

A 300 year pollen record from a subarctic lake on the Yukon Coast, NW Canadian Arctic

Juliane Wolter¹, Hugues Lantuit¹, Ulrike Herzschuh^{1, 2}, Michael Fritz¹

¹Alfred Wegener Institute for Polar and Marine Research Potsdam ²University Potsdam, Institute of Earth and Environmental Science

Key Questions

Sedimentary environment

1. Have there been **disturbances** in the sedimentation during the last 300 years?

Results

2. How did **bioproductivity** and **organic matter decay** develop? Pollen assemblage

Tentative answers

- 1. Sedimentation uniform between sand peaks
- 2. Phases of higher organic matter content
- 3. Change from open tundra to more shrub-dominated vegetation after AD 1900

- 3. Is there a change in **vegetation composition**?
- 4. How did the **regional climate** develop?

Fig. 1 Map of Yukon Coastal Plain and Herschel Island, showing lake location and western limit of former Laurentide Ice Sheet (map base compiled by Lantuit)

Regional climate variability and associated changes in vegetation

4. More favourable climate after AD 1900

Refined questions

What caused the peaks in organic matter content and sand? Are higher contents in carbon and nitrogen caused by increased production or decreased decomposition of organic matter? Why is the pollen assemblage so stable through time? Will that be changed by higher-resolution counting?

Sedimentary environment

Grain size analysis and the measurement of total carbon (C), total organic carbon (TOC), and total nitrogen (N) give insight into the sedimentary environment at 1 cm resolution. The results are shown in Fig. 2. Organic carbon contents vary between 3 and 10 %, local peaks

composition during the last 300 years are still largely unknown for the Yukon Coastal Plain (Fig. 1 shows a map of the region).

A short sediment core from a thermokarst lake is used to reconstruct climate and vegetation well as the sedimentary as environment for the last 300 years using pollen analysis and additional sediment parameters.

Pollen record

Fig. 3 shows the results of **pollen analysis**. Two pollen assemblage zones (PAZ) were identified for

the short core. PAZ 1 represents the time between about AD 1700 and 1900 and shows a uniform pollen assemblage dominated by shrubs and herbs. Cyperaceae increase through time, and *Ranunculus* and *Artemisia* show minor peaks.

In PAZ 2, starting about AD 1900, non-graminoid herbs decrease and shrubs increase slightly. A change to a more favourable climate starting about 100 years ago is a possible explanation for that. Shrubs increase under warmer conditions, while an open landscape is usually associated with cold and dry conditions. So far, the pollen record shows little variation during the last 300 years, the counting of further samples, accompanied by more extensive data analysis will give a better insight into the history of climate and vegetation on the Yukon Coast.

D6020020 J64040

9th Annual Scientific Meeting 9-13 DECEMBER 2013 World Trade and Convention Centre, Halifax, NS

Juliane.Wolter@awi.de