ensemble size -1 

  Analysis increment: combination of ensemble members  
    with weight computed in error subspace 

  Simple application to non-linear models due to  
   ensemble forecasts (e.g. no adjoint model) 

ETKF: Practically the same properties, but analysis in 
ensemble space, dimension N 



Left sided ensemble transformation 

€ 

 

 

Used in:  

•  EAKF (Ensemble Adjustment KF, Anderson 2001) 

 

 

Issue: 

•  Costly in plain form:         is huge (             ) 

•  But: Computation can be done stepwise avoiding to compute  

X
0a = ŴX

0f

Ŵ n⇥ n
Ŵ



Analysis step and ensemble transformation 

Analysis step of square-root filters: 
1.  correct state estimate 

2.  transform ensemble (forecast → analysis) 

(both can be combined into a single operation) 
 

Key element: Transformation matrix and its square-root 

  Computed in space spanned by the ensemble members 

  Not unique! 

Deterministic transformation 
 

Random transformation 
with constraints 



Ensemble transformations 

Minimum transformation 
(standard in ETKF) 

Random transformation 
with constraints 

Minimum change to model states 

Better chance to preserve balances 

Preserves higher-order moments 
(Ensemble clustering, Amezcua et al. 
2012) 

Larger change to ensemble states 

More impact on balances 

Destroys higher-order moments 
(closer to Gaussian) 
 



A simple test problem 

  Twin experiment with nonlinear shallow water equations 

  Initial state estimate: temporal mean state 

  Initial cov. matrix: variability around mean state 



Shallow water model: filter performances 

  SEEK stagnates 

  same convergence behavior 
   for EnKF and SEIK 

  smaller performance for 
   EnKF than for SEIK 

  EnKF ensemble 1.5-2 times  
   larger than SEIK ensemble  
   for same filter performance 

Error reduction due to assimilation 

Ensemble size 

L. Nerger et al., Tellus 57A (2005) 715-735 



3D box experiment 

  finite element model FEOM 

  31x31 grid points, 11 layers  

  nonlinear problem: interacting  
   baroclinic Rossby waves 

  Assimilate sea surface height  
   each 2.5 days over 40 days 



3D Box - filter performance  

N=10 



3D Box - filter performance  

N=100 



3D Box - Computation Times (N=10) 

Model integrations: 6600s 

 

Filter update: 

 

 

Difference due to 

  inversion of large matrix in EnKF 

  generation of ensemble of observations 

Filter Time 
EnKF 67.8s 
SEIK 0.6s 



Studying Kalman filters 

  Goal: Find the assimilation method with 
  smallest estimation error 
  most accurate error estimate 
  least computational cost 
  least tuning  

  Want to understand behavior, in particular performance 

  Difficulty: 

  Optimality of Kalman filter well known for linear systems 

  Optimality not established for non-linear systems 

➜  Need to apply methods to test problems! 

  One way to learn: 

  Compare different methods to learn from differences  

€ 



Square-root Kalman filters 



  Properties and differences are hardly understood 
  Learn from studying relations and differences 

_ 
_ 

ETKF 

Ensemble-based/error-subspace Kalman filters 

A little “zoo” (not complete): 

EAKF 

ETKF 

EnKF(94/98) 

SEIK 

EnSRF SEEK 

RRSQRT 

ROEK 

MLEF 
EnKF(2003) 

EnKF(2004) 
SPKF 

ESSE 

ESTKF 

EnKF(94/98) 
SEEK 

SEIK 
Studied in Nerger 

et al. (2005) SEIK 

New study 
(Nerger et al. 2012) 

New filter 
formulation 

RHF 

anamorphosis 



SEIK−chol: Transformation matrix

 

 

−0.1

−0.05

0

0.05

0.1
ETKF: Transformation matrix

 

 

−0.1

−0.05

0

0.05

0.1

Weight Matrices (W in Xa’ = Xf W ) 

ETKF  

main contribution from diagonal 
(minimum transformation) 

Off-diagonals of similar weight 

➜  Minimum change in distribution  
of ensemble variance 

ETKF SEIK-Cholesky sqrt 

SEIK with Cholesky sqrt 

main contribution from diagonal 

Off-diagonals with strongly  
varying weights 

➜  Changes distribution of variance 
in ensemble 



SEIK−sym: Transformation matrix

 

 

−0.1

−0.05

0

0.05

0.1

Transformation Matrix of SEIK/symmetric sqrt 

SEIK symmetric sqrt transformation matrices difference: SEIK−ETKF

 

 

−4

−3

−2

−1

0

1

2

3

4
x 10−3

Transformation matrices of ETKF and SEIK-sym very 
similar 
 
Largest difference for last ensemble member 

 (Experiments with Lorenz96 model: This can lead to  
 smaller ensemble variance of this member) 

Difference SEIK-ETKF 
10-3 



SEIK depends on ensemble order 

SEIK−sym: Difference of transformation matrices

 

 

−4
−3
−2
−1
0
1
2
3
4

x 10−3

Switch last two ensemble members 

Ensemble transformation depends on order of ensemble members 
(For ETKF the difference is 10-15) 
 
Statistically fine, but not desirable! 

(Switched back last two columns 
& rows for comparison) 

10-3 



Forecast Covariance: 
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Ǩk = LkUkL
T
k HT

k Rk
�1 (73)

P̌a
k = LkUkL

T
k (74)

Re-Init

P̌a
k = LkC

T
k �T

k �kCkL
T
k (75)

C�1
k (C�1

k )T = U�1
k (76)

xa(l)
k = xa

k +
⇥

N � 1 LkC
T
k �T

k,l (77)

Xa
k = Xa

k +
⇥

N � 1 LkC
T
k �T

k (78)

6

Analysis

Xf
k =
⌦
xf(1)

k , . . . ,xf(N)
k

↵
(64)

P̌f
k =

1

N � 1

N 

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T
(65)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (66)

T :=

⇧

⌥ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(67)

P̌f
k = LkGLT

k (68)

Lk := Xf
kT , G :=

1

N � 1

�
TTT
⇥�1

(69)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (70)

xa
k = xf

k + Ǩk
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Analysis step and ensemble transformation 

➜  Ensemble transformation in SEIK depends on order of ensembles 

➜  Something wrong with SEIK? 

➜  Matrix T subtracts ensemble mean and removes last column 

➜  Last column depends on ensemble ordering! 
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Ensemble order matters in SEIK 

 

Square-root                                                (SVD) 
 

New ensemble: 
 

            is projection from N-1 to N  
(Random matrix from Householder reflections) 

Ensemble-transformation: 

Distinct matrices L ➜ distinct matrices U:  

➜ Finally: slightly different eigenvalues and eigenvectors 

(this is always correct) 
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Ǩk = LkUkL
T
k HT

k Rk
�1 (73)

P̌a
k = LkUkL

T
k (74)

Re-Init

P̌a
k = LkC

T
k �T

k �kCkL
T
k (75)

C�1
k (C�1

k )T = U�1
k (76)

xa(l)
k = xa

k +
⇥

N � 1 LkC
T
k �T

k,l (77)

Xa
k = Xa

k +
⇥

N � 1 LkC
T
k �T

k (78)

6

Analysis

Xf
k =
⌦
xf(1)

k , . . . ,xf(N)
k

↵
(64)

P̌f
k =

1

N � 1

N 

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T
(65)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (66)

T :=

⇧

⌥ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(67)

P̌f
k = LkGLT

k (68)

Lk := Xf
kT , G :=

1

N � 1

�
TTT
⇥�1

(69)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (70)

xa
k = xf

k + Ǩk
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Revised T matrix 

Identical transformations require different projection matrix for SEIK: 
 
 
For SEIK:  

	

T subtracts ensemble mean and drops last column 
 
➜  Dependence on order of ensemble members! 
➜  Solution:  

➜  Redefine T: Distribute last member over first N-1 columns 
➜  Also replace      by new  

 

 
New filter formulation: 

 Error Subspace Transform Kalman Filter (ESTKF) 

b. Analysis step of the SEIK filter

The SEIK filter has been introduced by Pham et al. (1998) and was described in more

detail by Pham (2001). This review follows Nerger et al. (2006). The original separation

of the analysis step into the state update (“analysis”) and ensemble transformation (“re-

sampling”) is followed here. The SEIK filter is then explicitly re-formulated as an ensemble

square-root filter analogously to the ETKF in section 2. Quantities that are similar but not

identical to those of the ETKF are marked using a tilde. It is assumed that the forecast

ensemble is identical to that used in the ETKF.

Analysis: The computations of the analysis step update the state estimate and implicitly

update the state covariance matrix from the forecast to the analysis matrix.

In the SEIK filter, the forecast covariance matrix Pf is treated in terms of the forecast

state ensemble Xf by

Pf = LGLT (12)

with

L := Xf T, (13)

G := (m− 1)−1
(

TTT
)−1

. (14)

Here, T̃ is an m × (m − 1) matrix with full rank and zero column sums. Previous studies

have always defined matrix T̃ as

T̃ :=









I(m−1)×(m−1)

01×(m−1)









−
1

m

(

1m×(m−1)

)

(15)

where 0 represents the matrix whose elements are equal to zero and I is the identity. The

elements of the matrix 1 are equal to one. Matrix T̃ implicitly subtracts the ensemble mean

5

transformation, it should be desirable to obtain the same transformation with the SEIK

filter. This goal is achieved by a modification of the SEIK filter that is described in this

section.

The modification of the SEIK filter is motivated by the properties of the matrix Ω.

In general, Ω is an m × (m − 1) matrix that re-generates m ensemble perturbations in

combination with an ensemble transformation matrix of size (m − 1) × (m − 1). For a

deterministic ensemble transformation, a deterministic form Ω̂ can be used whose elements

are defined by:

Ω̂i,j =































1− 1
m

1
1√
m
+1

for i = j, i < m

− 1
m

1
1√
m
+1

for i #= j, i < m

− 1√
m for i = m

(25)

Geometrically, Ω̂ is the Householder matrix associated with the vector m−1/2(1, . . . , 1)T (see

Appendix). Thus, Ω̂ projects vectors in the ensemble space spanned by Xf onto the error

subspace spanned by L. Like T̃, Ω̂ has a full rank and zero column sums. In addition, the

columns of Ω̂ are orthonormal, which is not the case for T̃. Using Ω̂, one can replace Eqns.

(12) – (14) by

Pf = LΩGΩL
T
Ω (26)

and

LΩ := XfΩ̂, (27)

GΩ := (m− 1)−1
(

Ω̂T Ω̂
)−1

= (m− 1)−1I(m−1)×(m−1) . (28)

Now, matrix Ã−1 from Eq. (18) is computed as:

Ã−1
Ω := ρ̃(m− 1)I+ (HLΩ)

TR−1HLΩ. (29)
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13 ESTKF

Init
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N � 1
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T
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Xa
0 =
⌦
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↵
(203)

La
k = Xa

k�; � ⇤ RN⇥N�1 (204)

T̂i,j =

⇧
����⌥

����⌃

1� 1
N

1
1p
N
+1

for i = j, i < N

� 1
N

1
1p
N
+1

for i ⌅= j, i < N

� 1p
N

for i = N

(205)

xa
0 ⇥ xa

0 (206)
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0 :=
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N � 1

N 

l=1

⇤
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0 � xa

0

⌅⇤
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0

⌅T
(207)
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0 :=
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⇤
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k �Xa
k

⌅T
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Xa
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0, . . . ,x
a
0] (209)

Xa
0 =
�
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0, . . . ,x

a
0

⇥
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Forecast

xf(l)
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a(l)
i�1] + �(l)

i (211)
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Redefine T: 
  Subtract ensemble mean 
  Distribute last column over first N-1 columns 
  Use correct scaling to preserve mean 

➜ A deterministic form of      (Householder reflection) 

T-matrix in ESTKF 

Analysis
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�
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With this: 
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Init

xa
0 ⇤ Rn (178)

Pa
0 :=

1

N � 1
L0L

T
0 , L0 ⇤ Rn⇥N�1 (179)

{xa(l)
0 , l = 1, . . . , N} (180)

Xa
0 =
⌦
xa(1)

0 , . . . ,xa(N)
0

↵
(181)

La
k = Xa

k�; � ⇤ RN⇥N�1 (182)

Ti,j =

⇧
����⌥

����⌃

1� 1
N

1
1p
N

+1
for i = j, i < N

� 1
N

1
1p
N

+1
for i ⌅= j, i < N

� 1p
N

for i = N

(183)

xa
0 ⇥ xa

0 (184)

P̌a
0 :=

1

N � 1

N 

l=1

⇤
xa(l)

0 � xa
0

⌅⇤
xa(l)

0 � xa
0

⌅T
(185)

P̌a
0 :=

1

N � 1

⇤
Xa

k �Xa
k

⌅⇤
Xa

k �Xa
k

⌅T
(186)

Xa
0 = [xa

0, . . . ,x
a
0] (187)

Xa
0 =
�
xa

0, . . . ,x
a
0

⇥
(188)

Forecast

xf(l)
i = Mi,i�1[x

a(l)
i�1] + �(l)

i (189)

15

T̂i,j



Use redefined T (= deterministic    )  

Forecast Covariance: 
 

    With  

Matrix U simplifies to: 

New filter - ESTKF 
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(inverse of error covariance matrix in error space) 
 
Ensemble transformation 

➜  Consistent projections between state space and error space 
➜  Transformation identical to  ETKF (same eigenvalues/vectors) 
➜  Cheaper than ETKF 
➜  Not more expensive than SEIK 
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k = xa

k +
⇥

N � 1 LkC
T
k �T

k,l (77)

Xa
k = Xa

k +
⇥

N � 1 LkC
T
k �T

k (78)

6

Lk := Xf
kT̂

Xa
k = X

a
k +

p
N � 1Xf

k T̂CT
k T̂

T



T-matrix in SEIK and ESTKF 

  Efficient implementation as subtraction of means & last 
column 

  ETKF: improve compute performance using a matrix T 

SEIK: 

Analysis

Xf
k =
�
xf(1)
k , . . . ,xf(N)

k

✏
(76)

P̌f
k =

1

N � 1

N�

l=1

⇤
xf(l)
k � xf

k

⌅⇤
xf(l)
k � xf

k

⌅T
(77)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (78)

T :=

⇧

↵ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(79)

Ti,j =

⌥
⌦⌦⌦ 

⌦⌦⌦�

1� 1
N for i = j, i < N

� 1
N for i ⇥= j, i < N

� 1
N for i = N

(80)

P̌f
k = LkGLT

k (81)

Lk := Xf
kT , G :=

1

N � 1

�
TTT

⇥�1
(82)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (83)

xa
k = xf

k + Ǩk

⇤
yo
k �Hk

�
xf
k

✏ ⌅
(84)

xa
k = xf

k + Ǩk

⇤
yo
k �Hkx

f
k

⌅
(85)

Ǩk = LkUkL
T
kH

T
kRk

�1 (86)

P̌a
k = LkUkL

T
k (87)

Re-Init

P̌a
k = LkC

T
k�

T
k �kCkL

T
k (88)

C�1
k (C�1

k )T = U�1
k (89)

xa(l)
k = xa

k +
⇤
N � 1 LkC

T
k�

T
k,l (90)

Xa
k = Xa

k +
⇤
N � 1 LkC

T
k�

T
k (91)
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ESTKF:  
 
 

13 ESTKF

Init

xa
0 ⇤ Rn (200)

Pa
0 :=

1

N � 1
L0L

T
0 , L0 ⇤ Rn⇥N�1 (201)

{xa(l)
0 , l = 1, . . . , N} (202)

Xa
0 =
⌦
xa(1)
0 , . . . ,xa(N)

0

↵
(203)

La
k = Xa

k�; � ⇤ RN⇥N�1 (204)

T̂i,j =

⇧
����⌥

����⌃

1� 1
N

1
1p
N
+1

for i = j, i < N

� 1
N

1
1p
N
+1

for i ⌅= j, i < N

� 1p
N

for i = N

(205)

xa
0 ⇥ xa

0 (206)

P̌a
0 :=

1

N � 1

N 

l=1

⇤
xa(l)
0 � xa

0

⌅⇤
xa(l)
0 � xa

0

⌅T
(207)

P̌a
0 :=

1

N � 1

⇤
Xa

k �Xa
k

⌅⇤
Xa

k �Xa
k

⌅T
(208)

Xa
0 = [xa

0, . . . ,x
a
0] (209)

Xa
0 =
�
xa
0, . . . ,x

a
0

⇥
(210)

Forecast

xf(l)
i = Mi,i�1[x

a(l)
i�1] + �(l)

i (211)
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ESTKF: New filter with identical transformation as ETKF 

 

New filter ESTKF: 
➜  Consistent projections between state space and error space 
➜  Minimum Transformation identical to  ETKF (or LETKF)  

(same eigenvalues/vectors) 
➜  Slightly cheaper than ETKF 

(because of computations in N-1) 
➜  Not more expensive than SEIK 
➜  Transformation independent of ensemble order 
➜  Direct access to error subspace 
➜  smaller condition number of transform matrix A (U in ESTKF) 
 
 

L. Nerger et al., Monthly Weather Review 140 (2012) 2335-2345 



Nonlinearity 

and current developments 



Data Assimilation – an estimation problem 

Probability densities:              , 

Likelihood of y given x:	



€ 

p (xi)

p (yi|xi)

p (yi)

p (xi|yi) =
p (yi|xi) p (xi)

p (yi)

Bayes law: Probability density of x given y 

•  This is too costly (if you don’t have a tiny model) 
•  We don’t even know the initial error distributions 

Solution of the full problem is principally known 
1.  Time evolution of              given by Fokker-Planck     

(forward Kolmogorov) equation 

2.  Apply Bayes law at time instance or interval  

p (xi)



Data Assimilation – Probabilistic Assumptions 

Assume Gaussian distributions:  

 
 

€ 

N
�
µ,�2

�
= a e

✓
� (x�µ)2

2�2

◆

−2 0 2 4Observations:  

State:  N (x,P)

N (y,R)

Posterior state distribution 

 

With 

 

p(xi|Yi) ⇠ ae�J(x)

J(x) = (x� x

b)TP�1(x� x

b) + (y �H [x])TR�1(y �H [x])

Mean state and variance fully describe the solution 



Kalman Filter (Kalman, 1960) 
Forecast: 

State propagation 
 

Propagation of error estimate 

 

€ 

xi = Mi�1,ixi�1 + ✏i

Pf
i = Mi�1,iP

a
i�1(Mi�1,i)

T +Qi�1

Analysis at time tk: 

State update 
 

Update of error estimate 

 

with “Kalman gain” 

xa
k = xf

k +Kk

⇣
yk �Hkx

f
k

⌘

Pa
k = (I�KkHk)P

f
k

Kk = Pf
kH

T
k

⇣
HkP

f
kH

T
k +Rk

⌘�1

This assumes Gaussian errors of 
state, model, and observations! 



  Method: 4D-Var 

1. Formulate “cost function” (least squares) 

                         

2. Minimize cost by varying       (initial state) 
     

•  We assume that a single state estimate is sufficient 

•  We do not explicitly require Gaussian errors  

With linear model: 

                   linear function of        (theoretically solvable in one step) 
 
dJ/dx0 x0

J(x) =
kX

i=1

�
xi � x

b
i

�T
C

�
xi � x

b
i

�
+ (yi �Hxi)

T
D (yi �Hxi)J(x0)

Variational Data Assimilation 

                         Background                    Observation 

x0

With nonlinear model: 
                   no longer a linear function of        ! 
  minimization might need many iterations 
  Result is different from Kalman filter 

x0dJ/dx0
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Optimality of the Kalman Filter 

Kalman filter was derived to minimize variance 

Kalman filter is optimal only if 

•  Covariance matrices are known  
(they are not in high-dimensional systems) 

•  Errors have normal distribution 

With a nonlinear model 

•  Initial Gaussianity not preserved by nonlinear transformation 
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EnKF: Effect of non-Gaussian distributions 

Ensemble estimates: 

Mean 

•  biased if distribution is skewed 

•  not at maximum of distribution 

Error variance 

•  not a sufficient estimate of error  
(if used alone) 

•  over- or underestimates  
width of distribution ➜ Too big or too small state  

     correction 
➜ Sub-optimal corrections in analysis step 
➜ Nonetheless:  

•  EnKFs work successfully well in most cases 
•  Compares well to 4D-Var (e.g. Buehner et al. 2005) 
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➜ Biased analysis estimate 



Some recent methods to handle non-Gaussianity 

Gaussian Anamorphosis (Bertino et al. 2003) 

•  Transform         into approx. Gaussian distribution 

•  Used in several studies, e.g. in biogeochemistry  
(Simon/Bertino 2009, Doron et al. 2011) 

•  Gaussianity of cross-covariances might be problematic 

Xf
k

Rank histogram filter (Anderson 2010) 

•  Use a rank histogram to weight ensemble members for their 
departure from prescribed Gaussian 



  Motivation – if you already run a 4D-Var system: 
  Stick to 4D-Var 
  Improve it by combination with ensembles  
 

Cost function 

J(x) =
kX

i=1

�
xi � x

b
i

�T
C

�
xi � x

b
i

�
+ (yi �Hxi)

T
D (yi �Hxi)J(x0)

Hybrid Ensemble-Variational DA 

                         Background                    Observation 

Now, use ensemble estimate: 

 
•  Time – and flow – dependent 
•  Ensemble can also help avoiding adjoint model (e.g. Liu et al. 2008) 
•  Low rank of C: Localization likely required (e.g. Buehner et al. 2010)  

C�1 = P̃f
i

C D



Alternative uses of Bayes law 

€ 

p (xi|yi) =
p (yi|xi) p (xi)

p (yi)

Bayes law: Probability density of x given y 

Represent             by ensemble: p(xi)

p(xi|yi) =
NX

j=1

�(xi � x

(j)
i )

Kalman filter:  
assume normal distributions 

compute new ensemble states 

x

a(j)
i ; j = 1, . . . , N

p(yi|x(j)
i )

p(yi)

p(yi|x(j)
i )

p(yi)

Alternative: 
keep ensemble states with weights 

w(j) =
p(yi|x(j)

i )

p(yi)

p(xi) =
1

N

NX

j=1

�(xi � x

(j)
i )



                      : Likelihood of observations given state 

Typical assumption: Gaussian observation errors 

Computation of weights: 

Ensemble weights – Particle Filter 

€ 

Analysis probability density 

p(xi|yi) =
NX

j=1

�(xi � x

(j)
i )

w(j) =
p(yi|x(j)

i )

p(yi)

w(j)

           : Normalization constant (sum of weights = 1) p(yi)

p(yi|x(j)
i )

p(yi|x(j)
i ) = A exp

✓
�1

2

⇣
yi �Hx

(j)
i

⌘T
R

�1
⇣
yi �Hx

(j)
i

⌘◆

Not an inverse problem any more, but an estimation problem 

(A single number for a single particle j) 



Particle Filter (PF) 

€ 

Provides analysis probability distribution as 
•  ensemble states (particles)  
•  associated weights 

No assumption of Gaussian errors for model state!  

Issues: 

Small systems 

• Many particles have low weight  
 

➜ large ensemble  
➜ resampling for uniform weights (e.g. Gordon et al. 1993) 

High-dimensional systems 

• Almost all particles have low weight 
 

➜ PF with proposal density (van Leeuwen 2009, 2010) 
➜ Implicit particle filter (Chorin & Tu 2009) 
Currently an active research area 



Review 



Ensemble-based Kalman Filters 
First formulated by G. Evensen (EnKF, 1994) 
Kalman filter: express probability distributions by mean  

and covariance matrix 
EnKFs: Use ensembles to represent probability distributions  

observation 

time 0 time 1 time 2 

analysis 

ensemble 
forecast 

ensemble 
transformation 

initial 
sampling 

state 
estimate 

forecast Looks 
simple! 

BUT: 

There are 
many 

possible 
choices! 



What we are looking for… 

  Goal: Find the assimilation method with 
  smallest estimation error 
  most accurate error estimate 
  least computational cost 
  least tuning  

  Want to understand and improve performance 
(There is no sound mathematical basis yet) 

  Difficulty: 

  Optimality of Kalman filter well known for linear systems 

  No optimality for non-linear systems 

➜  limited analytical possibilities 

➜  apply methods to test problems 

€ 



Outlook – practical aspects 

Data assimilation with ensemble-based Kalman filters is costly!  

Memory: Huge amount of memory required 
  (model fields and ensemble matrix)  

Computing: Huge requirement of computing time 
  (ensemble integrations) 

Parallelism: Natural parallelism of ensemble integration exists  
  (needs to be implemented) 

„Fixes“: Filter algorithms do not work in their pure form 
  („fixes“ and tuning are needed) 
  because Kalman filter optimal only in linear case 

+ case studies 



Thank you! 

 


