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ABSTRACT

Sea level variations prior to the launch of satellite al-
timeters are estimated by analysing historic tide gauge
records. Recently, a number of groups have reconstructed
sea level by applying EOF techniques to gappy data. We
complement this study with alternative methods. In a first
step gaps in 178 records of sea level change are filled us-
ing the pattern recognition capabilities of artificial neu-
ral networks. Afterwards satellite altimetry is used to
extrapolate local sea level change to global fields. Pat-
terns of sea level change are compared to prior studies.
Global mean sea level change since 1900 is found to be
1.65 ± 0.26 mm per year on average.

Key words: sea level; tide gauge; satellite altimeter; re-
construction; neural network.

1. INTRODUCTION

Global sea level rise is one of the major concerns in pre-
dicting climate and climate change for the decades to
come. Projections for sea level rise have been compiled in
the IPCC third and the 4th assessment report ([1] and [2]
respectively). But still predictions vary substantially.It
is important first to understand the magnitude of the past
sea level change before we can reduce uncertainties in
the future development. In this paper we will address the
development of the global and the local sea level during
the past century. Global sea level anomaly fields are re-
constructed from tide gauges (TG’s) for the period 1900-
2009 in a two step procedure.

First we present an improved way to train a neural net-
work to fill data gaps in time-series, e.g. from tide
gauges. In [3] the network used for this purpose was
trained using only time steps that have complete data.
Here we describe a method that can deal with arbitrarily
distributed missing values even during the training phase.
Sea level anomaly are then calculated from these com-
pleted TG records. This is done by estimating their pro-
jection onto the principal components from the EOF de-
composition of the altimetry data.
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Figure 1. (a) Position of the selected tide gauges. The
color coding gives the amount of available monthly data
at the corresponding tide gauges. (b) Monthly data avail-
ability.

2. RECONSTRUCTION OF TIDE GAUGE DATA

For our purpose we selected the TG’s in the latitudinal
band65oS to65oN from the Permanent Service for Mean
Sea Level (PSMSL) data archive [4] that have revised
local reference (RLR) data and at least 30 annual mean
values given. Thereof we excluded all data from the
Mediterranean Sea, the North Sea, the Baltic Sea and the
Sea of Japan. This selection finally gives 178 TG’s whose
spacial distribution is shown in Fig. 1 together with the
availability of monthly data. It is obvious that many data
are missing especially prior to 1950 and there is no month
that has complete data. Thus the first task should be to
fill these data gaps in an appropriate way. As in [3] all
computations to reconstruct the missing TG values will
be done in the space of the monthly differences to avoid
problems that may be caused by the different local ref-
erence frames, and we will use a neural network for this
purpose. The network acts as a time stepping operator
(backwards in time) that has two timesteps, n and n-1, at



the input hindcasting timestep n-2. While [3] restricted
the training of the network to examples that have three
subsequent timesteps with complete data, we will intro-
duce an improved way to train the network that uses all
available data. It is similar to the adjoint method used
e.g. in data assimilation and was inspired by reading the
appendix in [5].

Details about the used ”backpropagation” neural network
can be found e.g. in [3] or [5]. Here we will give only the
transfer function:

Yn−2 = bo + O · tanh (bh + H · {Xn, Xn−1}) (1)

whereYn−2 is the response of the network to the stim-
ulus {Xn, Xn−1}. bh and bo are the bias elements of
the hidden and the output layer, respectively.H repre-
sents the transfer matrix from the input to the hidden
layer andO from the hidden to the output layer. With
Dn = {dn,k} being the vector of TG data at timestep n
andYn = {yn,k} the output of the neural network corre-
sponding to that timestep then the inputXn = {xn,k} is
given by:

xn,k =

{

yn,k if dn,k = undef
dn,k otherwise (2)

at which the initial conditionsYN andYN−1 are (partly)
unknown. Thus an incorrect network output at timestep
n or n-1 influences the hindcast for step n-2 in case it
corresponds to a missing data value. The dimensions of
the input and the output layer are given by the number
of selected TG’s, i.e. there are 356 input and 178 output
neurons. For the hidden layer we will use 300 neurons.
The unknown matricesH, O and the bias elementsbh and
bh of the neural network as well as missing values in the
initial conditions are estimated by minimizing a weighted
least square costfunctionK

K =
∑

n

∑

k

wn,k (yn,k − dn,k)
2

+ (3)
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that includes a ridge regression constraint weighted bycr

to minimize/surpress less important entries in the matri-
ces. ndat are the number of data points andnh, no are
the number of entries in the corresponding matricesH
andO, respectively. Prior to applying the neural network
the data of the individual TG are scaled to have a root
mean square (RMS) value of one. This ensures that the
entries inH andO are of the same order of magnitude,
and the weightswn,k of the data misfit part in (3) can be
set to one.

To estimate an optimal value for the weightcr for the
ridge regression constraint a subset of the data is excluded
from the costfunction (3) for testing the performance of
the network while scanningcr in the range 0 to 1000.
This scan is done for eight different sets of retained data
(Fig. 2). First we used four disjunct sets of randomly
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Figure 2. Remaining RMS error at datapoints not used
for training depending on the choosencr value. See text
for details about the eight cases shown. The errors are
normalized with the corresponding data RMS.
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Figure 3. (a) Reconstructed monthly sea level differences
at the tide gaugeBrest, giving the ensample mean and
standard deviation. (b) Cumulative sum of the sea level
differences with corresponding error bars.

choosen data (denoted R1 to R4 in Fig. 2). In the other
four cases the data from different periods are retained
completely. These periods are M0: [1900-1954]; M1:
[1959-1964] and [1996-2001]; M2: [1966-1969], [1976-
1979] and [1986-1989]; M3: [1971-1974], [1981-1984]
and [1991-1994]. In all of the eight cases about 25%
of the data are retained for comparison. After identify-
ing thecr value with minimum error at the retained data
(Fig. 2), the corresponding networks are re-trained using
all available data. This finally gives eight realizations of
the reconstructed TG time series, where the error of the
mean reconstruction stays well between 5 and 10% of the
signal RMS.

Timeseries of the reconstructed monthly differences and
the corresponding sea level (=cumulative sum) are shown
for Brest (Fig. 3) and Manila (Fig. 4) as examples. Differ-
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Figure 4. same as Fig. 3 but for the tide gaugeManila

ences to the PSMSL data are obvious for the sea level es-
pecially for Manila (Fig. 4). A detailed inspection shows
that these offsets are caused mainly by the reconstructed
values in the gaps. These give a bridging slope different
from the one estimated by the PSMSL. Anyhow, we will
use only the monthly differences afterwards.

3. GLOBAL SEA LEVEL RECONSTRUCTION

Global sea level anomaly fields are given by satellite al-
timetry that is available from 1993 onwards. In this study
we will use the data taken from the CSIRO sea level
web site [6] that don’t have inverse barometer correc-
tion. These data are processed further as follows: (i) take
the monthly differences, (ii) filter the local time series
to exclude the annual cycle and (iii) subtract the global
mean value. The latter will be treated as the given zero’th
principal component (PC) of the following empirical or-
thogonal function (EOF) decomposition. The resulting
first two EOF’s are shown in Fig.5 together with the cor-
responding PC’s and the global mean (PC 0). The two
leading EOF’s / PC’s clearly reflect the signals associated
with the El Niño–Southern Oscillation (ENSO), while
Fig.5c also illustrates the dominance of the local variabil-
ity compared to the global mean.

The EOF decomposition results in 27 EOF’s, whereof 16
are needed to explain 98% of the variance. Thus PC 0 to
PC 16 will be reconstructed from the accordingly filtered
TG data to give global sea level anomaly fields from 1900
onwards. In [7], [8] or [9] these PC’s are estimated by
fitting the EOF’s to the existing TG values, i.e. they try to
reconstruct the TG time series from the altimetry EOF’s
at the nearest grid point. In view of the poor correlation
between the TG measurements and the altimetry that is
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Figure 5. (a) and (b) show the two leading EOF’s from
the filtered CSIRO altimetry data (monthly differences).
The corresponding PC’s are given in (c; red and green
line) together with the global mean (=PC 0; black line)
that was subtracted prior to the decomposition..

found at many positions, especially if the annual cycle is
removed, this seems not to be an appropriate way. For
this reason each of these principal components,PCk(t),
will be reconstructed from the TG data matrixTG(t) by
estimating a transfer vectorMk that provides

PCk(t) = < Mk, TG(t) > (4)

not looking after the EOF’s at this point, i.e. the PC val-
ues are the weighted sum of the TG values wherein the
weights even might be negative. The vectorMk is es-
timated from the period where PC data exist via a least
square fit and assumed to be valid for the whole period
starting from 1900. Eight estimates are made for each PC
that differ in whether or not:
i) errors in the tide gauge data are accounted for. In case
the standard deviation of the reconstructed ensemble of
the corresponding TG is used as noise level (white noise).
ii) a correction of the TG trend is applied to compensate
the effect of vertical land movement that is not inherent in
altimetry. Following [10] we apply a correction towards
the corresponding altimeter trend (nearest grid point) as-
suming it to be constant in time. A better way would



Table 1. Global mean sea level trend 1900-2009 resulting
from different training conditions

training TG-trend ridge GMSL trend
error correct. regress. [mm/year]

1 no no no 1.652
2 yes no no 1.997
3 no yes no 1.196
4 yes yes no 1.613
5 no no yes 1.832
6 yes no yes 1.909
7 no yes yes 1.437
8 yes yes yes 1.537

mean: 1.65 ± 0.26
GMSL trend from [3]: 1.56 ± 0.25

from [9]: 1.7 ± 0.2

certainly be the use of measurements taken by the Global
Positionig System (GPS) for this, but these are not avail-
able for all the tide gauges used.
iii) a ridge regression constraint similar to the one in (3)
is applied to the transfer vectorM . The weights for the
individual entries are set to be inverse proportional to
the squared correlation between the corresponding TG
and the PC under consideration. Thus, the influence of
TG’s with low absolute correlation will be reduced / sup-
pressed.

The resulting centennial global mean sea level trends are
given in Tab.1. The effect of these additional options can
be summerized as follows:
i) Accounting for errors in the TG data increases the cen-
tennial trend of the global mean sea level (GMSL) but
reduces its interannual variability (not shown).
ii) Correcting the TG trends reduces the centennial trend
but has nearly no influence on interannual variability.
iii) Introducing the ridge regression constraint leads to an
increase of the interannual variability, while the influence
on the estimated centennial trend is twofold, it decreases
the trend if errors are accounted for but it increases the
trend if not.

The mean of the eight reconstructed global mean sea level
anomalies is shown in Fig.6 with its error bars. The mean
curve fits well to the earlier estimate of [3]. Likewise, the
estimate of [9] stays well within the 1-σ errorbar. The
mean centennial trend results to1.65± 0.26 mm/year us-
ing all eight estimates, which consequently fits well to
the trends given by [3] and [9] (see Tab.1). The mean
curve in Fig.6 appears as a relatively straight line. The
interannual variability is reduced by the averaging, but
it is evident in each single estimate and can be deduced
from the variability of the decadal trend (Fig.7). The lat-
ter varies from∼0.5 mm/year in the early 1950th and the
late 1980th to ∼3.0 mm/year at the end of the time se-
ries, where it fits to the estimate from the data. These
variations are stronger than the ones estimated from the
results of [3] but weaker than the ones from [9] although
similarities exist with both of these earlier estimates.

In a next step the global sea level anomaly fields are re-
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Figure 6. Reconstructed global mean sea level anomaly.
Shown are the mean from the training cases given in
Tab. 1 together with the standard deviationσ. The results
from [3] and [9] are included for comparison.
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Figure 7. Decadal trend of the reconstructed global mean
sea level anomaly estimated from a moving 10 year win-
dow. Shown is the mean from the training cases given in
Tab. 1 together with the standard deviationσ. The cor-
responding trends from the results of [3] and [9] are in-
cluded for comparison.

constructed by combining the estimated PC’s with the
altimetry EOF’s. From the evolution of these global
anomaly fields the local trend can be deduced (Fig.8). For
the centennial trend (Fig.8a) we find a very smooth field
with positive values ranging from 0 to 2 mm/year nearly
all over the ocean. Exceptions are the strong sea level
rise in the equatorial Indian Ocean (up to 8 mm/year) and
the areas with sea level fall around the Greater Sunda Is-
lands especially west of it (up to -4 mm/year). Most of
these local trends are significant at the 1-σ error level.
Looking at the fifty-year trends for the periods 1900-
1954 and 1955-2009 (Fig.8b and c, respectively) the
fields show much more spatial structure, and these struc-
tures substantially differ for the periods. Anyhow, the
mean values (1.69 mm/year and 1.62 mm/year, respec-
tively) are nearly the same as for the centennial trend
(1.65 mm/year). Going to even shorter periods the trends
become more variable not only in time (e.g. Fig.7 for the
10 years period) but also in space (not shown). It would
be interesting to look if this variability confirms at all to
changes in the oceanic forcing fields, but this is beyond
the scope of this study.
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Figure 8. Reconstructed local sea level trend for the pe-
riods 1900-2009 (a), 1900-1954 (b) and 1955-2009 (c).
Shown are the mean from the training cases given in
Tab. 1. In the dotted areas these mean trends are below
the corresponding standard deviationσ.
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