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Abstract 
Since the 1970s tremendous changes have been observed in the Arctic region. As such, 

the surface air temperature within this region has increased twice the global average 

and according to existing climate model predictions, this trend will continue in the 

future (IPCC, 2007). However, interpretation of such transformation, which results 

from greenhouse warming, is still difficult. This is due to a lack of knowledge about the 

influence of multi-annual to decadal climate variations and the fact that climatic data 

from this region are usually temporally and spatially biased. Therefore, a better 

understanding and further research on the effects and predictability of climate 

variability is needed.  

We examined the growth variability in shells of the bivalve mollusc Arctica islandica L. 

which is affected by environmental factors, mainly temperature and food supply. The 

prime objective of the project was to compare the shell growth of molluscs from two 

distinct populations in European Arctic and to determine the external factors 

influenced on the annual shell growth variability in A. islandica. We compared shells 

from two sampling sites: the northern Norwegian coast and the Kola Peninsula coast 

(SW Barents Sea). Both localities are in the realm of the Norwegian Coastal Current 

(after crossing the border to Russia it is called the Murman Coastal Current). For the 

investigation of the annual and inter-annual growth variability all collected shells were 

cut, 3 mm thick-sections were attached to a glass slide, grinded, polished and stained. 

Annual growth bands were identified and measured. Samples for the stable isotope 

(δ18O, δ13C) analysis and the seasonality approach were taken using a hand drill and 

the milling technique. 

Based on increments measurements of 62 specimens, we found significant difference 

in growth rates between these two locations, which presumably resulted from a 

difference in thermal regime in the two sites and in the depth of collection of the 

molluscs. By comparison of growth chronologies with the time series of environmental 

and climatic parameters, we indicated a growth response of a specimen from the 

Norwegian coast to seawater temperature variability in the study area and found a 

similarity in a pattern with NAO-index. The molluscs from the Barents Sea responded 

to variation in air temperature, especially during colder periods.  



6 
 

Analyzed stable isotope ratio (δ18O, δ13C) profiles showed cyclic patterns within annual 

growth lines related to seasonal changes in temperature and primary production. The 

obtained values of stable oxygen isotope ratio allowed a reconstruction of seasonal 

changes of water temperature, but for the precise results accurate data on salinity or 

δ18O ratio of seawater is needed. 
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Аннотация 
Начиная с 1970х, в Арктике наблюдаются значительные климатические 

изменения. Так, к примеру, приземная температура воздуха в этом регионе 

возросла двукратно по отношению к мировому уровню, и, в соответствии с 

существующими климатическими моделями, этот рост продолжится и в будущем 

(IPCC, 2007). Однако, считать подобные изменения следствием глобального 

потепления, вызванного парниковыми газами, недостаточно обоснованно. Это 

связано с отсутствием знаний о многолетних климатических колебаниях и 

временной и пространственной разнородностью климатических данных в этом 

регионе. Поэтому, требуются дальнейшие исследования климатических 

изменений и анализ их влияния на морские экосистемы.  

Мы изучили изменчивости линейного роста двустворчатых моллюсков Arctica 

islandica L., который зависит от факторов окружающей среды, преимущественно 

температуры и пищевых ресурсов. Целью работы было сравнение роста раковин 

моллюсков из двух популяции, а также оценка факторов, влияющих на 

изменчивость годового прироста A.islandica. Мы сравнивали раковины, 

отобранные на северном побережье Норвегии и на берегу Кольского полуострова 

(юго-запад Баренцева моря). Обе точки связаны Норвежским прибрежным 

течением, которое в Российских водах называется Мурманским прибрежным 

течением. Для изучения годовых и межгодовых изменений роста, все отобранные 

раковины были распилены вдоль линии максимального роста и, полученные 

срезы были прикреплены к предметным стеклам. После полировки, все срезы 

были окрашены, линии ежегодной остановки роста были определены и 

расстояние между ними измерено. Пробы для анализа стабильных изотопов 

кислорода и углерода были отобраны с помощью ручной дрели. 

Основываясь на измерениях 62 раковин, были обнаружены достоверные 

различия в росте между моллюсками из двух исследуемых популяций, которые 

предположительно связаны с различиями в температурном режиме и с глубиной 

отборы раковин в обеих точках. Сравнивая ряды стандартизованных годовых 

приростов с временными рядами климатических параметров, мы обнаружили 

статистически достоверную положительную корреляцию между ростом раковин с 

норвежского побережья и межгодовыми вариациями температуры воды 
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Мурманского течения, а также с межгодовыми колебаниями значения NAO-

индекса. Рост раковин из Баренцева моря, в свою очередь, коррелирует с 

колебаниями среднегодовой температуры воздуха, в особенности в холодный 

период года. 

Изменения в соотношениях изотопов кислорода и углерода (δ18O, δ13C) в 

анализируемых раковинах, носят циклический характер, в соответствии с 

линиями годового прироста, и обусловлены сезонными изменениями в 

температуре и первичной продукции. Полученные значения δ18O в карбонате 

раковин позволяют восстановить температурные условия окружающей среды, 

однако, для получения абсолютных величин необходимы точные данные о 

солености или δ18O окружающей морской воды.   
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1 Introduction 
The problem of global climate change is not a new one in science. In a variety of 

investigations it has been shown that the Arctic is the most sensitive region in the 

Northern hemisphere (e.g., Walsh, 2008). Additionally, the increasing industrialization 

and commercial use of Arctic create necessity of a better understanding of all on-going 

processes. This will be essential to predict the future of the natural systems. 

 Since the 1970s tremendous changes have been observed in the Arctic region. The 

surface air temperature within this region has increased twice the global rate (IPCC, 

2007). According to existing climate model predictions this trend will continue in the 

future (IPCC, 2007; Wassmann et al., 2011). Other evidences of warming processes are 

the decreasing of sea ice, an increasing precipitation rate and changes in the 

thermohaline circulation of the Arctic Ocean (Gordeev et al., 2001). These changes 

modify various biological components of the ecosystems (reviewed in Wassmann et 

al., 2011), which combined create a coherent picture of transformation. However, 

interpretation of such transformations, which result from greenhouse warming, is still 

difficult. This is due to a lack of knowledge about the influence of multi-annual to 

decadal climate variations, such as the North Atlantic Oscillation (NAO) and Arctic 

Oscillation (AO) (Serreze et al., 2000). Consequently, the increasing concerns about the 

global climate change have led to an increased interest in the processes of climate 

variability and the effect on marine ecosystems in the recent decades. Therefore, a 

better understanding and further research on the effects and predictability of climate 

variability is needed. 

One way to address the predictability of climate change is by using climatic 

information from the past. Unfortunately, high-resolution instrumental measurements 

of environmental parameters are only available for the last century. Another 

complication, related to the Arctic, is the harsh natural conditions. These make 

continuously recorded environmental observations difficult. For this reason, climatic 

data from this region are usually temporally and spatially biased. To fill this gap we can 

utilize biological proxies. 

It is well known that the seasonal and annual variability of environmental conditions 

has a strong influence on the different physiological processes in living organisms (e.g., 

growth) (Jones, 1980; Brockington and Clarke, 2001; Richardson, 2001). One of the 
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visible results of such dependence is growth periodicity, which occurs in a wide 

taxonomic range of organisms and manifested in the formation of annual and sub-

annual growth bands (increments) in hard structures of animals and plants. Widely 

known (non-marine) examples of such structures are tree rings, which have 

successfully been used for the reconstruction of climatic condition in the past (García-

Suárez et al., 2009; Helama et al., 2010). Within the aquatic habitats, growth bands, 

similar to the tree rings, can be found in the accreted hard parts and skeletons of 

molluscs, corals, sclerosponges, brachiopods, fish and coralline algae (Hemle and 

Dodge, 2011). The physical and chemical properties of these structures are an object 

for sclerochronological studies. By measuring and counting annual increments, 

information about growth rates and ontogenetic ages can be obtained. Furthermore, it 

is possible to reconstruct environmental parameters of the past. 

Bivalve molluscs are one of the most commonly used taxonomic groups in 

sclerochronology. These organisms are widely distributed in different aquatic habitats 

all over the world. Since the process of shell growth and shell formation is sensitive to 

the changes in ambient conditions, bivalves are unique bio-archives of the 

environment. By using sclerochronological techniques we can obtain data by analysing 

the stable isotopic composition of the shell and the relative width of growth 

increments. This information can be used for the reconstruction of different 

environmental parameters, such as water temperature (Jones et al., 1989; Schöne et 

al., 2004b; Schöne et al., 2005b; Stott et al., 2010), air temperature (Schöne et al., 

2004a) and the amount of precipitation (Schöne et al., 2007). Moreover, annual 

growth increments can be used for the construction of long-term (even 

multicentennial) shell-based chronologies for the marine environment (Butler et al., 

2011). 

The ocean quahog, Arctica islandica is a boreal species and one of the biggest bivalve 

species inhabiting the marine waters of the North Atlantic (Zatsepin and Filatova, 

1961; Thórarinsdóttir and Einarsson, 1996). It is considered as an ideal organism for 

the sclerochronological studies and the construction of long-term chronologies of 

growth variation (Marcitto et al., 2000; Schöne et al., 2003; Wanamaker et al., 2008; 

Butler et al., 2011). At the one hand, A. islandica has a wide geographical distribution 

(the fossil records show even bigger range) (Fig.1) and it can be found in a variety of 
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different habitats (Nicol, 1951; Zatsepin and Filatova, 1961; Merrill and Ropes, 1969; 

Dahlgren et al., 2000). On the other hand, it is the longest lived, non-colonial animal 

known to science, with a maximum life span potential which exceeds 400 years 

(Wanamaker et al., 2008). Therefore, the shells of A. islandica might contain 

information about the climate variability for centuries. By applying a cross-dating 

approach this peculiarity has already successfully been used for the construction of a 

multicentennial shell-based master chronology in the marine environment (Butler, 

2011). Moreover, A. islandica shows variations in growth according to different 

environmental factors, such as temperature (Marcitto et al., 2000; Schöne et al., 

2005b) or food supply (Witbaard, 1996). Furthermore, the correlation between annual 

growth and climate events, such as the North Atlantic Oscillation (NAO) has been 

proven for shells from the North Sea (Schöne et al., 2003). 

 

Figure 1 The past and present day distribution of Arctica islandica in the North Atlantic (from Dahlgren 

et al., 2000). 

In the present study we examined the growth variability of A. islandica. Our prime 

objective is to identify the main environmental factors which influence the shell 

growth formation from the sub-annual to the decadal time level. One of our sampling 

points is located along the Norwegian coast, another one is on the south coast of the 

Barents Sea. Both localities are exposed to the same ocean current. It is expected that 
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similarities in the oceanographic conditions are reflected in the shell, possibly 

occurring with certain time lag.  

All laboratory work for the present investigation was carried out at the 

Bioscience/Functional ecology division of Alfred-Wegener-Institute for Polar and 

Marine Research (AWI) at Bremerhaven. 
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1.2 Objectives 

The main aims of this research project were: 

 To analyse the growth variability of Arctica islandica and to compare the results 

from the Norwegian and the Russian populations. 

 To determine the external factors controlling the annual shell growth variability 

in A. islandica. 

 To check for decadal oscillations (NAO?) within the growth patterns of A. 

islandica. 

 To use stable oxygen isotopes (δ18O) to reconstruct seasonalities and water 

temperatures on a sub-annual level. 
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2 Materials and Methods 

2.1 Study area 

The area of investigation includes the east coast of the Norwegian Sea north of the 

Arctic Circle and the south coast of the Barents Sea. The feature of this region is 

subarctic climate with long and relatively cold winter season and mild and short 

summers.   

Climate in the study area is strongly influenced by general ocean circulation patterns, 

particularly by the properties and activity of the inflowing Atlantic water from the 

North Atlantic Current (Edlandsvik and Loeng, 1991). This relatively warm water mass 

characterized by salinity >35‰ (Helland-Hansen and Nansen, 1909), has a winter 

temperature exceeding 6 oC (Gyory et al., 2009). The North Atlantic current has an 

eastern boundary formed by Norwegian Coastal Current (NCC) (Fig.2), which flows 

along the western and northern coast of Norway and after crossing the border to 

Russia it is called the Murman Coastal Current (Loeng, 1991). Both of our sampling 

points are exposed to this current. During winter time NCC is deep and narrow, while 

during summer season it is wide and shallow (Loeng, 1991). In comparison with 

Atlantic water, Coastal Water has almost the same temperature but with stronger 

seasonal signal (ICES, 2009; Loeng, 1991). The main parameter that distinguishes these 

two water masses is salinity. The NCC is fresher (<34.7‰); it includes a flow of brackish 

water from the Baltic Sea and Skagerrak, which enlarged by inflow from fjords and 

rivers along the coast (James, 1991). 

The North Atlantic Current together with Norwegian Coastal Current play an important 

role in climate of the coastal zone due to a mechanism of exchange of energy between 

the surface water and atmosphere, which result in moderating effect on temperature 

extremes along the coast. Thus, the heat release during the winter time causes the 

warming of overlaying air mass. During summer the process of exchange is reversed, 

warm air mass transfer the heat to underlying ocean (Helland-Hansen and Nansen, 

1909). 
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Figure 2 The Norwegian and Barents Sea surface water circulation. Arrows show the distribution of the 
currents, in red: Atlantic current, white: Arctic current, yellow: Coastal current (Norwegian, Murman)  
(Map from Drinkwater, 2011). 

2.2 Time series of environmental and climatic parameters 

In order to characterize environmental and climatic conditions of the area of 

investigation we analysed different environmental and climatic parameters from a 

number of data sources. We selected only those of them that based on monitoring 

observation in area close to sampling sites.  

Due to the lack of regular observation that covers the period equivalent to our master 

chronologies, we selected the possible longest time series. 

2.2.1 Seawater temperature 

Source: Bochkov, 2005; http://www.pinro.ru. 

For the present study the temperature series from the Russian records on the Kola 

section along the 33o30`E were selected. This section is located in the Murman Current 

and representative for the portion of Atlantic Water inflow from the Norwegian coast 

to the Barents Sea. The variation of seawater temperature that recorded in this section 

coincides with those on the coast Barents Sea as well as whole Norwegian coast 

(Loeng, 1989). The distribution of monitoring stations is shown on the map (Fig.3). The 

Kola section temperature time series presented as means of seawater temperature in 

0-200m layer from 1900 to the 2010. To our knowledge it is the longest time series in 

the region, which have only a few gaps from 1906 to 1920 and from 1940 to 1945. 

These gaps were filled by the model data (Bochkov, 2005). For this study historical data 
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were taken from Bochkov (2005) and supplemented by resent data from PINRO 

(http://www.pinro.ru).   

 

Figure 3 The map of distribution of a monitoring station of Kola section. The black dots corresponds to 
the stations, red arrows denotes a distribution of Atlantic Water Mass in the area of investigation. (Map 
from http://www.pinro.ru) 

According to existing data the annual values of water temperature in this area varied 

between years and ranged from 2,83oC to 5,08oC. During the observation period of 111 

years, the minimum value of this parameter was observed in 1966, then, with 

exception of few cold years, the temperature increased up to a maximum value in 

2006 (Fig.4). 

 

Figure 4 Times series of annual mean of seawater temperature from the Kola section from 1900-2010. 
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2.2.2 Air temperature 

Source: iridl.ldeo.columbia.edu 

The air temperature time series were constructed using the annual means of air 

temperature, which were calculated on a base of monthly mean temperature 

observations from two meteorological stations the closest to our sampling points. The 

first one is located in Tromsø (69°68'N 18°92'E) (WMO Station ID – 102500). The air 

temperature data from this station covers a time interval from 1921 to 1993. The data 

from the second station, which is located in Murmansk (68°97'N 33°05'E) (WMO 

Station ID – 2211300) corresponds to the period 1919-1993. 

The data from the both stations shows similar variation between years, but the 

temperature in Murmansk is usually on a few degrees less than average in Tromsø 

(Fig.5)  

 

Figure 5 Time series of annual average air temperature in Murmansk (red line) and Tromsø (blue line). 

2.2.3 North Atlantic oscillation index (NAO index) 

The NAO is a recurrent climatic phenomenon, which affecting climatic variability from 

Arctic to subtropical Atlantic and from North America seaboard to Siberia, especially 

during boreal winter (Hurrel et al., 2003). Hurrell (1995) calculated a NAO index as a 

mean normalized pressure difference between Stykkisholmur (Iceland) and Lisbon 

(Portugal). 

The positive phase of the NAO corresponds to a large pressure difference between two 

mentioned locations. When the difference is low, it is considered as a negative state.  
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The positive values of NAO index associated with wet and mild weather across the 

Northern Europe, while during negative phase opposite patterns in a temperature and 

precipitation are typically observed. 

Source: climatedataguide.ucar.edu 

In this study we used the station-based winter (December-March) Hurrell North 

Atlantic Oscillation Index, because the signal is stronger during this period and these 

months are prior to the period of active growth of molluscs in the area of study. Time 

series of NAO index cover a period from 1864 to 2010. 

Besides year-to-year variability, the NAO index exhibited significant multi-decadal 

variability. For example, one of prominent periods starts in 1940s. Since that time until 

1970s the negative phase of NAO was dominant (Hurrell, 1995). During the past 30 

years the values of this index tend to be more positive with maximum recorded in  

winters of 1983, 1989 and 1990 (Fig. 6). 

 

 

Figure 6 Time series of WNAO index 1864-2010 
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2.2.4 Arctic oscillation index (AO) 

The Arctic Oscillation (AO), also referred to as a Northern Hemisphere Annual Mode, is 

defined as main pattern of sea level pressure field in Northern Hemisphere (20o-90o) 

(Thompson and Wallace, 2001). The AO is characterized by two centers of a sea-level 

pressure anomalies with opposite sign, one is over the polar region and the other one 

centered about 37-45oN.  

The positive phase of this pattern associated with below normal sea-level pressure 

over the Arctic, enhanced surface westerlies in North Atlantic, bringing a wetter 

weather to Scotland and Scandinavia. During the negative phase the situation is 

reversed.  

Within the Atlantic sector the AO dominated by NAO structure. Despite the common 

features, the AO has an additional center of action in the North Pacific, that gives the 

AO more zonally symmetric structure (Tremblay, 2001). 

Source: climatedataguide.ucar.edu 

In this study we used a normalized Hurrel SPL-based winter AO index for the period 

1899-2011 (Fig.7). 

 

Figure 7 Time series of AO index 1899-2011 
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2.3 Collection of a shells and processing 

The shell material for this study has been collected from three different localities. It 

comprises 30, 32 and 18 specimens of A. islandica from the Norwegian Sea (69°39'N 

18°57'E), Russian coast of the Barents Sea (69°11'N 36°05'E) and the White Sea   

respectively (66°20'N 33°38'E) (Fig.8). The molluscs from the Norwegian Sea have been 

collected in 2006 at depths 10-30 m and dissected by Salma Begum (AWI 

Bremerhaven). The specimens from the Barents Sea were sampled in 2011 at depth 5-

7 m by Larisa Basova (St-Petersburg State University), while those from the White Sea 

were collected in 2006, 2007 and 2008 by Vladimir Krapivin (St-Petersburg State 

University). The White Sea specimens were used only for the comparison of shell 

morphometric parameters. All molluscs were collected alive, dissected and the soft 

tissue parts were removed immediately after collection. For the investigation we used 

only one valve from each specimen. 

    

Figure 8 The map of the study area showing the main ocean circulations (arrows). Blue stars showing the 

three locations of the sampling points, 1: Norwegian coast, 2: Barents Sea coast, 3: White Sea coast. 

Arrows show the distribution of the currents, in red: Atlantic current, blue: Arctic current, green: Coastal 

current (Norwegian, Murman)  (Map from Stiansen et al., 2005). 

 

 



21 
 

2.4 Shell morphology 

In order to analyse morphological features of the shells, specimens from all three 

locations have been used. Firstly, all shells were weighted to the nearest 0.1 g using an 

electronic balance. Length (L; the greatest distance between anterior and posterior 

shell margins), width (W; the longest distance of the valve in a lateral plane across the 

valve) and height (H; measured along the line of the strongest growth) of the shells 

were measured using digital callipers to the nearest 0.01 mm (Fig.9).  

 

Figure 9  Right valve of A. islandica with length, height (line of the strongest growth, LSG) and cut lines 

parallel to LSG (from Müller-Wiegmann, 2006). 

Individually, all of these parameters do not allow describing the features of shell shape 

and cannot be used separately for the comparison of the shell morphometry, because 

of the difference of size classes of existing shell material. Thus, three descriptors of a 

shell shape (Caill-Milly et. al, 2012) and one that links the shell mass (M, in mg) with 

the volume were selected in order to compare the general morphological tendencies 

(Tab. 1) between the locations. 

Table 1 Descriptors of morphometric parameters 

Descriptor Formula 

Elongation index H/L 

Compacity index W/L 

Convexity index W/H 

Mass to volume relation M/(L*H*W) 
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The calculated values of the descriptors were tested by one-way analysis of variance 

(ANOVA) and the Tukey`s honest significance test (HSD) test for a posteriori 

comparison among sampling sites. The critical level of statistical significance was taken 

as Р = 0.05.  

In order to compare the morphology of a young individuals with older ones, the  shells 

from the Barents Sea were divided on a two groups by age 30 (for the details of age 

determination see 2.6) The same analysis, as described above, was performed for 

comparison of a shell shape descriptors between two these groups. 

2.5 Cross-section preparation 

For the sclerochronological analyses, the shell from the Barents Sea and the Norwegian 

coast were used. Each valve has been coated twice with EPO-TEK® 302-3M epoxy resin 

for protection during sawing. Then, the shells have been cut parallel to the line of 

strongest growth (LSG; Fig.) and were attached to a glass slide with quick-drying metal 

epoxy. The 3-mm thick-sections (one for the each specimen) were cut along the LSG 

and through the umbo with a 0.4 mm diamond-coated saw blade using a low speed 

precision saw (Buehler®, IsoMet™). The section was then mounted on glass slides with 

EPO-TEK® 302-3M epoxy and grinded with Buehler® 2 speed grinder-polisher with 

1200, 2500 and 4000 SiC grinding paper. Finally, samples were etched in Mutvei`s 

solution for 20 minutes at around 39oC (for the details see Schöne et al. 2005a). 

For the stable isotope measurements, one specimen from the Barents Sea and one 

from the Norwegian coast were selected. From each of these shells 5-mm thick-section 

had been made and remained unetched.  

2.6 Growth increment measurements   

In order to analyse a growth variability of the shells from the Barents Sea and the 

Norwegian coast, in each etched cross-section growth increments had been identified 

(Fig.10) and measured under a microscope (Olympus SZX12) at magnifications ranging 

from x10 to x63. The measurements of annual growth rings were conducted in the 

outer shell layer using analySIS docu software (Olympus Soft Imaging Solutions). 

Ontogenetic ages of studied specimens were determined by counting the annual 

increments. 
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Figure 10 Cross-section of A. islandica shell (specimen from the Norwegian Sea) etched with Mutvei`s 

solution. Image was taken with 10x magnification and clearly shows annual growth lines. DOG indicates 

the direction of growth. 

2.7 Growth 

By using the cumulative width of the increments, the length of the shell surface along 

the LSG at a certain ontogenetic age was calculated. Growth of the shells was 

modelled by fitting a von Bertalanffy growth function (VBGF) to the obtained data. This 

function is described by the equation: 

 

where St  is shell size at age t, calculated as sum of the widths of all prior increments ,  

is the physiologically possible maximum shell size, k is the growth coefficient, and 

t0 is the theoretical age at St = 0.  

A VBGF model was fitted to data iteratively by a nonlinear Newton algorithm (Brey, 

2001) with fixed parameter  derived by the “Gulland-and-Holt plot” method 

(following the procedure described by Pauly et al., 1993). The difference in growth 

between the locations was determined by analysis of covariance (ANCOVA) (size of the 

increment (∆S) vs. location and covariate the size of a shell in the middle of this 

increment (S )).  

 



24 
 

2.8 Growth chronology construction 

Since all of the molluscs were collected alive, each growth increment was measured 

and assigned to the particular calendar year in which it has been deposited. This was 

performed by counting backwards from the last formed growth band on the outer 

shell margin.  

Before the resulting increment-width series can be used for the construction a 

chronology the data needs to be standardized. During life the bivalves experience a 

decline in annual growth, resulting in decreasing increment widths, which become less 

variable with age (Jones 1981; Marchitto et al., 2000; Schöne et al., 2004). Such age-

related trends must be removed from the data. 

The growth of A. islandica is often characterized by rapid increase in increment width 

during the first years of life (5-7 years) then after reaching the maximum value the 

growth rate declines (Butler et al., 2010). This leads to the fitting problem during 

detrending (Butler et al., 2010).  Moreover, the shape of the first increments is more 

curved resulting in an increased measurement error. That is why the first five 

increments were excluded from the time series. In order to remove the trend of 

variance from the raw increment-width series, an adaptive power transformation was 

applied to the data of each series, prior to the growth trend removal (Cook and Peters, 

1997).  

The average growth trends have been modeled for each individual specimen by 

applying a cubic smoothing spline (λ=10000) (SAS-institute, 2007) (Fig.10). Hereafter, 

growth indices (GI) were calculated for the each series by subtracting the modeled 

values from the powered-transformed increments widths (Cook and Peters, 1997). In 

order to remove the correlation between the mean and variance from the data, the 

calculated GI values were standardized by subtracting the mean and dividing it by the 

standard deviation of the GI time series (Schöne et al., 2005b). The resulting 

standardized growth index (SGI) is a dimensionless parameter, which explains how the 

shell growth in the particular year deviates from the predicted value. So, in general, 

wider increments tend to have positive values of SGI, the narrower- negative (for the 

details see Schöne et al., 2003). 
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Figure 11 Annual growth of shell YaBa-A09 (Barents Sea). Dots correspond to values of increment width. 
The age- related growth trend was removed by using cubic smoothing spline (red line). 

For the construction of a growth chronology SGI time series of molluscs older than 30 

years were used. The synchrony among the SGI time series was analyzed by 

computation of correlation coefficients for the each individual series and the mean of 

the other series from the same location. Time-series with correlation coefficient higher 

than 0.2 were assembled into a chronology. 

2.9 Relationship between Arctica islandica growth chronology and 

environmental data 

For homogenization of signal amplitudes, before the comparison with growth 

chronologies, all environmental time series were standardized by applying the same 

procedure as it was done for the growth indexes. In order to remove the noise of a 

small frequency, prior to the comparison, the SGI chronologies, as well as, 

environmental data series were transformed by weighted moving average over three 

consecutive years (with weights 1:4:1) (Fig.12). 
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Figure 12 Standardized WNAO index (blue line), together with 3 year weighted moving average (1:4:1) 

(red line). 

The relation between environmental data time series and SGI chronologies were 

estimated using Spearman`s rank correlation coefficient. Due to the fact that both of 

locations are exposed to the same ocean current, it is expected that similarities in the 

oceanographic conditions are reflected in the shell, possibly occurring with certain time lag. 

Thus, according to the observations of Helland-Hansen and Nansen (1909) there is a delay of 

two years in the temperature signal from the Norwegian west coast (61oN) to the Russian Kola 

section. That is why possible time lags of one and two years were considered.  

2.10 Stable isotope analysis 

Two unetched polished cross-section, 24568-L from the Norwegian Sea and YaBa-A03-

L from the Barents Sea, were selected for the analysis of stable oxygen (δ18O) and 

carbon (δ13C) isotopes. For the sample preparation, in both specimens ontogenetically 

identical years were chosen in order to guarantee a comparability of the results.  

On the prepared cross-sections, epoxy coating, as well as periostracum, was removed 

from the outer shell surface. Then, under the binocular microscope at 7x to 20x 

magnification within each growth increment carbonate samples were extracted by 

milling parallel to the growth lines Using a cylindrical drill bit (700μm diameter) 

mounted onto a dental drill device (Minimo 1, Minitor Co., LTD.) (for details see 

Schöne et al., 2005b). A total of 90 carbonate powder samples have been obtained 

from the Barents Sea shell, while 124 individual samples from the Norwegian Sea 

specimen were taken. Average sample weight varied between 40 and 100 µg. 
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The samples were analyzed with a Thermo Finnigan MAT 253 mass spectrometer with 

an automated preparation device Kiel IV at the Geology department of Alfred-

Wegener-Institute for Polar and Marine Research (AWI) in Bremerhaven. 

Isotopic composition of oxygen and carbon were expressed by “δ”, which shows a 

relative concentration of rare (heavier) isotope in a sample. The values of δ18O and 

δ13C were calculated as a difference in proportion of heavier and lighter isotopes (‰) 

between the measured sample and a standard: 

δ18O = [(18O/ 16O)sample/( 18O/ 16O)standard -1] * 1000, 

δ13C = [(13C/ 12C)sample /( 13C/ 12C)standard -1 ]* 1000. 

The isotope values were calibrated against the NBS-19 standard, and all data are 

reported as ‰ VPDB. The average errors of individual measurements are ±0,08‰ for 

δ18O and ±0,06‰  for δ13C. 

2.10.1 Reconstruction of absolute water temperatures from carbonate stable 

oxygen isotopes 

In equilibrium conditions during deposition, stable oxygen isotope ratio in a calcium 

carbonate (calcite, aragonite) differs from isotope composition of oxygen in 

surrounding water due to isotopic exchange in a system carbonate-water according to 

following reaction (Zakharov et al., 2006): 

1/3CaCO3
16+H2O18 = 1/3CaCO3

18+H2O16. 

Isotope fractionation in this system is temperature dependent; that is why in 

equilibrium conditions with water, the stable oxygen isotope ratio in carbonates 

determines by water temperature. (Epstein and Mayeda, 1953; Beck et al., 2005) 

Another factor that controls a stable oxygen isotope ratio in a carbonates is δ18O of 

ambient water which prevailed during the shell formation. Thus, Epstein and Mayeda 

(1953) formulated the isotopic temperature scale as following: 

ToC = 16.5 – 4.3 *(δ18Ocarbonate – δ18Owater) +0.14 *(δ18Ocarbonate – δ18Owater)
2. 

Mineral composition of biogenic carbonates also significantly affects the relationship 

between δ18O in carbonates and temperature. This fact was proven by Horiba and Oba 
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(1972) and later by Grossman and Ku (1986) formulated the isotopic temperature scale 

for aragonite: 

ToC = 20.6 – 4.34*( δ18Oaragonite – δ18Oseawater) 

So, knowing the δ18Oseawater, it is possible to reconstruct the water temperature from 

aragonite shells mollusk. A.islandica were successfully used as an object for such 

reconstruction (Weidman et al., 1994; Schöne et al., 2003b; Schöne et al., 2005c)  

In present study water temperature were reconstructed using the equation 

established by Grossman and Ku (1986) in the corrected version as follows (Dettman et 

al., 1999)  

Tδ18O (oC) = 20,60 – 4,34*( δ18Oaragonite – (δ18Oseawater – 0,27)) 

where δ18O aragonite is measured relative to the VPDB scale and δ18O seawater is relative 

to the SMOW scale. 

For the water temperature reconstruction we used the δ18Oseawater according to the 

gridded surface dataset described by LeGrande and Schmidt (2006). Therefore, the 

surface water at the Norwegian coast is assumed to be characterized by an average 

δ18Oseawater values close to 0.0‰ (SMOW), while the Barents Sea surface at the Kola 

Peninsula coast is associated with an average δ18Oseawater value of -0.3‰ (SMOW).   
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3 Results 

3.1 Shell morphology 

The morphometric parameters were measured for the shells from the Barents Sea, the 

Norwegian Sea and the White Sea. The shells from the White Sea were represented by 

relatively small specimens with a maximum length 51,2 mm (at height 49,8 and width 

13,3 mm), while the material from Norwegian coast consisted of only bigger molluscs, 

where the minimum length was 73,1 mm (at height 67,6 and width 20,5 mm). The 

material from Barents Sea included shells of all size groups. The range of variation of 

these morphometric parameters within the locations are presented on a scatterplot 

(Fig. 13) 

 

Figure 13 A three dimensional scatterplot of the morphometric parameters (Height, Length, and Width 

in mm) in relation to each other. The data points are grouped by normal contour ellipsoids (showing 

90% of the point distribution) into locations. Blue color corresponds to the White Sea shells; pink 

denotes the Barents Sea, while green ellipse shows the data points related to the shells from Norwegian 

coast. 

Analyses of variance of the main morphometric descriptors indicate a significant 

difference among the sampling sites (Tab. 2). Further comparison with Tukey`s HSD 

test determine that the White Sea shells significantly differ from the shells from other 

locations in terms of all the descriptors, with one exception. In case of Convexity 
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indexes (Fig. 14, C), the shells from White Sea have no significant difference from the 

Norwegian shells.   

Table 2 ANOVA results of a shell shape descriptors 

Source DF Sum of 
squares 

Mean 
squares 

F ratio F 
probability 

Elongation index      

Between groups 2 0,073 0,010 12,138 <0,0001* 

Within groups 77 0,066 0,001   

Total 79 0,086    

Compacity index      

Between groups 2 0,006 0,003 13,155 <0,0001* 

Within groups 77 0,018 0,0002   

Total 79 0,024    

Convexity index      

Between groups 2 0,002 0,001 3,231 0,0450* 

Within groups 77 0,024 0,0003   

Total 79 0,026    

Mass to volume 
relation 

     

Between groups 2 0,138 0,069 61,699 <0,0001* 

Within groups 77 0,086 0,001   

Total 79 0,244    

*Significantly different at α=0,05 level 

The only descriptor that discriminates between all of the locations is mass to volume 

relation. According to this parameter the Barents Sea shells are significantly heavier 

than the shells form other locations, while the specimens from the White Sea are 

characterized by the lowest values of mass per unit of volume.  
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Figure 14 Analysis of variance (ANOVA) for calculated descriptors (A - Elongation index, B - Compacity 

index, C – Convexity index, D – Mass to volume relation) versus location. Dots represent individual 

values of descriptors. The top and bottom of each diamond represent   a 95% confidence interval, the 

width is proportional to a sample size for each group of locations. 

In order to analyse the difference in shell morphology within the populations the 

values of shell descriptors of young individuals from Barents Sea (11 specimens) were 

compared to those of older ones (21 specimens). No significant differences were 

detected.  

3.2 Growth 

A total of 1999 annual growth increments were measured in the shells of A. Islandica 

from the Barents Sea and 1893 single increment measurements were made for shells 

from the Norwegian coast. The maximum determined ages of the molluscs are 118 and 

82 years respectively.  The von Bertalanffy growth curves were constructed for the 

shell from both locations. (Fig. 15). Applying a ‘Gulland-and-Holt’ method together 

with nonlinear iterative fitting algorithm to the data from the Norwegian Sea (N) and 

the Barents Sea (BS) resulted in following equations: 

N: St= 93.81*(1-e-0.07*(t+2.87)), R2= 0.85 

BS: St= 86.58*(1-e-0.08*(t-0.44)), R2= 0.98 
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It was noticed that the growth rate was relatively rapid during the first 30 years of life 

in both populations and then started to decrease. As the values of growth coefficients 

(k) obtained for both locations are almost the same, the shape of the curves is similar, 

but the shells from the Norwegian coast tend to be bigger at the same age than those 

from the Barents Sea. 

 

Figure 15 Von Bertalanffy growth curves of Arctica .islandics and measured size-at-age data for two 

locations. Green color corresponds to Norwegian coast ( = 93.81; k =0.07), red color denotes the 

Barents Sea ( = 86.58; k =0.08) . 

For the test of a difference in growth between the shells from the Norwegian coast 

and the Barents Sea we performed full factorial ANCOVA (size of the increment (∆S) vs. 

location and covariate the size of a shell in a middle of this increment (S  )).  As the 

ANCOVA model is a linear model (Quinn & Keough, 2002), the analysis was computed 

using multiple regressions.  Due to the fact that the changing of a size of increments 

with size of the shell is not a strictly linear processes it cause a problem with fitting of a 

regression line to the whole range of data points and could be noticed in a graphical 

representation as a decrease in slope with increasing of size (Fig.16). In order to avoid 

this problem and perform the analysis, the datasets for the each location were divided 

into two groups by the value of mean size of 80mm.  
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The full factorial ANCOVA for the data, which belongs to the group with size less than 

80 mm indicates that the growth differed significantly between the locations (P< 

0.0001) (Fig. 17) 

 

 

Figure 16 Annual growth of A.islandica from the Barents Sea (pink) and the Norwegian Sea (green). 

Regression lines show the locations (red- Barents Sea, blue- Norwegian coast) (R
2
= 0,7; P<0,0001) 

The prior to ANCOVA, test of homogeneity among the slopes for the second group 

were performed by including an interaction term (S   * location) in the model. A 

recorded significant interaction effect indicates that relation between the covariate (S ) 

and the response variable (∆S) differs between groups (Engqvist, 2005) 

 

 
 

Figure 17 Annual growth of A.islandica (for the size less than 80 mm) from the Barents Sea (pink) and 

the Norwegian coast (blue; green). Regression lines show the locations (R
2
= 0,7; P<0,0001) 
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3.3 Shell growth chronologies 

For all individual time series of the shells older than 30 years, that is total of 30 

specimens from the Norwegian Sea and 21 from the Barents Sea, the correlation with 

mean of the other time series from the same location were calculated. Those of them 

with correlation less than 0.2 were not used for the chronology construction. 

 A total of 19 individual SGI time series of shells from the Norwegian Sea and 11 from 

the Barents Sea were assembled to shell chronologies separately by locations. The 

average correlation of each SGI series with the mean of resulted chronologies 

comprises 0,42 for the Norwegian Sea shell growth chronology and 0,28 for the 

Barents Sea. 

The length of constructed shell chronology for the Barents Sea is 113 years, which 

covers a period from 1898 to 2010 (Fig.18). The shell growth chronology for the 

Norwegian coast comprises a 71-years of period from 1935 to 2005 (Fig.19). 

 

Figure 18 Barents Sea shell growth chronology 
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Figure 19 Norwegian Sea shell growth chronology 

 

3.4 Correlation of master chronologies with environmental and climatic 

parameters 

Statistical relation between environmental and climate time series and A.islandica 

growth chronologies from the Barents Sea (BS) and the Norwegian Sea (NS) were 

tested with the Spearman`s rank correlation. The comparison of the BS- chronology 

with those from the Norwegian coast did not indicate statistically significant 

correlation, even considering possible time lags. 

Similar patterns and significant positive correlation has been founded between the 

Norwegian Sea (NS) growth chronology and seawater temperature of 0-200m layer in 

the Kola Section (Fig.20; Tab.3), while the correlation with air temperature data is not 

significant. The NS-SGI-chronology is also positively correlated with North Atlantic 

Oscillation index time series (Tab.3) with a maximum correlation in a period of about 

25 years from 1960 (rho= 0.79; p<0.0001) (Fig.21). Despite the absence of significant 

correlation between Arctic Oscillation and NS-SGI-chronology on the whole 

overlapping period (1935-2005), for the period 1960-1985 correlation coefficient is 

0.622 (p=0.0007). 
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Figure 20 Seawater temperature time series (blue line) and Norwegian Sea growth chronology (red line). 
To the both time series WMA3- filtering was applied. 

No significant correlation was detected between the Barents Sea growth chronology 

and climate indexes (NAO, AO) on the whole overlapping period (1898-2010), as well 

as with the seawater temperature, while the air temperature data from Tromsø is 

positively correlated with obtained SGI-chronology from the Barents Sea with 

maximum of correlation on the period 1940-1975 (rho=0,569; p=0.0003). 

Table 3. Correlation between chronologies of standardized growth indexes SGI and environmental data 
(Seawater temperature, Air temperature, WNAO, AO). Indicated Sperman`s correlation coefficient and 
the probability of error (in brackets). Abbreviations: BS - Barents Sea; NS – Norwegian Sea, ns- no 
statistically significant correlation. 

 Period BS-SGI-chronology 

1898-2010 

NS-SGI-chronology 

1935-2005 

Seawater To 1900-2011 ns 0.301 (p=0.012) 

Air To Tromsø 1921-1993 0.281 (p=0.018) ns 

Air To  Murmansk 1919-1993 ns ns 

WNAO 1864-2011 ns 0,255 (p=0.035) 

AO 1899-2011 ns ns 
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Figure 21 NAO time series (blue line) and Norwegian Sea growth chronology (red line). To the both time 
series WMA3- filtering was applied. 

Despite the fact that the correlation of BS-growth chronology with air temperature 

data from Murmansk during a whole investigated period is not significant, the 

observed patterns of these two time series have a similarity (Fig.22) and the value of 

correlation coefficient for the period from 1940 to 1970 is even higher than those for 

the Barents Sea chronology and air temperature in Tromsø (rho=0,503; p=0,004). 

Taking into account the high dependence of environmental and climatic parameters in 

this region (Ottersen et al., 2001), we compare BS-SGI-chronology with analysed 

climatic time series on this particular time interval and found significant positive 

correlation with NAO (rho=0.414; p=0.012) and AO (rho=0.519; p=0.001). 

 

Figure 22 Air temperature time series form Murmansk (blue line) and BS-SGI-chronology (red line). To 
the both time series WMA3- filtering was applied. 
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3.5 Stable oxygen isotope analysis 

The stable oxygen isotope profiles of both investigated specimens characterized by 

seasonal cycles were the peak values of a δ18O after the growth line (Fig. 23, 24) The 

values of δ18O ranged from 1.019±0.013‰ to 3.023±0.032‰ for the Norwegian Sea 

specimen and from 1.068±0.067‰ to 3.648±0.011‰ for the Barents Sea. 

The carbon stable isotope profiles for both shells also showing the seasonality, but the 

peak values shifted relatively to those of oxygen (Fig. 23, 24) The range of variation of 

a δ13C for the Norwegian Sea specimen is 2.077±0.007‰ - 3.211±0.007‰ and 

2.11±0.024‰ - 3.228±0.004‰ for the Barents Sea. 

  

Figure 23 Stable oxygen and carbon isotope profile of A.islandica specimen from Norwegian Sea (24568-

L). The pink lines indicate a location of observed annual bands. 
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Figure 24 Stable oxygen and carbon isotope profile of A.islandica specimen from the Barents Sea (YaBa-

03L). The pink lines indicate a location of observed annual bands. 

  



40 
 

4 Discussion 

4.1 Morphology and shell growth  

Obtained values of measured morphometric parameters, as well as values of shell 

shape descriptors, agree with previous investigations (Witbaard, 1997). However, the 

maximum values are slightly higher (L=87.89; H= 78.2) than reported by Zacepin and 

Filatova, (1961) (L=85.5; H=74). They also mentioned that in Barents Sea the young 

molluscs tended to have a lower Compacity index values (0.47-0.50). This cannot be 

confirmed in the present study (see Chapter 3.1).  

Despite the fact that the values of shell shape descriptors are highly variable within 

each population, the shells from the White Sea are significantly different from the 

others. This morphological difference could be a reflection of genotypic differences 

(Holmes et al., 2003), due to the reproductive isolation of this population coupled with 

an influence of “stress” environmental conditions in this area (Begum et al., 2010). 

These distinctive features of morphology of White Sea shells have been reported in a 

previous study (reference). Thus, Zacepin and Filatova (1961) reported the existence of 

a specific form Cyprina (=Arctica) islandica maris-albae ssp., which is morphologically 

distinct from other North Atlantic subspecies. It is characterized by a slightly different 

shape ventral margin of the shell is straitened and from the umbo to the ventral 

margin occurs a radial prominence) and a thinner, lighter shell. The same tendency 

was founded in our investigations. Thus, according to our data, the shells from the 

White Sea have the lowest values for the mass to volume relation descriptor. 

The mass to volume relation is the only descriptor that distinguishes the Barents Sea 

from the Norwegian population. The average values of this parameter (0.29±0.05) are 

significantly higher for the specimens from the Barents Sea. The simplest explanation 

of this difference is related to differences in the specific growth rates. Taking into 

account that the Barents Sea shells of comparable size are ontogenetically older than 

the Norwegian Sea specimens, i.e. having a larger number of growth increments, it is 

possible that the thickness of a shell, as well as the shell mass, is bigger for those 

specimens. In the present study, the shell thickness was not measured, that is why we 

could not prove this statement. 
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As mentioned before, the population specific growth rates from Barents Sea and 

Norway are different. Based on increments measurements (see Chapter 3.2) we could 

prove that the shell from the Norwegian coast grow faster as it can be seen from our 

model (Fig.15). Despite the genetic variability between individuals, such difference is 

likely to be a result of dissimilarity of environmental conditions in both locations 

(Witbaard, 1997). Water temperatures are considered to be one of the main factors 

controlling shell growth in bivalves (e.g., Nichols and Thompson, 1982, Lutz et al., 

1983, Reis et al., 2012). The values of water temperature in both locations vary 

seasonally (Fig. 25). In general, water temperatures at the Norwegian coast are a few 

degrees higher, it could results in a prolongation of a growing season. This fact might 

be considered to be one possible explanation for observed differences in population 

growth rates. Thus, for instance, Nichols and Thompson (1982) reported a difference in 

a growth rate of the bivalve Macoma baltica depending on latitude distribution. They 

founded a maximum growth rate in the southern population and decreasing of this 

parameter northwards. Such feature was related to a temperature controlling growth 

season of the molluscs. 

 

Figure 25 Monthly mean water temperatures in areas close to sampling locations. The red line indicates 
monthly mean for the Norwegian coast (Tromsø; 69°68'N 18°92'E). Blue line corresponds to monthly 
mean temperatures for the Barents Sea coast (Teriberka; 69°20'N 35°10'E). Data sources: 
data.oceaninfo.info; www.seatemperature.org. 
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umbo to the ventral shell margin.  However, according to our model, the molluscs from 

both locations reach more than two thirds of their infinitive size during the first 25 

years of ontogeny. Afterwards, their growth rates decrease rapidly. Similar growth 

features for A. islandica have been observed in populations from Kattegat, German 

Bight, Iceland and Kiel Bay (Begum et al., 2010). 

4.2 Shell growth chronologies 

For the construction of site specific master chronologies we used individual SGI time 

series (Chapter 2.8), which had correlation factors higher than 0.2 (compared to the 

mean of the remaining time series). We made this restriction in order to remove those 

time series not showing the same signals. Even if all molluscs (at a specific site) were 

collected in the same area, they might be influenced by several different factors that 

do not control the growth of a whole population, but can have a big influence on 

individuals, for example, disturbance by trawling (Henderson and Richardson, 1998; 

Ramsay et al., 2000) or predators (Nakaoka, 2000).   

The inner-population growth synchrony is poor for both locations, as evidenced by low 

values of correlation (Chapter 3.3). Only 19 (from 30) individual SGI-time series from 

the Norwegian coast and 11 (from 21) from the Barents Sea were assembled into the 

site-specific master chronology. After removal of those shells the average correlation 

values increased slightly (0.42 for the Norwegian Sea and 0.28 for the Barents Sea). 

The relatively low growth synchrony of A. islandica has also been reported by Epplé et 

al. (2006) for specimens from the coastal zone inside German Bight. By comparison 

with previous investigations on A. islandica shells from offshore sites, the authors 

concluded that the reason for a poor synchrony in shell growth is a high variability in 

environmental conditions in coastal areas. Our study confirms this observation. Both 

sampling sites are located in coastal areas, which are characterized by highly dynamic 

fluctuations in water temperature, salinity, tidal dynamics and other parameters 

(Treiziev et al., 1990). For example, the salinity of surface water layer (1.5m) in the 

Yarnyshnaya Bay (the sampling sites for the Barents Sea shells) varies in a range 0-32‰ 

(IPY, 2008), while the tides in that area could reach 3 meters (http://www.aari.nw.ru). 

Combined they contribute strong ‘random components’ to the shell growth pattern. By 

considering many individual time series from one location and calculating a population 
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specific mean value for shell growth, the external influences may be reduced and 

single major signals might become visible. 

4.3 Correlation of master chronologies and environmental parameters 

Using a Spearman`s rank correlation we compared the growth chronologies from the 

Barents Sea and the Norwegian coast. We could not detect a statistically significant 

correlation between these two chronologies, even when considering possible time lags 

(Chapter 2.9). Taking into account that shell growth is controlled by environmental 

factors, we suggest that the reason for the observed shell growth dissimilarity might a 

difference in prevailed local environmental conditions at the two sampling sites.   

In order to identify the factors controlling the growth we compared our two SGI 

master chronologies to the several (standardized) environmental parameters (air and 

water temperature) and climate indices (NAO, AO) (Chapter 3.4). Results will be 

discussed in the following. 

Seawater temperature 

Temperature has a great influence on the metabolism of bivalves, as poikiloterms 

(Newell, 1966). Also, water temperature is one of the main factors determining shell 

growth (Reis et al., 2012). In addition, water temperature influences primary 

production within the ambient water (Skogen et al., 2007), and thus indirectly controls 

the food supply for the bivalves. In the present study we detected a statistically 

significant correlation (rho= 0.301; p=0.012) between seawater temperature and the 

Norwegian Sea (NS) SGI- master chronology, indicating an influence of this factor on 

shell growth.  

We could not detect a statistically significant correlation between Barents Sea (BS) SGI 

master chronology and water temperature from the Kola Section. Taking into account 

that there is no evidence that this time series is not representative for our location, the 

lack of correlation may be caused by the specific dynamics of local environmental 

conditions at the sampling site, which also resulted in a poor synchrony in chronology 

(Chapter 4.2). 
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Air temperature 

Air temperature can have an effect on the shell growth of bivalves. Schöne et al. (2005) 

reported on a significant positive correlation between shell growth of freshwater pearl 

mussels and air temperatures in Scandinavia. 

In this study, shell growth of A. islandica specimens from the Barents Sea coast 

correlates significantly with air temperatures at Tromsø for the period 1921-1993 

(rho=0.281; p=0.018) with a maximum (rho=0.460; p=0.0048) on the time interval 

1940–1975. We could not detect a correlation between BS-SGI master chronology and 

air temperatures from Murmansk for the whole overlapping interval (1919-1993). 

However, for the 1940–1975 period the correlation is highly significant (rho=0.569; 

p=0.0003). The lack of the correlation on the prior period might partially be explained 

by the SGI-chronology itself. The number of increments, which were included in 

chronology for the covering the period from 1898 to 1932 varies from 2 to 9 (Fig. 18). 

This may cause a more biased signal for the beginning of the master chronology. 

Nevertheless, it does not explain the lack of significant correlation for the period after 

1970. One possible explanation would be that due to some unknown events during the 

period around 1940–1970 might have increased the shell growth response to 

variations in air temperature. From the early 1940s to the early 1970s, when the NAO 

index exhibited downward trend, European winters were characterized by lower than 

normal temperatures (Hurrell, 1995). The same trend in temperature has been 

reported for the remaining seasons, but to a smaller extent (Williams and von Loon, 

1976a; Williams and von Loon, 1976b). Such temperature anomaly during this period 

might have great influence on a growth of molluscs, but we could not conclude that is 

a reason of correlation only on given time interval. For answering this question, further 

research is needed. 

While the growth of shells from the Barents Sea responds to air temperature 

fluctuations, we could not detect a significant correlation between this parameter and 

the NS- master chronology.  
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North Atlantic Oscillation and Arctic Oscillation 

In previous studies, highly significant positive linear correlations of shell growth in A. 

islandica and NAO have been reported for the specimens from the North Sea and 

Norwegian Sea (Schöne et al., 2003; Schöne et al., 2005).  For the Barents Sea area a 

strong linkage between shell growth in Clinocardium ciliatum and Serripes 

groenlandicus with NAO has been found (Carrol et al., 2009; Carrol et al., 2011).  

In the present study a relatively weak positive correlation (rho=0.255; p=0.035) 

between the NS-SGI master chronology and the winter NAO index has been found for 

the overlapping period 1935-2005, with maximum at interval 1960-1985 (rho= 0.79; 

p<0.0001). Taking into account that the AO and NAO are usually closely linked in the 

artic realm (climatedataguide.ucar.edu), it is not surprising that we could detect a 

significant positive correlation between the NS-SGI master chronology and the AO 

index at this particular interval, while the correlation for the whole overlapping (1935-

2005) period was not significant. 

The growth of the shells from the Barents Sea did not correlate with the NAO and AO 

indexes on a whole overlapping period (1989-2010), but we found significant positive 

correlation on interval 1940-1970 (with NAO: rho= 0.414, p=0.012; AO: rho= 0.519; 

p=0.001).  

Despite the fact that we found a highly significant positive correlation between our 

chronologies and climatic parameters on some intervals, the correlation for the whole 

overlapping periods is not significant or relatively poor. One possible explanation for 

both locations could be the highly dynamical shallow water environment the molluscs 

have been found in. In general, living close to the coast bivalves might experience a 

dynamic fluctuation of environmental parameters (Chapter 4.2). Besides the poor 

growth synchrony within the population, it leads to difficulties in the detection of 

‘superior’ climatic events (such as NAO or AO) inside the shell growth record. 

4.4 Stable isotopes 

The cyclic periodicity in both the δ18Oshell and δ13Cshell profiles derived from the shell 

carbonate, indicate seasonal changes in the ambient water conditions (in terms of 

primary production, water temperature and/or salinity). This confirms the results of 
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previous studies on A. islandica (Witbaard et.al., 1994; Schöne B.R. et al., 2005b; 

Schöne B.R. et al., 2005c). 

The δ18Oshell ratio within the shell carbonate is controlled by the δ18Owater composition 

of the ambient water and the water temperature during the period of shell formation. 

Due to missing data on the variation of δ18Owater at both sampling sites, we could not 

evaluate the role of this parameter within the δ18Oshell signal in shells.  

In the present study we found distinct seasonal fluctuations in the δ18Oshell aragonite 

with most positive values coinciding with the annual winter lines (Fig.23,24). This line 

forms during winter time (December-February), when the growth slows down or stops, 

due to food availability (Schöne B.R. et al., 2005d). The slight shifts of the peaks are 

most probably due to the applied milling procedure.  

The same patterns of seasonal changes in δ18Oshell were found in all six analysed shell 

increments with the exception of the first measured year in shell YaBa-03L (Barents 

Sea, Fig.25). Here, the winter line is located in the middle between the minimum and 

maximum values of δ18O. It might be assumed that this line was mistakenly classified 

as an annual winter line in the first place. Thus, the following line, which has been not 

considered being an annual line, and coinciding positive peak values of δ18O in the first 

place, must be considered being the ‘real’ winter growth line (Fig. 26). 
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Figure 26 Stable oxygen and carbon isotope profiles of A. islandica specimens from the Barents Sea 

(YaBa-03L). The red line indicates the location of visually observed annual (winter growth) bands. The 

grey line corresponds to a growth line, which initially has not been considered an annual line.  

The interpretation of seasonal variation in δ13C is more difficult than for δ18O. Shell 

δ13C is determined by metabolic carbon and ambient water DIS (Dissolved Inorganic 

Carbon) (McConnaughey and Gillikin, 2008, Beirne et al., 2012).  

In the present study we found that the maximum values of δ13C did not coincide with 

those of δ18O. The most positive δ13C values occur just before the minimum values of 

δ18O, which corresponds to maximum water temperatures during the growing season. 

However, the lowest δ13C values matched the annual growth lines (Fig. 23, 24). This 

observation might most probably be connected and explained by the abundance of 

phytoplankton in the ambient waters (Witbaard et al., 1994). Taking into account that 

A. islandica deposits its shell carbonate in equilibrium with DIC of ambient water 

(Witbaard et al., 1994), the relative enrichment of seawater in 13C (due to a 

phytoplankton bloom) may be seen as an explanation for increased δ13C values in the 

shells. After the collapse of such blooms the DIC composition of the water reverts to 

normal values and causes a decrease of δ13C in the shell aragonite (Witbaaed et al., 
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1994) In the study area the phytoplankton blooms starts at March (Naustvoll, 2013), 

when the lowest values of water temperature usually observed (Fig.25).    

Reconstruction of seawater temperatures 

Numerous studies showed that δ18O ratios in shells of A. islandica could be used for 

the reconstruction of the water temperatures (Weidmann et al., 1994; Epplé, 2004; 

Schöne B.R. et al.,2004b;). However, the shells cannot provide records of the whole 

annual temperature amplitude, as they record environmental conditions only during 

their growing season (February- December). 

Due to the lack of the actual data on the δ18Owater values, as well as on salinity data at 

both sampling sites, we could not reconstruct water temperatures,  that were not also 

influenced by annual salinity changes. Using the equation by Grossman and Ku (1986) 

in modification by Dettman et al., (1999) and average values for δ18Owater  based on 

LeGrande and Schmidt (2006), we calculated approximate values of the water 

temperature. 

For the specimens from the Norwegian Sea the calculated water temperatures vary 

between 6.03oC and 14.97oC (Fig. 26). The obtained range of 8.94oC corresponds well 

to the existing data for water temperatures at Tromsø, while the maximum values of 

14.97oC exceeds the upper limit of temperature by 1.2°C. One of the reasons for this 

discrepancy between estimated and observed data is most likely our assumption of the 

δ18O ratio of seawater. Taking into account that the δ18O of seawater depends on 

salinity and the fact that our sampling sites are located close to the coast and in realm 

Norwegian Coastal Current, our signals will be (to an unknown degree) most likely be 

influenced by freshwater inflow (Loeng, 1991). 
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Figure 26 Shell oxygen isotope derived water temperature reconstructions from the specimen 24568- L 

(Norwegian Sea). The green lines indicate limits of monthly average water temperatures observed in 

Tromsø (69°68'N 18°92'E). Red lines correspond to reported extremes of temperatures. (Datasource: 

www.seatemperature.org.) 

The calculated range in water temperature variation for the Barents Sea coast 

coincides with the seasonal temperature range observed in that area. Moreover, the 

maximum value of a calculated temperature does not exceed the upper limit in the 

observational data, although it is slightly higher than the average values for the 

warmest month (August). We cannot compare the lower limits of temperature, 

because the coldest periods are not recorded due to the winter growth cessation. 
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Figure 26. Shell oxygen isotope derived temperature from the specimen YaBa-03L (Barents Sea). The 

green lines indicate limits of monthly average water temperatures observed in Teriberka (69°20'N 

35°10'E). Red lines correspond to reported extremes of temperatures. (Datasource: 

data.oceaninfo.info). 

Based on the results for the both specimens, we conclude that A.islandica from both 

study areas could be used for the reconstruction of absolute water temperature 

values. For more precise results in potential future studies, more accurate data about 

the δ18O ratio of seawater is needed. 
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5 Conclusions 
Present investigation demonstrates distinct difference in growth of Arctica islandica 

form the Barents Sea and the Norwegian coast. Due to the difference in thermal 

regime, molluscs from the Norwegian Sea grew faster and attained a larger size at the 

same age, while the morphological characteristics remained stable.  

Highly variable environmental conditions of coastal zone resulted in a poor synchrony 

of growth between the specimens in both populations. By joint consideration of many 

individual time series in master-chronologies, it was possible to determine growth 

response of population on variability of environmental and climatic parameters. Thus, 

the growth of molluscs from the Norwegian coast correlated with seawater 

temperature in that area and showed similarity in a long-term dynamics with NAO-

index time course. Growth of animals from the Barents Sea responded to variation in 

air temperature, especially during colder periods.  

Stable isotope analysis indicated cyclic patterns in carbonate deposition, which 

reflected seasonal changes in environmental conditions. A comparison of 

reconstructed water temperature range with existing data on seasonal variability of 

this parameter demonstrated a suitability of A. islandica shells as a proxy for the water 

temperature reconstruction in the study area. However, in order to obtain precise 

results more accurate data on δ18O ratio of seawater are needed. 
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Appendix 
Please, find Table 4-5 attached on the disk.  

Table 1 Morphometric parameters of Barents Sea shells 

Table 2 Morphometric parameters of Norwegian Sea shells 

Table 3 Morphometric parameters of White Sea shells 

Table 4 Increment measurements, Barents Sea 

Table 5 Increment measurements, Norwegian Sea 
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Table 1 Morphometric parameters of Barents Sea shells 

Code Date Valve 
(R or L) 

Width 
1 Valve 

Length 
(mm) 

Height 
(mm) 

Mass 
1 Valve 
(mg) 

Growth 
rings 
Valve 

TT-YaBa-A01-L Aug.2011 L 21,04 79,05 73,18 33300 94 

TT-YaBa-A02-L Aug.2011 L 21,41 75 66,54 30000 116 

TT-YaBa A03-L Aug.2011 L 22,15 82,81 73,09 30300 88 

TT-YaBa A04-L Aug.2011 L 22,45 82,1 73,14 35700 117 

TT-YaBa A05-L Aug.2011 L 19,16 74,66 68,94 51800 90 

TT-YaBa A06-L Aug.2011 L 21,72 81,92 75,7 37700 92 

TT-YaBa A07-L Aug.2011 L 22,31 79,29 75,48 40800 95 

TT-YaBa-A08-L Aug.2011 L 20,24 77,33 72,79 35100 90 

TT-YaBa-A09-L Aug.2011 L 21,74 87,89 83,08 41200 91 

TT-YaBa-A10-L Aug.2011 L 18,28 78,76 72,07 26200 64 

TT-YaBa-A11-L Aug.2011 L 21,78 87,08 77,74 44200 117 

TT-YaBa-A12-L Aug.2011 L 18,75 77,53 70,42 31200 89 

TT-YaBa-A13-L Aug.2011 L 19,87 73,62 68,3 26600 90 

TT-YaBa-A14-L Aug.2011 L 22,17 81,61 76,88 39300 82 

TT-YaBa-A15-L Aug.2011 L 22,54 83,68 78,2 42500 98 

TT-YaBa-A16-L Aug.2011 L 18,12 67,79 65,42 21600 68 

TT-YaBa-A17-L Aug.2011 L 19,7 76,24 72,29 31300 74 

TT-YaBa-A18-L Aug.2011 L 21,89 85,49 75,48 43500 118 

TT-YaBa-A19-L Aug.2011 L 20,54 74,32 69,19 28300 84 

TT-YaBa-A20-L Aug.2011 L 20,44 73,62 68,32 28000 104 

TT-YaBa-A21-L Aug.2011 L 13,94 51,84 47,62 9600 21 

TT-YaBa-A22-L Aug.2011 L 13,38 50,47 47,09 8400 18 

TT-YaBa-A23-L Aug.2011 L 16,67 67,35 64,28 20100 85 

TT-YaBa-A24-L Aug.2011 L 12,02 42,7 38,3 5500 9 

TT-YaBa-A25-L Aug.2011 L 11,35 42,71 37,76 5200 8 

TT-YaBa-A26-L Aug.2011 L 12,89 51,05 46,86 7900 10 

TT-YaBa-A27-L Aug.2011 L 10,64 41,65 37,37 5100 8 

TT-YaBa-A28-L Aug.2011 L 10,24 37,69 33,52 3700 10 

TT-YaBa-A29-L Aug.2011 L 10,58 40,33 36,18 4600 7 

TT-YaBa-A30-L Aug.2011 L 10,13 40,55 37,13 4300 9 

TT-YaBa-A31-L Aug.2011 L 6,67 26,13 22,69 1200 6 

TT-YaBa-A32-L Aug.2011 L 5,06 20,86 18,01 600 6 
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Table 2 Morphometric parameters of Norwegian Sea shells 

Code Date Valve 
(R or L) 

Width 
1 valve 
(mm) 

Length 
(mm) 

Height 
(mm) 

Mass 
1 Valve 
(mg) 

Growth 
rings 
Valve 

N2 2006 R 25,69 96,25 86,73 57700 71 

N3 2006 R 19,02 92,25 82,03 34500 72 

N4 2006 L 22,8 90,31 76,92 43300 82 

N11 2006 R 25,63 90,74 83,35 52000 71 

N17 2006 L 22,5 86,82 76,16 40800 71 

N18 2006 L 20,38 81,65 73,31 31600 71 

N19 2006 R 23,8 83,6 77,94 45200 74 

N20 2006 L 22,72 86,82 78,48 38300 68 

24564 2006 L 23,29 86,08 77,61 42300 68 

24565 2006 R 24,65 84,63 79,34 43200 68 

24567 2006 R 24,95 96,86 85,39 53400 71 

24568 2006 L 23,15 86,66 82,04 45500 75 

245611 2006 R 23,61 83,3 77,04 42300 67 

245612 2006 L 22,92 90,68 79,73 39400 69 

245615 2006 L 24,07 91,59 80,49 49100 72 

245616 2006 L 22,86 85,53 78,4 38200 71 

245620 2006 R 23,09 82,01 72,02 35300 76 

245624 2006 R 24,79 83,46 71,69 35900 71 

245626 2006 R 24,63 95,11 86,27 48500 67 

245632 2006 L 22,55 90,95 84,43 44100 69 

245634 2006 L 23,13 84,11 79,52 32200 68 

245636 2006 R 22,23 86,11 77,06 36400 64 

245637 2006 R 22,95 85,06 80,8 42600 73 

245638 2006 L 23,18 86,54 81,52 43100 69 

245639 2006 R 22,76 88,44 85,07 38200 74 

245640 2006 L 25,045 91,24 83,29 44800 73 

245643 2006 R 22,62 85,66 76,5 34700 72 

245644 2006 R 23,9 90,26 81,77 42500 71 

245647 2006 L 23,64 91,04 83,72 45000 67 

245648 2006 L 20,51 73,12 67,58 28600 64 
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Table 3 Morphometric parameters of White Sea shells 

Code Date Valve 
(R or L) 

Width 
1 valve 
(mm) 

Length 
(mm) 

Height 
(mm) 

Mass 
1 Valve 
(mg) 

TT-KaBa-A01-L 2006 L 10,81 38,52 36,66 2600 

TT-KaBa-A02-L 2006 L 12,94 45,99 45,65 4500 

TT-KaBa-A03-L 2006 L 12,25 40,99 39,8 3300 

TT-KaBa-A04-R 2006 R 13,31 51,18 49,8 5900 

TT-KaBa-A05-L 2006 L 12,17 41,81 38,76 3200 

TT-KaBa-A06-R 2006 R 10,66 38,38 36,3 2600 

TT-KaBa-A07-L 2007 L 11,98 40,2 39,94 3800 

TT-KaBa-A08-R 2007 R 13,75 41,96 40,64 3800 

TT-KaBa-A09-L 2007 L 11,3 39,27 37,67 2700 

TT-KaBa-A10-L 2008 L 11,62 39,14 37,3 2900 

TT-KaBa-A11-L 2008 L 10,74 40,99 38,74 3100 

TT-KaBa-A12-L 2008 L 13,92 44,41 41,96 4800 

TT-KaBa-A13-L 2008 L 11,07 39 37,73 3000 

TT-KaBa-A14-L 2008 L 11,29 41,22 39,65 3300 

TT-KaBa-A15-L 2008 L 10,98 40,12 33,3 3200 

TT-KaBa-A16-L 2008 L 12,15 44,09 41,43 3800 

TT-KaBa-A17-L 2008 L 11,19 41,16 37,8 3300 

TT-KaBa-A18-L 2008 L 10,14 37,35 35,73 3100 
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