
A parallel Jacobian-free Newton-Krylov solver for a

coupled sea ice-ocean model

Martin Loscha,∗, Annika Fuchsa, Jean-François Lemieuxb, Anna Vanselowc

aAlfred-Wegener-Institut, Helmholtz Zentrum für Polar- und Meeresforschung, Postfach
120161, 27515 Bremerhaven, Germany

bRecherche en Prévision Numérique environnementale/Environnement Canada, 2121
route Transcanadienne, Dorval, Qc, Canada H9P 1J3

cUniversität Oldenburg, Ammerländer Heerstr. 114–118, 26129 Oldenburg

Abstract

The most common representation of sea ice dynamics in climate models as-
sumes that sea ice is a quasi-continuous non-normal fluid with a viscous-
plastic rheology. This rheology leads to non-linear sea ice momentum equa-
tions that are notoriously difficult to solve. Recently a Jacobian-free Newton-
Krylov (JFNK) solver was shown to solve the equations accurately at mod-
erate costs. This solver is extended for massive parallel architectures and
vector computers and implemented in a coupled sea ice-ocean general circu-
lation model for climate studies. Numerical performance is discussed along
with numerical difficulties in realistic applications with up to 1920 CPUs.
The parallel JFNK-solver’s scalability competes with traditional solvers al-
though the collective communication overhead starts to show a little earlier.
When accuracy of the solution is required (i.e. reduction of the residual norm
of the momentum equations of more that one or two orders of magnitude) the
JFNK-solver is unrivalled in efficiency. The new implementation opens up
the opportunity to explore physical mechanisms in the context of large scale
sea ice models and climate models and to clearly differentiate these physical
effects from numerical artifacts.

Keywords: sea ice dynamics, numerical sea ice modeling, Jacobian-free
Newton-Krylov solver, preconditioning, parallel implementation, vector
implementation

∗corresponding author
Email address: Martin.Losch@awi.de (Martin Losch)

Preprint submitted to Journal of Computational Physics September 30, 2013



1. Introduction1

The polar oceans are geographically small compared to the world ocean,2

but still they are a very influential part of Earth’s climate. Sea ice is an3

important component of the polar oceans. It acts as an insulator of heat4

and surface stress and without it atmospheric temperatures and hence flow5

patterns would be entirely different than today. Consequently, predicting6

future climate states or hindcasting previous ones requires accurate sea ice7

models [1, 2]. The motion of sea ice from formation sites to melting sites8

determines many aspects of the sea ice distribution and virtually all state-9

of-the-art sea ice models explicitly include a dynamics module.10

Unfortunately, climate sea ice models necessarily contain many approxi-11

mations that preclude the accurate description of sea ice dynamics. First of12

all, sea ice is usually treated as a quasi-continuous non-Newtonian fluid with13

a viscous-plastic rheology [3]. The assumption of quasi-continuity may be14

appropriate at low resolution but at high resolution (i.e. with a grid spacing15

on the order of kilometers) the scale of individual floes is reached and entirely16

new approaches may be necessary [4, 5, 6]. If continuity is acceptable (as in17

climate models with grid resolutions of tens of kilometers), the details of the18

rheology require attention [7, 8, 6]. Lemieux and Tremblay [9] and Lemieux19

et al. [10] demonstrated that the implicit numerical solvers that are used in20

climate sea ice models do not yield accurate solutions. These Picard solvers21

suffer from poor convergence rates so that iterating them to convergence is22

prohibitive [10]. Instead, a typical iterative process is terminated after a23

few (order two to ten) non-linear (or outer loop, OL) steps assuming falsely24

that the solution is sufficiently accurate [11, 9]. Without sufficient solution25

accuracy, the physical effects, that is, details of the rheology and improve-26

ments by new rheologies cannot be separated from numerical errors [12, 13].27

Explicit methods may not converge at all [10].28

Lemieux et al. [14] implemented a non-linear Jacobian-free Newton-Krylov29

(JFNK) solver in a serial sea model and demonstrated that this solver can30

give very accurate solutions compared to traditional solvers with compara-31

tively low cost [10]. Here, we introduce and present the first JFNK-based32

sea ice model coupled to a general circulation model for parallel and vector33

computers. For this purpose, the JFNK solver was parallelized and vector-34

ized. The parallelization required introducing a restricted additive Schwarz35

2



method (RASM) [15] into the iterative preconditioning technique (line suc-36

cessive relaxation, LSR) and the parallelization of the linear solver; the vector37

code also required revisiting the convergence of the iterative preconditioning38

method (LSR). The JFNK solver is matrix free, that is, only the product of39

the Jacobian times a vector is required. The accuracy of this operation is40

studied. Exact solutions with a tangent-linear model are compared to more41

efficient finite-difference approaches.42

Previous parallel JFNK solutions addressed compressible flow [16] or ra-43

diative transfer problems [17]. The sea ice momentum equations stand apart44

because the poor condition number of the coefficient matrix makes the sys-45

tem of equations very difficult to solve [9]. The coefficients vary over many46

orders of magnitude because they depend exponentially on the partial ice47

cover within a grid cell (maybe comparable to Richards’ equations for fluid48

flow in partially saturated porous media [18]) and are a complicated function49

(inverse of a square root of a quadratic expression) of the horizontal deriva-50

tives of the solution, that is, the ice drift velocities. These are very different51

in convergent motion where sea ice can resist large compressive stress and in52

divergent motion where sea ice has very little tensile strength. As a conse-53

quence, a successful JFNK solver for sea ice momentum equations requires54

great care, and many details affect the convergence. For example, in contrast55

to Godoy and Liu [17], we never observed convergence in realistic simulations56

without sufficient preconditioning.57

The paper is organized as follows. In Section 2 we review the sea ice mo-58

mentum equations and the JFNK-solver; we describe the issues that needed59

addressing and the experiments that are used to illustrate the performance60

of the JFNK-solver. Section 3 discusses the results of the experiments and61

conclusions are drawn in Section 4.62

2. Model and Methods63

For all computations we use the Massachusetts Institute of Technology64

general circulation model (MITgcm) code [19, 20]. This code is a general65

purpose, finite-volume algorithm on regular orthogonal curvilinear grids that66

solves the Boussinesq and hydrostatic form of the Navier-Stokes equations67

for an incompressible fluid with parameterizations appropriate for oceanic or68

atmospheric flow. (Relaxing the Boussinesq and hydrostatic approximations69

is possible, but not relevant here.) For on-line documentation of the general70

algorithm and access to the code, see http://mitgcm.org. The MITgcm71

3



contains a sea ice module whose dynamic part is based on Hibler’s [3] original72

work; the code has been rewritten for an Arakawa C-grid and extended to73

include different solution techniques and rheologies on curvilinear grids [12].74

The sea ice module serves as the basis for implementation of the JFNK solver.75

2.1. Model Equations and Solution Techniques76

The sea ice module of the MITgcm is described in Losch et al. [12]. Here77

we reproduce a few relevant aspects. The momentum equations are78

m
Du

Dt
= −mfk× u + τ air + τ ocean −m∇φ(0) + F, (1)79

where m is the combined mass of ice and snow per unit area; u = ui + vj80

is the ice velocity vector; i, j, and k are unit vectors in the x-, y-, and z-81

directions; f is the Coriolis parameter; τ air and τ ocean are the atmosphere-ice82

and ice-ocean stresses; ∇φ(0) is the gradient of the sea surface height times83

gravity; and F = ∇ · σ is the divergence of the internal ice stress tensor σij.84

Advection of sea-ice momentum is neglected. The ice velocities are used to85

advect ice compactness (concentration) c and ice volume, expressed as cell86

averaged thickness hc; h is the ice thickness. The numerical advection scheme87

is a so-called 3rd-order direct-space-time method [21] with a flux limiter [22]88

to avoid unphysical over and undershoots. The remainder of the section89

focuses on solving (1).90

For an isotropic system the stress tensor σij (i, j = 1, 2) can be related to91

the ice strain rate tensor92

ε̇ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
93

94

and the ice pressure95

P = P ∗c h e[−C·(1−c)]96
97

by a nonlinear viscous-plastic (VP) constitutive law [3, 11]:98

σij = 2 η ε̇ij + [ζ − η] ε̇kkδij −
P

2
δij. (2)99

The ice pressure P , a measure of ice strength, depends on both thickness100

h and compactness (concentration) c; the remaining constants are set to101

4



P ∗ = 27 500 N m−2 and C = 20. We introduce the shear deformation ε̇s =102 √
(ε̇11 − ε̇22)2 + ε̇212, the shear divergence ε̇d = ε̇11 + ε̇22, and the abbreviation103

∆ =
√
ε̇2d + ε̇2s/e

2. The nonlinear bulk and shear viscosities ζ = P/(2∆) and104

η = ζ/e2 are functions of ice strain rate invariants and ice strength such that105

the principal components of the stress lie on an elliptical yield curve with the106

ratio of major to minor axis e = 2.107

Substituting (2) into (1) yields equations in u and v that contain highly108

non-linear viscosity-like terms with spatially and temporally variable coeffi-109

cients ζ and η; these terms dominate the momentum balance. ∆ can be very110

small where ice is thick and rigid so that ζ and η can span several orders of111

magnitude making the non-linear equations very difficult to solve, and some112

regularization is required. Following Lemieux et al. [10], the bulk viscosities113

are bounded smoothly from above by imposing a maximum ζmax = P/(2∆∗),114

with ∆∗ = 2× 10−9 s−1:115

ζ = ζmax tanh

(
P

2 min(∆,∆min) ζmax

)
=

P

2∆∗
tanh

(
∆∗

min(∆,∆min)

) (3)116

∆min = 10−20 s−1 is chosen to avoid divisions by zero. Alternatively, one117

could use a differentiable formula such as ζ = P/[2(∆+∆∗)], but in any case118

the problem remains poorly conditioned. After regularizing the viscosities,119

the pressure replacement method is used to compute the pressure as 2∆ζ120

[23]. For details of the spatial discretization, see Losch et al. [12]. For the121

following discussion, the temporal discretization is implicit in time following122

Lemieux et al. [10].123

The discretized momentum equations can be written in matrix notation124

as125

A(x)x = b(x). (4)126

The solution vector x consists of the two velocity components u and v that127

contain the velocity variables at all grid points and at one time level. In128

the sea ice component of the MITgcm, as in many sea ice models, Eq. (4)129

is solved with an iterative Picard solver: in the k-th iteration a linearized130

form A(xk−1)xk = b(xk−1) is solved (in the case of the MITgcm it is an131

LSR-algorithm [11], but other methods may be more efficient [24]). Picard132

solvers converge slowly, but generally the iteration is terminated after only a133

few non-linear steps [11, 9] and the calculation continues with the next time134

5



level. Alternatively, the viscous-plastic constitutive law can be modified to135

elastic-viscous-plastic (EVP) to allow a completely explicit time stepping136

scheme [25]. These EVP-solvers are very popular because they are fast and137

efficient for massive parallel applications, but their convergence properties138

are under debate [10]. The EVP-solver in the MITgcm [12, 13] is extended139

to the modified EVP*-solver [10] for all EVP simulations.140

The Newton method transforms minimizing the residual F(x) = A(x)x−141

b(x) to finding the roots of a multivariate Taylor expansion of the residual142

F around the previous (k − 1) estimate xk−1:143

F(xk−1 + δxk) = F(xk−1) + F′(xk−1) δxk (5)144

with the Jacobian J ≡ F′. The root F(xk−1 + δxk) = 0 is found by solving145

J(xk−1) δxk = −F(xk−1) (6)146

for δxk. The next (k-th) estimate is given by xk = xk−1 + a δxk. In order147

to avoid overshoots the factor a is iteratively reduced in a line search (a =148

1, 1
2
, 1
4
, 1
8
, . . .) until ‖F(xk)‖ < ‖F(xk−1)‖, where ‖·‖ =

∫
· dx2 is the L2-norm.149

In practice, the line search is stopped at a = 1
8
.150

Forming the Jacobian J explicitly is often avoided as “too error prone151

and time consuming” [26]. Instead, Krylov methods only require the action152

of J on an arbitrary vector w and hence allow a matrix free algorithm for153

solving Eq. (6) [26]. The action of J can be approximated by a first-order154

Taylor series expansion [26]:155

J(xk−1)w ≈ F(xk−1 + εw)− F(xk−1)

ε
(7)156

or computed exactly with the help of automatic differentiation (AD) tools157

[16]. Besides the finite-difference approach we use TAF (http://www.fastopt.158

de) or TAMC [27] to obtain the action of J on a vector. The MITgcm is159

tailored to be used with these tools [28] so that obtaining the required code160

with the help of a tangent linear model is straightforward.161

We use the Flexible Generalized Minimum RESidual method (FGMRES,162

[29]) with right-hand side preconditioning to solve Eq. (6) iteratively starting163

from a first guess of δxk
0 = 0. For the preconditioning matrix P we choose a164

simplified form of the system matrix A(xk−1) [14] where xk−1 is the estimate165

of the previous Newton step k − 1. The transformed equation (6) becomes166

J(xk−1)P−1δz = −F(xk−1), with δz = Pδxk. (8)167

6



The Krylov method iteratively improves the approximate solution to (8) in168

subspace (r0, JP
−1r0, (JP−1)2r0, . . . , (JP−1)mr0) with increasing m; r0 =169

−F(xk−1)−J(xk−1) δxk
0 is the initial residual of (6); r0 = −F(xk−1) with the170

first guess δxk
0 = 0. We allow a Krylov-subspace of dimension m = 50 and we171

do not use restarts. The preconditioning operation involves applying P−1 to172

the basis vectors v0,v1,v2, . . . ,vm of the Krylov subspace. This operation is173

approximated by solving the linear system Pw = vi. Because P ≈ A(xk−1),174

we can use the LSR-algorithm [11] already implemented in the Picard solver.175

Each preconditioning operation uses a fixed number of 10 LSR-iterations176

avoiding any termination criterion. More details can be found in [14].177

The non-linear Newton iteration is terminated when the L2-norm of the178

residual is reduced by γnl with respect to the initial norm: ‖F(xk)‖ <179

γnl‖F(x0)‖. Within a non-linear iteration, the linear FGMRES solver is180

terminated when the residual is smaller than γk‖F(xk−1)‖ where γk is deter-181

mined by182

γk =

{
γ0 for ‖F(xk−1)‖ ≥ r,

max
(
γmin,

‖F(xk−1)‖
‖F(xk−2)‖

)
for ‖F(xk−1)‖ < r,

(9)183

so that the linear tolerance parameter γk decreases with the non-linear New-184

ton step as the non-linear solution is approached. This inexact Newton185

method is generally more robust and computationally more efficient than186

exact methods [30, 26]. We choose γ0 = 0.99, γmin = 0.1, and r = 1
2
‖F(x0)‖;187

we allow up to 100 Newton steps and a Krylov subspace of dimension 50. For188

our experiments we choose γnl so that the JFNK (nearly) reaches numerical189

working precision.190

2.2. Parallelization191

For a parallel algorithm, three issues had to be addressed:192

(1) scalar product for computing the L2-norm193

(2) parallelization of the Jacobian times vector operation194

(3) parallelization of the preconditioning operation195

The MITgcm is MPI-parallelized with domain decomposition [20]. We can196

use the MITgcm primitives for computing global sums to obtain the scalar197

product for the L2-norm. The parallel Jacobian times vector operation and198

the preconditioning technique require that all fields are available sufficiently199

7



far into the computational overlaps. This can be accomplished by one ex-200

change (filling of overlaps, again by MITgcm primitives) for each velocity201

component before these operations. The remaining parallelization of the pre-202

conditioning operation is simplified by using the existing LSR-algorithm in203

the Picard solver. The convergence of the iterative preconditioning method,204

and hence of FGMRES linear solver, was greatly improved by introducing205

a restrictive additive Schwarz method (RASM): in each LSR-iteration a so-206

lution is obtained on each sub-domain plus overlap and the global solution207

is combined by disposing of the overlaps [15]. At the end of each LSR-208

iteration, the overlaps are filled once per velocity component. A so-called209

parallel Newton-Krylov-Schwarz solver has been described in different con-210

texts [e.g., 31, 32].211

2.3. Vectorization212

The MITgcm dynamic kernel code vectorizes with vector operation ra-213

tios of 99% and higher on an NEC SX-8R vector computer. The only part214

of the code where the algorithm is modified for better vectorization on vec-215

tor computers is the LSR-method. This method solves tridiagonal systems216

with the Thomas algorithm [33] along lines of constant j (or i) for the u (or217

v) components separately. The Thomas algorithm cannot be vectorized so218

that, for better vector performance, the order of the spatial loops have been219

exchanged. For example, the Thomas algorithm for the i-direction is applied220

to each component of a vector in j with the effect that the solution for j−1 is221

not available when the j-th line is solved; instead the values of the previous222

LSR-iterate are used (see Figure 1). This turns out to slow down the con-223

vergence of the LSR-preconditioner enough to inhibit the convergence of the224

FGMRES solver in many cases (which in turn affects the convergence of the225

JFNK solver). As a solution to this problem the vectorized j-loops with loop226

increment one is split into two loops with loop increments of two (a black227

and a white loop), so that in the second (white) loop the solution at j can be228

computed with an updated solution of the black loop at j−1 and j+1. This229

“zebra” or line-coloring-method [34] improves the convergence of the LSR-230

preconditioner to the extent that the preconditioned FGMRES solver (and231

consequently the JFNK solver) regains the convergence that is expected—at232

the cost of halved vector lengths. The LSR-vector code in the Picard solver233

also suffers from slower convergence than the scalar code but that is com-234

pensated by more iterations to satisfy a convergence criterion, so that the235

“zebra”-method does not lead to a substantial improvement.236

8



-
6

i

j t t t t t t tt t t t t t tt t t t t t tt t t t t t tt t t t t t tt t t t t t tt t t t t t tt t t t t t t

>
>
>
>
>
>
>

j-
lo

op

a) scalar

t t t t t t tt t t t t t tt t t t t t tt t t t t t tt t t t t t tt t t t t t tt t t t t t tt t t t t t t

-
-
-
-
-
-
-
-

ve
ct

or
j-

lo
op

b) vector

t t t t t t tt t t t t t tt t t t t t tt t t t t t t
t t t t t t tt t t t t t tt t t t t t tt t t t t t t

-

-

-

-

-

-

-

-

1
st

v
ec

to
r
j-

lo
op

2
n

d
ve

ct
or
j-

lo
o
p c) zebra

Figure 1: Schematic of LSR-algorithm for the u-component of the ice velocities: (a) the
scalar code solves a tridiagonal system for each j-row sequentially, using known values
of row j − 1 of the current sweep and values of row j + 1 of the previous sweep for the
5-point stencil (indicated by the cross); (b) the vector code solves all tridiagonal systems
simultaneously, so that only information from previous sweep is available for j±1; (c) the
“zebra” code solves the black rows simultaneously and then in the second, white sweep
the updated information of the black rows j±1 can be used.

2.4. Experiments237

We present simulations of two experimental configurations that demon-238

strate the overall performance of the JFNK with respect to parallel scaling239

and vectorization. Comparisons are made with the Picard solver and the240

EVP*-solver of the MITgcm sea ice module. Both configurations span the241

entire Arctic Ocean and in both cases the coupled sea ice-ocean system is242

driven by prescribed atmospheric reanalysis fields. The ice model is stepped243

with the same time step as the ocean model and both model components244

exchange fluxes of heat, fresh water, and momentum interfacial stress at245

each time level. The two configurations differ in resolution and integration246

periods. For practical reasons, the atmospheric boundary conditions (i.e.,247

the surface forcing data sets) are very different between these configurations,248

further excluding any direct comparisons between the simulations. The very249

interesting comparison of effects of resolution and solvers on climatically rel-250

evant properties of the solutions will be described elsewhere.251

The first model is used for parallel scaling analysis only. It is based on a252

simulation with a 4 km grid spacing on an orthogonal curvilinear grid with253

1680 by 1536 grid points [35, 36]. Figure 2 shows the ice distribution and254

the shear deformation ε̇s, both with many small scale structures and linear255

kinematic features (leads), on Dec-29-2006. For the scaling analysis, the sim-256

ulation is restarted in winter on Dec-29-2006 with a very small time step size257

9



Figure 2: Thickness (m) and concentration (unlabeled contours of 90%, 95%, and 99%)
and shear deformation (per day) of the 4 km resolution model on Dec-29-2006.

of 1 second for a few time steps. For long integrations this time step size is258

unacceptably small, but here it is necessary because at this resolution the259

system of equations is even more heterogeneous and ill-conditioned than at260

lower resolution and the convergence of JFNK (and other solvers) is slower261

[14]. With larger time steps the number of iterations to convergence (es-262

pecially when γnl is small) is different for different numbers of sub-domains263

(processors) and the scaling results are confounded. All simulations with this264

configuration are performed either on an SGI UV-100 cluster with Intel R©
265

Xeon R© CPUs (E7-8837 @ 2.67 GHz) that is available at the computing cen-266

ter of the Alfred Wegener Institute (1–240 CPUs) or on clusters with Intel R©
267

Xeon R© Gainestown processors (X5570 @ 2.93 GHz) (Nehalem EP) at the268

North German Supercomputing Alliance (Norddeutscher Verbund für Hoch-269

und Höchstleistungsrechnen, HLRN, http://www.hlrn.de) (8–1920 CPUs).270

271

The second model is run on 2 CPUs of an NEC SX-8R vector com-272

puter at the computing center of the Alfred Wegener Institute. For these273

simulations the Arctic Ocean is covered by a rotated quarter-degree grid274

along longitude and latitude lines so that the equator of the grid passes275

through the geographical North Pole and the grid spacing is approximately276

27 km; the time step size is 20 min. The model is started from rest with277

zero ice volume on Jan-01-1958 and integrated until Dec-31-2007 with inter-278

annually varying reanalysis forcing data of the CORE.v2 data set (http:279

//data1.gfdl.noaa.gov/nomads/forms/core/COREv2.html). Model grid280

and configuration are similar to Karcher et al. [37]. Figure 3 shows the281

10



80

80

80

80

80

80

80

80

80

80

90

90

90

90

90 90

90
90

95

95

95

95

95

95
95

thickness (m), conc. (%)

0.0

0.6

1.2

1.8

2.4

3.0

3.6

shear deformation (per day)

0.001

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

Figure 3: Example ice thickness, concentration (contours), and shear deformation (per
day) of the coarse 27 km resolution model derived from velocity fields on Jun-30-1982.

thickness distribution and the shear deformation of Jun-30-1982 in the simu-282

lation. The ice fields are smooth compared to the 4 km-case (Figure 2), but283

some linear kinematic features also appear in the deformation fields. Note284

that over the 50 years of simulation (1,314,864 time levels) the JFNK-solver285

failed only 81 times to reach the convergence criterion of γnl = 10−4 within286

100 iterations corresponding to a failure rate of 0.006%. To our knowledge287

this is the first successful coupled ice-ocean simulation with a JFNK-solver288

for the ice-dynamics.289

3. Results290

3.1. Effect of Jacobian times vector approximation291

For this experiment, the coarse resolution simulation is restarted on Jan-292

01-1966 and the convergence criterion set to γnl = 10−16 to force the solver293

to reach machine precision on the NEC SX-8R. Figure 4 shows that the294

convergence is a function of ε in (7), but the range of ε for which the finite-295

difference operation is sufficiently accurate is comfortably large. In practice,296

full convergence to machine precision will hardly be required so that we can297

give a range of ε ∈ [10−10, 10−6]. In this case, using an exact Jacobian by298

AD only leads to a very small improvement of one Krylov iteration in the299

last Newton iteration before machine precision is reached. In all ensuing300

experiments we use the finite-difference approximation (7) with ε = 10−10.301

11



0 5 10 15 20 25 30 35 40
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

sc
a
le

d
 r

e
si

d
u
a
l 
L

2
-n

o
rm

JFNK

ε=10−4

ε=10−5

ε=10−6

ε=10−8

ε=10−10

ε=10−11

exact J

0 5 10 15 20 25 30 35 40
Newton iterations

0

5

10

15

20

25

30

FM
G

R
E
S
 i
te

ra
ti

o
n
s

Figure 4: Convergence history of JFNK (top) and total number FGMRES iterations per
Newton iteration (bottom) on the NEC SX-8R with different ε for the Jacobian times
vector operation. The result with the exact Jacobian time vector operation by AD is also
shown.

12



3.2. Effect of zebra LSR-algorithm302

Figure 5 shows ‖F(xk)‖ as a function of the Newton iteration k for303

three different treatments of the tridiagonal Thomas algorithm in the LSR-304

preconditioner. The scalar code (Figure 1a) convergences very quickly, but305

cannot be vectorized so that the time to solution is large. After exchanging306

the i- and j-loops for better vector performance (Figure 1b), the good con-307

vergence with the scalar code (solid line) is lost because the convergence rate308

of the preconditioned FGMRES solver is lower (dashed line). Introducing309

the “zebra”-method (Figure 1c) recovers the convergence completely (dash-310

dotted line) and maintains the vector performance of the vector code with311

low extra computational expenses; the code can be vectorized but vector312

lengths are cut in half compared to the non-“zebra”-code.313

3.3. Effect of RASM on JFNK convergence314

Figure 6 shows that the convergence can be improved with a restricted315

additive Schwarz Method (RASM) even with an overlap of only 1 grid point.316

For an overlap of more than 1 the convergence can be still improved in317

some cases, but not in all (not shown). In general, without writing special318

exchange primitives for the sea-ice module, the size of the overlap is limited319

to the total overlap required for general exchange MPI operation (usually not320

greater than 5) minus the overlap required by the sea-ice dynamics solver (at321

least 2).322

3.4. Parallel Scaling323

For a credible, unconfounded scaling analysis, the convergence history324

of the JFNK-solver needs to be independent of the domain decomposition325

(number of CPUs). For the following analysis the convergence history is ex-326

actly the same for all domain decompositions until the 16th Newton iteration;327

then the models start to deviate from each other because the summations in328

the scalar product are performed in slightly different order with a different329

number of sub-domains. As a consequence the number of Newton iterations330

required to reach the convergence criterion of γnl = 10−10 is also different331

for different domain decompositions. This effect increases with larger time332

steps. For the present case, the number of Newton and Krylov steps varies333

moderately between simulations of 4 time steps (121–127 Newton steps and334

714–754 Krylov steps), so that we can use the results for a scaling analysis.335

For comparison, the number of LSR iterations in the Picard solver varies336

13



2 4 6 8 10 12
10-4

10-3

10-2

10-1

100

sc
a
le

d
 r

e
si

d
u
a
l 
L

2
-n

o
rm

2 4 6 8 10 12
Newton iterations

0

10

20

30

40

50

FM
G

R
E
S
 i
te

ra
ti

o
n
s

scalar code
vector code
vector-zebra code

Figure 5: Convergence history of JFNK (top) and total number FGMRES iterations per
Newton iteration (bottom) on the NEC SX-8R with different vectorization methods for
the tridiagonal Thomas algorithm in LSR.

14



1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

100

sc
a
le

d
 r

e
si

d
u
a
l 
L

2
-n

o
rm

1 2 3 4 5 6 7 8 9 10
Newton iterations

0

10

20

30

40

50

FM
G

R
E
S
 i
te

ra
ti

o
n
s

16 CPUs, overlap = 0
16 CPUs, overlap = 1
64 CPUs, overlap = 0
64 CPUs, overlap = 1

Figure 6: Convergence history of JFNK (top) and total number FGMRES iterations per
Newton iteration (bottom) on the SGI-UV100 with and without RASM for 16 and 64
CPUs. “overlap = 0” refers to no overlap (no RASM) and “overlap = 1” to RASM with
an overlap of one.

15



101 102 10310-1

100

101

102

103

ti
m

e
 (

s)

101 102 103

number of CPUs

101

102

103

104

sp
e
e
d
 u

p

JFNK: total

JFNK: S/R PRECOND

JFNK: S/R JACVEC

JFNK: S/R FGMRES

Picard: total

EVP: total

Figure 7: Time for four time steps (top) and relative speed up (bottom) as a function
of number of CPUs for the 4 km resolution configuration on the HLRN computer. The
absolute times for the EVP*- and Picard solver are not included.

between 3986 and 4020 in 4 time steps of the same configuration. We con-337

firmed that with a scalar product that preserves the order of summation, this338

dependence on domain decomposition can be eliminated completely at the339

cost of very inefficient code.340

Figure 7 shows the scaling data obtained from running the models for341

4 time steps. For comparison, the results of the Picard solver and the342

EVP*-solver are included. The EVP*-solver only includes point-to-point343

communications, but the Picard solver requires point-to-point and collec-344

tive communications. The JFNK-solver scales linearly as the Picard and the345

EVP*-solver, but reaches a communication overhead earlier (at 103 CPUs).346

The routines responsible for this overhead are the many scalar products in347

the Krylov-method (S/R FGMRES) and the many point-to-point commu-348

nications within the preconditioning step (S/R PRECOND) (see also [38]).349

16



Routines that do not require any communication (e.g, S/R JACVEC carries350

out the Jacobian times vector operation of Eq. (7)) scale linearly to the max-351

imum number of CPUs of 1920, after which the sub-domain size becomes352

too small to allow linear scaling for the ocean model. Note that both EVP*353

and Picard solver loose linear scalability above 103 CPUs indicating general354

limits of the system.355

3.5. Comparison of JFNK to Picard (LSR) and EVP* convergence history356

Figure 8 shows the convergence history of the Picard solver for different357

termination criteria of the linear LSR-solver and of the JFNK and EVP*-358

solver as a function of scaled linear (inner) iterations. Results are obtained359

with the 27 km resolution on the NEC SX-8R. The linear iterations are scaled360

by the time to solution divided by the total number of linear iterations. For361

the EVP*-solver, the sub-cycling steps are strictly speaking non-linear iter-362

ations, but one such step costs approximately as much as one iteration of a363

linear solver so that they are only plotted with the linear iterations and not364

with the non-linear iterations. This pseudo-timing of the EVP*-solver may365

overestimate its actual cost relative to the other solvers, but in our case the366

EVP*-solver never converges anyway. For tighter termination criteria the367

non-linear convergence of the Picard solver improves per non-linear iteration368

as expected, but also the computational cost increases. Initially, the conver-369

gence is actually faster (assuming that each linear iteration takes the same370

time) for weaker linear convergence criteria. For the case of εLSR = 10−2, the371

Picard solver even outperforms the JFNK-solver for the first 0.1 s (approx-372

imately 50 linear iterations). Otherwise, the JFNK-solver is more efficient373

[14], especially after the first couple of non-linear steps. Hence we can con-374

firm that for smaller γnl the computational advantage of the JFNK-solver375

over the Picard-solver increases [14]. The EVP*-solver converges faster than376

the Picard solver for the first 0.5 s (approximately 250 iterations) and for377

LSR-convergence criteria εLSR < 10−4, but then it flattens out and oscillates378

while the Picard solver continues to reduce the residual. For LSR-convergence379

criteria εLSR ≥ 10−4, the Picard solver always converges faster (see also [10]).380

381

Note that the usual representation of the residual L2-norm as a function of382

non-linear iterations (bottom panel of Figure 8) more clearly shows that the383

JFNK is always more efficient per non-linear iteration, but this representation384

is misleading if one is interested in the computational advantage of the JFNK385

solver. Here the upper panel gives a more realistic representation.386

17



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
scaled linear iterations (seconds)

10-2

10-1

100

sc
a
le

d
 r

e
si

d
u
a
l 
L

2
-n

o
rm

Picard, εLSR =10−2

Picard, εLSR =10−4

Picard, εLSR =10−5

Picard, εLSR =10−6

JFNK
EVP

0 2 4 6 8 10
non-linear iterations

10-1

100

sc
a
le

d
 r

e
si

d
u
a
l 
L

2
-n

o
rm

Figure 8: Convergence history of JFNK, EVP*, and Picard solver with different termina-
tion criteria for the linear LSR-solver as a function of the number of linear iterations on
the NEC SX-8R (top). The number of linear iterations is scaled by the time to solution
over total number of linear iteration. The dots and crosses mark the beginning of a new
non-linear iteration. The bottom panel shows the residual (scaled by the initial residual)
as a function of non-linear iterations.

18



4. Discussion and Conclusions387

Applying the JFNK-method for solving the momentum equations in the388

sea-ice module of a general circulation model for climate studies requires389

adaptation and optimization of the method to high performance computer390

environments. After parallelization and vectorization, the JFNK solver is391

as successful as the serial version [14, 10] in minimizing the L2-norm of the392

residual of the equations. In our experiments the ratio of computational effort393

(measured in number of iterations of the linear solver) to achieved residual394

reduction is better for the JFNK-solver than for the traditional Picard-solver395

and the EVP*-solver. Only for very few linear iterations, a properly tuned396

Picard-solver can outperform the JFNK-solver. A combination of Picard and397

JFNK-solver may be an optimal solution [18].398

The JFNK-solver runs efficiently on vector computers (here: NEC SX-399

8R), and it scales on massive parallel computers down to a domain size of400

approximately 50 by 50 grid points (approximately 1000 CPUs in our test).401

The bottlenecks are a communication overhead in point-to-point exchanges of402

the preconditioning operation and eventually a communication overhead in-403

curred by many scalar products (collective communication) in the FGMRES-404

solver. Alternative methods, for example, replacing the Gram-Schmidt-405

orthogonalization in the FGMRES implementation by a Householder-reflection406

method may alleviate the latter [17], but the former overhead will be felt by407

all solvers. The flattening of the scaling curves of the Picard- and EVP*-408

solver at the very end of the scaling curve is likely caused by the point-to-409

point communication overhead.410

While adapting the JFNK-solver to parallel or vector architectures is gen-411

erally straightforward, the preconditioning operator requires more care. This412

operation is the single most expensive routine in the JFNK-code (Figure 7),413

because in each FGMRES-iteration it requires (in our case) ten LSR-loops,414

each with one exchange of the solution vector field, so that an efficient treat-415

ment of this part of the code is very important. Further, the convergence of416

the FGMRES linear solver critically depends on the preconditioning opera-417

tion and required introducing a restricted additive Schwarz Method (RASM)418

with an overlap of at least one for parallel applications. For the vector code,419

the LSR-preconditioner requires a “zebra”-method to ensure good perfor-420

mance of the FGMRES solver. Without the RASM and “zebra” methods,421

the preconditioned FGMRES sometimes does not converge before the allowed422

maximum 50 Krylov iterations. These failures of FGMRES then affects the423

19



nonlinear convergence of the JFNK solver. Furthermore, as our JFNK solver424

is based on an inexact Newton method, a lower convergence rate of the425

preconditioned FGMRES solver can also affect the overall nonlinear conver-426

gence.427

In order to reduce the computational cost of the expensive iterative LSR-428

preconditioner, a direct (but approximate) procedure, such as a variant of429

incomplete LU factorization (ILU), could be used. Such a direct method re-430

quires only one set of point-to-point communications per FGMRES iteration431

(instead of ten). Since the factorization itself is difficult to parallelize, the432

method operates sequentially on each of the sub-domains defined by RASM.433

There are methods for partial vectorization of ILU [39]. The approximate434

nature of such a preconditioning operation may require more iterations of435

FGMRES, and the actual overall performance remains to be demonstrated.436

The accuracy of the Jacobian times vector operation was found to be less437

critical. The exact operation with code obtained with AD slightly reduced438

the number required iterations to reach work precision compared to forward439

finite-difference (FD) code with a comfortable range of increments ε. With440

the AD-code the JFNK-solver still took slightly more time (order 2%), be-441

cause each Jacobian times vector operation requires two model evaluations,442

forward model and tangent linear model, while the forward FD code requires443

only one extra forward model evaluation. The AD-code evaluates forward444

and tangent-linear model simultaneously, explaining the small overhead.445

The current practice in climate modeling of using a Picard solver with446

a low number of non-linear iterations or using the fast but poorly converg-447

ing EVP-solver leads to approximate solutions (large residuals) of the sea448

ice momentum equations. Investing extra computational time with a JFNK-449

solver—for example, 500 LSR-iterations per time level instead of order 20—450

can reduce this residual by 2 orders of magnitude and more. It has been451

demonstrated that the differences between sea ice models with more and less452

accurate solvers can easily reach 2–5 cm/s in ice drift velocities and 50 cm453

to meters in ice thickness after only one month of integration [9]. These454

differences are comparable to the differences due to other parameter choices455

such as the advection scheme for thickness and concentration or the choice456

of rheology, boundary conditions, or even grid-staggering [12]. We will not457

speculate to what extent the extra accuracy of a JFNK-solver is required in458

climate models, but for studying details of sea ice physics and rheology, an459

accurate solver-technology seems in place to be able to differentiate between460

numerical artifacts and physical effects. Our implementation of a parallel461

20



JFNK-solver for sea ice dynamics in an ocean general circulation model is a462

tool to explore new questions of rheology and sea-ice dynamics in the con-463

text of large-scale and computationally challenging simulations that require464

parallelized codes.465

Acknowledgements. We thank Dimitris Menemenlis and An Nguyen for pro-466

viding the high-resolution configuration to us. Some of the computations467

were carried out at the North German Supercomputing Alliance (Nord-468

deutscher Verbund für Hoch- und Höchstleistungsrechnen, HLRN).469

References470

[1] A. Proshutinsky, Z. Kowalik, Preface to special section on Arctic Ocean471

Model Intercomparison Project (AOMIP) studies and results, J. Geo-472

phys. Res. 112 (2007).473

[2] P. Rampal, J. Weiss, C. Dubois, J.-M. Campin, IPCC climate models474

do not capture Arctic sea ice drift acceleration: Consequences in terms475

of projected sea ice thinning and decline, J. Geophys. Res. 116 (2011).476

[3] W. D. Hibler, III, A dynamic thermodynamic sea ice model, J. Phys.477

Oceanogr. 9 (1979) 815–846.478

[4] A. V. Wilchinsky, D. L. Feltham, Modelling the rheology of sea ice as479

a collection of diamond-shaped floes, Journal of Non-Newtonian Fluid480

Mechanics 138 (2006) 22–32.481

[5] D. L. Feltham, Sea ice rheology, Ann. Rev. Fluid Mech. 40 (2008)482

91–112.483

[6] M. Tsamados, D. L. Feltham, A. V. Wilchinsky, Impact of a new484

anisotropic rheology on simulations of Arctic sea ice, J. Geophys. Res.485

118 (2013) 91–107.486

[7] K. Wang, C. Wang, Modeling linear kinematic features in pack ice, J.487

Geophys. Res. 114 (2009).488

[8] L. Girard, S. Bouillon, W. Jérôme, D. Amitrano, T. Fichefet, V. Legat,489

A new modelling framework for sea ice models based on elasto-brittle490

rheology, Ann. Glaciol. 52 (2011) 123–132.491

21



[9] J.-F. Lemieux, B. Tremblay, Numerical convergence of viscous-plastic492

sea ice models, J. Geophys. Res. 114 (2009).493

[10] J.-F. Lemieux, D. Knoll, B. Tremblay, D. M. Holland, M. Losch, A494

comparison of the Jacobian-free Newton-Krylov method and the EVP495

model for solving the sea ice momentum equation with a viscous-plastic496

formulation: a serial algorithm study, J. Comp. Phys. 231 (2012) 5926–497

5944.498

[11] J. Zhang, W. D. Hibler, III, On an efficient numerical method for mod-499

eling sea ice dynamics, J. Geophys. Res. 102 (1997) 8691–8702.500

[12] M. Losch, D. Menemenlis, J.-M. Campin, P. Heimbach, C. Hill, On501

the formulation of sea-ice models. Part 1: Effects of different solver502

implementations and parameterizations, Ocean Modelling 33 (2010)503

129–144.504

[13] M. Losch, S. Danilov, On solving the momentum equations of dynamic505

sea ice models with implicit solvers and the Elastic Viscous-Plastic tech-506

nique, Ocean Modelling 41 (2012) 42–52.507

[14] J.-F. Lemieux, B. Tremblay, J. Sedláček, P. Tupper, S. Thomas,508

D. Huard, J.-P. Auclair, Improving the numerical convergence of509

viscous-plastic sea ice models with the Jacobian-free Newton-Krylov510

method, J. Comp. Phys. 229 (2010) 2840–2852.511

[15] X.-C. Cai, M. Sarkis, A restricted additive Schwarz preconditioner for512

general sparse linear systems, SIAM J. Sci. Comput. 21 (1999) 792–797.513

[16] P. D. Hovland, L. C. McInnes, Parallel simulation of compressible514

flow using automatic differentiation and PETSc, Parallel Computing515

27 (2001) 503–519.516

[17] W. F. Godoy, X. Liu, Parallel Jacobian-free Newton Krylov solution of517

the discrete ordinates method with flux limiters for 3D radiative transfer,518

J. Comp. Phys. 231 (2012) 4257–4278.519

[18] C. Paniconi, M. Putti, A comparison of Picard and Newton iteration520

in the numerical solution of multidimensional variably saturated flow521

problems, Water Resour. Res. 30 (1994) 3357–3374.522

22



[19] J. Marshall, A. Adcroft, C. Hill, L. Perelman, C. Heisey, A finite-volume,523

incompressible Navier Stokes model for studies of the ocean on parallel524

computers, J. Geophys. Res. 102 (1997) 5753–5766.525

[20] MITgcm Group, MITgcm User Manual, Online documentation,526

MIT/EAPS, Cambridge, MA 02139, USA, 2012. http://mitgcm.org/527

public/r2_manual/latest/online_documents.528

[21] W. Hundsdorfer, R. A. Trompert, Method of lines and direct discretiza-529

tion: a comparison for linear advection, Applied Numerical Mathematics530

13 (1994) 469–490.531

[22] P. Roe, Some contributions to the modelling of discontinuous flows,532

in: B. Engquist, S. Osher, R. Somerville (Eds.), Large-Scale Computa-533

tions in Fluid Mechanics, volume 22 of Lectures in Applied Mathematics,534

American Mathematical Society, 1985, pp. 163–193.535

[23] C. A. Geiger, W. D. Hibler, III, S. F. Ackley, Large-scale sea ice drift536

and deformation: Comparison between models and observations in the537

western Weddell Sea during 1992, J. Geophys. Res. 103 (1998) 21893–538

21913.539

[24] J.-F. Lemieux, B. Tremblay, S. Thomas, J. Sedláček, L. A. Mysak, Using540

the preconditioned Generalized Minimum RESidual (GMRES) method541

to solve the sea-ice momentum equation, J. Geophys. Res. 113 (2008).542

[25] E. C. Hunke, J. K. Dukowicz, The elastic-viscous-plastic sea ice dynam-543

ics model in general orthogonal curvilinear coordinates on a sphere—544

incorporation of metric terms, Mon. Weather Rev. 130 (2002) 1847–545

1865.546

[26] D. Knoll, D. Keyes, Jacobian-free Newton-Krylov methods: a survey of547

approaches and applications, J. Comp. Phys. 193 (2004) 357–397.548

[27] R. Giering, T. Kaminski, Recipes for adjoint code construction, ACM549

Trans. Math. Softw. 24 (1998) 437–474.550

[28] P. Heimbach, C. Hill, R. Giering, An efficient exact adjoint of the parallel551

MIT general circulation model, generated via automatic differentiation,552

Future Generation Computer Systems (FGCS) 21 (2005) 1356–1371.553

23



[29] Y. Saad, A flexible inner-outer preconditioned GMRES method, SIAM554

J. Sci. Comput. 14 (1993) 461–469.555

[30] S. C. Eisenstat, H. F. Walker, Choosing the forcing terms in an inexact556

Newton method, SIAM J. Sci. Comput. 17 (1996) 16–32.557

[31] X.-C. Cai, W. D. Gropp, D. E. Keyes, M. D. Tidriri, Newton-Krylov-558

Schwarz methods in CFD, in: F.-K. Hebeker, R. Rannacher, G. Wittum559

(Eds.), Proceedings of the International Workshop on the Navier-Stokes560

Equations, pp. 17–30.561

[32] X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin, D. P. Young, Par-562

allel Newton-Krylov-Schwarz algorithms for the transonic full potential563

equation, SIAM J. Sci. Comput. 19 (1998) 246–265.564

[33] L. H. Thomas, Elliptic problems in linear differential equations over a565

network, Watson Sci. Comput. Lab Report, Columbia University, New566

York, 1949.567

[34] I. S. Duff, G. A. Meurant, The effect of ordering on preconditioned568

conjugate gradients, BIT Numerical Mathematics 29 (1989) 635–657.569

[35] A. T. Nguyen, R. Kwok, D. Menemenlis, Source and pathway of the570

Western Arctic upper halocline in a data-constrained coupled ocean and571

sea ice model, J. Phys. Oceanogr. 43 (2012) 80–823.572

[36] E. Rignot, I. Fenty, D. Menemenlis, Y. Xu, Spreading of warm ocean573

waters around Greenland as a possible cause for glacier acceleration,574

Ann. Glaciol. 53 (2012) 257–266.575

[37] M. Karcher, A. Beszczynska-Möller, F. Kauker, R. Gerdes, S. Heyen,576

B. Rudels, U. Schauer, Arctic ocean warming and its consequences for577

the Denmark Strait overflow, J. Geophys. Res. 116 (2011).578

[38] C. Hill, D. Menemenlis, B. Ciotti, C. Henze, Investigating solution579

convergence in a global ocean model using a 2048-processor cluster of580

distributed shared memory machines, Scientific Programming 12 (2007)581

107–115.582

[39] J. J. F. M. Schlichting, H. A. van der Vorst, Solving 3D block bidiago-583

nal linear systems on vector computers, Journal of Computational and584

Applied Mathematics 27 (1989) 323–330.585

24


