
Geosci. Model Dev., 6, 1575–1590, 2013
www.geosci-model-dev.net/6/1575/2013/
doi:10.5194/gmd-6-1575-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess

Nonlinear Processes 
in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

Assimilating water column and satellite data for marine export
production estimation

X. Yao and R. Schlitzer

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Columbusstrasse, Bremerhaven, Germany

Correspondence to:X. Yao (yao.xiaoping@awi.de)

Received: 30 January 2013 – Published in Geosci. Model Dev. Discuss.: 11 March 2013
Revised: 26 July 2013 – Accepted: 6 August 2013 – Published: 16 September 2013

Abstract. Recent advances in satellite retrieval methodol-
ogy now allow for estimation of particular organic carbon
(POC) concentration in ocean surface waters directly from
satellite-based optical data. Because of the good coverage,
these data reveal small-scale spatial and temporal concen-
tration gradients and document the evolution of surface wa-
ter POC as well as the underlying driving biogeochemi-
cal processes throughout the seasons. Water column nutrient
data also reveal biogeochemical activity. However, because
of the scarcity of data, the deduction of temporal changes
of particle production and export is not possible in most
parts of the ocean. Here we present first results from a new
study combining both data streams, thereby exploiting the
high spatio-temporal resolution of surface POC concentra-
tions from satellite optical sensors with water column nu-
trient data having sparser coverage but providing informa-
tion throughout the entire water column. We use a medium-
resolution global model with steady-state 3-D circulation that
has been optimized by fitting to a large number of hydro-
graphic parameters and tracers, including CFCs and natu-
ral radiocarbon. Production and export of POC is allowed
to vary monthly, and the magnitudes of the monthly export
fluxes are determined by fitting the model to satellite POC
data as well as water column nutrient data using the adjoint
method. Two cases have been investigated: (1) the produc-
tion rate of POC is set to be proportional to export produc-
tion (EP) and the seasonal changes are assumed sinusoidal
(meridionally varying amplitude and phase), and (2) the POC
production rate is linked to primary production rates (liter-
ature). Both cases were run with the same initial state and
model settings, and show total cost function decreases of 12
and 95 %, respectively. The POC misfit term alone decreased
by 75 and 99.8 %. The integrated annual global POC exports

of the two cases are 9.9 and 12.3 Gt C yr−1, respectively.
Overall, the remaining POC and phosphate misfits of both so-
lutions are considered too large, and the difference fields still
exhibit significant systematic geographical patterns. This in-
dicates that the present model runs are too simplistic and do
not fully explain the data. Further, more refined model setups
are needed.

1 Introduction

The ocean is one of the major carbon reservoirs on Earth,
containing around 40 000 Gt C, about 50 times more than in
the atmosphere (Sarmiento and Sundquist, 1992). The ocean
is believed to be the ultimate sink for about 90 % of hu-
man fossil fuel emissions (Archer et al., 1998). In the surface
ocean, phytoplankton fixes dissolved carbon to form partic-
ulate biomass by photosynthesis (primary production PP). A
fraction of the particulate material sinks into the deep ocean
due to gravity, thereby sustaining a downward flux of partic-
ulate nutrients and carbon (export flux). This process, which
depletes the ocean surface of nutrients and dissolved inor-
ganic carbon (DIC) relative to the deep water, is referred to as
the biological pump (Volk and Hoffert, 1985). Drawdown of
surface carbon concentrations by the biological pump leads
to an increased flux of CO2 from the atmosphere, and the
overall oceanic CO2 uptake thus depends on the strength of
the biological pump. Quantification of export flux and the
strength of the biological pump therefore is an important ob-
jective.

Over the past decades, extensive work has been carried out
to quantify the downward carbon export in the ocean. One
observational approach is the use of sediment traps (Honjo et
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al., 2008; Gardner, 2000; Kahler and Bauerfeind, 2001). This
is a direct way of measuring downward export fluxes by cap-
turing and preserving the sinking material. However, the dis-
advantages are sparse coverage in space and time. Moreover,
the catchment efficiency of sediment traps, especially in the
shallow waters, are debated (Gust et al., 1994), casting doubt
on absolute flux values derived from shallow traps. Addi-
tionally, there is another alternative instrument of measuring
carbon export directly, it is carried on ARGO floats, called
“Carbo-ARGO” floats (Bishop and Wood, 2009). Besides
these direct measurement approaches, radioisotope234Th is
also widely utilized to quantify particle export out of the sur-
face layer (Buesseler et al., 2009; Rutgers v. d. Loeff et al.,
2011).

In addition to observational approaches, modeling is
a powerful way of quantifying carbon export. Different
model approaches are used to estimate carbon export, such
as ecosystem models (Aumont et al., 2003; Oschlies and
Kähler, 2004) or coupled physical–biogeochemical models
(Palmer and Totterdell, 2001). Performance of these forward
models in terms of how well measured distributions are simu-
lated highly depends on clever choices of model parameters,
such as primary production and functions that relate export
flux with PP. The inverse model of Schlitzer (2000, 2002)
avoids these parameter choices and treats the geographically
varying annual export fluxes as independent parameters de-
termined by the model by exploiting historical water column
data. However, this approach only yields the annual average
fluxes and does not reveal seasonal changes.

Recent advances in remote sensing now allow for direct
quantification of surface carbon parameters such as the con-
centrations of particulate organic carbon (POC) (Stramski et
al., 2008) and particulate inorganic carbon (PIC) (Balch et
al., 2005; Gordon et al., 2001). The satellite-derived fields
are provided globally at high spatial and temporal resolution,
and coverage is excellent, especially when compared to ship-
based water column data. Both of these quantities are sen-
sitive to biological production and export; therefore analysis
of this new data product likely helps in revealing flux varia-
tions on small space and timescales. The disadvantage is that
satellite sensors only monitor the ocean surface. A combina-
tion of satellite and water column data can build up a full 4-D
view of the global ocean.

The present study uses the data-driven inverse model de-
veloped by Schlitzer (1993, 2000, 2002, 2007) to link water
column and satellite data for estimating carbon export and its
seasonality. Based on the older model version, we set up a
new model combining water column phosphate and satellite
POC data in the adjoint model in order to get better carbon
export estimations on a monthly basis. The model is calcu-
lated in phosphor units, and using a constant Redfield ratio
(Redfield et al., 1963; Anderson and Sarmiento, 1994) relat-
ing between phosphor and carbon.

This paper is structured as follows: Sect. 2 introduces the
data we used in our study, Sect. 3 describes the details of the

method of the adjoint model approach, Sect. 4 describes the
two experiments we performed, Sect. 5 shows the analysis
of the results of two experiments, and Sect. 6 contains the
summary and conclusion.

2 Data

There are two kinds of data used in this study: ship-based
measurements of dissolved inorganic nutrients (CDd) in the
water column, and satellite-derived particulate (CPd) data for
the ocean surface water. The dissolved nutrient data cover
the whole global ocean and extend from the surface to the
ocean bottom. The satellite-derived particulate data provide
excellent spatial and temporal coverage (much better the wa-
ter column data), but data are only available for the ocean
surface. Combining these two diverse data types is the novel
feature of the present study.

2.1 Water column data

The water column nutrient data are taken from the World
Ocean Atlas 2009 (WOA09) (Garcia et al., 2010). WOA09
is based on a compilation of all presently publicly available
cruise data. These original data have been objectively ana-
lyzed, and climatological fields on a 1◦

× 1◦ horizontal grid
and at 32 standard depth levels have been produced for an-
nual, seasonal, and monthly coverage for the world ocean.
The WOA09 nutrient and oxygen fields reveal important fea-
tures that reflect the action of physical as well as biogeo-
chemical processes. The main aim of this study is to utilize
the data and infer and quantify the strengths of the underly-
ing biogeochemical processes. The emphasis here will be on
the export flux of particulate carbon from the surface ocean
into the deep.

As examples of nutrient distributions Fig. 1 shows surface
ocean phosphate fields for June and December. Clearly visi-
ble are the very low phosphate concentrations in subtropical
regions, whereas quite high concentrations are found in the
northern North Atlantic, the North and equatorial Pacific, and
especially in a circumpolar belt around Antarctica. We can
also see that phosphate concentrations are generally lower
during the productive season (June in the Northern Hemi-
sphere, December in the Southern Hemisphere), reflecting
the nutrient drawdown due to the production of particulate
material. This is also the case for the Antarctic high-nutrient
belt, where austral summer (December) concentrations are
much smaller than during austral winter (June).

Due to the combination of about 80 yr of measurements in-
cluded in WOA09 this climatological dataset has quite good
global coverage horizontally and with depth. Data coverage
for any specific month (e.g., January 2000), however, is very
sparse, and fields as shown in Fig. 1 cannot be constructed
because of lack of data. This situation is unlikely to improve
in the future because of the high logistical and financial costs
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Fig. 1. Phosphate concentrations (unit µmol l−1) at 10 m for
June(a) and December(b) from WOA09 (data from Garcia et al.,
2010).

of ship observations and the local nature of the obtained in-
formation. Many of the station data used for WOA09 have
only been sampled in the upper water column, and, as a
consequence, coverage within the upper 500 m is much bet-
ter than below. Because of the especially poor data cover-
age in the deep, WOA09 monthly values are only provided
for the upper 500 m, whereas only annual average data are
provided below. Due to the relative stability of the deeper
ocean, the temporal variation of phosphate concentrations is
weak, such that usage of annual phosphate values is justi-
fied. We take phosphate standard errors provided by WOA09
or 0.03 µmol kg−1 (whichever is greater) as the data error
σCDd in the data assimilation procedure described below. The
0.03 µmol kg−1 value corresponds to the typical expected er-
ror of historical phosphate data.

In this study, we use phosphate (and phosphorous) as a
proxy for carbon, and utilize the fact that abundance ratios of
carbon and phosphorous in marine particulate organic mate-
rial are nearly constant (Redfield et al., 1963). The C / P Red-
field ratio is used to infer carbon export from phosphorous
export. The reason for this approach is that there are about a
thousand times more phosphate data compared to carbon.

2.2 Satellite POC data

Development of new retrieval methods exploiting satellite-
derived optical data of the ocean surface is an active field
of research, and recently, new products have been released

Fig. 2. Climatological surface ocean POC concentrations for June
and December (Stramski et al., 2008).

that for the first time provide estimates of particulate or-
ganic carbon (POC) concentrations for the global ocean
with unprecedented spatial and temporal resolution. In this
study we use the product of Stramski et al. (2008) down-
loaded fromhttp://oceandata.sci.gsfc.nasa.gov/cgi/l3. This
POC product uses data from the SeaWiFS satellite sen-
sor on the SeaStar satellite. SeaWiFS covers the period
from 18 September 1997 until 11 December 2010 and pro-
vides 10 yr of continuous observations. The release of high-
resolution satellite-derived surface ocean POC data is a ma-
jor step forward, and now allows for direct inference of car-
bon export compared to the more indirect older approaches
that were based on chlorophyll.

Satellite POC data have much better temporal and spa-
tial resolution than water column data. As mentioned before,
the existing water column data allow for construction of cli-
matological fields, but are still too sparse to derive instanta-
neous distributions on the basin or global scale. In contrast,
satellites monitor the entire ocean and revisit individual loca-
tions typically within one or two weeks. Therefore, satellite
data are revealing small-scale features (9 km resolution) and
documenting their temporal evolution in great detail. In this
study we use satellite data to fill up gaps in the water column
data.

Figure 2 shows surface ocean POC distributions for June
and December (Stramski et al., 2008). POC concentrations
are generally low in the subtropical gyres, while they are
quite high in the biologically productive regions (equatorial
and coastal upwelling regions, subpolar and polar regions

www.geosci-model-dev.net/6/1575/2013/ Geosci. Model Dev., 6, 1575–1590, 2013
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during productive summer periods). The lack of coverage in
polar regions is due to light limitation during wintertime.

While providing high spatial and temporal resolution and
excellent coverage, satellite data have the disadvantage of not
being able to “see” below the ocean surface, and thus no sub-
surface POC data exist. Considering advantages and disad-
vantages of satellite POC and water column data, it becomes
clear that they are mostly complementary, and that the com-
bination of the two will provide information not available
when using any of these sets individually. In this study we
assimilate both data streams and estimate the climatological
monthly export of carbon in the world.

As the amount of phosphate water column data is much
larger than for carbon, the present model is formulated in
phosphorous units. Therefore, before using the satellite POC
data in the model, it is necessary to convert carbon to phos-
phorous, using a fixed uniform Redfield ratio (C / P= 106,
Redfield, 1963). Instead of POC the model uses the so-
converted particulate organic phosphorous (POP) denoted as
CPd. Note that the conversion does not change the structure
of the features as, for instance, shown in Fig. 2. The error of
the satellite POC values is estimated at± 30 % (M. Stramska,
personal communication, 2010). As data error in the model
we use 30 % or 13 mg m−3 (Stramski et al., 2008), whichever
is larger. The associated POP errorsσCPd are obtained by ap-
plying the Redfield ratio above.

3 Model

The model used in our study is an extension of the adjoint
model of Schlitzer (2007). The general model strategy is de-
scribed in detail in Schlitzer (1993, 1995, 2000, 2002). In the
original model, all the tracers are in steady state except chlo-
rofluorocarbons (CFC). Following the treatment of CFC, we
set up the model with phosphate and POP as time-dependant
model tracers with monthly resolution. Phosphate and POP
budgets contain the effects of circulation as well as particle
production, degradation, and export.

3.1 Model grid

The model is global and has a nonuniform grid with hor-
izontal resolution ranging between 1◦

× 1◦ and 4◦ × 5◦

(Fig. 3). Finer resolution is realized near coastal regions,
while coarser resolution prevails in the open ocean. The
model has 2421 columns and three boundary columns adja-
cent to the Mediterranean Sea, the Red Sea, and the Persian
Gulf. There are 26 vertical layers, with thickness progres-
sively increasing from 60 m at the surface to 500 m at 5000 m
depth.

Figure 4 shows the main processes in the model. The
model has a steady-state 3-D circulation field that was ob-
tained by fitting the model to a large set of tracer data includ-
ing CFC and natural radiocarbon (C14) (Schlitzer, 2007). The

Fig. 3. Variable resolution model grid. The green circle indicates
the position of the data in Fig. 6.

capability to closely reproduce CFC and C14 distributions
suggests that water mass transports as well as ventilation and
overturning rates in the model are realistic. The model in-
cludes biological production of suspended as well as sink-
ing particles in the top two layers (euphotic zone: 0–133 m
depth). Sinking particles are remineralized in the water col-
umn or at the sea floor. More details of the biogeochemical
processes in the model follow below.

3.2 Model budgets equations

The model simulates two tracers, dissolved inorganic phos-
phateCD and POPCP. CD andCP are coupled in the surface
layer (see Fig. 4). During the productive period, phosphate
CD is consumed by phytoplankton, leading to the build-up of
POPCP, while the remineralization ofCP leads to a release
of phosphate and thus to an increase ofCD. PhosphateCD
budgets are formulated for all boxes of the model throughout
the entire water column, while budgets of suspended POP
CP only exist in the surface layer. The sinking part ofCP is
remineralized while settling through the water column.

The concentrations ofCD andCP vary with time. TheCD
concentrations are transported by circulation and are affected
by biological production (sink) and particle remineraliza-
tion (source). When POPCP is formed during phytoplankton
photosynthesis near the ocean surface, dissolved phosphate
CD is consumed. TheCD budget for ocean surface boxes is
as follows:

Geosci. Model Dev., 6, 1575–1590, 2013 www.geosci-model-dev.net/6/1575/2013/
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Fig. 4. Schematic diagram of tracers and processes included in model. The two simulated tracers phosphate and particular organic phos-
phorous are represented by blue squares and colored dots, with symbol size reflecting typical concentrations. The size of the black arrow
indicates decreasing export flux with depth. Phosphate is transported by the ocean circulation (two big blue arrows) and also influenced by
the seasonal changes of mixed layer depth.

V
dCD

dt
=∑

i

Ai(uiCDi
− Kh∇CDi

) +

∑
j

Aj (vjCDj
− Kh∇CDj

)

+

∑
k

Ak(wkCDk − Kv∇CDk) − qD − V
dCP

dt
. (1)

TheCP budget for ocean surface boxes has the form

V
dCP

dt
= qP. (2)

The phosphateCD budgets in the deeper ocean have the
same form as Eq. (1) except that the last termV dCP

dt
vanishes

because of negligible subsurfaceCP concentrations.
In Eq. (1), A is the area of an interface and has either a

positive or negative sign, depending on whether a positive
flow u, v, or w (eastward, northward, or upward) enters or
leaves the box.V is the box volume, and∇CDi,∇CDj ,∇CDk

areCD surface normal gradients on the respective interfaces.
The subscriptsi, j , andk indicate zonal, meridional, and ver-
tical directions. In the present model, the horizontal flows are
steady state and taken from Schlitzer (2007). The vertical ve-
locity w is calculated by solving the continuity equation from
bottom to top in each column.Kh andKv are horizontal and
vertical mixing coefficients.

The vertical mixing coefficientKv is affected by changes
of the mixed layer depth (MLD) taken from Monterey and
Levitus (1997). A deepening of MLD in the winter increases
Kv within the MLD, leading to an intense vertical mixing of
tracers within the MLD. In terms of phosphate this brings up
nutrients to the upper ocean from deeper layers, thus fuel-
ing the next spring/summer bloom to come. In the model the
enhanced vertical mixing within the MLD is implemented by
applying a large factor onKv for all vertical interfaces within
the MLD. The upscaling factor is reduced in a smooth way
to 1 for the first interface below the MLD.

qD is the sink/source due to loss/gain by sinking parti-
cles. As in Schlitzer (2007) the vertical particle fluxjp(z)

is assumed to follow so-called Martin curves (Martin et al.,
1987). Production of particulate material occurs in the top
two model layers (euphotic zone). The euphotic zonezEZ
is 133 m. Sinking particles are remineralized below the eu-
photic zone, and the particle flux decreases according to

jp(z) = a · (z
/
zEZ)−b. (3)

In Eq. (3), the exponentb determines the shape of the par-
ticle flux profile, and thus controls the depth of remineraliza-
tion. Here we useb values provided by Schlitzer (2007).

The parametera represents the particle flux at the depth of
the euphotic zone, commonly referred to as export produc-
tion.

www.geosci-model-dev.net/6/1575/2013/ Geosci. Model Dev., 6, 1575–1590, 2013



1580 X. Yao and R. Schlitzer: Assimilating water column and satellite data

TheCP budget in Eq. (2) simply links temporal concentra-
tion changes with the net source/sink termqp. We consider
two different source/sink setups. (A) the source part ofqp is
set proportional to the particle export flux at the base of the
euphotic zone, and the sink term describes exponential de-
cay of the particulate material with a prescribed lifetimeτ .
(B) the source part ofqp is set proportional to the net pri-
mary production (NPP) obtained from satellite data, and the
sink term again describes exponential decay of particulate
material, but the lifetime is temperature dependent and model
adjustable. These two setups are described in detail below.

In the first experiment (Exp A) theCP budget has the fol-
lowing form:

V
dCP

dt
= α · a − V

CP

τ
. (4)

The source term ofCP is proportional to export produc-
tion a, scaled with a factorα. The sink term represents expo-
nential degradation ofCP with a prescribed lifetimeτ . The
export productiona follows Eq. (5) below.

a = α0 · p2
e(x,y) · s(y, t), (5)

whereα0 · p2
e(x,y) is the export flux of the steady-state so-

lution of Schlitzer (2007) at longitudex and latitudey, and
p2

e(x,y) is the square of the spatially varying export flux pa-
rameter, which can be adjusted in the adjoint model. Formu-
lating the flux as square of the adjustable parameter guaran-
tees positive export flux.s(y, t) = 1+κ(y) ·sin(8(y)+2πt)

is a prescribed season factor, which controls the seasonal
variations and time of bloom;t is time; andκ(y) is the rel-
ative amplitude of the seasonal export variations ranging be-
tween 0 (no seasonal variations) and 1 (maximal seasonal
variations).κ(y) and8(y) are simplistic, prescribed formu-
lations ensuring weak seasonality at low latitudes and strong
seasonality at high latitudes. Blooms occur in spring at low
latitudes and in late summer at high latitudes.

In the second experiment (Exp B) theCP budgets has the
following form:

V
dCP

dt
= p2

α · NP · A − V · p2
γ · Q · CP. (6)

Here the source of particulate material is set proportional
to satellite-derived new primary productionNP (Behrenfeld
and Falkowski, 1997) scaled with the square of a model-
adjustable parameterpα (using the square guarantees a posi-
tive source term).

In the original satellite-derivedNP dataset there are no data
in the polar regions, typically for some months during winter-
time; however, a completeNP field is required by the model.
As a fill-in strategy we take 10 % of the maximumNP value
over the given box surface area. This seems to be a reason-
able strategy as wintertime productivity values are expected
to be much smaller than during bloom periods. In Eq. (6),
the sink term is theCP remineralization influenced by wa-
ter temperature. The remineralization rate is proportional to

the square of another model-adjustable parameterpγ times
a temperature-dependent factorQ. The temperature factor
Q follows Eppley (1972), and the monthly temperature data
from WOA09 temperature (Locarnini et al., 2010) are used.
A in Eq. (6) is the box surface area.

3.3 Model parameters

There are two groups of parameters in the model: indepen-
dent parametersp∗, which can be adjusted by the model in
the course of the optimization, and dependent parametersp̃,
which depend on the independent parametersp∗, and can be
calculated by performing a model simulation.

The sets of independent parameters are different for the
two experiments described above:

p∗
= [pe] for Exp A,

p∗
= [pe,pγ ,pα] for Exp B. (7)

There are three types of independent parameters: export
parameterspe, remineralization parameterspγ , and produc-
tivity parameterspα. Note that all independent parameters
appear in squared form in the model equations to ensure
proper sign of the terms. For each type, there is one indepen-
dent parameter for every model column; for example, each
type of independent parameter describes an entire 2-D global
field. Exp B has three times as many independent parameters
as Exp A, and should therefore have more flexibility in fitting
the data.

Exp A only contains the export-related independent pa-
rameterspe. These parameters not only appear in the
source/sink termqD of theCD budgets but also in the source
term of theCP budgets. Therefore, in Exp A, varying the
independent parameterspe impacts both theCD andCP bud-
gets and tightly couples the two. Strong export (largepe)

leads to large decrease of dissolved phosphate (drawdown)
and at the same time to large build-up of particulate matter.
Exp A therefore has an inherent anticorrelation between the
two tracers.

Runs of Exp A are started with initialpe values from
Schlitzer (2007). During the runpe values are adjusted to
satisfy the water column phosphate and ocean surface POP
data as closely as possible.

Exp B also includes the export-related independent param-
eterspe but has two additional sets of independent parame-
ters,pγ andpα, affecting the POP source and sink terms in
Eq. (6). p2

γ is initialized with the globally uniform value of

0.048 day−1 (Schartau and Oschlies, 2003).p2
α is initialized

with a globally uniform value of 0.75.
The set of dependent parameters is composed of the

model-simulated concentrations of the two tracers phosphate
and POP:

p̃ = [CD,CP]. (8)

The size of dependent parameter vector is determined by
the number ofCD andCP boxes times the number of model

Geosci. Model Dev., 6, 1575–1590, 2013 www.geosci-model-dev.net/6/1575/2013/
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Table 1.The parameters used in the model.

Notation Meaning Note

p∗ In parameter
p̃ Dependent parameter
pe Export-independent parameter [Exp A & B] initial value from Schlitzer (2007)
pγ Remineralization-independent parameter [Exp B only] initial value: P2

γ =0.048/d (Schartau and Oschlies, 2003)
pα Primary production percentage-independent parameter [Exp B only] initial value:P 2

α = 0.75
α Proportional factor to export production 3
τ Lifetime of POP 10 days
Q Temperature factor Eppley (1972)
b Exponent of Martin type particle flux profile Martin et al. (1987)
u,v,w Zonal, meridional, and vertical flows
CD Phosphate concentration
CDd WOA09 phosphate data
σCDd Error of WOA09
CP Particulate organic phosphorous POP concentration
CPd Satellite-derived POP concentration converted from satellite POC using Redfield ratio
σCPd Error of satellite POP values
a Export production
jp Particle flux
A Area of model box
V Volume of model box

time steps. AsCD budgets exist for all depths, whileCP bud-
gets only exist in the surface layer, the number ofCD pa-
rameters is much larger than the number ofCP parameters.
The initial field ofCD is taken from Schlitzer (2007), while
theCP field is initialized with zero uniformly. The time evo-
lution of CD andCP is calculated by running a 10 yr model
simulation. The model values for the last year are compared
with phosphate and POP data month by month, and the ob-
served model–data misfits are fed into the adjoint model de-
scribed below. From the observed misfits the adjoint model
determines modifications of the independent parameters that
will lead to a better next simulation.

3.4 Cost function

OnceCD and CP are calculated during the model forward
run, theCD andCP values of the last 12 months are stored
and compared with observations. The model–data misfits as
well as other undesired features are accumulated in the cost
functionF of the model. The individual terms of cost func-
tion defined in this study are listed in Table 2. The total cost
functionF is the sum of all the terms listed (see Eq.9):

F = Fphosphate+ FPOC+ Fsmoothness. (9)

There are two terms accumulating squared model–data
phosphate and POC misfits and a third term penalizing spa-
tial roughness of the export-related independent parameters
pe (via second derivatives in east–west and north–south di-
rections). The phosphate misfits inFphosphateare calculated
for three depth ranges separately and then summed up. The
reason for the subdivision is the increased flexibility by al-
lowing for individual weights for the individual terms. The

weights used for the different experiments are identical (Ta-
ble 2).

Following standard procedures, model–data misfits for
phosphate and POC are calculated as error-normalized dif-
ferences between model simulated and observed values and
then squared. The data errors used are specified in Table 2. It
is assumed that data errors are uncorrelated. Given that the
climatological phosphate data are the result of very many
independent observations over the last 80 yr, this assump-
tion seems justified. The algorithms for estimating satellite-
derived POC values may in principle introduce correlated er-
rors; however, the magnitude of such effects (if they exist)
are yet unknown.

3.5 Adjoint equations

The objective of the adjoint model is to find the minimum of
cost functionF under the additional condition that all model
equations are satisfied exactly. For Exp A the model equa-
tions are Eqs. (1) and (4), while for Exp B we have Eqs. (1)
and (6). The first step in the derivation of the adjoint equa-
tions is to rewrite the model equations in homogeneous form
Ei = 0, i = 1, . . . ,ne. Based on the cost functionF , we then
formulate the LagrangianL of the model,

L(p∗, p̃,λ) = F(p∗, p̃) +

ne∑
j=1

λj · Ej . (10)

Herene is the number of model equations, andλj are the
Lagrangian multipliers of the problem.

Seeking the minimum of cost functionF is equivalent to
finding a model solution that satisfies Eqs. (11), (12) and
(13).
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Table 2.Description of individual terms in the cost functionF .

Meaning Mathematical form
Weight factorWi

Exp A Exp B

Phosphate data (surface:< 60 m)
(

CD−CDd
σCDd

)2
· W1 100 100

Phosphate data (twilight zone: 60–400 m)
(

CD−CDd
σCDd

)2
· W2 5 5

Phosphate data (deep:> 400 m)
(

CD−CDd
σCDd

)2
· W3 1 1

POC data (surface)
(

CP−CPd
σCPd

)2
· W4 100 100

Spatial smoothness of export production parameters[
(
p2

w − 2p2
c + p2

e

)2
+

(p2
n − 2p2

c + p2
s)2] ·W5

50 50

σCDd
is taken from the WOA09 phosphate standard error or 0.03 µmol kg−1, whichever is greater.σCPd

is taken as 30 % of the

satellite POC or 13 mg m−3, whichever is greater.pc, pw, pe, pn, andps are center, west, east, north, and south values,respectively.

Fig. 5.Schematic overview of the model calculations.

∂L

∂λj

= Ej = 0 (11)

∂L

∂p̃i

=
∂F

∂p̃i

+

ne∑
j=1

λj ·
∂Ej

∂p̃i

= 0 (12)

∂L

∂p∗

i

=
∂F

∂p∗

i

+

ne∑
j=1

λj ·
∂Ej

∂p∗

i

= 0 (13)

Equation (11) represents the model equations, and is au-
tomatically fulfilled. One proceeds by calculating the La-
grangian multipliersλj from the Eq. (12). Then the calcu-
lated Lagrangian multipliers are inserted into Eq. (13) to cal-
culate the gradient of the cost functionF with respect to the
independent parametersp∗. This gradient is then passed to

a descent algorithm that returns with a new and improved
set of independent parameters. Repeating this process iter-
atively will ultimately lead to a vanishing gradient vector,
and thus also satisfying Eq. (13). The derivation and imple-
mentation of the adjoint equations is described in detail in
Schlitzer (2007).

The general sequence of computational steps is shown
in Fig. 5. The advantage of the adjoint part is the adjust-
ment of independent model parameters that is guaranteed
to lead to smaller cost function values in subsequent sim-
ulations. This is vastly superior to manual parameter opti-
mizations that in most cases do not lead to improved sim-
ulations, or, in cases with thousands of parameters, is sim-
ply not technically possible. As explained in Sect. 4 be-
low, the adjoint model consists in a backward time-stepping
procedure with the same number of steps as the forward
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Table 3.Values of total cost function and individual terms (units of 107) for Exp A and Exp B.

Total cost Phosphate Phosphate Phosphate POC Smoothness of export
function (< 60 m) (60–400 m) (> 400 m) production parameters

Exp A
start 35.2 25.3 3.5 0.7 4.0 1.8
end 31.1 25.3 3.1 0.7 1.0 0.9

Exp B
start 294.9 22.4 3.2 0.7 267.2 1.4
end 16.2 10.8 3.2 0.8 0.3 1.2

simulation. The computational cost of an adjoint run is sim-
ilar to the cost of the forward run. A full iteration as shown
in Fig. 5 thus requires about twice the effort of a forward
simulation. Hundreds or thousands of such iterations need
to be performed to reach the minimum in large-scale prob-
lems. Our present model can be run on a typical PC, and
computing time for finding optimal solutions is about a day.
The adjoint code of the present study was obtained man-
ually, and various efficiency measures were implemented.
Alternatively, FORTRAN adjoint code can also be obtained
quasi-automatically using automatic adjoint model compilers
(Giering and Kaminski, 1998, 2000; Giering et al., 2005).

4 Model experiments

As shown in Fig. 5 the model calculations can be divided
into two parts. The first part is a normal forward run (simu-
lation) that, for a given set of independent parameters, cal-
culates the dependent parameters (tracers)CD and CP by
forward time-stepping of the tracer budget equations. This
step uses traditional procedures as included in most exist-
ing physical or biogeochemical models. The second part in-
volves running the adjoint of the forward model including
comparisons of the simulated tracer values with data and the
accumulation of misfits in the cost function. Ultimately the
gradient of the cost function with respect to the independent
parameters is obtained by time-stepping the adjoint model
backwards. Once this gradient is known, a new, improved
set of independent parameter values is produced using a suit-
able descent algorithm (here: quasi-Newton conjugate gradi-
ent algorithm). In essence the parameter improvements are
determined (driven) by the data and data misfits. The adjoint
model guarantees that the next simulation with improved
model parameters will have more realistic tracer fieldsCD
andCP and a lower value of the cost function. Many such
iterations consisting of simulation and an adjoint model run
have to be repeated until a termination criteria is satisfied and
an optimal solution is reached.

In this study, we have run the two experiments Exp A
and Exp B described in Sects. 3.2 and 3.3 above. In each
case, we solve the budgets equations for phosphateCD and
POPCP using an implicit time-stepping scheme that allows
for large time steps of one month. We integrate over a 10 yr

period, sufficient for upper ocean phosphate and POP fields
to reach equilibrium. Initial values for phosphateCD are from
Schlitzer (2007), and POP concentrationsCP are initialized
with zero.

The simulation produces 120 snapshot fields ofCD andCP
concentrations, which are kept in memory for usage during
the backward adjoint run. Only the simulated phosphate and
POP concentrations during the last year are compared with
data on a month-by-month basis. Model–data misfits are ac-
cumulated in the cost function as discussed above and listed
in Table 2. Note that, in addition to the data misfit terms, a
smoothness term for export-related independent parameters
is also included in the cost function. This term is never dom-
inant in Exp A or Exp B (see below).

The adjoint equations Eqs. (12) and (13) have spe-
cial structure allowing for very efficient calculation of La-
grangian multipliers using a backward-in-time stepping of
the adjoint equations Eq. (12) and finally of the gradient of
the cost function with respect to the independent parameters.
The computational cost for Exp B is higher than for Exp A
due to the three times larger number of independent parame-
ters.

Before starting the model runs, the correctness of the
cost function gradient was checked by applying the gradient
check described in the Appendix for a number of indepen-
dent parameters. Failures of the test in all cases were caused
by coding errors. The production runs were only run after all
errors were fixed and all gradient checks succeeded.

5 Results and discussions

5.1 Cost function values

Initial and final (optimal) values of the total cost function
as well as for the individual terms for the two experiments
Exp A and Exp B are shown in Table 3. Note that both ex-
periments were run with identical weight factors for the in-
dividual terms, thus making the values directly comparable.
The initial cost function value for Exp B (2.9×109) is much
larger than for Exp A mostly because of the very large POC
misfit term caused by poor initial values of thepα- andpγ -
independent parameters that determine the POC source and
sink strengths. In all cases at initial stage the POC and upper
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ocean phosphate misfit terms are the dominant ones, while
the deep phosphate misfit and spatial smoothness terms are
about one order of magnitude smaller.

In all runs we find decreases of the total cost function
values as a result of the iterative optimization procedure.
In Exp A the reduction amounts to about 12 %, mostly due
to the decrease of the POC misfit term (reduced from 4 to
1×107). The phosphate misfit terms for the surface and deep
ocean remain almost unchanged, while the term for twilight
zone phosphate decreases by about 12 %. The overall cost
function reduction for Exp B is much larger than for Exp A
and amounts to about 95 %. This large reduction is mostly
due to reductions of the POC misfit term (from about 267 to
0.3×107) and the surface phosphate misfit term (from 22.4 to
10.8×107). The other terms remain almost unchanged. Com-
pared to Exp A, Exp B has reached a much better state with
the total cost function and the surface misfit term, amounting
to only half the Exp A values and the POC misfit only be-
ing one-third. Obviously the simulated phosphate and POC
fields of Exp B are closer to the observations than the ones
for Exp A (see below).

In Exp A, the export-production-related parameterspe are
the only adjustable parameters, and by design of Exp A, any
adjustment ofpe directly influences the simulated surface
POC and phosphate concentrations in a prescribed anticorre-
lated way. In regions where observations show simultaneous
increase or decrease of POC and phosphate concentrations,
Exp A has no way of fitting both data types because a better
fit of one type inevitably is associated with a poorer fit of the
other. Such a situation is shown in Fig. 6a for a location in the
central North Atlantic. In this region both data types, surface
phosphate as well as POC, decrease from April until Septem-
ber. Exp A has no way to reproduce such behavior, and pro-
duces quite unrealistic phosphate and POC values during the
entire period. In Exp B the linkage between phosphate and
POC is less strict because of the additional independent pa-
rameter setspα andpγ that affect the surface POC distribu-
tion but not phosphate. Thus Exp B has more flexibility than
Exp A. The inherent limitation of Exp A is also reflected in
the final misfit values for POC and surface phosphate, which
both are about a factor of 3 larger than for Exp B.

5.2 Misfit analysis

The mean and root-mean-square (RMS) misfit values of POC
and phosphate are listed in Table 4. Consistent with the
smaller cost function values discussed above, Exp B also ex-
hibits smaller POC mean and RMS misfits than Exp A. Both
Exp A and Exp B show an underestimation of POC concen-
trations, which in the case of Exp B is quite small.

The phosphate misfits are calculated separately for the
three depth ranges also used in the cost function terms: sur-
face layer (< 60 m), twilight zone (60 to 400 m), and deep
water (> 400 m). In general, Exp B exhibits smaller mean
and RMS phosphate misfits in the surface layer than Exp A.

Fig. 6. Comparison of monthly phosphate and POC values in the
central North Atlantic (position marked by green circle in Fig. 3).
(a) WOA09 phosphate and satellite POC,(b) model-simulated
phosphate for Exp A and Exp B together with WOA09 phosphate,
(c) model-simulated POC for Exp A and Exp B together with satel-
lite POC, and(d) monthly mixed layer depth (MLD, Monterey and
Levitus, 1997).

This is consistent with the smaller value of the phosphate
(< 60 m) cost function term of Exp B described above. The
mean phosphate misfit of Exp B in the twilight zone is
slightly larger than for Exp A. In the deep ocean both ex-
periments produce about the same misfits. Overall, Exp B
performs better than Exp A, especially in the surface layer.

5.3 Surface phosphate and POC analysis

Figure 7 shows the model-simulated phosphate fields for
June and December. Overall, both experiments reproduce the
main features in the observations (see Fig. 1) well. We find
low concentrations in the subtropical gyres and high con-
centrations in the subpolar regions as well as in equatorial
and coastal upwelling regions. In Exp A, there are occa-
sional small negative values in parts of the Atlantic subtrop-
ical gyres. These are unrealistic values, caused in the model
by insufficient phosphate resupply to the ocean surface. In
Exp B, these unrealistic values are not observed.

When comparing more closely, the model–data phosphate
misfits for Exp A (Fig. 7b and d) reveal significant and
large-scale systematic offsets. Exp A overestimates surface
phosphate in the entire north Pacific, in the southeast Pa-
cific upwelling region and at high latitudes in the South and
North Atlantic. Phosphate underestimation in Exp A occurs
at low latitudes, especially in the Atlantic. This general misfit
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Table 4.Mean and RMS of phosphate and POC model–data misfits for Exp A and Exp B.

Depth
Exp A Exp B

POC (mg m−3) Phosphate (µmol kg−1) POC (mg m−3) Phosphate (µmol kg−1)

Mean RMS Mean RMS Mean RMS Mean RMS

Surface layer −30.85 88.00 0.06 0.31 −8.71 65.87 0.03 0.20
Twilight zone (60–400 m) – – −0.05 0.28 – – -0.08 0.28
Deep (> 400 m) – – 0.03 0.13 – – 0.03 0.14

pattern is found for June and December, and seems to pre-
vail throughout the year. In Exp B the magnitude of surface
phosphate misfits is generally smaller than for Exp A, but
large-scale systematic features are also observed.

Figure 8 shows the model-simulated POC fields for June
and December. Both Exp A and Exp B capture the main
structure of satellite POC data: low concentrations in the sub-
tropical gyres, and high concentrations in the coastal regions.
However, significant systematic misfits are present both in
Exp A and Exp B. In Exp A, the POC concentrations are
underestimated in most regions in June and December. They
are overestimated in the Southern Ocean during December.
In Exp B, the extent of overestimation and underestimation
is smaller compared to Exp A, but large-scale systematic pat-
terns are also found.

The agreement between simulated and observed POC val-
ues for both experiments is best at low and poorest at high lat-
itudes (Fig. 8b, d, f, and h). The large POC misfits in subpolar
and polar regions may again be caused by model shortcom-
ings. However, it is also possible that the POC data quality is
poorer in these regions because of scarcity of satellite optical
data due to light limitation and frequent cloud coverage. In
addition, because of the high logistical cost, direct, shipboard
measurements of in situ POC concentrations required for the
calibration of the POC retrieval algorithms are rare (Stramski
et al., 2008), and it is quite possible that the satellite-based
POC data still contain systematic biases at these high lati-
tudes.

As an example of the temporal evolution of surface phos-
phate and POC concentrations over the course of an entire
year, Fig. 6 shows data values and model simulations for
the location in the central North Atlantic marked in Fig. 3.
This location was chosen because of relatively large seasonal
changes of both the dissolved nutrient as well as POC con-
centrations (see Figs. 1 and 2). At this location surface phos-
phate concentrations are highest during winter and spring
(Fig. 6a), when the MLD is deepest (Fig. 6d). During late
spring, when the upper water column warms and MLD de-
creases, phosphate concentrations start to decline as biolog-
ical production is starting to use up nutrients. The phos-
phate drawdown continues until September, when finally
concentrations begin to increase again towards winter values.
During winter and spring, when phosphate is highest, POC

concentrations are lowest. At the chosen location, POC con-
centrations start rising in early spring, reaching maximum
values in April and exhibiting a steady decline during most
of the summer season. This decline occurs while biological
production is high, as indicated by the decreasing phosphate
concentrations.

Figure 6b and c show that Exp B is able to reproduce
the observed trends in phosphate and POC, while results of
Exp A are far from the data and essentially show very small
seasonal amplitude in both cases. As the main reason for this
failure of Exp A we see the rigidity of its POC source/sink
setup (Eqs.4 and 5), which strictly links phosphate draw-
down with large POC source term and increasing POC con-
centrations. Simultaneous decreases of both phosphate and
POC such as in Fig. 6 cannot be reproduced by Exp A by
design.

5.4 POC export analysis

Figure 9 shows the downward POC export flux at the base of
the euphotic zone (133 m depth) of Exp A and Exp B for June
and December. Both Exp A and Exp B show large seasonal
changes of the POC export, especially in the high-export re-
gions. In June, high POC exports are found at high latitudes
in the North Atlantic, the North Pacific, and near the east
coast of Africa. In December, the highest exports occur in the
Southern Ocean, the coastal region of Africa, and the south-
ern subpolar regions. The seasonal evolution of high-export
regions matches the seasonal changes of high productivity as
seen, for instance, in satellite chlorophyll maps. The annu-
ally averaged global POC export of Exp A is 9.9 Gt C yr−1,
while for Exp B we obtain an about 25 % higher flux of
12.3 Gt C yr−1. These values are within the wide range of
literature values between 11 and 22 Gt C yr−1 (Laws et al.,
2000; Schlitzer, 2000; Eppley and Peterson, 1979).

5.5 Identifiability of independent parameters

The notion of identifiability addresses the question of
whether it is at all possible to obtain unique solutions of
the inverse problem for unknown parameters of interest in
a meteorological/oceanic model from data collected in the
spatial and temporal domains (Navon, 1998). In order to ad-
dress the identifiability of our adjoint model, we conducted
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Fig. 7. Model-simulated surface water phosphate and model–data misfits for June and December. The left-hand column(a–d) is for Exp A,
and the right-hand column(e–h)for Exp B.

three additional sensitivity runs of Exp B with different ini-
tial independent parameter values to investigate the degree of
variance in the solutions. The initial independent parameter
values are 10−6 (Exp B1), half of the initial values in Exp B
(Exp B2) and two times the initial values in Exp B (Exp B3).
Experiment Exp B1 has to be considered an extreme case
with all independent parameters close to zero. Any resulting
structures in the final solutions are developed during the data
assimilation process and are not already included in the ini-
tial fields.

Results from these runs are listed in Table 5. While starting
with wildly different initial cost function values (not shown),
all sensitivity runs show similar final values for the total cost

function as well as for individual terms, all differing by less
than 5 %. The export-related independent parameterspe in
the three sensitivity runs are surprisingly similar given the
vastly different initial fields, especially for B1 with its spa-
tially constant near-zero values. The mean values ofp2

e and
the associated global carbon exports agree within 2 % (Ta-
ble 5) and the spatial fields all reveal nearly identical export
patterns (not shown). The situation is different for the two
other groups of independent parameterspα andpγ that deter-
mine sources and sinks of POC. These two parameter groups
appear to be positively correlated, and similar POC distri-
butions can obviously be produced (see POC misfit term in
Table 5) with both POC sources (pα) and sinks (pγ ) small or
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Fig. 8. Model-simulated surface water POC and model–data misfits for June and December. The left-hand column(a–d) is for Exp A, and
the right-hand column(e–h)for Exp B.

large. The observed spread in the three runs is almost 100 %.
Overall, we find a situation that is quite common in opti-
mization problems, where some parameters are tightly con-
strained (export parameters) while others vary largely. The
fact that Exp B1, which starts from a “state of ignorance”,
still produces a carbon export field nearly identical to the
other two runs shows that indeed the water column nutrient
and satellite-based surface POC data contain sufficient infor-
mation for estimating the marine carbon export flux.

6 Summary and conclusions

In this study, we use a medium-resolution coupled
biogeochemical–physical ocean model and assimilate satel-
lite POC as well as water column nutrient data to estimate
the seasonal evolution of carbon export in the global ocean.
As an extension of previous work, the addition of satellite
data with their good spatial and temporal coverage allows for
estimating the temporal variation of the global carbon export
fields. The extended model simulates surface water POC con-
centrations in addition to nutrient concentrations throughout
the water column. Both simulated fields are compared with
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Fig. 9.Optimal POC export fields for June and December for Exp A (a andb) and Exp B (c andd).

Table 5.Summary of Exp B sensitivity runs starting at different initial independent parameters.

Exp B1 Exp B2 Exp B3 Mean Std. Dev. (%)
Initial parameters 10−6 0.5× p∗ 2× p∗

Cost function

(units of 107)

at optimal state

Total cost function 20.4 20.2 20.5 20.4 ± 5.8
Phosphate surface (<60 m) 11.1 11.1 11.1 11.1 ± 0
Phosphate shallow (60–400 m) 3.15 3.14 3.17 3.15 ± 0.3
Phosphate deep (> 400 m) 0.80 0.85 0.82 0.82 ± 2.4
Satellite POC term 4.18 4.02 4.29 4.16 ± 2.6
Smoothness of export production 1.20 1.19 1.17 1.19 ± 0.8

Independent
parameters

p2
e mean (106 m3µmol C s−1 kg−1) 10.65 11.14 10.99 10.93 ± 1.8

p2
α mean 0.576 1.378 3.661 1.87 ± 70.0

p2
γ mean (day−1) 0.022 0.062 0.23 0.10 ± 90.0

Global POC export (Gt C yr−1) 12.1 12.7 12.4 12.4 ± 2.0

respective observations, and model misfits are accumulated
in the cost function of the model. The adjoint method is ap-
plied to drive the model to the satellite POC as well as wa-
ter column nutrient data and to optimize the export produc-
tion values. Experiments are done using two different POP
production scenarios (C / P Redfield ratio is used to convert
between POC and POP), one with a POP source term be-
ing proportional to export production (Exp A), while in the
second case the POP source is proportional to independently
obtained new primary production (Exp B).

The model results show that the adjoint method worked
well and that significant decreases of the cost function were
achieved. Final (optimal) phosphate and POP model distri-
butions agree much better with observations than initially,
and the model has driven the model simulations closer to

observations. The integrated carbon export in the two exper-
iments amounts to 9.9 (Exp A) and 12.3 Gt C yr−1 (Exp B).

In the surface layer, we allow for material exchanges be-
tween dissolved phosphate and particulate phosphorous POP
in a way that makes the two essentially anticorrelated. When
POP builds up, phosphate is consumed, leading to a decrease
in phosphate concentration. On the other hand, when POP is
remineralized, dissolved phosphate is released, and its con-
centrations rise. Such an anticorrelation between the two pa-
rameters is actually also found in the data of water column
phosphate and satellite POC in many regions. However, in
some locations and months, the observations show a positive
correlation between the two, with both parameters simultane-
ously increasing or decreasing for some period of time. This
behavior cannot be reproduced by the model because of a
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setup implying anticorrelation. In such regions, simulatedCD
andCP values often differ much from observations, and the
model has no way of improving both tracers at the same time
because of the inherent anticorrelation built into the model.
This is especially the case in Exp A with its strict linkage of
POC export and POC production. In Exp B, the influence of
this design limitation is reduced by the two additional sets of
independent parameters.

The existence of significant and systematic differences be-
tween model and observations in the final, optimal solutions
strongly suggests that the treatment of POP budgets and the
coupling with dissolved nutrients is overly simplistic and
unrealistic in the present setup. This is especially true for
Exp A, which exhibits relatively small improvements in the
POP fields. While the present study has shown that in prin-
ciple the adjoint method can be applied for determination of
time-varying export flux fields using satellite and water col-
umn data, the present results have to be considered prelimi-
nary and more refined model setups coupling the dissolved,
and particulate phases of nutrients and carbon are needed.

Appendix A

Gradient test

Before the actual model runs, a gradient test (Navon et al.,
1992) was performed to check the correctness of the adjoint
model. The mathematics is based on Taylor expansion of the
cost function. The cost function at a perturbed pointp+αdp

can be written as

F(p + αdp) = F(p) + α
∂F

∂p
dp +

1

2!
α2∂2F

∂p2
dp2

+ ·· · (A1)

The quantityR defined as

R(α) = F(p + αdp) − F(p) − α
∂F

∂p
dp (A2)

should vary quadratically withα for small enoughαdp. The
test involves repeated calculation ofR for a sequence ofα
values starting with a very small value (e.g., 10−5) and in-
creasingα by one order of magnitude each step. In the case
of a valid adjoint and correct gradient,R will increase by two
orders of magnitude step by step over a wide range ofα val-
ues. An example of such a successful gradient test is shown
in Table A1.

The gradient test is done for each independent parame-
ter individually. For each type of independent parameter, we
chose an arbitrary position to apply a change of indepen-
dent parameter by dp, normally 0.5. This kind of gradient
test should be done for each type of independent parameter.
For example, in Exp B, it should be done three times, just
changing one position in the type ofpe, with the other inde-
pendent parameters kept unchanged. Only if all gradient tests
are successful do we start the production run.

Table A1. Example results of a successful gradient test.

Step α R(α)

1 10−5 1.63× 10−8

2 10−4 1.56× 10−6

3 10−3 1.56× 10−4

4 10−2 1.56× 10−2

5 10−1 1.58
6 1 1.78× 102

7 10 4.48× 104

8 100 9.82× 107
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