Ensemble smoothing
under the influence of nonlinearity

Lars Nerger
Alfred Wegener Institute for Polar and Marine Research
Bremerhaven, Germany

Svenja Schulte and Angelika Bunse-Gerstner
University of Bremen, Germany
Outline

- Ensemble smoothers
- Influence of nonlinearity
- Influence of localization
- Smoothing in a real model
Ensemble Smoothers
Smoothers

Filters (e.g. Ensemble Kalman filter)
- Estimate using observations until analysis time

Smoothers perform retrospective analysis
- Use future observations for estimation in the past

Example applications:
- Reanalysis
- Parameter estimation
Ensemble smoothing

- Smoothing is very simple (ensemble matrix $X_{k|k-1}^f$)
 (see e.g. Evensen, 2003)

 Filter: $X_{k|k}^a = X_{k|k-1}^f C_k$
 Smoother: $X_{k-1|k}^a = X_{k-1|k-1}^a C_k$

- Ensemble smoothing is cheap
 - e.g. E. Kalnay: “no-cost smoother”
 - weight matrix already computed in filter
 - just recombine previous ensemble states
 (actually the most costly part of the filter)
 - but: smoothing is recursive – application of each C_k
 for all previous times within lag
Smoother is optimal for linear systems:

- Forecast of smoothed state = filter analysis at later time

\[
X_{i,k}^a = X_{i,i}^a \prod_{j=i+1}^{k} C_j
\]

- Based on ensemble cross-correlation between two time instances

\[
\overline{x}_{i,k}^a = \overline{x}_{i,k-1}^a + X_{i,k-1}^{Ia} \left(X_{k,k}^{Ia} \right)^T E
\]

- Each additional lag reduces error
 (if covariances are correctly estimated, Cohn et al. 1994)

(Ensemble perturbation matrix \(X' = X - \bar{X} \))
Smoother and Nonlinearity
Optimality doesn’t hold with nonlinear systems!

\[
\overline{x_{i+1}^a} = \overline{x_i^a} + \dot{X}_i^a \left(X_{i+1|i+1}^a \right)^T \tilde{E}
\]

What is the effect of the nonlinearity?

Do ensembles just decorrelate? (mentioned e.g. by Cosme et al. 2010)

Consider smoother performance relative to filter (Smother reduces estimation error from the filter)
Numerical study with Lorenz-96

- Cheap and small model (state dimension 40)
- Local and global filters possible
- Nonlinearity controlled by forcing parameter F
 - Up to $F=4$: periodic waves; perturbations damped
 - $F>4$: non-periodic
- Nonlinearity of assimilation also influenced by forecast length
- Experiments over 20,000 time steps
- Use smoother with ESTKF (Nerger et al., 2012)
- Tune covariance inflation for minimal RMS errors
- Implemented in open source assimilation software PDAF (http://pdaf.awi.de)
The ESTKF: First compare ETKF and SEIK

Square root of covariance matrix (ensemble size N, state dim n)

$$Z = X^f T, \quad P^f = ZZ^T$$

Transformation matrix in ensemble space (small matrix)

$$A = \left(G + (HZ)^T R^{-1} HZ\right)^{-1}$$

Analysis state covariance matrix

$$P^a = ZAZ^T$$

Ensemble transformation based on square root of A

$$X^a \sim ZL, \quad LL^T = A$$

Very efficient:
Transformation matrix computed in space of dim. N or $N-1$

The T matrix

Matrix T projects onto the error space spanned by ensemble

SEIK and ETKF use different projections T
\[Z = X^f T \]

For identical forecast ensembles both filters
- yield identical analysis state
- perform slightly different ensemble transformations
- also: SEIK is slightly faster than ETKF

- ETKF provides minimum transformation
 - desirable for least disturbing ensemble states

- How to get minimum transformation into SEIK?
Error Subspace Transform Kalman Filter (ESTKF)

Combine advantages of SEIK and ETKF

Redefine T:
1. Remove ensemble mean from all columns
2. Subtract fraction of last column from all others
3. Drop last column

Features of the ESTKF:
• Same ensemble transformation as ETKF
• Slightly cheaper computations
• Direct access to ensemble-spanned error space

T-matrix in SEIK and ESTKF

SEIK:

\[
T_{i,j} = \begin{cases}
1 - \frac{1}{N} & \text{for } i = j, i < N \\
-\frac{1}{N} & \text{for } i \neq j, i < N \\
-\frac{1}{N} & \text{for } i = N
\end{cases}
\]

ESTKF:

\[
\hat{T}_{i,j} = \begin{cases}
1 - \frac{1}{N} - \frac{1}{\sqrt{N}} + 1 & \text{for } i = j, i < N \\
-\frac{1}{N} - \frac{1}{\sqrt{N}} + 1 & \text{for } i \neq j, i < N \\
-\frac{1}{\sqrt{N}} & \text{for } i = N
\end{cases}
\]

- Efficient implementation as subtraction of means & last column
- ETKF: improve compute performance using a matrix T
Effect of forcing on the smoother – optimal lag

- Assimilate at each time step
- Ensemble size $N=34$
- Global ESTKF
- Inflation tuned for minimal RMS errors (account for inflation in smoother)

- Up to $F=4$
 - very small RMS errors
- $F>4$
 - Strong growth in RMS
 - Clear impact of smoother
 - Optimal lag: minimal RMS error (red lines)
Stronger nonlinearity

- \(F=7 \)
- Forecast length: 9 steps
- Clear error minimum at lag=2 analysis steps → the optimal lag
- Error increase beyond optimal lag (here 50%!) → spurious correlations

![Graph showing relative error reduction by smoother over analysis steps.](image)

Relative error reduction by smoother

- Optimal lag
- 50% less smoother effect
Impact of smoothing

- Optimal lag (minimal RMS error)
 - Behavior similar to error-doubling time
- RMS error at optimal lag
 - Smoother reduces error by 50% for all F>4
- Effect of sampling errors visible with smaller ensemble
Vary forecast length (F=7)

- Forecast length = time steps over which nonlinearity acts on ensemble
- Longer forecasts:
 - Optimal lag shrinks
 - RMS errors grow for filter and smoother
 - Improvement by smoother shrinks (depends on forcing strength)
Improvement by smoother depends on forcing strength

- Small forcing (F=5)
 - Approx. constant improvement by smoother
- Larger forcing (F=7)
 - Decreasing smoother effect
Impact of Localization
Domain & observation localization

Local Analysis:

- Update small regions (like single vertical columns)
- Observation localizations: Observations weighted according to distance
- Consider only observations with weight >0
- State update and ensemble transformation fully local

Similar to localization in LETKF (e.g. Hunt et al, 2007)
Influence of Localization on Smoothing

- Reduced RMS errors from filter and smoother by localization
 - localization is useful even for N=34
- Localization increases optimal lag
 - more observational information useable

Lars Nerger – Nonlinearity and smoothing
Influence of Localization on Smoothing (2)

- Use filter error as baseline
- Smoother results in additional reduction
- Smoother is more efficient with localization than for global filter
Smoothing with localization – smaller ensembles

- Larger effect of localization with smaller ensembles
- Optimal lag shrinks (impact of sampling errors)
- Localization radius for maximum optimal lag slightly larger than for minimum RMS error
Smooother error reduction – smaller ensembles

- Smoother impact grows with ensemble size
- Effect of sampling errors
- RMS error from smoother decreases faster than from filter
 - Amplification effect (multiple use of matrix C)

Lars Nerger – Nonlinearity and smoothing
Optimal localization radius

Error reduction by smoother

Mean RMS error of optimal lag

Same localization radius for

- minimum filter RMS error
- largest smoother impact

→ No re-tuning of localization radius for optimal smoothing!

Lars Nerger – Nonlinearity and smoothing
Smoothing in a Real Model
Global ocean model

FESOM (Finite Element Sea-ice Ocean model, Danilov et al. 2004)

Global configuration
- 1.3° resolution, 40 levels
- horizontal refinement at equator
- state vector size 10^7
- weak nonlinearity (not easy to change)

Twin experiments with sea surface height data
- ensemble size 32
- assimilate each 10th day over 1 year
- ESTKF with smoother extension and localization (using PDAF environment as single program)
- inflation tuned for optimal performance ($\rho=0.9$)
- run using 2048 processor cores
 (Timings: forecasts 8800s, filter+smoother 200s)
Effect of smoothing on global model

Typical behavior

- RMSe reduced by smoother

Error reductions:
 - ~15% at initial time
 - ~8% over the year

Large impact of each lag up to 60 days

Further reduction over full experiment
 (optimal lag = 350 days)
Multivariate effect of smoothing – 3D fields

3D fields:
- Multivariate impact smaller & specific for each field
- Optimal lag specific for field
- Optimal lag smaller than for SSH (e.g. temperature directly influenced by atmospheric forcing, Brusdal et al. 2003)
Multivariate effect of smoothing – surface fields

Ocean surface:

- Relative smoother impact not larger than for full 3D
- Deterioration for meridional velocity at long lags

→ What is the optimal lag for multivariate assimilation?
Conclusion

- Multivariate assimilation:
 - Lag specific for field
 - Choose overall optimal lag or separate lags
 - Best filter configuration also good for smoother

- Nonlinearity:
 - Introduces spurious correlations in smoother
 - Error increase beyond optimal lag
 - Optimal lag: few times error doubling time

- Localization:
 - Increases smoother impact
 - Increases optimal lag

Thank you!
Web-Resources

www.data-assimilation.net

pdaf.awi.de

Lars.Nerger@awi.de – Nonlinearity and smoothing