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Abstract13

In the European Iron Fertilization EXperiment (EIFEX), the iron hypothesis
was tested by an open ocean perturbation experiment. The success of EIFEX
owes to the applied experimental strategy; namely to use the closed core of a
mesoscale eddy for the iron injection. This strategy not only allowed track-
ing the phytoplankton bloom within the fertilized patch of mixed-layer water,
but also allowed the export of biologically fixed carbon to the deep ocean to
be quantified. In this present study, least-squares techniques are used to fit
a regional numerical ocean circulation model with four open boundaries to
temperature, salinity, and velocity observations collected during EIFEX. By
adjusting the open boundary values of temperature, salinity and velocity,
an optimized model is obtained that clearly improves the simulated eddy
and its mixed layer compared to a first guess representation of the cyclonic
eddy. A biogeochemical model, coupled to the optimized circulation model,
simulates the evolution of variables such as chlorophyll a and particular or-
ganic carbon in close agreement with the observations. The estimated carbon
export, however, is lower than the estimates obtained from observations with-
out numerical modeling support. Tuning the sinking parameterization in the
model increases the carbon export at the cost of unrealistically high sinking
velocities. Repeating the model experiment without adding iron allows more
insight into the effects of the iron fertilization. In the model this effect is
about 40% lower than in previous estimates in the context of EIFEX. The
likely causes for these discrepancies are potentially too high remineraliza-
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tion, inaccurate representation of the bloom-termination in the model, and
ambiguity in budget computations and averaging. The discrepancies are dis-
cussed and improvements are suggested for the parameterization used in the
biogeochemical model components.
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1. Introduction17

Modeling biogeochemical processes and ecosystems in the ocean poses a18

number of challenges. Firstly, the biogeochemical processes themselves are19

complex and require many parameterizations. Typically, the modeler’s indi-20

vidual interests lead to a particular set of parameterizations and differential21

equations and, subsequently, to very different numerical models. Secondly,22

biogeochemical processes are largely controlled by their physical environ-23

ment. Physical circulation and mixing transport nutrients into the euphotic24

zone where the available light for phytoplankton growth is determined by the25

depth of the mixed layer and the rate of vertical exchange. Only if both nu-26

trients and light are available, will phytoplankton grow and provide food for27

grazers. A numerical model of ocean ecosystems must therefore accurately28

simulate all of these processes. In this paper, we address modeling biogeo-29

chemical processes in the open ocean with a particular focus on finding an30

appropriate circulation that controls the biogeochemical processes.31

Numerical ocean models require testing and tuning against in-situ ob-32

servations. Only after a numerical model passes such a test it can be used33

with confidence for simulating unobserved properties. Systematic tuning to34

improve the fit between a model and observations is termed data assimilation35

or state estimation and a vast amount of literature exists on this subject (e.g,36

Bennett, 2002, Wunsch, 2006). Most data assimilation techniques are based37

on a least-squares-fit between model results and observations.38

In oceanography data and, in particular, sub-surface data are sparse and39

the prediction skill of ocean models tends to be poor over longer time scales.40

In this paper, we present a state estimation experiment on a short time41

scale, in which we exploit the availability of a high-resolution regional data42

set. Hydrographic, chemical and biological tracers, and velocity data from43

the European Iron Fertilization EXperiment (EIFEX, Smetacek et al., 2012)44

are used to constrain a high-resolution coupled ecosystem-ocean circulation45

model of the experimental site in the Atlantic sector of the Antarctic Polar46

Frontal Zone (PFZ).47
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State estimation with variational techniques, where a model is fit to all48

available observational data simultaneously, is the obvious choice if a dynam-49

ically consistent analysis of observations (or dynamically consistent interpo-50

lation between observations) is required (Wunsch, 2006). With variational51

methods the dynamics of the numerical model are not altered, but initial and52

boundary conditions, collected in the control vector, are adjusted in order53

to fit the model to the observations. We use a regional model in which the54

open boundaries are part of the control vector, because the observations are55

concentrated in a small box of approximately 200 by 150 km. Other studies56

have demonstrated the feasibility of this approach (e.g., Seiler, 1993, Schröter57

et al., 1993, Zhang and Marotzke, 1998, Vogeler and Schröter, 1999, Ayoub,58

2006, Lea et al., 2006, Gebbie et al., 2006, Dwivedi et al., 2011). Here we can59

afford a horizontal resolution of approximately 3.6 km, which is higher than60

used in previous studies known to the authors, because the domain is small.61

With a coupled biogeochemical ocean circulation model one would, ul-62

timately, like to estimate the state of the ecosystem simultaneously with63

the state of the ocean physics. Undertaking this task is beyond the scope64

of our work as it involves strong non-linearities (attributed to the ecosys-65

tem model) that cannot be treated consistently with variational techniques.66

Instead a two-step approach is taken. First, the ocean model is fit to observa-67

tions of hydrography, velocity and surface forcing with the help of variational68

state estimation to obtain the “optimal” physical trajectory. The numerical69

model we use is the Massachusetts Institute of Technology general circula-70

tion model (Marshall et al., 1997, MITgcm Group, 2012) together with the71

ECCO infra-structure for state estimation (see, e.g., Stammer et al., 2002,72

2003, Gebbie et al., 2006). This optimal trajectory is used to “drive” the73

ecosystem model. For now we only use a “tuning by hand” approach to74

optimize the ecosystem model, but more sophisticated parameter methods75

are available (e.g., particle filters, Kivman, 2003). Second, the ecosystem is76

coupled to the full 3D physical model to obtain estimates of primary pro-77

duction and vertical transport of carbon and other tracers. This procedure78

ensures that the model dynamics of both physical and ecosystem model are79

preserved during the time of the integration.80

After simulating the trajectory of the coupled biogeochemistry-ocean sys-81

tem following iron fertilization as accurately as possible, we can repeat the82

experiment without iron fertilization. Comparing simulations with and with-83

out fertilization gives us an advantage over field experiments, which cannot84

be repeated in the same way, and leads to more insights into export dynamics.85

In the following Section 2, we provide a short overview of the iron fer-86

tilization experiment EIFEX and the available observations. In Section 387

the circulation model and the optimization technique are described. Sec-88
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tion 4 presents results of the optimization of the circulation model with the89

help of in-situ observations of temperature, salinity, and velocity. Section 590

describes the Regulated Ecosystem Model (REcoM, Schartau et al., 2007,91

Hohn, 2009) and discusses results that can be obtained with the coupled92

system. Conclusions are drawn in Section 6.93

2. A short description of EIFEX94

EIFEX (European Iron Fertilization Experiment) tested the hypothesis95

that iron limits primary production and the biological pump of carbon in96

the Southern Ocean (Smetacek et al., 2012). A mesoscale cyclonic eddy97

was found as a suitable site for the open ocean experiment with the help of98

satellite altimetry data (http://eddy.colorado.edu/ccar/data_viewer/99

index) and an in-situ survey (Strass et al., 2005). The eddy was embed-100

ded in a meander of the Antarctic Polar Front and extended over an area of101

60 km by 100 km, with the center near 49◦24’ S and 02◦15’ E in the South At-102

lantic. Inside the eddy, a 167 km2 patch was fertilized with dissolved iron on103

February 12–13. Subsequently the biogeochemical and ecosystem response104

was monitored. A second fertilization of the expanded patch (740 km2) took105

place on February 26–27, 2004. During the course of the experiment, hydro-106

graphic and dynamic variables as well as biological and chemical properties107

were measured at stations inside and outside the fertilized patch along the108

ship track. The water column was monitored down to 500 m depth. For109

the physical analysis, we use in-situ measurements of temperature and salin-110

ity from a conductivity-temperature-depth (CTD) sonde, data from a ship-111

mounted thermosalinograph that continuously measured surface temperature112

and salinity and finally current velocities from both a buoy-tethered and113

a ship-mounted Acoustic Doppler Current Profiler (ADCP). Measurements114

covered a region extending from approximately 1◦ E to 4◦ E and 48◦ S to 51◦ S115

and spanned the period from February 08 (day 1) to March 16 (day 38), 2004.116

The cruise track and the CTD station positions for this period are shown117

in Figure 1. After the first fertilization on February 12–13 an ADCP survey118

together with CTD measurements and water sampling were carried out on119

a regular grid (GRID 5). GRID 5 covered an area of approximately 150 by120

200 km. The remaining cruise track more or less followed the fertilized patch,121

which was fertilized a second time on February 26–27, and hydrographic and122

biogeochemical parameters were measured with a high temporal resolution.123

Figure 2 (left column) shows the surface temperature and salinity distribu-124

tions estimated from GRID 5 data. Figure 3 portrays the stream function125

estimated from the GRID 5 ADCP survey (see also Cisewski et al., 2008).126
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Figure 1: Cruise track (dashed line) and positions of the CTD-stations (dots). Station
positions of GRID 5 that were covered in the first 10 days after the first fertilization
are marked by crosses. Date (in 2004) and time of selected stations are indicated by
numbering.

3. Circulation Model and State Estimation127

We use the Massachusetts Institute of Technology general circulation128

model (MITgcm). This general purpose, finite-volume algorithm is config-129

ured so that in the present context it solves the Boussinesq and hydrostatic130

form of the Navier-Stokes equations for an incompressible fluid on a three-131

dimensional longitude λ, latitude ϕ, depth H grid. The general algorithm is132

described in Marshall et al. (1997), for online documentation and access to133

the model code, see http://mitgcm.org (MITgcm Group, 2012).134

In order to combine model and data for the best possible estimate, we135

use the adjoint method for solving a constrained least-squares problem as136

described in Thacker and Long (1988). In this assimilation technique, a137

global (in space and time) objective function of squared data-model misfits138

is minimized by an iterative process which repeatedly integrates the forward139

circulation model followed by the adjoint circulation model. The adjoint140

model integrations yield the gradient of the objective function with respect141

to the independent control variables. A minimization algorithm (here the142

BFGS algorithm adapted from Gilbert and Lemaréchal, 1989) uses this in-143
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formation to determine a new set of control variables that lead to a smaller144

objective function value. The MITgcm has been adapted to allow the use145

of the Tangent linear and Adjoint Model Compiler (TAMC), and its succes-146

sor TAF (Transformation of Algorithms in Fortran, Giering and Kaminski,147

1998), to conveniently generate efficient and exact code for the adjoint model148

(Heimbach et al., 2002, 2005). The model code together with the adjoint149

method was used previously in the ECCO context (Stammer et al., 2002,150

2003, Stammer, 2005, Losch and Heimbach, 2007, Gebbie et al., 2006) and151

by, for example, Ferreira et al. (2005).152

The present application of the MITgcm and its adjoint requires a domain153

with four open boundaries. We use a configuration that is similar to that of154

Gebbie et al. (2006), but with a much smaller domain covering a rectangle155

of approximately 150 by 194 km with the south-east corner at 1◦21’ E and156

50◦33’ S and a high horizontal resolution (approximately 3.6 km). Vertical157

layer thicknesses are 10 m between the surface and 150 m depth and increase158

monotonically to 25 m at 500 m depth. The resulting grid consists of 42×54159

horizontal grid cells and 30 vertical layers. The bottom of the domain is flat160

and impermeable for physical processes, but biogeochemical tracers may sink161

“through” the bottom out of the domain.162

Surface boundary conditions are prescribed as horizontal wind stress and163

heat and freshwater fluxes estimated from meteorological observations during164

the EIFEX cruise (10 m wind velocity, 2 m air temperature, specific humidity,165

global radiation; POLDAT, König-Langlo and Marx, 1997) and bulk formu-166

lae (Large and Pond, 1981, 1982). Observations of precipitation are only167

available for the first half of the experiment due to instrument failure during168

the latter half; for the second half precipitation is assumed to be constant169

and equal to the mean of the observations of the first half of the experiment.170

Downward long wavelength radiation is estimated from observations of cloud171

cover and air temperature according to König-Langlo and Augstein (1994).172

At the open boundaries temperature, salinity, and horizontal velocities are173

prescribed independently, so that in the general case the fields at the bound-174

aries may not be in geostrophic balance. Prescribed values are estimated175

from interpolated data collected during GRID 5 (Figure 1) on the first 10176

days of the experiment.177

The circulation of the numerical model is determined by the initial and178

boundary conditions. Therefore, the control vector of the state estimation179

problem consists of initial conditions for temperature and salinity, daily cor-180

rections to the surface boundary fluxes of heat, freshwater, and momentum,181

and, most important, of daily corrections to the boundary values for temper-182

ature, salinity, and horizontal velocity. Note that in contrast to sequential183

methods, all control variables are adjusted simultaneously. In all cases, ex-184
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cept for the initial conditions, only the daily averaged corrections are included185

in the control vector in order to reduce the number of controls. These correc-186

tions are linearly interpolated in time. Still, the length of the control vector187

is approximately 1.4 million for a 39 day integration.188

The control vector is adjusted to minimize the following objective func-189

tion:190

J =
1

2

∑
ij

{
(θi − θ∗i )

T W
(θ)
ij

(
θj − θ∗j

)
+ (Si − S∗i )

T W
(S)
ij

(
Sj − S∗j

)
+ (ui − u∗i )

T W
(u)
ij

(
uj − u∗j

)
+ (vi − v∗i )

T W
(v)
ij

(
vj − v∗j

)}
+ other terms.

(1)191

The starred symbols denote observations of potential temperature θ, salinity192

S, and horizontal velocities (u, v) mapped to the model grid at a certain point193

in (model) space and time. The data are assumed to be representative for a194

given day and the corresponding model variables in function (1) are daily av-195

erages. The weights W are the inverses of the data error covariances. There is196

not enough information about the data correlations—even though one could197

construct vertical error covariances as in Losch and Schröter (2004). There-198

fore, we assume horizontally homogeneous and uncorrelated errors and the199

weights become Wij = δijσ
−2
i , where δij is the Kronecker symbol and σi the200

uncorrelated error. These errors are listed in Table 1. For temperature and201

salinity the errors are estimated per layer from the horizontal standard devi-202

ation of the observations within the eddy and a minimum error of 0.2 ◦C for203

temperature and 0.02 for salinity is imposed. The velocity error is assumed204

constant at 10 cm s−1.205

The “other terms” in function (1) are the sums of the squared devia-206

tions of the daily means from their respective first guesses of surface stresses207

(τx, τy), surface fluxes of heat Q and fresh water (E−P ) (evaporation minus208

precipitation) and the open boundary values (OB). In vector-matrix notation209
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Table 1: Prior data error estimates used in the objective function (1).

layer depth σ(θ) ( ◦C) σ(S) σ(u,v) (cm s−1)
1 5.00 m 0.2834 0.0396 10.0
2 15.00 m 0.2000 0.0200 10.0
3 25.00 m 0.2000 0.0200 10.0
4 35.00 m 0.2000 0.0200 10.0
5 45.00 m 0.2000 0.0200 10.0
6 55.00 m 0.2000 0.0200 10.0
7 65.00 m 0.2000 0.0200 10.0
8 75.00 m 0.2000 0.0200 10.0
9 85.00 m 0.2048 0.0200 10.0

10 95.00 m 0.2000 0.0200 10.0
11 105.00 m 0.2622 0.0200 10.0
12 115.00 m 0.4424 0.0200 10.0
13 125.00 m 0.4786 0.0200 10.0
14 135.00 m 0.4881 0.0214 10.0
15 145.00 m 0.5862 0.0268 10.0
16 156.00 m 0.6418 0.0340 10.0
17 170.25 m 0.6012 0.0370 10.0
18 189.25 m 0.4528 0.0362 10.0
19 212.50 m 0.2000 0.0258 10.0
20 237.50 m 0.2000 0.0222 10.0
21 262.50 m 0.2000 0.0320 10.0
22 287.50 m 0.2084 0.0478 10.0
23 312.50 m 0.3688 0.0716 10.0
24 337.50 m 0.3330 0.0728 10.0
25 362.50 m 0.3320 0.0702 10.0
26 387.50 m 0.2566 0.0568 10.0
27 412.50 m 0.2252 0.0388 10.0
28 437.50 m 0.2234 0.0372 10.0
29 462.50 m 0.2000 0.0278 10.0
30 487.50 m 0.2000 0.0264 10.0
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these are:210

other terms = δτTx Wτx δτx

+ δτTy Wτy δτy

+ δQT WQ δQ

+ δ(E−P)T WE−P δ(E−P)

+ δθTOB WOB
θ δθOB

+ δSTOB WOB
S δSOB

+ δuTOB WOB
u δuOB

+ δvTOB WOB
v δvOB.

(2)211

These terms introduce prior knowledge about the solution and ensure that212

the solution does not differ from the first guess by an unrealistic amount213

(specified by the weights). As before the prior errors are assumed to be214

uncorrelated and homogeneous in space and time. For the surface fluxes, they215

are 0.02 N m−2 for wind stress, 2.0 W m−2 for net heat flux, and 2×10−9 m s−1
216

for fresh water flux. The prior errors for the open boundary values are the217

same as those listed in Table 1, except that the errors for temperature and218

salinity are scaled by 0.1.219

4. Results220

4.1. First guess221

Data collected during the first 10 days of the experiment (GRID 5) are222

used to estimate a first guess of initial conditions and stationary open bound-223

ary values for temperature, salinity, and horizontal velocity by bilinear inter-224

polation (where possible) or “nearest” extrapolation. Time-varying bound-225

ary conditions, while desirable, cannot be derived from the available obser-226

vations, but in the optimized solution (Section 4.2), the boundary conditions227

become time dependent because of the correction inferred from the model-228

data misfit. The initial guesses of surface boundary conditions are estimated229

every hour from ship-based meteorological observations, and they are as-230

sumed to be uniform in space. The control variables are the time-varying231

deviations from these first guesses.232

With these initial and boundary conditions, the eddy in the model do-233

main quickly moves to the north where it “leans” on the open boundary234

(Figure 2, middle column). Also, its diameter is notably smaller than in the235

estimate from observations. Warm and fresh water is advected into the do-236

main from the west and the north-eastern corner of the domain, and a tongue237
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Figure 2: Comparison of surface temperature (top) and salinity (bottom) fields from
observations (GRID 5), first guess model solution, and optimized model solution (averages
over the first 10 days). Contour interval is 0.5 ◦C for temperature and 0.01 for salinity.

of warm and fresh water intrudes into the center of the eddy (Figure 2, middle238

column).239

The observed deepening, warming, and freshening of the mixed layer240

is shown in the uppermost panel of Figure 4. In the first guess solution,241

however, the mixed layer is shallower than in the observations (Figure 4,242

bottom panel). The first guess solution does not reproduce the warming and243

freshening accurately that is visible in the observations.244

4.2. Optimized solution245

Here, we present a solution that we obtain after 171 iterations of the min-246

imization algorithm. The reduction of the total cost (value of the objective247

function) between two iterations has become small at this point of the mini-248
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Figure 3: Comparison of current field between 150 m and 200 m depth. Contours are the
stream function estimated from observations (GRID 5, see also Cisewski et al., 2008),
grey vectors indicate first guess model velocities, and bold black vectors optimized model
velocities (averages over the first 10 days and 150 to 200 m depth). Vector size indicates
current strength.

mization and we assume that the solution is useful (to be shown a posteriori).249

Figure 5 shows the individual contributions to the objective function, nor-250

malized by the initial total cost. The total cost is reduced to less than 18%251

of the initial value and the last iteration reduced the objective function by252

0.01% of the initial value. Note that fitting the model trajectory to the data253

(as seen in the reduction of the data terms, thick dashed and dash-dotted254

lines in Figure 5) is mostly achieved at the “cost” of deviating from the first255

guess of the open boundary conditions. The surface fluxes play a secondary256

role on the short timescales that are relevant here. Within the contribution257

of the open boundary conditions to the cost function the largest deviation258

from the first guess is found in the horizontal velocities (not shown). This259

partition of the overall cost is anticipated by the choice of the prior weights260

because the uncertainty of the open boundary values for velocities is large261

due to the non-synopticity and extrapolation of the data while the surface262

fluxes are based on in-situ observations and only small errors are associated263

with them. The root-mean-square (rms) of the difference between observed264

and simulated daily mean u-(v-)component of the velocity is reduced from265

11



Figure 4: Temperature and salinity evolution near the surface averaged over the eddy.
Top: observations, middle: optimized solution, bottom: first guess solution.

25 (23) cm/s to 9.0 (9.6) cm/s. This is considered a success, as these values266

are smaller than the prior error of 10 cm/s, especially since the per-layer-rms267

of the model-data misfits for temperature and salinity are also smaller or the268

same size as their prior errors. The same is true for the regularization terms269

in Eq. (2).270

The resulting flow field is significantly improved over the first guess so-271

lution (Figure 3). The eddy now stays near the observed position and warm272

and fresh water does not penetrate into the domain from the west. There273

is still an inflow of warm and fresh water from the north because there are274

not enough observations to constrain the model trajectory in this area. The275

inflowing warm and fresh water, however, does not reach the core of the eddy276

but is deflected and leaves the domain again at the eastern boundary (Fig-277

ure 2). After the first 10 days of the experiment observations are restricted278

to the core of the eddy. Still the eddy in the optimized solution stays close279

to the observed position throughout the entire integration as will be shown280

with independent observations in Section 5.3.281
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Figure 5: Objective function contributions as a function of iteration number. All values
are scaled by the initial total objective function value of 2.374× 106.

The simulated flow field is generally less variable than the observed one:282

the rms-values of the daily mean of the observed velocity components u and283

v are 20 and 26 cm/s; the rms-values of the corresponding model variables284

are 18 and 24 cm/s. One consequence is that the model underestimates285

the vertical velocity shear: The mean shear of the daily averaged ADCP-286

observations (estimated as the mean of ∂
√
u2 + v2/∂z over all daily averages)287

is of order 2.5 × 10−3/s; for the corresponding model variables this value is288

0.8× 10−3/s.289

Vertical mixing and light availability are important factors controlling290

phytoplankton blooms. Therefore, we consider the improved description of291

the mixed layer depth within the eddy (Figure 4) as the main success of292

the optimization. The optimized model reproduces most of the the observed293

fluctuations in the temperature and salinity profiles. Similarly, the modeled294

mixing parameters (actively mixing layer, computed diffusivity coefficients)295

agree with the observations (Figure 6, see also Cisewski et al., 2008, their296

Figure 9). For example, Cisewski et al. (2008) compare vertical diffusivities297

and actively mixed layer depths computed from a Thorpe scale analysis of298

micro-structure sonde (MSS) profiler data with model estimates of the mixed-299

layer model KPP (Large et al., 1994); they find average vertical diffusivities300

in the actively mixed layer of 2.84 × 10−2 m2 s−1 (MSS observations) and301

3.39×10−2 m2 s−1 (KPP in this model) and time mean boundary layer depths302

of 66.4 ± 28.8 m (MSS observations) and 69.1 ± 29.5 m (this model). The303

model solution, however, still underestimates the temporal variability in the304

mixed layer depth, in particular the warming and freshening of the mixed305

layer that starts around day 30 of the experiment. Below the mixed layer306
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Figure 6: Comparison of mixed layer depth and actively mixing layer depth as estimated
by the KPP model embedded in the circulation model, from Thorpe scale analysis of
micro-structure sonde (MSS) profile data and from CTD profiles. See text and Cisewski
et al. (2008) for more details.

depth the water column is mostly stable and vertical diffusivity remains near307

the background value of 10−5 m2 s−1.308

Physically and biologically inert tracers such as sulfur hexafluoride (SF6)309

were not released during EIFEX, but photosynthetic efficiency (Fv/Fm) and310

later pCO2 and chlorophyll a were shown to be, in this case, good indicators311

for tracking the fertilized patch (Smetacek et al., 2012). Patch dilution rates,312

however, are more difficult to estimate without appropriate inert tracer ob-313

servations. In the optimized model we address this issue and estimate the314

dispersion of the fertilized patch from an idealized tracer release experiment:315

At the simulated day of the first iron release, an inert tracer is released in-316

stead of iron; the mean squared radial distance of a tracer particle from the317

center of the patch is computed from the first three moments of the surface318

tracer concentration C (total area M0, center of mass M1, and dispersion319

M2) as (Stanton et al., 1998, Martin et al., 2001)320

W 2 =
M2

M0

−
(
M1

M0

)2

. (3)321

The area integrated moments are defined by Mk =
∫ ∫

C rk dx dy, with the322

distance r from the center of mass (Figure 7). A linear regression gives a323

mean increase of the patch area (mean squared radial distance) of roughly324

9.6 km2 d−1, so that the patch size increased approximately 20 times during325

the experiment. During this time the total amount of tracer decreased by326
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Figure 7: Mean squared radial distance from patch center of an idealized tracer as a
function of time estimated from the first moments of the tracer distribution (dots). Also
shown is the linear fit (solid line).

7.3% (not shown) indicating very little loss across the domain boundaries.327

The corresponding estimate of the horizontal mixing (diffusion) coefficient is328

approximately 9.6 km2/86400 s/2 ≈ 56 m2 s−1. Hibbert et al. (2009) inferred329

an upper limit of diffusivity of 87±20 m2 s−1 from diffusive heat budgets for330

isopycnic (horizontal) mixing combined with the observed rate of warming331

during EIFEX. From the linear regression in Figure 7, the dilution rate is332

estimated as the rate of change of patch area divided by the mean patch area:333

9.6 km2 d−1/150 km2 = 0.064 d−1. Smetacek et al. (2012) give a range of di-334

lution rates of 0.06–0.1 d−1 based on various estimation techniques including335

ours.336

5. Experiments with a Regulated Ecosystem Model337

The expedition EIFEX was designed and carried out to assess the impact338

of an iron fertilization on the ecosystem in a high-nutrient-low-chlorophyll339

(HNLC) region. Monitoring the effect of fertilizing the surface ocean on340

the biological pump, that is, the drawdown of atmospheric CO2 and the341

subsequent vertical flux of carbon into the deep ocean, was central to EIFEX.342

Based on the measurements conducted during EIFEX, the vertical carbon343

flux was estimated indirectly, for example from budgets of dissolved and344

particulate carbon as well as nutrients in the upper 100 m, from the decrease345

of in-situ concentrations of particle-reactive isotopes. However, while the346

data coverage during EIFEX is exceptional when compared to the general347

data coverage in survey studies, many quantities of interest could not be348

observed directly.349
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In order to supplement these estimates, and to concurrently improve pa-350

rameterizations used in models that describe biogeochemical functional re-351

lationships, an ecosystem model is coupled to the numerical model of the352

physical trajectory. This ecosystem model is tuned to reproduce the ob-353

served biological quantities with a special focus on chlorophyll concentra-354

tion, particular organic carbon and nitrogen (POC and PON), and nutrient355

distribution. Observations of phytoplankton and zooplankton biomass con-356

centrations were also used to tune the model. Then the model provides a357

full three-dimensional trajectory of both observed and unobserved quantities358

(e.g., detritus), from which target quantities such as vertical carbon flux,359

carbon uptake, or total organic matter, and further the iron-fertilization ef-360

ficiency can be diagnosed. The model estimates are “optimal” in the sense361

that their deviations from both the estimated physical trajectory and the362

observed biological quantities are minimized.363

5.1. Ecosystem model364

In our study we use the Regulated Ecosystem Model (REcoM, Schartau365

et al., 2007), which is based on an approach of Geider et al. (1998) with366

extensions by Hohn (2009). In contrast to many other models, carbon and367

nitrogen fluxes in REcoM are decoupled and do not rely on fixed Redfield368

ratios (see also Taylor et al., 2013).369

For Southern Ocean applications, REcoM has been extended to account370

for diatom blooms, opal export, and iron explicitly (Hohn, 2009, Taylor et al.,371

2013). Four additional state variables have been added: silicic acid, iron, and372

biogenic silica in phytoplankton and detritus. The assimilation of inorganic373

silicon depends on algal growth rates that are expressed in terms of nitrogen374

utilized by diatoms. Upper and lower limits are prescribed for the cellular375

silicon-to-nitrogen (Si:N) ratio. For example, silicate assimilation ceases (is376

down-regulated) under nitrogen limitation after the cellular Si:N has reached377

a maximum value. A simple Michaelis-Menten parameterization is used for378

iron utilization by phytoplankton. Iron uptake is coupled to the modeled379

photosynthetic rates. The model approach requires a prescribed fixed cellular380

iron-to-carbon (Fe:C) ratio, thus allowing variations of the cellular iron-to-381

nitrogen (Fe:N) ratio. Hence, light limitation may inhibit iron uptake and382

silicic acid utilization depends on nitrogen uptake.383

All state variables C of the ecosystem model are advected and mixed384

according to the physical trajectory; locally they change according to the385

ecosystem dynamics SA(C) that are specific to C:386

∂C

∂t
+∇ (uC − κ [∇C − zγ̂]) = SA(C), (4)387
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where u is the three-dimensional velocity, κ the tensor of mixing coefficients388

and zγ̂ the vertical “counter gradient flux” specific to the KPP mixing scheme389

(Large et al., 1994). The vertical flux of C is the z-component of the second390

term in Eq. (4):391

(w − |ws|)C − κv
[
∂C

∂z
− γ̂
]
, (5)392

where w is the vertical velocity, |ws| the sinking velocity (only > 0 for neg-393

atively buoyant particles), and κv the vertical diffusivity. Sinking out of a394

grid cell is parameterized as a function of local (parameterized) aggregation395

of nitrogen particles and detritus mass within the grid cell (i.e. above the396

grid location of the sinking velocity) as:397

|ws(x)| = a|z| (aPDDN(x) + aPPPN(x)) (6)398

with a constant parameter a = 5 d−1 and the coordinate vector x = (x, y, z);399

z is the vertical coordinate in meters. The depth dependence of ws follows, for400

example, Kriest and Oschlies (2008). Note that the aggregates concentration401

aPDDN+aPPPN is not a separate variable, but it is parameterized by nitrogen402

in detritus DN and in phytoplankton PN (both 3D fields) and the constant403

aggregation parameters aPD and aPP (see appendix). In our experiments,404

only detritus, which is assumed to include, for example, fecal pellets, sinks405

with this velocity. With our choice of parameters, the sinking velocity (6)406

easily reaches 100 m d−1 beneath the mixed layer. Note that expression (6)407

parameterizes an effective sinking velocity that represents an average over408

all (unresolved) size classes in the model. Such an effective sinking velocity409

is necessarily lower than the settling speeds of over 500 m d−1 postulated in410

Smetacek et al. (2012) for large aggregates in the centimeter size range and411

in the center of the patch (so-called “hot-spot”).412

Further details of the model and the model equations (right hand sides413

SA in Eq. (4)) can be found in the appendix.414

5.2. Optimizing REcoM415

REcoM contains a suite of tunable parameters. As a first effort, the416

model is tuned to fit the observations of chlorophyll, POC, PON, and nu-417

trient concentrations by varying individual parameters or combinations of418

parameters. For a more objective method to fit the model to observations as419

for the physical state, non-linear state estimation techniques (e.g., Kivman,420

2003, Schartau and Oschlies, 2003) are required. Our heuristic tuning exer-421

cise suggests that on the short time scale of this experiment, the fit of the422

model to the observations is most sensitive to the growth parameters (i.e.,423

the maximal growth rate p∗max and the slope of the initial PI-curve α), the424
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grazing and mortality rates, and the aggregation rates aPP and aPD in com-425

bination with the vertical sinking velocity of detritus (Eq. (6)). See Table A.3426

in the appendix for a list of all model parameters and their values.427

5.3. 3D-Results with REcoM428

Initial conditions and open boundary values for the ecosystem state vari-429

ables are prescribed as follows: for those quantities, for which we have enough430

observations to estimate a quasi-synoptic field, this field (often only a verti-431

cal profile) is used as both initial condition and constant (in time) Dirichlet432

boundary conditions: dissolved inorganic nitrogen (DIN), inorganic carbon433

(DIC), and silica (Si), and total alkalinity (ALK). Other variables are initial-434

ized with observed vertical profiles or assumed small constant concentrations.435

For this second class of variables we imposed homogeneous von-Neumann436

boundary conditions. There is a surface flux of CO2 following the OCMIP437

formulae (Sarmiento et al., 2000). During EIFEX on February 12 and Febru-438

ary 26, 2004, 9 tons of iron solution, corresponding to 1.755 tons of pure iron439

each, were injected into the surface layer in an approximately circular area440

of 170 and 740 km2, respectively, over 24 hours. In the model the fertiliza-441

tion is implemented as follows: on each of the corresponding (model-) dates,442

1.755 tons of the pure iron are applied to 12 grid points (approximately443

160 km2) in the center of the eddy at a constant rate over a 24 hours period.444

5.3.1. Simulating the bloom445

The iron fertilization in both field experiment and numerical model in-446

duce a phytoplankton bloom that is monitored for 38 days. Figure 8 shows447

the simulated surface chlorophyll on selected days, overlaid by normalized448

LIDAR-derived fluorescence (Cembella et al., 2005). While the LIDAR-449

measurements are difficult to interpret quantitatively, they give an idea of450

the location of the chlorophyll patch. The agreement of modeled and ob-451

served patch locations confirms the success of the physical state estimation452

of Section 4.2 by independent observations.453

Figure 9 compares vertical integrals of the observed chlorophyll a and454

POC concentration in the center of the fertilized patch and outside the455

patch (but within the eddy, i.e. following the “inpatch/outpatch” definition456

of Smetacek et al., 2012) with the corresponding simulated concentration457

(black lines). In the model, the patch is defined as the area where either458

the surface concentration of iron is above 0.15µmol m−3 or the surface con-459

centrations of iron and chlorophyll are above 0.08µmol m−3 and 1 mg m−3;460

the eddy area is approximated based on simulated surface temperature and461

salinity fields. The chlorophyll a concentrations outside the patch remain at462

their initial value as observed, but the model solutions tends to overestimate463
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Figure 8: Modeled surface chlorophyll concentration (in mg m−3) on selected days (14,
18, 27, and 35 days after fertilization). Overlaid contours are normalized LIDAR-derived
fluorescence giving an impression of the observed bloom location. Note that one revolution
of the patch within the eddy (observed and simulated) took 7–10 days to complete.
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Figure 9: Integral over the top 100 m of observed (crosses and circles) and modeled (solid
and dashed lines) chlorophyll a (gChl m−2) and POC (gC m−2) concentrations inside and
outside of the fertilized patch. Grey lines refer to the experiment with increased aggrega-
tion (Eq. 7).

the chlorophyll a concentrations inside the patch during the beginning of the464

bloom. This early increase of simulated chlorophyll can be attributed to an465

artifact of the original Geider-model (Smith and Yamanaka, 2007). Sam-466

pling strategies could also have lead to low vertical integrals of chlorophyll a,467

as during this period the apparent variability of the mixed layer depth was468

higher than the sampling rate (see Smetacek et al., 2012, their Figure 2a).469

The parameterization of the iron uptake and utilization may be an additional470

reason for the fast rising concentrations. This parameterization assumes that471

the physiological activity is a function of the ambient dissolved iron concen-472

tration, while it should be the concentration within the phytoplankton cell.473

The uptake of iron by the cell introduces a delay of the onset of the bloom474

(Geider and La Roche, 1994, Peloquin and Smith Jr., 2006, Denman et al.,475

2006) that is not modeled.476

The simulated build-up of particulate organic carbon (POC) inside the477

patch appears realistic, but its observed decrease after day 30 of the experi-478
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ment is not reproduced properly. The almost linear decrease of POC outside479

the patch is slightly overestimated by the model. Both problems are likely480

related to the sinking parameterization (Eq.6). In a test with a constant481

sinking velocity of zero the POC concentrations outside the patch fit the482

observed concentrations much better (not shown), but this scenario with no483

gravitational sinking requires phytoplankton aggregation to be negligible and484

leads to no vertical flux of carbon (see below). Further, the model system485

may initially not be in steady state and the drop can be attributed to ad-486

justment processes in the model due to inappropriate initial conditions for487

some of the unobserved model variables such as detritus.488

Inside the patch, the modeled aggregation is not strong enough to make489

POC sink as observed. Therefore, the aggregates concentration in eq. (6) is490

increased in a second experiment by a time dependent factor491

hagg =

{
1 for t ≤ t0

1 + 0.25 · [t− t0]) for t > t0
(7)492

with t0 = 29 days in order to increase the flux of phytoplankton into detritus493

and to accelerate the sinking of material towards the end of the bloom. With494

this parameterization we roughly represent the time-dependent formation of495

detritus that is expected from senescence of the bloom (Kahl et al., 2008).496

The grey lines in Figure 9 show that as a result of this time dependent factor497

both chlorophyll and POC drop towards the end of the experiment (but the498

POC decrease is still smaller than in the observations).499

The POC evolution (Figure 10) is explored further by comparing the POC500

standing stocks in layers of 100 m thickness as in Smetacek et al. (2012), their501

Figure 4, to POC inferred from transmissometer measurements (dots in Fig-502

ure 10). The modeled POC in the patch center (dashed line in Figure 10,503

reproduced from Figure 9) is very similar to the transmissometer measure-504

ments (dots in Figure 10). As expected, the patch averaged POC is generally505

lower. The model simulates most of the increase of POC in sub-surface lay-506

ers towards the end of the experiment, but there is a spurious reduction and507

then a sudden increase in POC during the first half of the simulation period.508

We attribute this development to possibly inappropriate (because unknown)509

initial conditions for detritus and to subsequent adjustment processes. The510

tendency to underestimate the increase in POC below 200 m compared to511

the transmissometer data suggests that remineralization is too strong in the512

model or that sinking velocities are too high.513

5.3.2. Export fluxes514

Figure 11 shows the time averaged and horizontally averaged vertical515

carbon flux (with increased aggregation according to Eq. 7) underneath the516
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Figure 10: Comparison of modeled particulate organic carbon (POC, in gC m−2) and
inferred POC from transmissometer observations (compare to Smetacek et al., 2012, Fig
4) per 100 m layers. The dashed line (same as grey line of Figure 9) corresponds to the
POC at the position of the maximum surface chlorophyll a concentration and corresponds
to the “hot spot” of Smetacek et al. (2012). The solid line is the mean over the patch.
This mean is the basis of all estimates of export.
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Figure 11: Horizontally averaged downward flux of carbon (in gC m−2 d−1), averaged over
day 30 through 39 of the experiments. Thick lines: experiment with iron fertilization
and increased aggregate concentration; thin lines with crosses: experiment without iron
fertilization; thin lines with open circles: experiment with iron fertilization but prior to
optimization of physics. The thin grey line indicates the experiment with the original
aggregation (Eq. 6).

fertilized patch and outside the fertilized patch (i.e. in the remaining part517

of the model domain) for the experiment with iron fertilization (thick lines)518

and for one without (thin lines with crosses). The time averaging period519

spans the last ten days of the experiment. In the mixed layer (above 100 m520

depth, see Figures 2 and 6), the vertical flux of carbon is governed by vertical521

mixing (as parameterized by the KPP mixing scheme) and the vertical gra-522

dient of POC. Below the mixed layer (starting around 150 m depth), the flux523

is determined by sinking detritus with settling velocities that increase with524

depth (see Eq. (6)) and by remineralization of detritus. Inside the patch,525

the vertical flux of carbon decreases from 0.4 gC m−2d−1 at 150 m to below526

0.2 gC m−2d−1 at 500 m (bottom of the domain) implying that 50% of the527

exported carbon is remineralized before reaching 500 m. Outside the patch,528

there is a slight increase of vertical flux between the experiment with and529
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without iron fertilization. This increase is attributed to the vertical shear of530

horizontal velocities, so that sinking particles are “left behind” by the patch531

when they enter depths with lower horizontal velocities. This effect is small532

in our simulation because of the small vertical shear. With lower aggrega-533

tion (grey line) the export out of the mixed layer is smaller (approximately534

0.33 gC m−2d−1 at 150 m).535

Figure 11 also shows the vertical carbon fluxes from a run with non-536

optimized physics (thin lines with open circles). Clearly, optimizing the537

physical trajectory has a strong effect on the vertical carbon flux. In the run538

without optimized physics, the maximum downward flux of carbon within539

the mixed layer is smaller than with the results of the state estimation. The540

shallow mixed layer depth in the former run (see Figure 4) is also reflected in541

a smaller vertical carbon flux at depths between 50 and 150 m. Below 150 m542

the vertical flux is dominated by sinking of detritus and, thus, the details of543

the flow field have a smaller impact, but the export from the mixed layer is544

small.545

Jacquet et al. (2008) estimate low remineralization of about 13±1.4% for546

EIFEX between 150 m and 1000 m. In the model, the estimated reminer-547

alization is much higher, but depends on both remineralization rates (see548

appendix) and sinking velocities. To explore the effect of the largely un-549

constrained sinking velocity further, the vertical flux of carbon is plotted in550

Figure 12 (black lines) for different sinking velocities of detritus (grey lines) as551

a function of parameter a in Eq. (6). Below the mixed layer, the flux generally552

decreases with depth because part of the detritus is lost by remineralization553

during the passage. Increasing the factor a reduces this loss because detritus554

sinks faster through the domain. In this way the export below 500 m depth555

can be increased up to 2.5 times by a 20-fold larger a that results in a 10-fold556

increase in sinking velocity. For a = 5 d−1, as used in this study, the sinking557

velocity is already on the order of 100 m d−1, but the net remineralization558

decreases from 50% to 17% for a = 100 d−1 (implying sinking velocities of559

order 1000 m d−1). While high settling speeds are plausible for large aggre-560

gates formed in the center of the patch (where plankton biomass was highest)561

and towards the end of the bloom (Smetacek et al., 2012), averaged effective562

sinking speeds are expected to be lower for the whole patch. For comparison,563

Jouandet et al. (2011) report sinking speeds estimated with indirect meth-564

ods of up to 200 m d−1 in natural iron fertilization experiments. Decreasing565

the parameters of remineralization rates (see appendix) did not improve the566

solution (not shown). Vertical carbon fluxes outside the fertilized patch are567

not greatly affected by the vertical sinking velocity of detritus (not shown).568
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Figure 12: Horizontally averaged sinking velocities (in m d−1, grey lines) and the associ-
ated horizontally averaged downward flux of carbon (in gC m−2 d−1, black lines) in the
fertilized patch as a function of parameter a in Eq. (6), averaged over day 30 through 39
of experiment.

5.3.3. Effect of iron fertilization569

We can now go beyond the possibilities of a field experiment and re-570

peat the exact simulation without the addition of iron. By subtracting this571

experiment from the run with iron fertilization we can estimate how much572

of the observed bloom may be attributed to the fertilization. Further, this573

technique reduces possible model biases that are independent of the iron fer-574

tilization; for example, the overly strong decrease of POC outside the patch575

(Figure 9) cancels out in such an experiment. Figure 13 shows estimates of576

fertilization-induced, vertically integrated carbon, silica, and nitrogen con-577

sumption from the nutrient difference of experiments with and without iron578

fertilization. The DIC difference (∆DIC) between runs without and with iron579

fertilization, integrated to 100 m depth, peaks at 14.3 gC m−2. This amounts580

to a total of 16,700 t of DIC uptake due to iron fertilization in the upper581

100 m in the entire model domain area of 29,300 km2. The peak value in-582

creases to 18.6 gC m−2 (and the net value to 20,700 t) when the difference is583
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Figure 13: Estimated carbon, nitrogen, and silica consumption through biological activity
induced by iron fertilization: vertical integral of the difference of nutrients at the end of
the integration for experiments without and with iron fertilization. Contour interval is
4 gC m−2 for carbon, 1 gN m−2 for nitrogen, and 2 gSi m−2 for silica.

integrated to the bottom of the domain at 500 m (as shown in Figure 13).584

To estimate the sensitivity of the carbon uptake to model parameteriza-585

tion, we tested variable sinking velocities. Using sinking speed parameters586

a of 10, 50, and 100 d−1 (Eq. (6)), the peak consumption of DIC in the up-587

per 100 m increases by 0.7, 1.5, and 1.8 gC m−2 corresponding to an increase588

in carbon uptake by 1500 to 3500 t. This leads to an uncertainty of about589

10–20% due to the unconstrained sinking velocity.590

The particulate organic carbon (POC, in our model expressed as the sum591

of carbon in phytoplankton, zooplankton, and detritus) increases with iron592

fertilization by ∆POC ≈ 9100 t in the top 100 m and by 15, 000 t in the593

entire domain. The difference with ∆DIC (7600 and 5500 t) gives the car-594

bon export out of the top 100 m and 500 m under the assumption that no595

(or only very little) POC has left the domain over the lateral open bound-596

aries. This translates into a C/Fe export mass efficiency of 7600 t/(3.5 t) ≈597

2200 g/g ≈ 10, 000 mol/mol and 5500 t/(3.5 t) ≈ 1600 g/g ≈ 7300 mol/mol.598

These numbers are lower limits, because not all of the iron (two fertilizations599

with 1.755 t each ≈ 3.5 t) is used in the experiment. The net iron utilization600

during the bloom in the experiments (including scavenged iron) is estimated601

as the difference of all dissolved iron at the end and iron at the beginning602

plus the iron released during the experiment as 13.4 t− (8.5 t + 3.5 t) ≈ 1.4 t.603

With this number for the iron input the C/Fe-efficiency increases to 5400 g/g604

(25,000 mol/mol) and 4000 g/g (18,000 mol/mol) for the top 100 m and for605
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the entire domain down to 500 m. de Baar et al. (2005) report molar DIC/Fe606

uptake efficiencies in the range of 1066 to nearly 40,000, although the mean607

over different experiments was approximately 5600. According to de Baar608

et al. (2005), approximately 50% of the DIC uptake is converted to POC.609

Smetacek et al. (2012) estimate a molar DIC uptake efficiency of 13,000 for610

EIFEX. Our model estimates suggest that values from Smetacek et al. (2012)611

are strongly conservative as they assume no iron scavenging.612

With the model we can also directly assess the net carbon export through613

the bottom of the domain by collecting the carbon that sinks out. In the run614

with iron fertilization 67,000 t of carbon have left the domain through the615

bottom (north of 50◦ S) by the end of the integration, but only 3,800 t are due616

to the iron fertilization (from the difference between runs with and without617

iron fertilization). This suggests that the above method based on budgets618

tends to overestimate the actual carbon export below 500 m, but note that619

the model tends to underestimate the net export inside the patch and over-620

estimate it outside the patch (cf. Figure 9). Some of the difference between621

∆POC and ∆DIC can be explained by flux across the open boundaries.622

Figure 14 shows the modeled POC per unit area above and below 150 m.623

As in Figure 9, the numbers represent averages over the entire patch, which624

again is defined as the area where the surface concentration of iron is above625

0.15µmol m−3 or where the surface concentrations of iron and chlorophyll are626

above 0.08µmol m−3 and 1 mmol m−3. Also shown is the cumulative amount627

of POC exported through the bottom of the domain (at 500 m) below the628

patch. The top figure shows that POC builds up in the top 150 m of the wa-629

ter column until about day 15 (see also Figure 9). Then POC sinks, mostly630

through layer 150–500 m (because this layer does not accumulate POC) to631

depths below 500 m (out of the domain). The overall export out of the do-632

main is 3.7 gC m−2. Assuming no POC production below the mixed layer633

we can use the budgets of Figure 14 (top panel) to estimate an export of634

9.1 gC m−2 below 150 m and similarly 12.6 gC m−2 below 100 m (from repeat-635

ing the calculation that lead to Figure 14 with different depth ranges, see also636

Figure 10). Smetacek et al. (2012) estimate an export production due to iron637

fertilization from the difference in DIC and POC concentrations before and638

after the bloom in the top 100 m of 14.4±4.8 gC m−2 during days 24 to 36639

since the fertilization. With their background flux estimates of 6±4 gC m−2
640

this adds up to about 20 gC m−2. The model estimate is about 40% lower,641

consistent with the lower drop in near surface POC compared to observations642

in Figure 9. The net POC-flux for the entire period (days 0–36) is estimated643

from 234Thorium depletion data as 16.7 gC m−2 (from integrating Figure S5.1644

of Smetacek et al., 2012).645

The difference in POC content between runs with and without iron fertil-646
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Figure 14: Modeled particulate organic carbon (POC) below and above 150 m depth
averaged over the patch. “Below” 500 m refers to POC that sank out of the domain. Top:
POC of experiment with iron fertilization, bottom: difference of experiments with and
without iron fertilization.

ization in the bottom panel of Figure 14 shows that in the model simulation647

only 1.5 gC m−2 of the POC exported below 500 m is actually induced by648

iron fertilization. Smetacek et al. (2012) find, based on transmissometry,649

an increase in flux of 8.4 gC m−2 below 500m below a “hot-spot” within the650

patch. For the depths 150 m and 100 m the corresponding model values are651

4.3 gC m−2 and 6.0 gC m−2. The latter is only 40% of the 14.44±4.8 gC m−2
652

due to fertilization of Smetacek et al. (2012) but comparable to 234Thorium-653

based estimates of 7.8 gC m−2 of POC-export out of the top 100 m for the last654

12 days of the experiment. Concurrent with the discrepancies with Smetacek655

et al. (2012)’s estimate, we simulate with the model that the export decreases656

strongly with depth, and the export at 500 m is only 12% of that at 100 m.657
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6. Conclusions658

Modern state estimation techniques are a powerful tool for the analysis659

of observational data. In particular, the dynamics of numerical models can660

be used to consistently interpolate between observations. In our case the661

solution is mostly controlled by the open boundaries, and to a smaller extent662

by initial conditions.663

In the context of the EIFEX data set in combination with a numerical664

model (MITgcm+REcoM), the strong influence of the physical environment665

on biogeochemical processes emerges as a fundamental result. In the opti-666

mized simulation, the mixed layer depth is deeper (and thus more realistic)667

than without optimization and the horizontal position of the eddy is corrected668

with respect to the first guess estimate. In spite of the generally deeper mixed669

layer (i.e. less available light), the export flux is larger with optimized physics,670

also suggesting that the light parameterization within REcoM is appropri-671

ate. We argue, that (unrealistically) strong vertical velocities, associated672

with spurious divergent flow due to the open boundary conditions—and the673

(largely unconstrained) nutrient flux across the open boundaries, affect the674

un-optimized solution because the core of the eddy and the fertilized patch675

are much closer to the northern boundary than in the optimized case. In the676

optimized case, the fertilized patch moved along with the core of the eddy to677

the correct position. Thus, the patch is never directly affected by the open678

boundaries and the biogeochemical simulation improves.679

Further, changing important parameters in the ecosystem model, such as680

the vertical sinking velocity, can have a similarly strong impact on vertical681

carbon flux estimates as the flow field. Smetacek et al. (2012) postulated682

high sinking rates of more than 500 m d−1 and aggregates in the centimeter683

size range to explain observed POC increases in the entire water column684

underneath the so-called “hot-spot” within the fertilized patch, but infer685

much lower settling speeds outside this “hot-spot”. Increasing the vertical686

sinking velocities in the model from 100 m d−1 to 800 m d−1 increases the687

deep export by a factor 2.5 at 500 m depth. While this factor reduces the688

difference to the in-situ export estimate by Smetacek et al. (2012), the high689

effective sinking velocities appear excessive (McDonnell and Buesseler, 2010,690

Iversen et al., 2010, Jouandet et al., 2011) indicating that remineralization691

rates below the mixed layer are too high in the numerical model to allow692

larger deep export (compare also with Jacquet et al., 2008).693

Tuning an ecosystem model systematically requires non-linear parameter694

estimation techniques (e.g., Schartau and Oschlies, 2003). We have post-695

poned this exercise and have used subjective tuning of model parameters to696

achieve an ecosystem trajectory that reproduces most of the observed char-697
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acteristics of the phytoplankton bloom during the European iron fertilization698

experiment EIFEX.699

Based on the best estimate of the flow field and the temporal evolution700

of biogeochemical parameters during the open ocean experiment EIFEX, the701

numerical modeling approach allows to investigate experimental configura-702

tions that could not have been carried out in the field. Comparing model703

simulations with and without iron fertilization gives an independent estimate704

of the impact of iron fertilization on the export of POC. The model simu-705

lation is largely consistent with observations of chlorophyll a and particular706

organic matter (we only showed POC). However, our estimates of export707

flux at 100 m are about 40% lower than Smetacek et al. (2012)’s estimates.708

Consequently, we find smaller effects of iron fertilization on vertical fluxes.709

The difference between Smetacek et al. (2012)’s and our estimates can710

have many reasons. First of all, the definition of the patch area is somewhat711

arbitrary and different area averages immediately give different results. To712

that end, Smetacek et al. (2012)’s estimates all refer to a “hot-spot” within713

the patch whereas our estimates are based on averages over the entire patch.714

Further, even when comparing maximum values in the modeled patch to the715

“hot-spot” of Smetacek et al. (2012) our model underestimates the decrease716

in surface POC and hence vertical fluxes in this area. Finally, physical pro-717

cesses in the model are dynamic while budgets in Smetacek et al. (2012) were718

based on the available estimates of lateral and vertical mixing, which tend719

to represent spatial or temporal averages.720

The numerical model used here (most likely) does not describe the com-721

plete state of the system during EIFEX, so that the model based estimates722

contain errors that are difficult to estimate. The EIFEX bloom terminated723

with a very abrupt export event that cannot be reproduced by REcoM with-724

out arbitrary tuning (see Eq. 7). Also, in our method of taking the difference725

between two model runs, model errors play an important role. From simple726

sensitivity experiments we can provide a rough error estimate for the figures727

of 10–20%. We estimate an iron induced DIC uptake of 10.5 gC m−2 and an728

accumulation of POC of 5.1 gC m−2 in the top 100 m. For this layer, Smetacek729

et al. (2012) estimate a slightly higher DIC uptake of 13.2±1.2 gC m−2 and730

a much lower POC accumulation of 1.3±0.8 gC m−2. The decrease of POC731

towards the end of the experiment is not accurately simulated by the model,732

so that our export estimates may to be too low for that reason alone. Instead,733

most of the POC anomaly that builds up after iron fertilization stays in the734

upper 150 m of the water column implying that in the numerical model, in735

spite of the explicit increase of sinking in Eq. (7), the increase of POC in the736

surface layers is not balanced by a strongly increased vertical export so that737

the deep export does not even double under iron fertilization. This indicates738
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a requirement for further improvements to the vertical sinking parameter-739

ization (6) for particulate organic matter. The simulated decrease of POC740

outside the fertilized patch overestimates the observed development and one741

can argue that the numerical model overestimates the export under unper-742

turbed conditions. We removed this bias by analysing the differences between743

perturbed (with iron fertilization) and unperturbed experiments, essentially744

assuming a linear effect of the perturbation. To what extent this assumption745

is valid remains unclear. Improving the ecosystem model to achieve a closer746

model-data fit is necessary and will be the subject of a different paper.747
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Appendix A. A Regulated Ecosystem Model (REcoM) with Silica756

and Iron757

Here we describe the equations of the ecosystem model REcoM (Schartau758

et al., 2007, Hohn, 2009), as they are used in this study. REcoM is a series759

of ecosystem models that contain an identical basic kernel. For this study760

it has been augmented with silica and iron to represent diatom dominated761

communities (REcoM&Dia).762

Appendix A.1. State variables and equations763

REcoM&Dia has 16 state variables in the current configuration. They are764

listed in Table A.2. The variables are divided into five different compounds.765

With the abbreviation q = PN/PC and qSi = PSi/PN the source-minus-sink766

terms SA for the different groups are767

768
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Table A.2: REcoM&Dia state variables and their abbreviations.
DIC dissolved inorganic carbon (TCO2)
DIN dissolved inorganic nitrogen
Si dissolved inorganic silicate
PN nitrogen in phytoplankton
PC carbon in phytoplankton
PSi silicate in phytoplankton
ZN nitrogen in heterotrophic zooplankton
ZC carbon in heterotrophic zooplankton
DON dissolved organic nitrogen
EOC extracellular organic carbon
DN nitrate in detritus
DC carbon in detritus
DSi silicate in detritus
Fe silicate in phytoplankton
Chl chlorophyll a concentration
ALK alkalinity

1. Dissolved inorganic compounds:769

SA (DIC) = (rphy − Cphot)PC (A.1)770

+ ρC(T )EOC771

+ rzoo ZC772

SA (DIN) = −V
N
C

q
PN + ρN(T )DON (A.2)773

SA (ALK) =

(
1

16
+ 1

)
(A.3)774

·
(
V N
C

q
PN − ρN(T )DON

)
775

SA (Si) = −V Si
C PC + ωSi(T )DSi (A.4)776

SA (Fe) = qFe SA (DIC)− ksc Fe′ (A.5)777
778
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Table A.3: REcoM parameter names and values in the current application
Name Units Symbol value
maximal N/C-cell quota mmol N/mmol C qmax 0.2
minimal N/C-cell quota mmol N/mmol C qmin 0.04
minimal Si/C-cell quota mmol Si/mmol C qSi

min 0.0408
maximal Si/C-cell quota mmol Si/mmol C qSi

max 0.8
N/C-uptake ratio mmol N/mmol C qU 0.2
Si/C-uptake ratio mmol Si/mmol C qSi

U 0.204
Maximum chlorophyll a to nitrogen ratio g CHL (mol N)−1 qChl

max 2.5
iron to carbon ratio µmol Fe/mmol C qFe 0.005
Redfield ratio mmol C/mmol N R 6.625
attenuation coefficient for water m−1 kw 0.04
chlorophyll-specific attenuation coefficients m−1 (mg Chl)−1 aCHL 0.03

chlorophyll-specific initial slope of P-I curve molC
g Chl

(W m−2 d)−1 α 0.2

maximum of C-specific rate of photosynthesis d−1 p∗max 4.0
Cost of biosynthesis mmol C/mmol N b 2.0
Cost of biosynthesis mmol C/mmol Si bSi 1.0
Half saturation constant (nitrogen) mmol N m−3 kDIN 0.55
Half saturation constant (silicium) mmol Si m−3 kSi 4.0
Half saturation constant (iron) µmol Fe m−3 kFe 0.12
Constant respiration rate of phytoplankton d−1 r∗phy 0.01

aggregation (mmol N m−3)−1 aPP 0.02
aggregation (mmol N m−3)−1 aPD 0.22
Phytoplankton loss/mortality/excudation d−1 γC 0.1
Phytoplankton loss/mortality/excudation d−1 γN 0.05
degradation of chlorophyll d−1 γchl 0.01
maximum zooplankton grazing rate d−1 gmax 0.5
Grazing half saturation constant (mmol N m−3)2 ε 20.0
Zooplankton mortality d−1 Φz 0.05
Zooplankton respiration time scale d τr 1.0
DON degradation rate d−1 ρ∗N 0.05
EOC degradation rate d−1 ρ∗C 0.004
Detritus remineralization rate (Nitrogen) d−1 ω∗

N 0.01
Detritus remineralization rate (Carbon) d−1 ω∗

C 0.1
Maximal remineralization rate (Silicium) d−1 ω∗

Si 0.02

Iron scavenging rate d−1 kFe
sc 0.25

Total ligand µmol m−3 LT 1.0
Conditional stability constant (µmol m−3)−2 Kcond

FeL 10.0
Phytoplankton sinking velocity m d−1 wP 0.0
Detritus sinking velocity m d−1 wD Eq. (6)
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2. Phytoplankton:779

SA (PC) = (Cphot − rphy − γC) PC (A.6)780

− 1

q
(G +A)781

− wP
∂PC
∂z

782

SA (PN) =
V N
C

q
PN − γN PN − G −A (A.7)783

− wP
∂PN
∂z

784

SA (PSi) = V Si
C PC (A.8)785

− PSi
PN

(γN PN + G +A)786

− wP
∂PSi
∂z

787

SA (Chl) = (Schl − γchl) Chl (A.9)788

− Chl

PN
(G +A)789

− wP
∂Chl

∂z
790

791

3. Zooplankton:792

SA (ZC) =
G
q
− rzoo ZC −

(
Φz Z

2
N

) ZC
ZN

(A.10)793

SA (ZN) = G − Φz Z
2
N (A.11)794

795

34



4. Detritus:796

SA (DC) =
A
q

+
(
Φz Z

2
N

) ZC
ZN

(A.12)797

− ωC(T )DC798

− wD
∂DC

∂z
799

SA (DN) = A+ Φz Z
2
N − ωN(T )DN (A.13)800

− wD
∂DN

∂z
801

SA (DSi) =
PSi
PN

(G +A)− ωSi(T )DSi (A.14)802

− wD
∂DSi

∂z
803

804

5. Extracellular organic material (with organic nitrogen being completely
dissolved):805

SA (EOC) = γC PC + ωC(T )DC (A.15)806

− ρC(T )EOC807

SA (DON) = γN PN + ωN(T )DN (A.16)808

− ρN(T )DON809
810

Appendix A.2. Parameterizations811

The above expressions involve the following parameterizations and limit-812

ing functions. A list of all model parameters and their values can be found813

in Table A.3.814
815

- regulation term for photosynthesis816

Rphot = min

(
F (qmin, q, 50), (A.17)817

F (qSimin, q
Si, 1000),818

Fe

kFe + Fe

)
819

820

- maximal growth rate821

pCmax =p∗max farr(T )Rphot (A.18)822
823
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- Arrhenius temperature function824

farr(θ) = exp

(
−4500

(
1

θ
− 1

θref

))
(A.19)825

826

- limiting function827

F (a, b, s) =1− exp
(
−s [|a− b| − (a− b)]2

)
(A.20)828

829

- carbon assimilation, with I(z) = photosynthetically available radiation
(PAR)830

Cphot =pCmax

{
1− exp

(
−α I(z)

pCmax

Chl

PC

)}
(A.21)831

832

- maximum carbon specific N assimilation833

V N
C,max = 0.7 pCmax qUF (q, qmax, 1000) (A.22)834

835

- carbon specific N assimilation of phytoplankton836

V N
C =V N

C,max

DIN

kDIN +DIN
(A.23)837

838

- maximum carbon specific Si assimilation839

V Si
C,max = 0.7 p∗max farr(T )qSiU (A.24)840

· F (q, qmax, 1000)841

· F (qSi, qSimax, 1000)842
843

- carbon specific Si assimilation of phytoplankton844

V Si
C =V Si

C,max

Si

kSi + Si
(A.25)845

846

- chlorophyll synthesis847

Schl =qChlmax V
N
C min

(
1,

Cphot

α Chl
PC

I(z)

)
(A.26)848

849
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- respiration of phytoplankton850

rphy =r∗phy + b V N
C + bSi V

Si
C (A.27)851

852

- grazing flux853

G =gmax
P 2
N

ε+ P 2
N

ZN (A.28)854

855

- zooplankton respiration856

rzoo =τ−1
r farr(T )

(
ZC
ZN
−R

)
(A.29)857

858

- aggregation859

A = (aPDDN + aPP PN) PN (A.30)860
861

- degradation rates of dissolved/extracellular organic matter862

ρX(T ) =farr(T ) ρ∗X (A.31)863
864

- detritus remineralization rates865

ωX(T ) =farr(T )ω∗X (A.32)866
867

- detritus remineralization rate (silica pool)868

ωSi(T ) = min

(
ω∗Si, 1.32 (A.33)869

× 1016 exp

(
−11200.0

T

))
870

871

- free iron Fe′ is computed from872

[Fe′] + [L′]
kf
⇀↽
kd

[FeL] (A.34)873

[Fe] = [Fe′] + [FeL]874

[LT ] = [L′] + [FeL]875

Kcond
FeL =

[FeL]

[Fe′][L′]
876

877
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following Parekh et al. (2004), where FeL is complexed iron associated with878

an organic ligand, LT is the total ligand, assumed to be constant, L′ is free879

ligand, and Kcond
FeL is the conditional stability constant when the system is in880

equilibrium.881

- The photosynthetically available light is computed by integrating from the882

top, taking into account the attenuation of water kw and chlorophyll aCHL ·883

Chl for a self-shading effect.884
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