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Abstract

The Mean Dynamic Topography (MDT) of the ocean provides valuable infor-

mation about the ocean’s surface currents. Therefore the MDT is computed

from satellite observations and then assimilated into ocean models in order

to improve the ocean circulation estimates. However, the computation of the

MDT from satellite observations of sea surface height and the Earth’s grav-

ity field is not straightforward and requires additional filtering of the data

combination. The choice of the filter is crucial as it determines the amount of

small-scale noise in the data and the resolution of the final MDT. There ex-

ist various approaches for the determination of an “optimal” filter. However,

they all have in common the more or less subjective choice of the filter type

and filter width. Here, a new filter is presented that is determined directly

from the geodetic normal equations. By its construction, this filter accurately

accounts for the correlations within the MDT data and requires no subjective

choice about the filter radius. The new filtered MDT is assimilated into an

inverse ocean model. Modifications in the meridional overturning circulation

and in the poleward heat transports can be observed, compared to the result
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of the assimilation using the unfiltered MDT.

Keywords: Filter, Mean Dynamic Topography of the ocean, Error

covariance estimate, Inverse ocean models

1. Introduction1

The Mean Dynamic Topography (MDT) of the ocean is the difference2

between the Mean Sea Surface height and the geoid height, the geoid being3

an equipotential surface of the Earth’s gravity field. The computation of the4

MDT is not straightforward because the different observational data sets have5

different representations and different resolution (Becker et al., 2012; Losch6

et al., 2002). Therefore, filtering becomes necessary in the MDT computation7

to remove small-scale noise.8

Different approaches exist for the choice of the required filter1 (Jekeli,9

1981; Bingham et al., 2008; Jayne, 2006). A common choice is a Gaussian10

filter with an appropriate half-width radius. In Knudsen et al. (2011), a11

method is described for the determination of an “ideal” Gaussian filter width.12

Bosch and Savcenko (2009) promote an along-track filtering approach for the13

altimetric data and tolerate filter errors that arise from this one-dimensional14

filtering. An anisotropic filter is also used in Bingham et al. (2011) to filter the15

MDT. Filters that account for the error correlations of gravity field data are16

constructed e.g. in Swenson and Wahr (2006) and Kusche (2007). However,17

at the current stage, it is not clear which filtering is the most appropriate for18

the MDT.19

1’Filter’ is used here in terms of mapping an input signal onto an output signal. It is

not used in terms of LTI systems.
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In this study, we use the MDT error covariance matrix for the construction20

of a filter for the MDT data. The development of an MDT filter based on21

error covariances was already suggested in Bingham et al. (2008), however,22

its implementation depends on the availability of such an error covariance23

matrix. Here, the MDT estimate and its corresponding dense error covariance24

matrix described in Becker et al. (2012) are used.25

The paper is organized as follows. An introduction to the MDT estimate26

and an introduction to the ocean model IFEOM are given in sections 2.127

and 2.2, respectively. The derivation of the new filter is illustrated in section28

3.1. The filtered MDT and the filter residuals are compared to the results29

obtained by another filtering type in section 3.2. The assimilation of the new30

filtered MDT into the ocean model IFEOM and a comparison of the results31

to those of the assimilation of the unfiltered MDT are presented in section32

4. A concluding discussion is provided in section 5.33

2. Background34

2.1. Mean Dynamic Topography35

The Mean Dynamic Topography (MDT) can be used to estimate ocean36

surface currents via the principle of geostrophy. Hence the combination of37

satellite observations of the sea surface height and the gravity field can reveal38

valuable information about the ocean’s circulation (Wunsch and Stammer,39

1998). However, satellite data of the MDT can only provide an incomplete40

picture of the ocean’s state due to its two-dimensionality. Therefore in this41

study an MDT estimate is combined with an inverse ocean model in order to42

improve the understanding of the ocean’s three-dimensional mean circulation.43
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For this purpose, a MDT was estimated from satellite observations by44

Becker et al. (2012). This MDT is designed exclusively for inverse ocean45

model assimilation. The MDT data ηd and its corresponding inverse er-46

ror covariance matrix C−1 are computed directly on an ocean model grid.47

The inverse error covariance is estimated from a least squares adjustment48

(geodetic normal equations) as described in Becker et al. (2012). This dense49

inverse MDT error covariance matrix is used as weighting matrix for the50

MDT model-data misfit in the ocean model optimization.51

2.2. Inverse Finite Element Ocean Model (IFEOM)52

The Inverse Finite Element Ocean Model (IFEOM) is a stationary model53

for the North Atlantic ocean (Sidorenko et al., 2006). It combines physical54

principles with observational data such as in-situ temperature and salinity55

measurements and satellite data. This is accomplished by minimizing the56

cost function57

J =
1

2

∑

i

Ji

!
= min, where i = MDT, temperature, salinity, etc. (1)

The different terms Ji contain quadratic model–data differences weighted by58

the inverses of their respective error covariances. Contributions from the59

residuals of the advection–diffusion equations for temperature and salinity60

are also contained in the cost function, so that the residuals are small. In this61

study, temperature and salinity data from a hydrographic atlas (Gouretski62

and Koltermann, 2004) are used for all IFEOMmodel runs. The MDT and its63

inverse error covariance matrix (section 2.1) are assimilated in an unfiltered64

and in a filtered version.65
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In general, error correlations are unknown and diagonal inverse “covari-66

ance” matrices are used for weighting the different cost function terms. In67

our case, the full dense inverse error covariance matrixC−1 for the MDT data68

ηd is provided by the approach described in Becker et al. (2012). Therefore69

the MDT term in the cost function (1) reads70

JMDT = (ηd − ηm)
Tα−1C−1(ηd − ηm). (2)

with the “observed” MDT ηd from satellite data and their modeled counter-71

parts ηm. The scalar factor α is derived from the Minimum Penalty Variance72

(MPV) approach (Freiwald, 2012) and is required for additional scaling.73

The cost function (1) is minimized iteratively, starting from a first guess74

which is an earlier IFEOM solution described in Richter (2010). This first75

guess was computed using only the hydrographic data (temperature and76

salinity as described above), and therefore it is used here for a comparison77

with the model runs which assimilate MDT information. Details of IFEOM78

can be found in Sidorenko (2004) and Freiwald (2012).79

3. A new filter based on the inverse error covariance80

3.1. Construction81

The inverse MDT error covariance matrix C−1 (section 2.1) is used to82

construct the filter in order to account for the correlations in the MDT data.83

In a first step, the matrix square root of C−1 is computed. This is possi-84

ble and unambiguous because the inverse error covariance matrix is positive85

definite and symmetric by definition. In a second step, each row i of the re-86

sulting matrix C−
1

2 is normalized. The corresponding normalization factors87
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(not eigenvalues!) di are used to build the diagonal matrix D:88

C−
1

2 = D ·S. (3)

For the computation of this decomposition, it has to be guaranteed that89

the diagonal entries di do not vanish. Due to the structure of the com-90

monly used covariance matrices, this generally applies in applications: The91

covariance matrices have very large diagonals exceeding the off-diagonals by92

magnitudes, and therefore also the inverse and the inverse square root of a93

typical covariance matrix meet the condition.94

The resulting matrix S from equation (3) has rows normalized to give a95

sum of one. This is necessary because the matrix S will be used to filter the96

MDT data ηd. The normalization ensures that the MDT is not reinforced or97

attenuated by the filtering process. This is equivalent to a weighted moving98

average filter with the weights given by the rows of S, thus derived from the99

error covariances.100

The unfiltered MDT ηd and the filtered MDT Sηd are shown in figure 1.101

Small-scale noise (“stripes”) is largely removed by the filter S while oceano-102

graphic structures associated with strong currents, e.g. the Gulf Stream, are103

not considerably attenuated.104

3.2. Comparison to simple moving average filters105

In order to illustrate the advantage of this covariance-dependent filtering106

method, a comparison to the results computed with a simple moving average107

filter is performed. Figure 2 shows the satellite MDT ηd filtered with simple108

moving averages of different radii. It is obvious from the figures that a filter109

width of 1.0◦ or 1.5◦ latitude/longitude is not sufficient to eliminate the110
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Figure 1: Unfiltered satellite MDT estimate ηd (top) and filtered MDT estimate Sηd

(bottom)
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Figure 2: Satellite MDT estimate ηd filtered with a simple moving average filter of radius

1◦ latitude/longitude (top), 1.5◦ (middle) and 2◦ (bottom)
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longitudinal “stripes” in the Nordic Seas. Hence, at least a filter width of 2◦111

latitude/longitude is required to efficiently remove the noise. Such a large112

filter radius however leads to blurring of other circulation features, e.g. the113

North Atlantic current, the Mann eddy at approximately 40◦N, 40◦W and114

the Loop Current in the Gulf of Mexico, see figure 2 (bottom). The filter115

width is crucial for the result, but chosen more or less subjectively in most116

cases. In contrast, the proposed filter S does not require any subjective117

decisions.118

The difference between the unfiltered and the filtered MDT, the filter119

residual ηd −Sηd, is displayed in figure 3 (top). Noise is effectively removed120

from the MDT data by the filter S. Application of a simple moving average121

filter of radius 2◦ latitude/longitude modifies the circulation much more than122

the proposed filter S, and oceanographic regions with large gradients such123

as the North Atlantic currents are strongly affected by the simple moving124

average filter (figure 3, bottom).125

In case the MDT data is filtered by a simple moving average filter, it is126

not clear what the appropriate weighting matrix is in the subsequent ocean127

model assimilation. In contrast, using the filter S leads to a well-defined128

weighting matrix. Its derivation is described in the following.129

4. Assimilation into IFEOM130

The MDT estimate described in section 2.1 was designed for the use in the131

inverse ocean model IFEOM. Therefore, it is now investigated how the result132

of the ocean model changes when the filtered MDT data are assimilated.133

For this purpose, the appropriate weighting matrix for the filtered MDT134
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Figure 3: Filter residuals ηd−Sηd for the filter S (top), and for the simple moving average

filter of radius 2◦ (bottom)
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data Sηd is required. For its determination, we go back to the estimation of135

ηd and C−1 from the geodetic normal equations.136

The geodetic observation equations are constructed as137

Aηd = l+ v (4)

with a system matrixA that connects the MDT data ηd with the observations138

l (e.g. altimetry and gravity data from satellites) subject to an error v with139

an observation error covariance V . The design of this system of equations140

is further detailed in Becker (2012). A Generalized Least Squares approach141

(Draper and Smith, 1998) is made to solve the system:142

ATV −1A
︸ ︷︷ ︸

=:C−1

ηd = ATV −1l
︸ ︷︷ ︸

=:n

(5)

Finally, the normal equation143

C−1 ηd = n (6)

is solved for ηd and the matrix C−1 is used as weighting matrix in the144

subsequent ocean model assimilation.145

Now the procedure is repeated with the same observations. The only146

difference is an identity matrix I = S−1S that is introduced into the obser-147

vation equations:148

AS−1S
︸ ︷︷ ︸

= I

ηd = l + v (7)

The Generalized Least Squares approach is applied again, now considering149
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Sηd as the data and AS−1 as the system matrix:150

(AS−1)TV −1AS−1Sηd = (AS−1)TV −1l (8)

S−T ATV −1A
︸ ︷︷ ︸

=C−1

S−1Sηd = S−T ATV −1l
︸ ︷︷ ︸

=n

(9)

S−TC−1S−1Sηd = S−Tn. (10)

It follows from the definition of the filter S in equation (3) that the inverse151

error covariance matrix C−1 can be decomposed into152

C−1 = STD2 S. (11)

(This is not equal to an eigenvalue decomposition or to a singular value153

decomposition.)154

Inserting this into equation (10) results in:155

D2 Sηd = S−Tn. (12)

This system could theoretically be solved for the filtered MDT Sηd. However,156

Sηd is already known, and equation (12) provides the sought-after weighting157

matrix D2 for the filtered MDT.158

Therefore, with the filtered MDT data, IFEOM uses the modified cost159

function term:160

ĴMDT = (Sηd − ηm)
T (α)−1D2(Sηd − ηm). (13)

Note that in equation (13), the filter S is applied only to the MDT obser-161

vations ηd. This is in contrast to the ususal approach in equation (2) where162

C−1 = STD2S and thus both the observational MDT ηd and the modeled163

MDT ηm (or the difference of both) are filtered.164

12



The resulting Atlantic Meridional Overturning Circulation (AMOC) pat-165

terns of the two model–data combinations are shown in figure 4. In the result166

of the IFEOM model run with the unfiltered MDT, the AMOC is very strong167

compared to other estimates, which are not shown here, e.g. Griffies et al.168

(2009); Wunsch (2002); Kuhlbrodt et al. (2007); Hunt (2011). When the169

filtered MDT is assimilated, the AMOC is decreased and a distinct AMOC170

maximum is reached at around 40◦N (figure 4, right). This agrees better171

with the previous estimates.172

From the IFEOM results, also poleward heat transports can be computed.173

They are presented and compared to other estimates in figure 5. The merid-174

ional heat transports agree best with other estimates when the filtered MDT175

data are used for assimilation. However, these previous estimates are based176

on different methods (observations/models) and on different time periods,177

limiting the significance of the comparison. This study does not argue any of178

the previous studies being superior to another one, but it gives an additional179

estimate.180

Due to boundary effects, the performance of the ocean model IFEOM181

is very weak at latitudes smaller than approximately 15◦N, and therefore182

nothing may be evidenced from the result at these low latitudes.183

IFEOM provides decent heat transport estimates for the Atlantic basin184

north of 60◦N. As observations are particularly sparse at these high lati-185

tudes, there are hardly any heat transport estimates available to compare186

our modeled results with. In this situation, the different processing methods187

for the MDT data set at least provide a possible range of solutions.188

It is important to notice that the decreased AMOC and the decreased189
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Figure 4: Atlantic Meridional Overturning Circulation (AMOC) by IFEOM using ηd and

C−1 (left) and Sηd and D2 (right) in the assimilation

heat transports in the model run using the filtered MDT compared to the190

model run using the unfiltered MDT are not a consequence of possibly weaker191

gradients in the filtered MDT. The main reason for less adaptation of the192

model towards the observational data and thus for decreased ocean model193

circulation strength is the modified weighting matrixD2 that goes along with194

the filtered MDT Sηd. The results of the new method may well be different195

for other observational data sets. This exemplary study does not provide a196

general statement or proof.197

5. Summary and discussion198

A new filter for the MDT was developed directly from satellite observa-199

tions of sea surface height and gravity. The geodetic normal equation matrix200

was used for the construction of the filter to account for error correlations.201

No additional assumptions about the type of filter or the filter radius were202

required. It is a weighted moving average filter with weights computed from203

the satellite observations. The new filter smoothes the MDT data without204

considerably attenuating sharp gradients of the MDT.205
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Figure 5: Meridional heat transports by IFEOM for a model run without MDT data and

for the combined model runs with unfiltered MDT ηd and weighting matrix C−1 and with

the filtered MDT Sηd and weighting matrix D2. Other estimates include the error ranges

from Klein et al. (1995), Lav́ın et al. (2003), Macdonald and Wunsch (1996), Sato and

Rossby (2000), Lorbacher and Koltermann (2000), Bacon (1997) and Lumpkin and Speer

(2007)
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A different inverse error covariance is required for the assimilation of206

the filtered MDT into an inverse ocean model. It follows from the normal207

equations that the appropriate weighting matrix is the diagonal matrix D2
208

as derived in section 4. Thus the corresponding error covariance matrix for209

the filtered MDT is diagonal, meaning all information about the covariances210

have been shifted into the MDT data themselves. This is equivalent to a211

transformation of variables as described in Draper and Smith (1998). They212

transform a correlated set of variables requiring a Generalized Least Squares213

procedure into a set of variables whose errors are normally distributed. Here,214

the correlated MDT observations are transformed into uncorrelated ones,215

however with differing error variances and therefore requiring a Weighted216

Least Squares approach. So far, it was undiscovered that this transformation217

can be used as a filter for the MDT data.218

The filtered MDT data set Sηd was assimilated into the ocean model219

IFEOM using the weighting matrix D2 and the result was compared to the220

assimilation of the unfiltered data ηd with the weighting matrix C−1. It was221

shown that the filtered data set performed better in terms of selected oceano-222

graphic features of the resulting model–data combination. The estimates of223

the AMOC and the meridional heat transports were decreased compared to224

those of the assimilation using the unfiltered MDT. Using the filtered MDT225

in the assimilation increases the agreement with other author’s estimates of226

the AMOC and the meridional heat transports.227

From this study, it can be recommended to use this type of filter for228

satellite MDT data and for subsequent ocean model assimilation. However,229

the construction of the filter is limited by the availability of a dense inverse230

16



MDT error covariance estimate. Furthermore, when the MDT data set is231

large, the matrix square root of a large dense inverse error covariance matrix232

is required. This may become a computational challenge.233
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