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Figure 7.3. Seismic line AWI-20090010 (CDP 3400-5000; for location see Fig. 7.1). The synthetic 
seismograms calculated out of CTDs MSM12/2 #4, #5, and #7 are inserted according to the water 
depths of each CTD cast. Please note that these are not the true but projected locations of the 
MSM12/2 CTD casts. The box in the lower left corner depicts a schematic sketch of the structure 
observed in the seismic data at the SE flank of the Eirik Drift. 
 
of the core (Fig. 7.3). Figure 7.3 proves not only that we can resolve fine structure in seismic 
data even in depths > 1500 m but also our assumption that the CTD profiles and hence the 
synthetic seismograms are biased by their location relative to the WBUC core. MSM12/3 #11 
lies above the WBUC core as its seafloor depth is at 2.9 s TWT, which is upslope of our 
observed feature to the NNW (Fig. 7.3). The next deeper station in the MSM12/3 section is 
CTD #10 (Figs. 7.1 and 7.2b), which lies at a seafloor depth of 3.93 s TWT, i.e. downslope 
from our observed structure to the SSE (Fig. 7.3). Interpolation of the data between these two 
MSM12/3 stations misses out the WBUC core identified in the seismic section (Figs. 7.2b and 
7.3) as it is located in the depth range between these two CTD stations and its horizontal 
extent of ~34 km is smaller than the CTD distance of ~41 km. The drawback of capturing 
such structures with classical oceanographic measurements is thus clearly demonstrated. 
Interpolation between discrete CTD stations can miss out certain depth structures or yield 
distortion of the truth, the horizontal as well as the vertical extent and thus the correct 
structure may not be resolved.  
 The WBUC core described above is attached to the slopes of the main Eirik Drift at 
seafloor depths between 3.0 and 3.8 s TWT (~2200-2800 m; Fig. 7.1 and Fig. 7.3 CDP 3500-
4750) at the SE flank of the Eirik Drift and at seafloor depths between 3.1 and 4.15 s TWT at 
the NW flank (~ 2300-3000 m; Fig. 7.1 and Fig. 7.4 CDP 4200-7200). The change in 
direction from SW to NNW of the WBUC core is unfortunately not resolved by our seismic 
data (Fig. 7.1). The observed downslope shift of the WBUC core from the SE to the NW 
flank of ~200 m may result from an increased sediment load carried by the WBUC core at the 
NW flank due to enhanced erosion at the SE flank. Also the bathymetric structure may be 
responsible for this shift. The thickness of the WBUC core is about ~800 m at the SE flank 
and ~600 m at the NW flank and its domed structure is found flattened at the NW flank (Figs.  
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Figure 7.4. Seismic line AWI-20090005 (CDP 3800-7500; for location see Fig. 7.1). The box in the 
lower right corner depicts a schematic sketch of the structure observed in the seismic data at the NW 
flank of the Eirik Drift.	
  
 
7.3 and 7.4). Also the lateral extent of the structure changes from ~35 km at the SE flank of 
the Eirik Drift to 70-90 km at the NW flank. The observed structural changes at the 
downstream and upstream flanks of the drift go along with a strong change in the slope of the 
flanks. The SE flank of the Eirik Drift shows an almost homogenous dip of ~1.3° from 2000 
to 3500 m depth (Figs. 7.1 and 7.3). The NE flank, however, has a steep upper part (slope 
~1.3-1.5°) and continues almost horizontally to the west (slope < 0.3°; Figs. 7.1 and 7.4). We 
can therefore conclude that the change in topography over the drift influences the shape of the 
WBUC core. It appears concentrated and domed at the homogenous, steep slope at the SE 
flank and broadens, flattens and maybe also deepens at the NW flank due to the influence of 
an almost horizontal part of the slope (Figs. 7.3 and 7.4). 	
  
 The observed horizontal (35-90 km) and vertical (600-800 m) extent matches the 
mean values of 50-150 km horizontal extent and 300-800 m vertical extent of the WBUC
modeled by Rhein (1994) for the area 65° N to 10° S, which supports our assumption that we 
image a core of the WBUC with our seismic data. The observed pathway of the upper WBUC 
core over the drift is in good agreement with that suggested by Müller-Michaelis and 
Uenzelmann-Neben (2013 (in revision)) (Fig. 7.1) for the time period < 800000 years based 
on a subsurface seismic study. Our interpretation of the seismic oceanography data thus 
concurs with the interpretation of the distribution of sedimentary strata and we can state that 
the observed WBUC core is guided by the topography. The structure of a concentrated 
WBUC core attached to the slope of the flank as observed in the seismic data (Figs. 7.3 and 
7.4) cannot be observed in the MSM12/3 CTD section at the entrance of the Labrador Sea 
(Fig. 7.2b). Again, we can state that discrete CTD stations alone are not sufficient to resolve 
the structure of the WBUC core. Holliday et al. (2009) identified solely a colder, deeper 
WBUC core in depth > 2800 m in their hydrographic sections which is comparable to our 
observation in the MSM12/3 section for T < 2° C (Fig. 7.2b). Their additional velocity 
measurements, however, revealed the upper high velocity core at 2000 - 2700 m (Holliday et 
al., 2009). This is in good agreement with our observation of the upper WBUC core at 2200 - 
3000 m. Holliday et al. (2009) ascribed this upper high velocity core to consist of modified 
ISOW, which has also been suggested for the upper WBUC core during warm climate 
conditions by Müller-Michaelis and Uenzelmann-Neben (2013 (in revision)).  
 Indications for the deeper core of the WBUC were found in the CTD stations 
MSM12/3 #9, #10 and MSM12/2 #6 with a core depth of ~3250 m but not in CTDs 
MSM12/2 #2 and #3 (Fig. 7.1). The agreement in T and S indicates that the CTD stations 
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MSM12/2 #6 and MSM12/3 #9 and #10 captured the same, deep WBUC core with T ~1.5° C 
and S ~34.89 PSU. This is interpreted to represent the DSOW component of the WBUC, as 
DSOW is typically found at depths between 3000 and 3500 m with T < 1.5° C and S ~34.89 
PSU (Dickson and Brown, 1994; Quadfasel and Käse, 2007). However, we cannot clearly 
image this deeper WBUC core in our seismic data. The reflectivity of the amplitudes for the 
expected deep WBUC core location is found to be weak, the amplitudes are hard to 
distinguish from the noisy surrounding and the deep WBUC core is not identifiable on all 
seismic lines. We assume, that the greater signal loss due to the increased depth of the deep 
WBUC core (> 3200 m) restricts the use of the seismic oceanography method here. 

7.5 Conclusion	
  
We were able to identify and track the upper core of the WBUC via the combination of CTD 
and seismic reflection data. It appears as a concentrated transparent seismic feature with a 
high reflectivity surrounding attached to the slope of the Eirik Drift at seafloor depths 
between 2200 and 3000 m. Its lateral and vertical extent changes with the dip of the seafloor 
slope from a concentrated domed core (35 km broad and 800 m thick) at the steep, 
homogenous SE drift flank to the flattened, broader core (70-90 km broad and 600 m thick) at 
the NW drift flank, where the slope changed significantly and provides an almost horizontal 
part (< 3° steep). The pathway of the upper WBUC core suggested by Müller-Michaelis and 
Uenzelmann-Neben (2013 (in revision)) for the period < 800000 years was confirmed by our 
observations. For the first time the seismic oceanography method was successfully applied to 
depths > 1500 m, but seems restricted in depths > 3000 m. This study revealed that seismic 
oceanography provides an important supplement to conventional oceanographic 
measurements as the small-scale structures of the deep-water masses cannot always be 
resolved properly by discrete CTD measurements due to their large distance.  
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8 Conclusion	
  and	
  Outlook	
  
A new set of high-resolution seismic reflection data has been analyzed to decipher the WBUC 
at the Eirik Drift in the past and at present. Here, the conclusions of this thesis are described, 
following the major questions of the survey. 

 What is the detailed structure of the Eirik Drift? 
 For which period can the first impact of deep-water circulation recorded at the Eirik 

Drift be identified? 
The correlation of the new seismic reflection data with synthetic seismograms based on 
scientific drill site information provided the basis for a revised seismostratigraphic concept at 
the Eirik Drift (see Ch. 5). The revised seismostratigraphic concept at the Eirik Drift 
comprises five major seismic units and eight internal reflectors, which confine the major 
changes in reflection characteristics. The seismostratigraphic concept for the Eirik Drift of 
Arthur et al. (1989) was refined by three additional horizons, A1 (0.8 Ma), A2 (1.4 Ma) and 
A3 (17-19 Ma), and the age of horizon R5 was estimated as 12-10 Ma.  
In my first paper, I concentrated on a detailed structural analysis of the oldest seismic unit 
SUIV (40-19 Ma) based on the revised seismostratigraphic concept. It revealed that the 
sedimentation at the Eirik Drift was not deep current controlled until the early Miocene. The 
newly introduced reflector A3 was identified as a basal unconformity, which marks the onset 
of drift building at 19-17 Ma under the influence of a strong deep-water flow (see Ch. 5). This 
timing correlates with the onset of deep-water exchange at the Fram Strait (Ehlers and Jokat, 
2013) and the firstly observed overflows at the Faroe Conduit in early Miocene (Stoker et al., 
2005) but contrasts with the hypotheses of Arthur et al. (1989) and Wold (1994), who dated 
the drift build-up after ~4.5 Ma and after ~7-8 Ma, respectively.  
The dating of reflector R5 and the basal unconformity A3 could not be confirmed by the drill 
sites, as the oldest geological record from ODP Leg 105 Site 646 reaches back only to ~8 Ma. 
The dating of the reflectors below was conducted by using the sedimentation rate of the 
lowest part of that drill site in combination with interpretations from observations at other 
sediment drifts in the northern North Atlantic. To gather ground truth of the suggested ages of 
reflector R5 (12-10 Ma) and the basal unconformity A3 (19-17 Ma) an additional deep 
drilling down to the basement reflector is needed. Even though the exact age of reflector A3 
could not be confirmed by drilling results, it has clearly been demonstrated that the onset of 
drift building took place much earlier than thought previously. This is an important finding as 
it improves the knowledge of the paleo deep current development in the northern North 
Atlantic. 

 Can the development of the WBUC be reconstructed for this region? 
 Have modifications in the WBUC been documented in the sediment transport? In 

what way did oceanographic modifications affect the sedimentary sequences? 
 Can oceanographic modifications observed locally be linked to major changes in the 

North Atlantic climate? 
The revised seismiostratigraphic concept was used for a detailed structural analysis of all 
seismic sequences at the Eirik Drift. Analysis of the morphology of the bounding horizons 
and the location and orientation of the depocenters observed in each seismic (sub)unit put 
forward a detailed model of paleocirculation at the Erik Drift. The changes in the deep current 
system at the Eirik Drift were linked to changes in the North Atlantic climate (see Ch. 6). 
The structural analysis of each seismic (sub)unit revealed the influence of the WBUC 
responsible for shaping the drift. At the Eirik Drift an intense WBUC is observed during 
warm climates and at the beginning of cooling phases, while there is weak WBUC influence 
during enhanced cooling phases accompanied by increased ice extent in the Nordic Seas. A 
southward shift of the deep-water formation regions along with a shift in the main pathways 
of the northern sourced deep-water during phases of enhanced ice-cover is suggested. 
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Therefore, the main WBUC route did not affect the Eirik Drift during Northern Hemisphere 
Glaciation. Based on our interpretation at the Eirik Drift and observations at other North 
Atlantic drifts, a model of the deep-water pathways for the Nordic Seas and northern North 
Atlantic during the different climatic stages is suggested. 
Two separated WBUC branches of different core depth are observed at the Eirik Drift after 
7.5 Ma. At roughly the same time the first overflows at the Denmark Strait were observed (~7 
Ma) (Bohrmann et al., 1990). Therefore, and in accordance to the present WBUC, it is 
suggested that the upper core transports ISOW and the deeper core DSOW.  
The development of the WBUC at the Eirik Drift was reconstructed in detail. The changes in 
pathways and intensity of the WBUC were documented in the sedimentary sequences and 
interpreted with regard to major tectonic events and climate changes. The suggested model for 
the Nordic Seas and northern North Atlantic constitutes an important supplement to the 
understanding of the complex interplay of changes in THC, climate and tectonics in the 
northern North Atlantic. Still, further investigations are needed to improve our knowledge and 
decipher the complex system. More seismic data from a survey, which covers the connection 
to the Greenland shelf and the SE flank of the drift, are needed. Besides, a deeper drill core 
could reach the oldest sediments and would shed light on the timing history prior to 8 Ma. 

 Can deep currents of depth > 1500 m be studied with the seismic oceanography 
method? 

 Does the observation of the WBUC in seismic reflection data improve the knowledge 
gained by classical physical oceanography methods? 

 Can we identify and track the present WBUC at the Eirik Drift? Does our observation 
from the present WBUC support our interpretation from the past? 

The seismic data data were re-processed in combination with CTD data to analyse the 
structure of the deeper water column above the Erik Drift and provided the first seismic 
oceanography study in depths > 1500 m (see Ch. 7). It was possible to identify the upper 
WBUC core in the seismic lines at depths between 2200 and 3150 m, but it was not possible 
to clearly identify the deeper core. The seismic oceanography method seems restricted by 
greater depths (> 3000 m) due to the increased signal loss, at least with the frequencies used 
for this data aquisition.  
The identified upper core of the present WBUC at the Eirik Drift was tracked in the seismic 
lines. It is found in good agreement with -and thus supports- the suggested pathway for the 
time span < 800000 years (Müller-Michaelis and Uenzelmann-Neben, 2013 (in revision); Ch. 
6). The detailed structure observed in the seismic data revealed that the lateral extent of the 
WBUC core broadens when the slope of the drift flank flattens. A more concentrated and 
intensified deep current core at steeper slopes was also suggested by the analysis of the 
seismic reflection data (Müller-Michaelis and Uenzelmann-Neben, 2013 (in revision); Ch. 6)  
It was shown that discrete CTD measurements cannot always properly resolve -or even fail to 
detect- such structures depending on sampling location and -interval. Therefore, the seismic 
oceanography method can be used as an important supplement for oceanographic studies, 
especially for resolving structures in a high lateral and temporal resolution.  
The seismic oceanography method was successfully applied to an analysis of seismic data in 
depths between 1500 m and 3000 m. The present upper WBUC core was identified and 
tracked and the findings supported the observations from the past. Also the possibility to 
improve oceanographic research by use of seismic oceanography was clarified. However, this 
method bears some disadvantages. The data processing was quite time consuming as the main 
processing steps of seafloor amplitude reduction and direct wave removal had to be applied to 
single shots (or shot gathers). These had to be manually checked and corrected, as required. 
Moreover, the seismic oceanography method allows just a relative interpretation of 
oceanographic features and not an interpretation in absolute terms of water mass 
characteristics, so long as no inverse methods can be applied due to the lack of 
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contemporaneously conducted CTD/XBT measurements. The development of an automated 
data processing tool would be helpful to avoid long processing times in the future. Future 
campaigns aiming to use seismic reflection data (also) for the seismic oceanography method, 
should contemplate contemporaneous CTD/XBT measurements and consider the data 
acquisition parameters carefully. 
The major task of the analysis of the seismic reflection data, a detailed reconstruction of the 
WBUC at the Eirik Drift in the past and at present, has been carried out. The findings have 
improved the knowledge about the deep palaeocirculation in the North Atlantic during climate 
modifications and a structual analysis of the present WBUC supported our interpretation. 
These new insights can now be used to improve future climate models.  
 
More high-resolution seismic reflection data covering a larger area will be helpful to enlarge 
the knowledge gained and will close the gaps in the interpretation. A deeper drill core down 
to the oldest sediments will gather ground truth to the dating of the interpretation prior to 8 
Ma. It is advised that the suitability of the seismic data in terms of seismic oceanography 
should be probably considered when defining the data aquisition parameters.	
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