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This study investigated the incorporation of DOM from seawater into b2 day-old sea ice in tanks filled with
seawater alone or amended with DOM extracted from the microalga, Chlorella vulgaris. Optical properties,
including chromophoric DOM (CDOM) absorption and fluorescence, as well as concentrations of dissolved
organic carbon (DOC), dissolved organic nitrogen (DON), dissolved carbohydrates (dCHOs) and dissolved
uronic acids (dUAs) were measured. Enrichment factors (EFs), calculated from salinity-normalized
concentrations of DOM in bulk ice, brine and frost flowers relative to under-ice water, were generally N1.
The enrichment factors varied for different DOM fractions: EFs were the lowest for humic-like DOM
(1.0–1.39) and highest for amino acid-like DOM (1.10–3.94). Enrichment was generally highest in frost
flowers with there being less enrichment in bulk ice and brine. Size exclusion chromatography indicated
that there was a shift towards smaller molecules in the molecular size distribution of DOM in the samples col-
lected from newly formed ice compared to seawater. Spectral slope coefficients did not reveal any consistent
differences between seawater and ice samples. We conclude that DOM is incorporated to sea ice relatively
more than inorganic solutes during initial formation of sea ice and the degree of the enrichment depends
on the chemical composition of DOM.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

When seawater freezes and sea ice forms, dissolved organic and
inorganic matter is excluded from the crystalline ice structure and
concentrates in the liquid brine phase. Brine may then drain into the
water below, be involved in the formation of frost flowers on top of
the ice, or remain trapped in brine channels and pockets within the
sea ice (Petrich and Eicken, 2010). The quantity and chemical character-
istics of brine affect both the spatial and temporal variabilities in the
physico-chemical characteristics of sea ice, as well as the habitats for
biological assemblages within ice (Thomas and Dieckmann, 2002).
Dissolved organic matter (DOM) in brine is a major source of energy
and nutrients for heterotrophic organisms within ice, and also signifi-
cantly influences the optical properties of sea ice (Thomas and
+358 919158257.
r).

rights reserved.
Dieckmann, 2010 and citations therein). When chromophoric DOM
(CDOM) in brine absorbs ultraviolet radiation (UVR) and photosynthet-
ically active solar radiation, it influences the energy budget of ice, the
light availability and UVR exposure of organisms within and below
the ice (Uusikivi et al., 2010).

In sea ice brines the concentration of DOMvaries depending on brine
volume (Petrich and Eicken, 2010; Thomas and Dieckmann, 2010): de-
creasing temperatures reduce the volume of brine and in turn increase
the salinity and the concentrations of DOM in the brines above those
in seawater. In contrast, when bulk ice, consisting of pure ice crystals
and brine is melted, the concentrations of solutes (e.g., salinity and
DOM) are lower in melted bulk ice than in seawater, because brine
makes up only a small fraction of the total volume of ice. In order to as-
sess the changes in the quantity of DOM in sea ice, without the effect of
varying temperatures or sampling methods (brine vs. melted ice), the
concentration of DOM in sea ice is frequently normalized to salinity
(Giannelli et al., 2001; Granskog et al., 2004; Patsayeva et al., 2004;
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Fig. 1. The experimental mesocosms floating in an environmentally controlled ice tank
of the Hamburg Ship Model Basin. The foam pads on some of the mesocosms mark the
compromised ones after they have been sampled. Note that the lights were on only
during sampling (at maximum 2 h per day) and the rest of the time, the tanks were
in darkness.
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Müller et al., 2011). This has revealed that the DOM content of sea ice
may includeDOM fromalgal and bacterial production in sea ice (autoch-
thonous; Underwood et al., 2010; Aslam et al., 2012a) in addition to that
what is trapped in ice during its formation (allochthonous, Stedmon et
al., 2007, 2011).

Previously studies have suggested that DOM does not necessarily
behave conservatively during formation of sea ice compared to
other dissolved constituents such as inorganic ions. As a consequence
the concentration of salinity normalized DOM can be higher (or
enriched) in sea ice compared with the under-ice water (Giannelli
et al., 2001; Granskog et al., 2004; Patsayeva et al., 2004; Müller et
al., 2011). Despite these findings relatively little is known about the
mechanisms of enrichment during ice formation. One explanation is
that the enrichment of DOM depends on different diffusion rates of
solutes to brine leaving sea ice through gravity drainage (Gross et
al., 1987; Reeburgh and Springer-Young, 1983). Such gravity drainage
of brine may preferentially remove most small molecules, such as
inorganic ions, which diffuse at faster rates than DOM molecules
with larger size and lower diffusion rates (Granskog et al., 2004;
Vancoppenolle et al., 2010; Maus et al., 2011). Another explanation
suggests that bacterial and algal extracellular polymeric substances
(EPSs) form gel-like structures that selectively retain DOM in sea ice
(Raymond et al., 2007; Underwood et al., 2010; Krembs et al.,
2011). Therefore, experimental evidence is needed to resolve the
process of the enrichment of DOM during ice formation, especially
considering the enormous volume of sea ice that forms, consolidates
and subsequently melts in polar and sub-polar oceans and seas.

The present study addresses a potential enrichment of DOM during
thefirst 48 h of ice growth in 1.2 m3 experimentalmesocosms placed in
a large environmentally controlled ice tank facility (at the Hamburg
Ship Model Basin HSVA: http://www.hsva.de). Absorption and fluores-
cence of CDOM, the concentration of dissolved organic carbon (DOC),
dissolved organic nitrogen (DON) and dissolved carbohydrates
(dCHOs) and uronic acids (dUAs) were analyzed from seawater, melted
bulk ice, brine and frost flowers to quantify different DOM fractions.
Changes in the optical quality and the molecular size of DOM during
the formation of ice were investigated using analyses of the spectral
slope coefficients and size-exclusion chromatography of the CDOM.
The seawater used was collected from the North Sea, but in order to
change both the quantitative and qualitative nature of the DOM, high
concentrations of DOM derived from disrupted algal cells were added
to half of the mesocosms. This enabled us to address the question of
whether or not the quality of DOM affects the incorporation into sea
ice. Aslamet al. (2012b) used the sameexperiment to investigate the ef-
fect of algal-DOM addition on bacterial communities and the produc-
tion and dynamics of EPS. They described an incorporation of DOC and
POC from the under-ice water into sea ice and the following change in
the bacterial growth. The focus of the present study is to evaluate the
abiotic incorporation of DOM from seawater to sea ice during the initial
stages of ice growth where there was a minimal chance for the
biological transformation of DOM (Aslam et al., 2012b). We describe a
novel combination of methods that describe quantitative and qualita-
tive changes of DOM during the initial ice formation. Understanding
physico-biogeochemical processes during the ice formation are
necessary to evaluate changes in the biomass, species composition
and biochemistry of sea ice and help to estimate future conditions.

2. Materials and methods

2.1. Experimental design and sampling routine

North Sea water was sampled by ship near Helgoland (54° 11′ N,
7° 55′ E) and transported in a cleaned (food-quality) road tanker to
the HSVA test basin within 24 h, at a water temperature of 13 ± 1 °C.
Algal organic matter was produced by melting a frozen paste of fresh-
water algae Chlorella vulgaris (Varicon Aqua Ltd, U.K.) in artificial
seawater with a salinity of 34. The suspension was sonicated in
500 ml batches at a sample temperature of 0 °C using a Branson 450
Digital Sonifier (Branson Ultrasonics Corporation, Danbury, CT, USA).
All suspensionswere pooled and centrifuged at 12,235 g in a Beckmann
Coulter centrifuge. The supernatant (algal-DOM) was collected and
kept frozen (−18 °C) until use. In this stock solution, the concentration
of algal-derived DOC was 550 mmol L−1.

The experimental setup consisted of 18 polyethylene (PE) bags
supported by floating frames in an environmental test basin (Fig. 1).
Each mesocosm was filled with 1.2 m3 of unfiltered North Sea water
on September 30th 2009. 900 ml of the algal-DOM of the stock solu-
tion was added to nine of the mesocosms (hereafter called SW + A),
while the remaining mesocosms with just North Sea water are here-
after referred to as SW. All mesocosms were left to cool and mix (each
mesocosm had a simple submerged pump installed), and initial
samples were collected on the first sampling day (d0) on the 2nd of
October after more than 24 h of mixing. Freezing was initiated on d3
by spraying a fine mist of Milli-Q water (b1 L over whole environmen-
tal test basin) over the water surface (Giannelli et al., 2001) after the air
temperature had been lowered to −13 °C, which was subsequently
maintained for the rest of the experiment (±2 °C). A polyvinyl chloride
(PVC) tube was installed in each bag which was cleared of ice each day
tomaintain pressure equilibrium and ensure that the water was always
in contact with the bottom of the ice, as well as to provide a convenient
portal through which to sample under-ice water.

Water samples were collected from all mesocosms on d3, and
thereafter water, ice and brine samples were collected from randomly
chosen mesocosms on d4 and d5 with 1 to 3 replicates per treatment
and sampling day. Each mesocosmwas only sampled for ice and brine
on one occasion, as the sampling compromised the integrity of the ice
making the sampled mesocosm redundant (Fig. 1). Frost flowers
were collected on d5. For the bulk ice samples, ice blocks were
sawed from the ice sheet, floated carefully away from the remaining
ice and sectioned within a minute into 2–3 layers depending on the
ice thickness. This technique was employed to minimize the losses
of brine that are characteristic of normal ice coring. The saw was
cleaned before each use by sawing through other ice from the same
depth horizon. The ice was melted at room temperature within 12 h
in acid-washed PE buckets with the temperature of melt water
never reaching above 0 °C. Since the present study focused on the
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whole ice layer in comparison to under-ice water, we calculated a
mean of measurements from all vertical ice layers in each mesocosm.

For brine sampling, sack holes (described by Papadimitriou et al.,
2007) were drilled to a 6 cm depth with a Cherepanov ice ring of
20 cm diameter. Within 30 min after the drilling, brine was collected
from each sackhole using cleaned Teflon tubing and 20 ml syringes
(without rubber parts) and these samples were processed in b4 h.
Frost flowers were collected using the rim of an acid-washed PE
container for scraping them from the ice surface. The frost flowers
were melted at room temperature within 1 h, with the melt water
never rising above 0 °C, and again these samples processed in b 4 h.

2.2. Sample treatment and analyses

Temperatures of water and brine were measured with a recently
calibrated Testo® 110 thermometer. Temperatures ranged from 0.6 °C
on d0 to −1.9 °C on d5 in water and from −3.1 °C to −6 °C in the
brines. Optical properties of DOM were measured from 0.2 μm fil-
tered (Millex-syringe filters; Millipore®) samples. Samples for a
liquid chromatography–size exclusion chromatography (LC–SEC)
analysis were stored in pre-combusted glass scintillation vials in
the dark at 4 °C. Samples for DOC and DON were filtered through
pre-combusted Whatman® GF/F filters and the filtrates were kept
at −20 °C until analyses. Salinity was measured using a SEMAT®
Cond 315i/SET salinometer with a WTW Tetracon 325 probe at
room temperature (Aslam et al., 2012b). DOC was measured by
high temperature combustion on a MQ1000 TOC analyzer (Qian
and Mopper, 1996), following the methods of Norman et al. (2011).
DON was calculated by the subtraction of nitrate and ammonium
from the total dissolved nitrogen (TDN). TDNwas measured by stan-
dard colorimetric methodology (Grasshoff et al., 1983) on a LACHAT
Instruments Quick-Chem 8000 autoanalyser (see Papadimitriou et
al. (2007) for further details). Samples for dissolved carbohydrate
(dCHO) analysis were desalted by dialysis (8 kDa membrane) against
Milli-Q water (final salinity b 1), freeze dried and stored at −20 °C.
Concentrations of dCHO were determined according to Underwood et
al. (2010) and Aslam et al. (2012b). A standard carbazole assay was
used to measure the concentration of dUA (Bellinger et al., 2005;
Aslam et al., 2012b).

Absorption spectra of CDOM were measured in a 10 cm quartz
cell over a 200 to 700 nm range in 1 nm increments and a slit
width of 2 nm with a Shimadzu UV-2101 spectrophotometer. After
the samples had warmed to room temperature, three replicates
of each sample were measured against ultrapure water (MilliQ,
resistivity = 18.2 MΩ∙cm) blank. CDOM was described by the
absorption coefficient, a (m−1), at wavelength λ (nm) that was
calculated using

aCDOM;λ ¼ 2:303Aλ0:1
−1

; ð1Þ

where Aλ is the mean absorbance at wavelength λ.
The spectral slope coefficient S (μm−1) for the ranges 250–450 nm,

275–295 nmand 350–400 nmwas calculated by using a nonlinearfit in
Matlab based on the following equation (Stedmon et al., 2000):

aCDOM;λ ¼ aλ;0e
S λ;0‐λð Þ

; ð2Þ

where aλ,0 is the absorption coefficient at thewavelengthλ,0 describing
the shortest end of spectral range. The coefficients of determination
for the fits were N0.99. The slope ratio (SR) was the ratio of S275–295 to
S350–400 (Helms et al., 2008).

Fluorescencewasmeasured in a 1 cmquartz cell using a Varian Cary
Eclipse spectrofluorometer with an integration time of 0.1 s and a scan
speed of 1200 nm min−1. The voltages changed depending on the
concentration of the sample between 850 and 1000 V but were
corrected later by calibration to the Raman scatter signal (Lawaetz
and Stedmon, 2009). Excitation ranged from 240 to 450 nm in 5 nm in-
crements and emission from 300 to 550 nmwith 2 nm increments. The
slit width was set to 5 nm for excitation and emission scans. Measure-
ments and instrumental corrections were done according to Stedmon
and Bro (2008). Excitation emissionmatrices (EEMs) of all 116 samples
were characterized by 6 fluorescent components using parallel factor
analysis (PARAFAC) and the DOMFluor toolbox (Stedmon and Bro,
2008). The components were validated by split half analysis and ran-
dom initialization. The fluorescence intensities in the subsequent data
analysis refer to the maxima fluorescence signals of each component
(Fmax).

The molecular size distribution of CDOM was analyzed by LC–SEC
as described by Müller et al. (2011) using a TSK G3000SWxl column
(7.8 mm × 30 cm, 250 Å pore size, 5 μm particle size) and a TSK
guard column (7.5 mm × 7.5 mm), with a KH2PO4 (2.7 g L−1) and
Na2HPO4·2H2O (3.56 g L−1, pH 6.85) buffer. Measurements were
performed using absorbance detection at 254 nm with a Hewlett
Packard 1100 series high-performance liquid chromatography
(HPLC) instrument. All samples were diluted with ion-exchanged
Milli-Q water to a final salinity of 9 to avoid a shift in molecular size
due to changes in salinity (Specht and Frimmel, 2000; Her et al.,
2002). A baseline correction was performed by normalizing all chro-
matograms to the absorption at the retention time (Rt) of 12 min.
Salinity-normalization was done by setting the salinity-dependent
maximal value of each sample to 1 (Minor et al., 2002). Rts were
7.7 min for Blue Dextran 2000 (2 × 106 g mol−1), 16.3 min for tyro-
sine (181.2 g mol−1), 16.5 min for phenylalanine (165.1 g mol−1)
and between 12 and 15.5 min for Nordic fulvic acid (Müller et al.,
2011). We limited our interest in the range of Rt from 13.5 to
15.5 min representing the molecular size fraction of fulvic acids.

Salinity-normalized concentrations of DOM fractions collected
from different compartments of ice or water (Xnorm,i) were calculated
by:

Xnorm;i ¼
Xi

Si
33; ð3Þ

where X represents the DOM fraction (DOC, DON, dCHO, dUA, CDOM
or maximum intensities of fluorescent components), the subscript i
represents the sample type (water, bulk ice, brine or frost flowers)
and 33 was the initial salinity of North Sea water.

The enrichment factor of DOM fractions, EF(X,i), was calculated
by:

EF X; ið Þ ¼ Xnorm;i

Xnorm;water
; ð4Þ

where Xnorm,i and Xnorm,water are the salinity normalized concentra-
tions of the DOM fractions in each sample type and in water below
the ice, respectively. EF(X) notation refers to DOM fractions specified
by X without referring to any specific type of sample collected from
ice. If EF N 1, a DOM fraction in ice is considered to be enriched and
conversely a EF b 1 represents depletion relative to seawater.

The main aim in this study was to assess potential changes in DOM
during its incorporation to newly formed sea ice. For this assessment
we compared samples collected from sea ice (bulk ice, brine or frost
flowers) to samples collected from water using t-tests for indepen-
dent samples (SPSS; p ≤ 0.05).

3. Results

3.1. Characterization of initial water

The addition of algal-DOM to North Sea water changed the absorp-
tion spectrum of CDOM, the excitation-emission matrix (EEM) of fluo-
rescent DOM and the size distribution of humic-like dissolved organic
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matter (Fig. 2). The algal-DOM had little influence on CDOM absorption
at wavelengths above 300 nm, except for a small peak at 410 nm (14%
increase), however, the absorption at 255 nm doubled (Fig. 2a). The
spectral slope coefficient S250–450 was 18.1 ± 0.3 μm−1 (± refers to
standard error throughout the results) in the SW mesocosms, but
higher (26.6 ± 0.1 μm−1) in the mesocosms with algal-DOM, because
the lower spectral range of S250–450 matched an absorption peak of
algal-DOM (Fig. 2a). SR values were 1.19 ± 0.04 in the SW treatment
and 1.96 ± 0.04 in the SW + A-treatment. The addition of algal-
DOM increased the intensity of fluorescence at shorter emission wave-
lengths (Fig. 2b). After the addition of algal-DOM, the size distribution
chromatography showed an increase in the absorbance by 4% at the
retention time of 14.6 (peak 1) and by 22% at the retention time
of 15.2 min (peak 2; Fig. 2c). The molecular size distribution was
therefore shifted towards smaller molecules in the SW + A treatment.
The addition of algal-DOM increased the initial concentrations of
DON from 3.9 ± 0.2 μmol L−1 to 44.1 ±1 μmol L−1. The correspond-
ing change for DOC was from 109.4 ± 3.2 μmol L−1 to 380 ±
5.1 μmol L−1. dCHO concentrations were 25.2 ± 1.3 μmol L−1 and
31.7 ± 1.1 μmol L−1 in the SW- and SW + A treatments, respectively,
Fig. 2. The initial CDOM absorption spectra (a) fluorescence exitation emissionmatrices
(b) and LC–SEC chromatograms (c) in North Sea water alone (SW) and with algal-DOM
added (SW + A). The curves for CDOM (a) and LC–SEC (c) showmeans (n = 7–8). The
standard errors (SEs) of means were less than the thickness of curves.
and the concentrations of dUA were 13.7 ± 0.7 μmol L−1 and 17.6 ±
1.4 μmol L−1 in the SW- and SW + A treatments, respectively.

The PARAFAC modeling of fluorescent DOM (FDOM) separated the
pool of FDOM into 6 components (Fig. 3a): C2 (ex/em = 340/430 and
240/430), C3 (310/385 and 240/385) and C4 (245/500 and 380/500)
were similar to humic-like components (Coble, 1996; Murphy et al.,
2008; Yamashita et al., 2010; Stedmon et al., 2011). The remaining com-
ponents had characteristics similar to amino acids. C5 (ex/em = 275/
315) was similar to a tyrosine-like component (Murphy et al., 2008),
while C1 (280/360) and C6 (240/350 and 290/350) were similar to
tryptophan-like components which have excitation maxima below
240 nm and at 275 nm and an emission maximum at 350 nm
(Stedmon and Markager, 2005; Murphy et al., 2008; Stedmon et al.,
2011).

In the SW + A treatment waters, the intensity of fluorescence was
highest for C1 (Fig. 3b). The PARAFAC analysis of FDOM indicated that
the introduction of algal-DOM increased the concentrations of amino
acid-like DOM up to 16-fold and humic-like DOM up to 1.3-fold
(Fig. 3b).

3.2. Dynamics of salinity during the experiment

The experiment consisted of the cooling phase (d0 to d3) prior to
the ice formation and the freezing phase with the first two days of ice
(d4 and d5, indicated by the grey background in Fig. 4). The develop-
ment of the ice thickness and the salinitywas similar in both treatments
(Fig. 4 inset). The salinity of the four different sample types (water, bulk
ice, brine and frost flowers) showed large differences mainly caused by
the exclusion of salts from bulk ice and their enrichment in brine
(Fig. 4). In order to compare the behavior of DOM fractions (X) across
the sample types with different salinity, their concentrations were
normalized to the initial salinity of seawater which was 33 (Eq. (3)).

3.3. Quantitative changes in DOM during freezing

DOCnorm and DONnorm decreased throughout the experiment in
the SW + A but not in the SW-treatment and were typically signifi-
cantly higher in bulk ice, brine and frost flowers than in water as in-
dicated by the asterisks in Fig. 5. These results indicate that DOCnorm
and DONnorm were generally enriched in all sample types collected
from sea ice relative to water. EF(DOC) or EF(DON) for the samples
collected from ice (bulk ice, brine, frost flowers) ranged from 1.08
to 3.64 (Fig. 6a–d; Eq. (4)).

After the formation of ice, CDOMnorm was consistently higher in
bulk ice and frost flowers than in water (Fig. 7a–b). EF(CDOM) of all
sample types ranged from 0.96 to 1.30 (Fig. 6 e–f).

FDOMnorm,bulk ice exceeded FDOMnorm,water for all 6 fluorescent
components in the SW-treatment, but only for C4 and C6 in the
SW + A-treatment (Fig. 8 left column and Fig. 8h and l, respectively).
In the SW + A-treatment, C1norm of bulk ice was lower than that in
SW indicating a depletion of C1 in bulk ice (Fig. 8b). The enrichment
factors for the fluorescent components ranged from 0.83 to of 7.45
(Fig. 6g–r).

After the ice formation, dCHOnorm and dUAnorm were typically
higher in the bulk ice than in water (Fig. 9a–d). dUAnorm,brine instead
was lower dUAnorm,water (Fig. 9c–d). The enrichment factors for
dCHO and dUA ranged from 0.99 to 2.54 in bulk ice and from 0.5 to
1.01 in brine (Fig. 6s–v).

3.4. Changes in spectral slope and molecular size distribution

Spectral slopes and slope ratios calculated for ice samples were
generally similar to those measured in water (Fig. 7c–j), however, in
a few cases the slopes were significantly different between water
and bulk ice, brine or frost flowers (Fig. 7e–j). These differences
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Fig. 3. The six fluorescent components identified from the pool of 116 samples (a) and their fluorescence intensities in the beginning (d0) of SW and the SW + A treatments (b).
Fmax refers to mean ± SE of maximum fluorescent intensities of each component in the replicated mesocosms (n = 7–8).

Fig. 4. The salinity in water, brine, bulk ice and frost flowers (ffs) over the time of the
experiment for each treatment together with the ice thickness on d4 and d5. Error bars
show the standard error (SE) among replicated mesocosms (n = 1–8). Significant dif-
ferences in salinity (t-test for n N 1, p b 0.05) of brine, bulk ice or frost flowers com-
pared to water are indicated by *. The grey shading indicates the freezing phase of
the experiment. The treatments with North Sea water alone and with algal-DOM are
labeled SW and SW + A, respectively. The inset shows the mean ice thickness of SW
and SW + A at d4 and d5 with the SE represented by error bars.
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were not consistent in both treatments suggesting that freezing did
not change spectral slopes in a consistent manner (Fig. 7e–j).

In the LC–SEC analysis, the variation in the UV absorbance at
Rt b 13.5 min did not exceed the standard deviation of the replicated
measurements (Fig. 2c). The later parts of the chromatograms
(Rt =13.5 to 15.5 min) varied most and therefore we examined Rt
and absorbance values of P1 and P2 found in this region of the chro-
matogram in detail (Figs. 2c, 10). The intensities of P1 and P2 were
not significantly different between water and bulk ice, brine or
frost flowers (Fig. 10e–h). Rts of P1 and P2 were often longer in
bulk ice, brine and frost flowers than in water (Fig. 10a–d) indicating
shift in the molecular mass distribution of DOM towards smaller
molecules.

3.5. Enrichment factors

For further analysis of enrichment factors reported in Fig. 6, the
EFs for humic type DOM (CDOM, C2, C3 and C4) and amino
acid-like fluorophores (C1, C5 and C6) were combined and examined
with EFs for the other DOM fractions (Fig. 11). Among these DOM
fractions, EF(humics) ranged from 1.0 to 1.39 in different sample

image of Fig.�3
image of Fig.�4


Fig. 5. Temporal development of DOC and DON after salinity normalization to 33. See
Fig. 4 for more detailed explanation.

Fig. 6. Enrichment factor (EF) of DOC, DON,aCDOM,255nm, fluorescent components C1 to
C6, dCHO and dUA in bulk ice (light grey), brine (black), and frost flowers (dark grey)
on d4 and d5 (see Eq. (4)). The black line visualizes the point of zero enrichment. Error
bars show the standard error among replicated mesocosms (n = 1–3). Numbers on
top of each bar show the mean EF. Please note the different scales.
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types. The highest EFs and highest variability among replicates were
found for amino acid-like DOM (see EF(aa) in Fig. 11). The EF(dCHO)
and EF(dUA) ranged from 0.73 to 2.69 (Fig. 11). These results indicate
that although all fractions of DOM were generally enriched in newly
formed ice, the degree of enrichment differed between the various
DOM fractions.

EFs were generally lower in the treatment with algal-DOM than in
the treatment without it (Fig. 11; independent samples t-test;
p b 0.05). Enrichment of DOMwas generally lower in the brines com-
pared with the bulk ice samples (Fig. 11; independent samples t-test;
p b 0.05). In brines, the EFs were sometimes below 1.0 (e.g., EF(dUA,
brine) = 0.73) indicating a depletion of DOM compared to water.
EFs were higher in frost flowers (2.26 ± 0.26, mean ± SE for all
DOM fractions) compared with bulk ice or brines (independent sam-
ples t-test; p b 0.05). These results indicate that EFs in frost flowers
were up to 4 times higher than those in bulk ice samples and 7
times higher than in brines (EF(C6), Fig. 6r).

4. Discussion

4.1. Selective incorporation of DOM fractions during ice formation

The present study investigated the behavior of different DOM frac-
tions in bulk ice, brine and frost flowers during initial ice formation.
The results show that all investigated DOM fractions (DOC, DON,
CDOM, FDOM, dCHO, dUA) are generally enriched in bulk ice when
normalized to the salinity of water. As in our study, enrichment of
CDOM, DOC and DON has been observed in natural ice of unknown
age in the Baltic Sea (Granskog et al., 2004; Stedmon et al., 2007)
and the Southern Ocean (Meiners et al., 2009; Stedmon et al., 2011;
Underwood et al., 2010; Norman et al., 2011). Since our results con-
cern new ice (b2 days old), they indicate that DOM is enriched already
during the formation of ice mainly through abiotic physico-chemical
processes.

Natural older sea ice can have EF(DOC, bulk ice) of approximately
6.71 ± 2.10 and EF(DON, bulk ice) as high as 11.58 ± 5.70 (calculat-
ed from Norman et al., 2011). The values in new ice measured exper-
imentally in the present study are substantially lower (EF(DOC, bulk
ice) = 2.25 ± 0.48; EF(DON, bulk ice) = 1.72 ± 0.11). This likely
reflects the contribution of autochthonous production in natural ice
(Fig. 11, Stedmon et al., 2007; Norman et al., 2011).

The enrichment of CDOM in this study (EF(CDOM, bulk ice) =
1.12 ± 0.03) is similar to that in young ice formed in brackish Baltic
Sea water (EF(CDOM, bulk ice) = 1.34 ± 0.16; Müller et al., 2011).
Similar to the patterns seen for CDOM, fluorescent components relat-
ed to humic substances also have low EFs between 1.16 and 1.27 in
young ice formed from water of the Baltic Sea and the North Sea
(Müller et al., 2011, this study). In both studies the amino-acid-like
components had the highest EFs among the FDOM-components ex-
amined: 1.53 in the Baltic Sea (Müller et al. 2011) and 2.72 ± 0.47
in the North Sea (present study). The mean of EF(dCHO, bulk ice)
and EF(dUA, bulk ice) of 1.9 ± 0.191 in our study is similar to
1.61 ± 0.3 for exopolymers in newly formed artificial sea ice (Ewert
and Deming, 2011). When our results are combined with earlier stud-
ies (Ewert and Deming, 2011; Müller et al., 2011), it seems that the
degree of enrichment depends on the chemical characteristics of
DOM with the lowest enrichment for humic type-DOM and highest
enrichment for amino acid-like DOM.
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Fig. 7. Temporal development of absorption coefficient of CDOM at 255 nm normalized
to water salinity, CDOMnorm (a–b), the spectral slope coefficient S275–295 (c–d), S350–400
(e–f), S250–450 (g–h) and SR values (i–j). The notation used and the salinity normaliza-
tion are explained in Fig. 4 and Eq. (3), respectively.

Fig. 8. Temporal development in the intensity of maximum fluorescence of the compo-
nents 1 to 6 after salinity normalization to 33. Note the different scales between
the treatments for C1 and C5 as well as the off-scale value 0.55 for frost flowers in
panel l. See Fig. 4 for more detailed explanation.
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4.2. Is there a mechanistic explanation for the enrichment of DOM in new
sea ice?

This study revealed thatwhile DOM is incorporated in newly formed
sea ice, the size distribution of humic-like DOM changes towards small-
er molecules. We are not aware of other studies, which have measured
changes in the molecular size distribution of DOM during freezing.
However, earlier studies concerning the freeze fractionation of inorgan-
ic ions have suggested that freezing rejects preferably smaller ions with
larger diffusion coefficients (e.g., 2 × 10−9 m2 s−1 for K+) than larger
ions with smaller diffusion coefficients (e.g., 0.5 × 10−9 m2 s−1 for
SO4

2−; Granskog et al., 2004; Maus et al., 2011). The diffusion coeffi-
cients of humic-like DOM, shown in our analyses, can range over
four-fold like those of major inorganic ions in seawater (Hassellöv,
2005; Siripinyanond et al., 2005). If diffusion plays a major role in the
process of selective rejection of DOM as suggested for inorganic ions,
we should have observed a shift towards larger molecules in the sam-
ples collected from ice in our LC–SEC measurements. On the contrary,
our study indicates a shift towards smaller molecules in the molecular
size distribution of DOM during incorporation to sea ice. This indicates
that diffusion cannot be the major factor that controls the selective
rejection of humic-like DOM in ice. Additionally, according to Aslam et
al. (2012b) different size-classes of dCHOs enrich similarly to the
new sea ice. Hence, this study and that of Aslam et al. (2012b)
indicate that freezing changes the molecular size of distribution of
DOM only little when DOM from seawater is incorporated in newly
formed sea ice.

Both dUAs and dCHO examined in this study are part of the pool
of material that also included dissolved EPS and transparent
exopolymeric particles (TEP) and can result in the coagulation of
DOM and potentially enhance the enrichment of DOM in sea ice
(Chin et al., 1998; Engel et al., 2004; Verdugo et al., 2004). In our
experiment, the addition of algal-DOM doubled the concentration
of dUA and dCHO in the SW + A treatment compared to the
SW-treatment. The enrichment of DOM would have been expected
to be higher in the algal-DOM treatment if dUA and dCHO enhance
enrichment of DOM (Aslam et al., 2012b). Contrary to this expecta-
tion, EFs were lower in the SW + A than in the SW-treatment. Our
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Fig. 9. Temporal development of salinity-normalized concentrations in dissolved
carbohydrates (Fig. 8a–b) and dissolved uronic acids (Fig. 8c–d). See Fig. 4 for more
detailed explanation.

Fig. 10. The retention times (a–d) and absorbances (e–f) of peak 1 (P1) and 2 (P2) in
the LC–SEC chromatograms. Full chromatograms are exemplified in Fig. 2c. See Fig. 4
for more detailed explanation.
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observation suggests that dUA and dCHO did not influence enrich-
ment of DOM during the initial formation of ice, but that does not
exclude such possibility in older sea ice, where algal derived DOM
and EPS would play more of a role than in these short term
experiments.

In this study, the salinity normalized concentrations of DOM, and the
EFs calculated from them, were lower in brine than in bulk ice, as also
observed for natural sea ice in the Southern Ocean (Underwood et al.,
2010; Norman et al., 2011). All three studies collected brine with the
sackhole-technique (Papadimitriou et al., 2007). When a sackhole is
filled with brine having an EF(DOM, brine) lower than in the original
bulk ice, the EF(DOM, bulk ice) in the surrounding bulk ice must in-
crease simultaneously in less than 30 min, the time used for collection
of brine in this study. Differences in the diffusion rates among solutes
may not be able to explain such rapid changes in EF(DOM) during the
filling of a sackhole. One alternative potential mechanism is that there
was selective drainage: i.e. brine from large brine channels, but with
low EF(DOM), drain more effectively into a sackhole than disconnected
or very small brine channels with higher EF(DOM). The change in
EF(DOM, brine) may be also explained by a selective drainage of the
most soluble solutes with low EF(DOM) moving with a hydraulic flow
to a sackhole. In this case, the less soluble solutes, or their insoluble
forms in highly saline brine, will result in high EF(DOM, bulk ice). A
poor solubility of DOM at high salinities may be explained e.g., by the
association between multivalent cations and negatively-charged
functional groups of DOM (Chave and Suess, 1970). In the latter case,
both salts and DOM are converted to insoluble forms, which are likely
overlooked when examining filtered samples alone (e.g., in the present
study). If a similar drainage of brine with low EF(DOM, brine) into the
under-ice water takes place during initial ice formation, it can result
in the observed enrichment of the remaining DOM in new ice
(Giannelli et al., 2001; Müller et al., 2011; this study).

Frost flowers are initially formed from water evaporating from
brine into the colder atmosphere and only then, brine is drawn up
onto the frost flower crystals by capillary actions (Perovich and
Richter-Menge, 1994; Martin et al., 1996; Rankin et al., 2002). There-
fore, depending on the temperature, the salinity of frost flowers can
be as low as the seawater salinity in the early stage of frost flower for-
mation, as found in the present experiment. Despite the low salinity
in frost flowers, there was a significant enrichment of DOM compared
to under-ice water and brine from North Sea water (Figs. 6, 11,
Bowman and Deming, 2010; Aslam et al., 2012b). Hence, we suggest
that there is a second selective rejection process that occurs during
the rapid freezing of brine on the ice surface, similar to the process
during sea ice formation.

In this study various components of DOM are enriched in ice rela-
tive to water, even in the treatment with algal-DOM, which increased
the concentration of DOM (DON and amino acids in particular) in
water. The introduction of such potentially biologically labile DOM in-
creased microbial activity in water and sea ice of the SW + A treat-
ment (Aslam et al., 2012b) resulting in a decrease of DOC and DON
in water later in the experiment than the initial stages reported
here. It is possible, that the observed changes in the EFs of
labile DOM components and in the molecular mass distribution and
S250–450 during sea ice formation are at least partly related to elevated
microbial activity in SW + A-treatment.
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Fig. 11. The enrichment factors (EFs) of DOM fractions, humic like DOM, DOC, DON, amino acid-like fluorophores (aa), dissolved carbohydrates (dCHO) and dissolved uronic acids
(dUA), in bulk ice, brine and frost flowers in each treatment (SW or SW + A) on d4 and d5. The black line shows the zero enrichment. The markers show the means and standard
error among replicate mesocosms (n = 1–3).
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5. Conclusions

This study shows that there is a quantitative enrichment for the
whole DOM pool regardless of its initial concentration during initial
freezing of seawater, which is probably based on a physico-chemical
process. The enrichment factors vary between 1.0 and 1.39 for
humic-like material, but are higher and more variable for amino-acid
like DOM fractions. The results indicate that diffusion has only a minor
effect on the enrichment process and also the concentration of carbohy-
drates in the seawater did not explain the enrichment behavior in this
short-term experiment. Enrichment of DOM in melted ice differs from
that in brine suggesting that the DOM concentration and composition
vary among well-connected brine channels and the smallest brine
channels and inclusions. These differences in the selective rejection of
DOM from bulk ice and brine also mean that the method of sackhole
sampling does not necessarily succeed in extracting brine that is
representative of in situ conditions. Frost flowers had a similar DOM
composition to that of the brines, but at higher concentration, relative
to salt, suggesting that a second fractionation process occurs during
frost flower formation.
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