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Coral recruitment was assessed in highly diverse and economically important Spermonde Archipelago, a
reef system subjected to land-based sources of siltation/pollution and destructive fishing, over a period of
2 years. Recruitment on settlement tiles reached up to 705 spat m�2 yr�1 and was strongest in the dry
season (July–October), except off-shore, where larvae settled earlier. Pocilloporidae dominated near-
shore, while a more diverse community of Acroporidae, Poritidae and others settled in the less polluted
mid-shelf and off-shore reefs. Non-coral fouling community appeared to hardly influence initial coral set-
tlement on the tiles, although, this does not necessarily infer low coral post-settlement mortality, which
may be enhanced at the near- and off-shore reefs as indicated by increased abundances of potential space
competitors on natural substrate. Blast fishing showed no local reduction in coral recruitment and live
hard coral cover increased in oligotrophic reefs, indicating potential for coral recovery, if managed
effectively.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recruitment is a key factor in the recovery of coral communities
after disturbance, e.g. mortalities following mass bleaching events
(Tamelander, 2002), storms (Connell et al., 1997; Coles and Brown,
2007) or tsunamis (Sawall et al., 2010). The assessment of coral
recruitment patterns is therefore of high importance for coral reef
management (Connell et al., 1997; Glassom et al., 2004; Fox, 2004).
Recruitment patterns are known to be influenced by a wide range
of factors, inter alia fecundity and spawning of the adults, fertiliza-
tion success of the gametes, dispersal and survival of the larvae,
settlement, metamorphosis and post-settlement survival, which
are further influenced by a variety of extrinsic factors.

Gamete development and spawning are initiated by certain
environmental conditions, hence spawning is often synchronized,
triggered by the calm season (van Woesik, 2010), increasing tem-
perature (Shlesinger and Loya, 1985; Gleason, 1996; Guest et al.,
2005) and/or by a particular moon phase (Richmond and Hunter,
1990). One of the advantages of spawning during the calm season,
which usually coincides with low precipitation, low river run-off
and low nutrient supply to coastal waters, may be in the lower
abundance of space competitors that are competitively superior
in nutrient-enriched waters (algae, fast-growing ascidians, barna-
cles and other opportunistic fouling organisms; Birkeland, 1977;
Glassom et al., 2004). Larval dispersal depends on the competency
period of the larvae and the prevailing small (within reef) and
large-scale currents (between reefs) (Sammarco and Andrews,
1989; Black et al., 1990) and larvae settlement and metamorphosis
depend on the availability and suitability of substrate, which is
supportive if heterogeneous, non-moving and biologically precon-
ditioned (Fox et al., 2003; Webster et al., 2004; Petersen et al.,
2005; Sawall et al., 2010). After metamorphosis and initial growth,
survival may further dependent on water quality, light environ-
ment and abundance of potential space competitors and predators
(Birkeland, 1977; Abelson et al., 2005; Ferse, 2008). Hence, initial
larval supply does not necessarily need to result in high recruit-
ment success, and coral recruitment patterns can vary substan-
tially at various spatial scales, leading to considerable fine-
(within reef) and mesoscale (near- vs. off-shore) patchiness.

Anthropogenic impacts may have significant negative effects on
natural recruitment patterns in corals (Tomascik, 1991; Abelson
et al., 2005). Eutrophication, pollution and sedimentation were
found to hamper gamete production, alter the timing of spawning
and decrease the fertilization success (Gilmour, 1999; Loya et al.,
2004). They were found to slow the development and metamor-
phosis of the larvae and decrease the survival of the coral recruits
(Gilmour, 1999; Hughes and Connell, 1999; Abelson et al., 2005).
Eutrophication is also known to foster the growth of potential
space competitors of coral recruits (Tomascik, 1991; Dunstan and
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Fig. 1. Map of Spermonde Archipelago with the high (grey) and low (black) blast
fishing impacted study sites: near-shore Lae Lae (LAE), near mid-shelf Samalona
South (SAM-S) and Samalona North (SAM-N), far mid-shelf Bonebatang (BBA) and
Bonetambung (BTA), off-shore Lanyukan West (LNK-W) and Lanyukan North (LNK-
N). Parameters of water quality in tables: concentration [lg l�1] of chlorophyll a
(upper values) in February (left) and June (right), particulate organic carbon (lower
values) in February (left) and June (right). Standard deviation for chlorophyll a
between 0.04 and 0.33, and for particulate organic carbon between 2 and 20 (Sawall
et al., 2012).
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Johnson, 1998; Abelson et al., 2005), toxic cyanobacteria or macro-
algae inhibiting coral larvae settlement (Kuffner and Paul, 2004).
Sedimentation is known to hamper larvae settlement and to
smother coral recruits (Hodgson, 1990). Another common human
impact on coral reefs is overfishing and deleterious fishing prac-
tices such as blast and cyanide fishing. Overfishing could lead to
a significant decimation of grazers, which control e.g. algae growth,
hence controlling potential space competitor for coral recruits
(Hughes and Connell, 1999). Furthermore, reef destruction through
blast fishing was shown to increase the proportion and spatial ex-
tent of coral rubble, which because of its low resistance to physical
dislodgement by waves and currents may provide a killing field for
coral spat (Harrison and Wallace, 1990; Fox et al., 2003).

The Spermonde Archipelago in SW Sulawesi is one of the most
diverse but also one of the most endangered coral reef regions of
the world, located in the center of the Coral Triangle. The archipel-
ago harbors diverse coral reefs but also supports an important part
of the reef fishery in Indonesia for a growing coastal population
(Pet-Soede et al., 1999). As a result, the archipelago is subjected
to the combined impacts of destructive fishing (blast and cyanide
fishing), overfishing and land run-off (eutrophication, pollution
and sedimentation), which have collectively taken their toll on reef
structure and function (Edinger et al., 1998; Pet-Soede et al., 1999).

Although Spermonde is one of the best studied reef systems in
Indonesia, with detailed studies on reef distribution and biodiver-
sity (e.g., Moll, 1983; Renema and Troelstra, 2001; Cleary et al.,
2005), population dynamics (e.g., Knittweis et al., 2009) and coral
physiology (Sawall et al., 2011), so far nothing is known about coral
recruitment, in spite of reef monitoring and management activities
over many years (e.g., COREMAP).

The aim of this study was to assess early recruitment patterns
as a function of seasonality, abundance of potential competitors,
and occurrence of anthropogenic stressors (eutrophication and
localized blast fishing). This is expected to elucidate the dynamics,
resilience and recovery potential of corals in one of the most di-
verse but also one of the most exploited coral reef regions
worldwide.
2. Material and methods

2.1. Study sites

The study was conducted in the Spermonde Archipelago, SW-
Sulawesi, Indonesia, featuring�100 coral-fringed small islands scat-
tered across a 40 km wide carbonate shelf (Fig. 1). Most reefs are
well developed in the south, west and north faces of the island, with
conspicuous reef gaps on the sandy steeper areas of the eastern sides
(Moll, 1983). The shelf depth ranges from 10 m (near-shore) to 40 m
(off-shore). The predominant current is consistent with the through-
flow in the Makassar Strait directed from N to S year around (Storm,
1989). The near-shore reefs which are subjected to the run-off of riv-
ers north and south of the city of Makassar carrying untreated waste
water and industrial pollution from the 1.5 million inhabitants along
with agricultural run-off feature only low coral cover and diversity
(Edinger et al., 1998; Renema and Troelstra, 2001). The near mid-
shelf reefs are still affected by the land run-off during the wet season
(November to February), but also by local waste water discharge in
some of the populated islands (Edinger et al., 1998; Renema and
Troelstra, 2001). The remote mid-shelf and off-shore reefs near the
shelf edge are mainly exposed to oligotrophic waters, with oceanic
conditions and seasonal upwelling from Makassar Strait at the mar-
gins (Ilahude, 1978).

Seasonality is characterized by the wet NW-monsoon from
November to February (wet, in the following), a transition period
from wet to dry season between March and June (trans) and the
dry SE-monsoon from July to October (dry). Rainfall peaks in Janu-
ary with about 730 mm month�1 and is lowest in August with
15 mm month�1 (average data for 1961–1990, World Meteorolog-
ical Organization, Geneva, Switzerland). Destructive fishing is com-
mon in Spermonde. Blast fishing leaves scars of coral rubble
craters, which are consequently overgrown by macroalgae in some
areas (Pet-Soede and Erdmann, 1998, pers. observ.). Reefs were
classified as highly impacted with regard to blast fishing, if craters
of coral rubble with a size of 5–15 m in diameter were evident and
if those contributed with a minimum of 30% to the benthic cover.
Seven study sites were chosen along a cross-shelf transect and
classified into four different shelf zones distinguished by distance
to shore and associated degree of eutrophication based on chloro-
phyll a and particulate organic carbon concentrations in the water
(Fig. 1): (1) Near-shore (Lae Lae – LAE), (2) near mid-shelf (Sama-
lona South – SAM-S, Samalona North – SAM-N) (3) far mid-shelf
(Bonebatang – BBA, Bonetambung – BTA) and (4) off-shore (Lanyu-
kan West – LNK-W, Lanyukan North – LNK-N). Each zone included
a low and highly impacted reef by blast fishing, except for near-
shore with a low impacted reef only (Fig. 1).

2.2. Characterization of the benthic community

Permanent line intercept transects (English et al., 1997) were
conducted in order to assess the benthic community structure in
November 2007, 2008 and 2009. A measuring tape was laid out
over 60 m along the reef edge in 3 m depth and the underlying sub-
strate was recorded to the nearest cm, always by the same investi-
gator (YS). The following substrate categories were distinguished:
live hard coral, dead coral (>15 cm), coral rubble (<15 cm), sand,
macroalgae and others. The latter included soft corals, sponges,
anemones, ascidians, hydrozoans and bivalves. The percentage
contribution of each category was calculated.

2.3. Coral recruitment

Coral recruitment was monitored over 2 years from November
2007 until October 2009 on settlement tiles deployed at all 7 reef
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sites arranged along a cross-shelf gradient, subjected to moderate
and heavy blast fishing (see above). For the near-shore site LAE,
no data are available for the first year. Settlement tiles, deployed
in 3–4 m depth along the reef edge, were revisited every 4 months
in order to detect changes between wet, transition and dry seasons.
Terracotta tiles (Harriott and Fisk, 1987; Maida et al., 1995; Dun-
stan and Johnson, 1998) (15 � 15 cm) were connected pairwise
by a stainless steel bolt, with the unglazed faces exposed and the
glazed faces touching each other (n = 16 tile pairs for each site).
The bolt holding the tiles was fixed at an angle of 45� on dead coral
boulders. This arrangement prevented the accumulation of sedi-
ments on the tiles (English et al., 1997) and it allowed the distinc-
tion of upper (light-exposed) and lower (shaded) faces for
organism settlement (see Electronic Supplementary Material,
ESM Fig. S1). The tiles were replaced every 4 months (end of Feb-
ruary, June, October), except for BBA during the first season (I),
where, for logistic reasons, the tiles had to be replaced 1 month la-
ter (end of March). After collection, the tiles were dried in the sun
and examined under a dissection microscope.

Coral spat were identified to the family level after Babcock et al.
(2003), distinguishing between Pocilloporidae, Acroporidae, Poriti-
dae and ‘‘unidentified’’ spat. The fouling community was described
by visually estimating the cover of filamentous algae, crustose cor-
alline red algae, bryozoans, sponges and ascidians to the closest 5%,
as well as by the abundance (No. tile�1) of barnacles, spirorbid
worms and bivalves. Identification and quantification was done
by the same investigator (YS) throughout the study to avoid bias
between investigators.

2.4. Data analyses

Multivariate analyses were performed in order to analyze spat
and fouling community patterns as a function of blast fishing im-
pact, tile exposure (upper and lower face), seasonality and cross-
shelf variation (shelf zones), using the software Primer v6 and
the add-on software PERMANOVA+ (Clarke and Gorley, 2006;
Anderson et al., 2008).

First, a Bray-Curtis similarity matrix was calculated with the
coral spat and the fouling community data each, considering one
tile pair as one sample. To include zero-value data (i.e., spat-free
tiles) in the analyses, a ‘‘dummy’’ variable was created for the spat
data (Clarke et al., 2006), i.e. an additional spat family column with
the value ‘‘1’’ for all rows. The resulting zero-adjusted Bray-Curtis
similarity matrix allows including absence data into the analysis
with minimal distortion of the overall recruitment patterns (abun-
dance and composition of coral spat over time and space) de-
scribed by the distances between the samples (Clarke et al.,
2006). The fouling community data were standardized prior to
the analyses to eliminate the effect of different units (% and indi-
vidual counts) according to Clarke and Gorley (2006). One-way
analyses of similarity (ANOSIM) were conducted to assess possible
differences between coral spat communities and between fouling
communities considering the factors blast fishing impact, season-
ality, year and shelf zone. To assess differences with respect to tile
exposure, the Bray-Curtis similarity matrix was calculated with
each single tile as one sample (instead of tile pair), following than
the same procedure as described above. Subsequent analyses of
similarity percentage (SIMPER) were conducted in order to deter-
mine, which of the coral spat or fouling taxa contributed most to
the dissimilarities between seasons or shelf zones, respectively.

To assess potential competition/facilitation effects of the fouling
community on the coral spat community, a distance-based redun-
dancy analysis (dbRDA) was performed (Anderson et al., 2008).
This routine is based on multivariate multiple regression per-
formed between the response variable (here: coral spat commu-
nity structure with its resemblance matrix calculated after Bray
Curtis) and the predictor variables (here: fouling organisms). The
results are presented in an ordination space (biplot), where the
synthetic axes represent the direction of maximum explained var-
iation by the predictor variables and the lines (vectors) the direc-
tion and relative importance (length of the vector) of a given
variable.
3. Results

3.1. Benthic community structure

Live hard coral cover, initially ranging between 10% (far mid-
shelf BTA) and 34% (off-shore LNK-W and LNK-N), increased be-
tween Nov 2007 and Nov 2009 to values between 18% (near-shore
LAE) and 53% (near mid-shelf SAM-S) and decreased off-shore to a
slightly lower value at LNK-W (32%) to almost a 10%-reduction at
LNK-N (25%) (Fig. 2). The most dramatic increases with �20% oc-
curred at near mid-shelf SAM-S and at both far mid-shelf reefs
(BBA and BTA) (Fig. 2). Coral rubble in the blast fishing affected
reefs (SAM-N, BTA, LNK-N) made up 38–56% of the available sub-
strate in November 2007, but only 4–27% in the other reefs
(Fig. 2). At off-shore LNK-N about half of the coral rubble was cov-
ered by macroalgae (e.g. Halimeda, Laurencia). Rubble cover de-
creased over time at the blast fishing affected reefs, particularly
at far mid-shelf BTA, where values dropped from 56% to 42% con-
comitantly with the increase of live hard coral cover. Dead coral
cover varied initially around 20% at all sites where monitoring
started in November 2007, but was as high as 39% at near-shore
LAE where monitoring started in November 2008 (Fig. 2). A de-
crease in dead coral cover over the experimental time span was
strongest at LAE (39–25%), concomitantly with the increase in var-
ious filter feeding organisms including clams, ascidians, sponges
and hydrozoans from 28% to 34% (cf. ‘‘Others’’), and an increase
in sand cover from 10% to 17% (Fig. 2). The strongest increase in
dead coral cover was evident at the blast-fishing impacted off-
shore reef LNK-N from 14% to 26%, while live hard coral cover de-
creased (Fig. 2). The abundance of organisms within the category
‘‘Others’’ remained below 10% at all sites, except LAE (Fig. 2).

3.2. Coral spat abundances and its relation to blast fishing impact

A total of 1058 tiles was investigated (some were lost), with a
total of 2315 coral spat. The variation in spat densities was high,
ranging from 0 to 38 spat tile�1 (each tile equivalent to 225 cm2).
360 of the upper tiles and 187 of the lower tiles did not harbor
any coral spat. On the lower tiles, larvae preferably but not exclu-
sively settled close to the tile edge and on the upper tiles, directly
on the tile edge. The spat size varied between 0.5 and 4 mm in
diameter. Annual larvae spat fall was highest in LAE
(705 spat m�2 yr�1), followed by BBA (686 ± 57), BTA (597 ± 157),
SAM-N (545 ± 19), LNK-W (469 ± 81), LNK-N (403 ± 223) and
SAM-S (286 ± 70). The coral spat community was dominated by
Pocilloporidae (63% of all spat), followed by Acroporidae (14.6%),
Poritidae (7.8%) and others (14.6%) (Fig. 3). No general relationship
between blast fishing on either coral spat community or fouling
community could be detected (Table 1).

3.3. Coral spat and fouling community on upper versus lower tiles

There were pronounced differences in spat densities and fouling
community composition between the upper and lower tile faces
(Table 1). Spat densities were strongly elevated on the lower face,
where the fouling community was most diverse and structurally
complex. On the upper face, spat densities were low, except at
near-shore LAE and the fouling community was comparatively



Fig. 2. Benthic composition in% cover. �Observed macroalgae growth occurred on
coral rubble.
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homogenous consisting mainly of filamentous and crustose coral-
line red algae (Figs. 3 and 4).

3.4. Seasonal variation in coral spat and fouling community structure

Seasonal differences were pronounced in spat abundances, in
particular between the wet season (I + IV) and the other two sea-
sons (trans: II + V and dry: III + VI) (Table 1). Spat densities were
lowest on tiles from the wet season (all sites combined:
45.5 ± 50.9 spat m�2 [mean ± SD]), intermediate in the transition
period (146.2 ± 49.5) and highest in the dry season, between July
and October (321.8 ± 160.0). The difference between the seasons
was mostly explained by an increase in Pocilloporidae from the
wet to the dry season (SIMPER, contribution to dissimilarity 23–
38%), followed by Acroporidae (9–12%). Seasonality was less pro-
nounced in the fouling community, with smaller but significant
differences, again between the wet season and the other two sea-
sons (Table 1). This was mostly due to variability in filamentous
(SIMPER, contribution to dissimilarity 12–13%) and crustose algae
abundance (10–11%).

Although inter-annual differences in spat fall density and foul-
ing community structure could not be statistically detected overall
(Table 1), they were found locally, e.g. at SAM-S, where strongly
elevated Poritidae densities occurred in the second year (seasons
IV–VI) compared to the first year (seasons I–III), while the opposite
was found in SAM-N (Fig. 3). At BBA, higher Acroporidae and lower
Pocilloporidae densities occurred in the first year compared to the
second year, while the reverse pattern was evident in BTA (Fig. 3).

3.5. Spatial differences in coral spat and fouling community structure

Cross-shelf differences in the spat community were small but
significant between near-shore and near mid-shelf and between
near-shore and off-shore (Table 1). This was mostly due to a shift
from Pocilloporidae near-shore to Acroporidae spat mid-shelf and
off-shore, but also due to the paucity of Poritidae near-shore com-
pared to the other shelf zones (Fig. 3). In contrast to the spat, the
fouling community revealed much stronger spatial differences,
particularly between the near and off-shore reefs (Table 1). These
differences were mostly explained by a shift from filamentous al-
gae to crustose coralline red algae and a decrease in spirorbid
worms from near- to off-shore (SIMPER, contribution to dissimilar-
ity 15%, 12% and 12% respectively, Fig. 4). Barnacles were more
abundant close to shore, while bryozoans and bivalves were found
mostly further away from shore (Fig. 4).

Differences in the seasonality of recruitment patterns were ob-
served between the coral families along the cross-shelf transect
(Fig. 3). While Pocilloporidae revealed the highest spat densities
during the dry season in all shelf zones, Poritidae (and to a lesser
degree Acroporitidae) revealed highest spat densities already dur-
ing the transition period in off-shore LNK-W/LNK-N (Fig. 3).

3.6. Relationship between coral spat and fouling community

Distance-based redundancy analysis revealed only weak links
between the coral spat community structure and the fouling com-
munity (Fig. 5). With only 23.6% of the variation in the spat com-
munity explained by the two axes (dbRDA 1 and 2), fouling is a
weak predictor of coral recruitment pattern. For dbRDA 1, barna-
cles and bryozoans contributed most to the variation, which were
both higher during the wet season (vectors pointing into the direc-
tion of the filled symbols, Fig. 5), when coral spat abundances were
low. In contrast, the spatial variation in the spat community struc-
ture could hardly be explained by one of the presented axes,
although a separation of different shelf zones are represented by
the dbRDA, in particular for the near mid-shelf reefs (light green,
Fig. 5). However, barnacles and crustose coralline algae revealed
slight relationships to cross-shelf variation in the coral spat com-
munity, where barnacle abundances were higher mid-shelf (near
and far) and coralline algae higher off-shore (Fig. 5).
4. Discussion

4.1. Temporal variation – seasonality

The seasons in Spermonde Archipelago are determined by the
rate of precipitation and land run-off during the wet NW monsoon
(December–February) and the dry SE monsoon (June–September).



Fig. 3. Coral spat assemblages on settlement tiles on the upper (up) and lower (lo) face along the eutrophication gradient, grouped by seasons and blast fishing impact. No
data available (n.d.).
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Spawning events were suggested for the majority of Spermonde
corals between March and April (before the dry season), based
on findings of oocyte maturity of several broadcast spawners
(Baird et al., 2009). While the suggested spawning period explains
increased Acroporidae spat densities off-shore on tiles of the tran-
sition period, it appears to be too early to explain the peaks in spat
densities of near-shore and mid-shelf reefs on tiles of the dry sea-
son, assuming settlement of larvae within several days after
spawning (Harrison and Wallace, 1990). While it is unknown,
where exactly the study of Baird et al. (2009) was carried out in
the Spermonde Archipelago, there is one possible reason for a
cross-shelf shift in spawning. Off-shore upwelling of colder, low
oxygen and nutrient enriched deep water from the Makassar Strait
was previously described to occur in August (Ilahude, 1978), which
might hamper coral recruitment success and hence leading to an
earlier onset of reproduction in off-shore corals. However during
the period of this study, no indication for upwelling was found,
e.g. decreased SST (no obvious cross-shelf variability in SST, varia-
tion throughout the year: 26–30 �C; NASA – Giovanni online 2007–
09). Cross-shelf variability in reproduction was also observed in
the Great Barrier Reef, albeit in the opposite direction, where
near-shore corals spawned 1 month earlier than off-shore corals
possibly due to higher temperatures near-shore (�1 �C, Willis
et al., 1985). The Spermonde off-shore pattern is similar to the
recruitment pattern found in Manado, 1000 km north of Sper-
monde off North Sulawesi with a similar climate. Here, highest cor-
al recruit numbers were found on tiles collected in June and July
after 3 months of deployment (Ferse, 2008; Romatzki, 2008). In
contrast, at Komodo Island (400 km south of Spermonde), most
acroporids settled between October and April, while pocilloporids
and poritids settled all year around (Fox, 2004). Here, the monsoon
climate is also similar to Spermonde, however the oceanic condi-
tions are different, leading to stronger variation in SST and gener-
ally lower temperatures (Komodo: �23–28 �C; NASA – Giovanni
online 2007–09). This might be responsible for differences in
spawning seasonality and consequently explain the differences in
recruitment seasonality.

The inter-annual variability in recruitment of this study is con-
sistent with previous findings at several geographic regions (Great
Barrier Reef – Dunstan and Johnson, 1998; Indonesia – Fox, 2004;
Red Sea – Glassom et al., 2004; Kenya – Mangubhai et al., 2007),
which attributes recruitment failures of some corals in some years,



Table 1
Results of analyses of similarity (ANOSIM) for the coral spat and fouling community. Differences were tested between the tile exposure (up/lo), blast fishing impact (high/low),
seasons (wet/trans/dry), years (2008/2009) and land run-off impact (zones: near-shore, near mid-shelf, mid-shelf, off-shore). Global R is an indication for the dissimilarity lying
between 0 (equal) and 1 (completely different). All highly significant differences are in bold (p = 0.001).

Factor Coral spat community R p Fouling community R p

Tile exposure 0.154 0.001 0.843 0.001

Bombing impacta 0.001 0.320 0.005 0.021

Season 0.180 0.001 0.032 0.001
Groups Groups

Wet (I + IV) vs. Trans (II + V) 0.150 0.001 Wet (I + IV) vs. Trans (II + V) 0.046 0.001
Wet vs. Dry (III + VI) 0.296 0.001 Wet vs. Dry (III + VI) 0.041 0.001
Trans vs. Dry 0.092 0.001 Trans vs. Dry 0.014 0.002

Yearb 0.005 0.072 0.008 0.002

Shelf zone (cross-shelf transect) 0.032 0.013 0.093 0.001
Groups Groups

Near-shore vs. Near mid-shelf 0.063 0.016 Near-shore vs. Near mid-shelf 0.006 0.339
Near-shore vs. Far mid-shelf 0.008 0.268 Near-shore vs. Far mid-shelf 0.140 0.001
Near-shore vs. Off-shore 0.062 0.019 Near-shore vs. Off-shore 0.273 0.001
Near mid-shelf vs. Far mid-shelf 0.026 0.067 Near mid-shelf vs. Far mid-shelf 0.058 0.001
Near mid-shelf vs. Off-shore -0.013 0.859 Near mid-shelf vs. Off-shore 0.156 0.001
Far mid-shelf vs. Off-shore 0.051 0.013 Far mid-shelf vs. Off-shore 0.041 0.001

a Without LAE data, since near-shore was only represented by a low bombing impacted reef.
b Without LAE data, since LAE data was available only for the second year.
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to variations in larvae survival and dispersal and/or to variation in
the abundance of space competitors, for which we have no evi-
dence in Spermonde.

In contrast to the coral spat, a low seasonal variation was found
in the fouling community structure on the tiles, despite seasonal
variations in river runoff and, hence, nutrient supply (Renema
and Troelstra, 2001; Sawall et al., 2012). This could mean that other
factors, such as grazers or predators (including herbivorous fishes,
but also invertebrates such as echinoids and gastropods) control
sessile benthic communities on the tiles. Hence, seasonality in
the spat community could hardly be related to the fouling commu-
nity; except possibly to slightly lower barnacle and bryozoan
abundances in the transition and dry season coinciding with higher
coral spat abundances. Overall, this suggests that the timing of cor-
al reproduction is unrelated to competition for space in the inves-
tigated area, where the abundance of space, and hence, severity of
competition, seemed to be more or less constant throughout the
year. However, it is known that also surface conditioning, e.g. by
biofilms, is important in the context of coral larvae settlement
(Webster et al., 2004). The bacterial community structure of bio-
films was investigated in a parallel study on the same settlement
tiles (but not all sites) (Sawall et al., 2012). Here, a strong season-
ality was found, in particular in oligotrophic far mid-shelf reefs,
were bacterial diversity (presented as operational taxonomic units)
strongly decreased during the driest period of the year, which may
suggest preferred coral larvae settlement (this study) on nutrient-
depleted biofilms (at any time between June and August). How-
ever, further investigations are required to underpin this
hypothesis.

4.2. Spatial variation – blast fishing, eutrophication/pollution

Reefs with craters of coral rubble and a coral rubble cover of
more than 30% were the hallmarks of blast fishing impacted reefs.
This did not always coincide with a reduced live hard coral cover in
high compared to low blast impacted reefs, indicating either, a
higher pre-blasting coral cover or a predominant blasting of dead
substrate at some sites, which infers a continuous larvae supply
despite blast fishing. The lack of differences in coral larvae settle-
ment between high and low blast impact reefs is therefore not sur-
prising, even at BTA, where the low live hard coral cover (only 10%
at the beginning of the study) suggests that the much of the settle-
ment is due to allochthonous supply of larvae. While larval supply
is an important prerequisite for recovery from disturbance, so is
the availability of a stable substrate. In Komodo, recruitment suc-
cess on natural substrate was low, due to abrasion of already set-
tled coral larvae on moving rubble and due to the abundance of
the strongly expanding soft coral Xenia (Fox et al., 2003; Fox,
2004). Also in Spermonde, the presence of coral rubble is strongly
elevated in blast fishing impacted reefs. However, also large coral
boulders were present (22–26%), which provide solid settlement
space (Harrison and Wallace, 1990; Thongtham and Chansang,
1999) and stabilize coral rubble in between. This might be one of
the reasons for the steady increase of live hard coral cover at BTA
(10–31%) and the concomitant decrease of coral rubble, which
was particularly high at this site at the beginning of the study
(56–42%). Although blast fishing was still observed at various reefs
throughout the study period with varying intensity (personal and
colleagues’ observations), it did not strike the study sites.

Cross-shelf variability in water quality may partly be natural,
but is certainly strongly intensified by human-caused waste water
discharge and agriculture activity. Hence, there was a strong
change of the algae composition on the upper tiles, shifting from
a filamentous towards crustose algae dominated community with
distance from shore, in consequence of a eutrophication gradient,
as demonstrated elsewhere (Delgado and Lapointe, 1994; Belliveau
and Paul, 2002). Furthermore, the near-shore (LAE) spat was al-
most monopolized by pocilloporids, while all other sites harbored
a more diverse coral spat community. The comparatively high set-
tlement on the upper tiles near-shore in contrast to the mid-shelf
and off-shore reefs is most likely a response to critically low light
levels in these turbid coastal waters (Sammarco, 1991; Maida
et al., 1994). Pocilloporids are considered opportunistic corals
(Birkeland, 1977; Tomascik, 1991) successfully reproducing in
nutrient- and sediment laden waters adverse to other corals (Gil-
mour, 1999; Harrison and Ward, 2001). They are also able to settle
and metamorphose on filamentous algae covered substrates as
supported by the results of this study.

With the exception of the near-shore reef, no significant cross-
shelf change in coral spat community structure was found. Simul-
taneously, there was hardly any change in the diverse fouling com-
munity on the lower tiles. This led to only a low relationship



Fig. 4. Fouling community on settlement tiles on the upper (up) and lower (lo) face along the eutrophication gradient, grouped by seasons and blast fishing impact. No data
available (n.d.). Counted taxa were converted to% cover to simplify illustration (1% cover = 5 barnacles, 10 spirorbid worms or 1 bivalvae).
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between the coral spat community and the fouling community,
which was not possible to assign to cross-shelf effects. Most dra-
matic changes in the fouling community occurred on the upper
tiles, while the coral spat community established predominately
on the lower tiles, except near-shore. Therefore, we suggest that
initial recruitment rather benefits from the highly heterogeneous
3D-structure formed by diverse fouling organisms on the lower
face, comprised by various calcareous organisms (e.g. barnacles, bi-
valves, spirorbid worms), (Colgan, 1981; Thongtham and Chan-
sang, 1999; Glassom et al., 2004; Petersen et al., 2005), offering
suitable substrate for coral larvae settlement.

However, at this point it is not possible to determine possible
effects of space competitors and grazers on coral recruits after they
grow out of their ‘‘hiding’’ places. Although post-settlement mor-
tality and recruitment on natural substrate was not assessed here,
they might be differently affected along the cross-shelf gradient,
due to e.g. an increased pressure from space competitors near-
shore or near mid-shelf. Those might be severe near-shore, where
e. g. various sessile filter-feeders such as ascidians and hydrozoans
were found on natural substrate and also off-shore, where macro-
algae occurred in increased densities.

4.3. Oceanographic and management considerations

Based on the findings in the study, it is suggested that coral lar-
vae supply is still rather high in the Spermonde Archipelago, de-
spite ongoing human activities. Compared to annual recruitment
rates in other geographic regions (summarized by Glassom et al.,
2004); recruitment rates in Spermonde are intermediate, although
comparability is limited, due to differences in substrate sizes (Field
et al., 2007) and period of deployment.

For the implementation of management plans it is also impor-
tant to consider the local current regimes, since currents are
mainly responsible for larvae dispersal. Although, we did not



Fig. 5. Distance-based redundancy analysis (dbRDA) with the coral spat commu-
nity structures as the response variable represented as symbols and the fouling
organisms as the predictor variables represented as vectors (FAlg = filamentous
algae, CCA = crustose coralline red algae, Barn = barnacles, Worm = spirorbid
worms, Bryo = bryozoans, Bival = bivalves, Ascid = ascidians, Spon = sponges). Each
symbol represents the spat community of one site at one season (n = 16 tile pairs)
and the distance between symbols are calculated using Bray-Curtis similarity
(resemblance matrix). The length of the vectors relates to the relative importance of
a given organism in explaining the spat community structure and the direction
points out the course of its increase in abundance.
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investigate larval dispersal related to currents, we found indicators
for heterogeneous larval dispersal, where live hard coral cover and
coral spat densities pointed into opposite direction (e.g. SAM-S:
high coral cover, low recruitment; BTA; low coral cover, high
recruitment). There is a net transport of water over the Spermonde
shelf from N to S, slightly tilted from NE to SW during the dry sea-
son, which suggests a net transport of coral larvae from NE to SW.
Additionally, temporal irregularities in current direction and veloc-
ity due to winds and tides occur, as well as spatial irregularities
due to small eddies formed at the leeside of reefs (Storm, 1989),
which needs to be considered by the identification of larvae
‘‘source’’ and ‘‘sink’’ reefs.

However, the success of reef recovery or maintenance of reef
functioning in terms of coral recruitment is not only determined
by larvae supply and settlement, but also by recruit survival, which
is influenced inter alia by anthropogenic water quality degrada-
tion. In this study, indications for recruitment success are provided
by the composition and abundance of diverse foulers on the tiles
and by the composition and dynamics of the benthic cover and
led to the following suggestions: (1) The strongly eutrophied
near-shore reef LAE featured low coral spat diversity, a high abun-
dance of potential space competitors, such as filamentous algae on
settlement tiles and filter-feeders on natural substrate and a low
live hard coral cover. Recruitment of diverse coral communities
is therefore unlikely and in case of physical destruction, those reefs
most likely feature a very low chance of recovery ending in a com-
munity dominated by fast growing turf algae and filter feeders. (2)
In contrast, near and far mid-shelf reefs (low or no eutrophication
impact) seem to be very dynamic, hence featuring a large potential
for reef recovery. Coral spat communities were diverse and live
coral cover increased substantially at most reefs, including the
strongly blast fishing affected reef at far mid-shelf BTA. Availability
of solid substrate and low abundance of macroalgae and filter feed-
ers should be supportive for reef recovery. (3) Off-shore reefs also
featured diverse coral spat communities and the high abundance of
crustose coralline algae might favor fast cementation of loose coral
rubble, hence creating suitable substrate for coral larvae
settlement. However, strong frondose macroalgae growth, possibly
fueled by upwelled nutrients, might hamper recruitment survival.
Hence, physical reef destruction might entail longer recovery
times.

Generally, reefs in the Spermonde Archipelago seem to be able
to buffer some the negative anthropogenic impacts (except strong
eutrophication/pollution near-shore) mostly featuring good pre-
requisites for recovery. Heterogeneous and diverse coral communi-
ties are necessary for overexploited fish stocks to recover (e.g.
Halford et al., 2004). Without effective management plans and
unabated blast fishing and eutrophication the Spermonde reefs
are, however, unlikely to sustain the needs of the local population,
and risk further and irreversible deterioration.
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