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Abstract. In order to uniquely determine the elastic thickness of the lithosphere, Te, from 
gravity and topography data, the coherence method explicitly assumes that surface and subsurface 
loads are statistically uncorrelated. In many realistic cases (e.g., mountain building) this 
assumption is likely to be violated. We present the results of Monte Carlo simulations designed 
to measure the bias and variance of Te estimates when the degree of correlation, R, between 
fractal surface and subsurface loads is not null. In this study, R denotes the linear correlation 
coefficient (Pearson's coefficient), and surface and subsurface loads are self-affine (fractal). 
•cording to our results, when there is no correlation between the loads (R = 0), the estimated 
Te is in excellent agreement with the simulated Te although its accuracy decreases for 
increasing plate stiffness. We also find that there is a strong likelihood of an upward bias in Te 
estimates if the dimensions of the study area are not adequate to fully resolve the longest 
wavelengths. This might partially explain why Te values for previous continental studies 
obtained using the coherence method are often higher than Te values obtained using conventional 
forward modeling techniques. As...the degree of correlation increases, we observe a clear 
downward bias in the estimated T e . When surface and subsurface loads are correlated by only a 
small amount, the fit between the computer-simulated and predicted coherences is still good for 
the longest wavelengths within the diagnostic wavebands. In light of these limitations, we use 
the coherence method to reassess Te estimates for the Alps. Our results indicate that the flexural 
behavior of the lithosphere to loading does not change significantly along the fold/thrust belt. 
The similarity between our Te results for the western (30-39 km) and eastern Alps (33-40 km) 
does not support the hypothesis that Te and the horizontal radius of curvature of mountain belts 
are correlated. 

Introduction 

The relationship between gravity and topography has been 
widely used to understand the mechanical behavior of the 
lithosphere to loads applied over geologic timescales (greater 
than 104 years). The idea that the lithosphere behaves as an 
elastic thin plate overlying a weak fluid has been extensively 
tested, particularly over oceanic areas [e.g., Walcott, 1970; 
Watts and Cochran, 1974; Watts and Talwani, 1974; McNutt 
and Menard, 1982, Watts et al., 1980]. The most important 
result of these studies is that as the lithosphere gets older its 
mechanical strength (i.e., effective elastic thickness, To) 
increases as predicted by the plate-cooling model. The Airy 
local isostasy model represents an end-member in which the 
lithosphere cannot support any vertical shear stresses, that is, 
T, is null. In this case compensation occurs directly beneath 
the topography by thickening of a constant density crust. 

Forsyth [1985] demonstrated that To estimates obtained 
from conventional admittance techniques (the linear transfer 
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function between topography and gravity) are bound to be 
biased toward low values if the effects of subsurface 

density/mass variations and associated compensation are not 
taken into account [Dorman and Lewis, 1970; Lewis and 
Dorman, 1970; McKenzie and Bowin, 1976; Banks et al., 
1977; McNutt and Parker, 1978; McNutt, 1980, 1983; Louden, 
1981; Ribe and Watts, 1983]. These subsurface loads in the 
form of mafic intrusions, accreted lower crustal material, 
thermal anomalies, and compositional variations may 
represent an important mechanism for loading the lithosphere 
in addition to surface loads. Forsyth [1985] also showed that 
when admittance techniques are used in continent-wide studies 
[e.g., Lewis and Dorman, 1970; Banks et al., 1977; McNutt 
and Parker, 1978], the different provinces are, on average, 
weighted by the square of the amplitude of the their 
topographic relief. Thus, areas with small topographic 
expression related to high rigidities (e.g., interior cratons) are 
automatically underweighted. 

A new method (hereinafter called the coherence method) for 
determining the flexural rigidity of the lithosphere when both 
surface and subsurface loads are present was proposed by 
Forsyth [1985]. The coherence method is based on the 
wavelength dependence of the coherence between the 
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topography and Bouguer gravity and has been applied to a 
variety of continental [e.g., Bechtel et al., 1987; McNutt et 
al., 1988; Ebinger et al., 1989; Zuber et al., 1989; Bechtel et 
al., 1990] and oceanic [e.g., Blackman and Forsyth, 1991] 
tectonic settings. In order to uniquely determine Te, the 
coherence method explicitly assumes that surface and 
subsurface loads are statistically uncorrelated. This crucial 
assumption is likely to be violated in many realistic cases. 
For example, while the Hawaiian-Emperor islands act as 
significant surface loads, seismic data suggests that subcrustal 
loads in the form of sill complexes present direcfiy beneath 
the island are also loading the lithosphere [Watts et al., 
1985]. In continental areas, subsurface loads may be present 
in the form of lithospheric wedges beneath fold/thrust belts 
[e.g., Nicolas et al., 1990]. 

In both cases cited above, one would expect the distribution 
of the surface loads to be spatially correlated to the 
distribution of subsurface loads. It is precisely the effect of 
load correlation on To estimates obtained using the coherence 
method that we investigate in this study. Specifically, we 
present the results of Monte Carlo computer simulations 
designed to quantify the bias and variance in T o estimates when 
the degree of correlation between surface and subsurface loads 
is not null. First, we create synthetic fractal surface and 
subsurface loads with varying degrees of correlation. After 
calculating the deflection and gravity anomaly associated with 
the compensated loads, we use the coherence method to predict 
the best fitting T o . Finally, the coherence method is used to 
reassess T o estimates for the Alps in light of the 
results/limitations learned from the Monte Carlo simulations. 

Formulation Summary 

We start by stating that, for an homogeneous thin elastic 
plate, the flexural rigidity of the plate, D, can be directly 
related to its thermally controlled effective elastic thickness, 
To, through Poisson's ratio, •3, Young modulus, E, and, 
characteristic flexural wavelength, •, (see Table 1)[Turcotte 
and Schubert, 1982]: 

3 

ET, D= 

12 ( 1 - o• (1) 
4D Y• 

•=n A-•g (2) 

where p, is the density contrast at the interface which provides 
compensation to the applied load, and g is the gravitational 
acceleration. 

Table 1. List of Physical Parameters 

Parameter Definition Value 

E Young modulus 

o Poisson's ratio 

r Grav. constant 

g Grav. acceleration 

pc Custal density 

Pm Mantle density 

1.0 x I0 n N m '2 

0.25 

6.67 x 104 • m 3 kg '1 s 2 
9.8 m s -2 

2800 km -3 

3300 kg m -3 

Using uppercase letters for topography H(k) and Bouguer 
gravity B(k) in the wavenumber domain, the coherence 
between gravity and topography is defined as [McKenzie and 
Bowin, 1976] 

(B (k) H (k) • 2 
(H (k) H (k) • (B (k)B (k)) (3) 

where k (2n/wavelength) is the two-dimensional wavenumber 
vector, k is the average k for a wavenumber band; the asterisk 
indicates complex conjugation, and the angle brackets 
indicate averaging over discrete wavebands. 

Coherence estimates obtained as described above may be 
positively biased by noise [Munk and Cartwright, 1966]. 
Unbiased coherence estimates are given by 

2 

?• (•) = n (k) •/0 (k) 
n(k)- I 

- 1 

(4) 

where n(k) is the number of independent Fourier coefficients 
within each discrete waveband. 

In this study we adopt a simple two-layer density model in 
which the amplitude of the relief on the surface H(k) (air-crust 
interface) and subsurface W(k) (crust-mantle) is given by 

H=HT+H B andW=WT+W • (5) 

where H T and H s represent the amplitude of the surface relief 
due to loading on top and bottom, respectively; W T and Ws 
represent the amplitude of the subsurface relief due to loading 
on top and bottom, respectively. 

Consider the two-dimensional Fourier transform of the thin 
elastic plate equation [Banks et al., 1977] 

D k 4 U(k) +Pm g U(k) = Q(k) (6) 

where Pm is the mantle density, Q(k) is the applied load, and, 
U(k) is the amplitude of the plate deflection. By separating 
the components of surface and subsurface relief, Forsyth 
[1985] derived expressions for each component of relief at the 
surface H(k) and Moho W(k). The power of topography and 
gravity and cross-spectrum can be expressed in terms of the 
calculated relief components HT, HB, WT, and W B used to 
obtain the predicted coherence as shown in (3). Assuming that 
the loads are uncorrelated (i.e., cross terms are left out), 
Forsyth [1985] derived the following expression for the 
predicted coherence: 

(HT(k)WT(k) + H•(k)W•(k)} 2 
2 2 2 2 

(H.• (k)+ H•(k)) (W.r(k) + W•(k)) (7) 

Monte Carlo Simulation 

As stated above, the formulation for the predicted coherence 
explicitly assumes that surface and subsurface loads are 
statistically uncorrelated. In order to quantify the bias and 
variance in T o estimates, we designed Monte Carlo computer 
simulations for varying To and degree of correlation, R, 
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between surface and subsurface loads. In order to facilitate the 

discussion, the calculations performed in this study are divided 
into a forward and inverse part. 

The forward part consists of creating the loads and 
calculating the gravity effect of the deflected plate. Based on 
the observation that fractal (power-law) statistics are a good 
approximation to continental topography [e.g., Mandelbrot, 
1982; Mark and Aroson, 1984], surface and subsurface 
synthetic loads with a fractal geometry are used. Specifically, 
we use the mid-point displacement method [Peitgen and Saupe, 
1988] to generate two-dimensional fractal Brownian motion 
surfaces representing the initial surface and subsurface loads. 
A fractal dimension of 2.5 for both surface and subsurface 

loads, compatible with values obtained for actual topography, 
is assumed. Initial tests using loads with fractal dimensions in 

the range^of 2.3-2.7 showed that the estimated elastic 
thickness T• is not sensitive to the fractal dimension used. 
The load grids consist of 128 x 128 points regularly spaced at 
8 km (10øx10ø), and each simulation involves generating 100 
synthetic pairs of such loads. Each set is linearly detrended, 
standardized (unit variance) and rescaled such that the load 
applied at the top of the plate equals the load applied at the 
bottom of the plate (coherence estimates are not very 
sensitive to the choice of the load ratio [Forsyth, 1985]). The 
loads are then emplaced on a thin elastic plate of thickness To 
(we show the results for To = 20, 40, and 80 kin) and the 
gravity anomaly associated with the deflected crust-mantle 
interface is calculated using Parker's [1972] formulation. The 
Bouguer gravity, together with the final surface relief H(k), is 
used to obtain the simulated coherence (equation (3)). 

In the inverse part, the subsurface relief W(k) is obtained by 
downward continuation of the Bouguer gravity anomaly. We 
then make an initial guess for T o and use the equations derived 
by Forsyth [1985] to solve for the different load components 
(HT, H B, W T, and WB) and to obtain the predicted coherence 
estimates (equation (7)). In practice, we use an iterative 
process which consists of making two initial guesses for To 
(To= 1 and 150 km) and using an optimization procedure based 
on the golden-section search method [Press et al.,_ 19•1_] to 
f'md T'•. The estimated T'• is defmed as the To value that yields 
the smallest summed squared error between the simulated g 
(equation 3) and predicted coherence ¾p (equation (7)): 

b [ • ]• (k.) - (k) (8) 

where b is the total number of equally spa•ced bands in the 
wavenumber domain. The mean estimated T• value, <T?, • 
obtained by averaging over 100 independent estimates of T• 
(each single model run yields a To estimate).^ 

In order to evaluate the sensitivity of the T• estimates to the 
correlation between surface and subsurface loads, we assign a 
fixed amount Of correlation (R = -0.2, -0.4, -0.6, and -0.8 at 
all wavelengths) between the fractal surface and subsurface 
loads. The degree of correlation is assigned in the space 
domain by starting with two standardized uncorrelated fractal 
surfaces, s 1 and s2, and creating a third surface s 3 related to sl 
by R. The initial subsurface load, s3, is related to the initial 
surface loads, s• and s 2 by 

s3 Rs, +('•1 R 2) = - s2 (9) 

The degree of correlation R is intentionally chosen to be 
negative in order to impose mirror symmetry between surface 
and subsurface loads. In the context of this study, the degree of 
correlation R denotes the linear correlation coefficient (i.e., 
Pearson's coefficient) given by the ratio of the covariance 
between s• and s• and their respective standard deviations (see 
the appendix). As both surfaces s• and s2 are linearly derrended 
and standardized prior to assigning the degree of correlation 
R, it can be shown that, even after re-scaling constants are 
applied, R remains analytically equivalent to Pearson's linear 
correlation coefficient (see appendix). 

It is important to note that the number of wavenumber 
bands used in the averaging process can be an important 
consideration when calculating the averaged coherence 
estimates as it involves a trade-off between resolution in the 

space and frequency domains. Frequency resolution is sharp 
for long space windows which yield smooth coherence curves. 
However, each averaged coherence estimate becomes an 
average over a larger number of Fourier coefficients. 
Alternatively, shorter wavelength windows deteriorate the 
sharpness of the frequency resolution for coherence estimates. 
Given the length and sampling interval of our gridded surface 
and subsurface loads, we find, by trial and error, that our 
coherence estimates are well represented when averaged over 
12 discrete wavebands (this yields the best agreement between 
be simulated and predicted coherence). As a rule of thumb, the 
first averaged coherence estimate should contain at least 5 
Fourier coefficients. The coherence estimates shown here are 
obtained for bands equally spaced in the wavenumber domain. 

Simulation Results and Interpretation 

Uncorrelated Loads 

Figure 1 shows the distribution of estimated T• and the 
respective coherence estimates for varying simulated Tc values 
(T o = 20, 40, and, 80 kin). The mean estimated effective 
elastic thickness <T'•> and respective standard deviations are 
also shown for each study case. We note that the misfit 
between T o and <Te >, and thus the variance in our <T•> 
estimates, is due to the finite extent of the fxactal loads leading 
to a discrepancy between the ideal null correlation argl the 
sampled R. An excellent agreement between Tc and <To is 
found for T o = 20 km (<T'•> = 21 + 2 km; Figure la). The 
mismatch between T o and <T'•> and respective standard 
deviatiom^gradually increase as To increases (for To = 40 and 
80 km, <T•> is 44 + 9 km and 94 + 29 km, respectively). The 
coherence estimates shown in Figures l d and l e represent 
averages obtained for 100 statistically independent pairs of 
fractal surface and subsurface loads (R = 0). The open circles 
represent the simulated coherence averages obtained using (3). 
The predicted coherence estimates obtained using the 
simulated To and estimated <T'• are shown as dotted and solid 
lines, respectively. 

When short-wavelength loads are randomly placed on a thin 
elastic plate, the deflections of the corresponding 
compensating interfaces are not significant. As a 
consequence, the resulting topography and Bouguer gravity 
are not correlated. At long wavelengths, the correlation 
between topography and Bouguer gravity is perfect (coherence 
~1) as the rigidity of the plate cannot support the load. The 
wavenumber band at which the transition from lfigh to low 
coherence values takes place is referred to as the diagnostic 
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Figure 1. (a-c) Distributions of estimated • and (d-f) 
corresponding coherence estimates for T o values of 20, 40, and 
80 kin. The correlation between surface and subsurface loads is 

assumed to be null for all cases (R=0). The dimensions of the 
gridded loads are 10øx10 ø. The simulated coherence estimates 
are shown as open circles and the error bars denote 1 standard 
deviation. The predicted coherence estimates obtained using 
T o and <To> are shown as dotted and solid lines, respectively. 
Coherence estimates represent averages over 100 runs. 

wavenumber band. Figures ld and If clearly illustrate that as 
the plate gets more rigid, its ability to support longer 
wavelengths increases, and therefore the diagnostic 
wavenumber band gets shifted to longer wavelengths. 
Moreover, the range of T o values that fits the simulated 
coherence (for similar summed squared errors) increases, that 
is, the accuracy of the effective elastic thickness estimates 
degrades as T o increases. 

The overestimate in To for stiffer plates (for To=80 km, 
<T? is 94 + 24 kin; Figure l c) is related to the physical 
dimensions of the grid used in this study (~10øx10ø). For 
example, for an 80-kin-thick plate, the characteristic flexural 
wavelength exceeds 1400 km (equation (2)), and thus the 
dimensions of the ~10øx10 ø grid are not long enough to fully 
resolve the longest wavelengths within the diagnostic 
wavenumber band. In order to test this idea, we performed the 
same simulations using new grids twice the original grid size 
(~20øx20•). Figure 2a illustrates the better agreement between 
T o and <T•> and a smaller standard deviation relative to Figure 
lc. The fit between the simulated and predicted coherences has 
also significantly improved (Figure 2b). 

Zuber et al. [1989], in their isostasy study of Australia, 
attempted to illustrate that the direct relationship between the 
best fitting T o and the size of the subregions used in the 
coherence analysis is not an artifact of the method (see their 
appendix). They proposed that by selecting two areas of equal 
dimensions from regions with distinct tectonic behavior, they 
get different rigidities. This is certainly true for the cases 

shown, but their best fitting T o for the more rigid area is not 
necessarily..,.correct. According to our results, the accuracy of 
estimated T o is affected by the dimensions of the study area, in 
particular when the plate is fairly stiff (which seems to be the 
case for some provinces in Australia). The simulations 

pr•esented in this study suggest that for an 80-kin-thick plate, 
<T•> may be overestimated by as much 18% from the true To 
under "ideal" conditions (null correlation between surface and 
subsurface loads). We predict that the mismatch between T o 
and <T•> gets progressively worse, that is, <T•> is 
consistently overestimated as plate stiffness increases if the 
study area is not adequate to fully resolve the longest 
wavelengths. This might partially explain why flexural 
rigidity estimates for continental studies obtained using the 
coherence method (D = 102• - 10 zs N m) are often higher than 
values obtained using conventional forward modeling 
techniques (D = 10 •3 - 10 z½ N m) [Walcott, 1970; Haxby et al., 
1976; Karner and Watts, 1983; Royden and Karner, 1984; 
Royden and Burchfiel, 1989]. 

Correlated Loads 

Figure 3 shows the distribution of estimated T o values 
obtained for 100 computer runs for two sets of correlation 
coefficient between surface and subsurface loads (R=-0.2 and 
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Figure 2. Distributions of estimated T'• and corresponding 
coherence estimates for stiff plates (To=80 kin). The 
correlation between surface and subsurface loads is assumed to 

be null (R=0). The dimensions of the gridded loads are twice 
the one used in Figurge 1 (20øx20ø). The better agreement 
between T O and mean <'r? (in contrast to the stiff plate shown 
in Figure lc) is related to the full resolution of the longest 
wavelengths. The simulated coherence estimates are shown as 
open circles and the error bars denote 1 standard deviation. 
The predicted coherence estimates obtained using T o and <To> 
are shown as dotted and solid lines, respectively. Coherence 
estimates represent averages over 100 runs. 
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Figure 3. Distributions of estimated T• for the case in which 
the degree of correlation R between surface and subsurface 
loads is (a-c) R=-0.2 and (d-f) R=-0.6. As R increases, the 
estimated mean <T? (averaged for 100 runs) is progressively 
biased toward a low value relative to simulated T,. 

R=-0.6). The mean estimated <To> and respective standard 
deviations for simulations with additional R values are given 
in Table 2. For any given simulated To, as the correlation 
between surface and subsurface loads increases, the downward 

bias in <To> values gets progressively larger approachinca 
local loading scheme. The trend is clearly a decrease of <T•> 
as R increases. 

The simulated coherence estimates obtained using (3) for 
the case of R=-0.2 and R=-0.6 are illustrated in Figure 4. 
These represent averages obtained for the same set of computer 
simulations shown in Figure 3. The predicted coherence 
estimates obtained using the simulated To and estimated <T•> 
(equation (7)) are shown as dotted and solid lines, 
respectively. For small correlations (R = -0.2), the fit 
between the simulated and predicted coherence estimates is 
good at long to middle wavelengths. However, the fit at 
smaller wavelengths is not as good as for the case of null 
correlation, and it never drops completely to zero. When 
correlated loads are emplaced on a weak plate, the topography 
and gravity anomaly will automatically be correlated at most 
wavelengths. As a consequence, the diagnostic wavelength 
bands get shifted toward smaller wavelengths explaining the 
downward bias in T• (Figure 3). Clearly, as the degree of 
correlation increases, the misfit between simulated and 

predicted coherences gets progressively worse even at middle 
to long wavelengths. The characteristic shape of the 
coherence curve is no longer identifiable with increasing 
correlation between surface and subsurface loads. 

It can be argued that the simulations we present in this study 
are not realistic in the sense that we apply a fixed amount of 

correlation R to the loads at all wavelengths. While it is 
certainly true that we could have used correlation schemes 
dependent on wavelength, it would be extremely difficult to 
test all the different possibilities as our coherence estimates 
would then also be tied to the band-limited cutoff value of R. 

Although coherence values close to zero are usually expected 
at small wavelengths for realistic geological surfaces (in 
contrast to some of the simulations shown here), this part of 
the coherence curve does not play a major role when 
estimating the best fitting To. Even if the coherence estimates 
were "forced" to be close to zero at small wavelengths (for 
example, by introducing Gaussian noise in the gravity signal 
mimicking observational errors), our T• predictions would 
still be similar to the ones presented here if a correlation 
between surface and subsurface loads near the diagnostic 
waveband is assigned. 

Application to the Alps 
Previous Studies 

The Alpine orogeny developed as a result of plate 
reorganizations in the Cretaceous time which led to a 
continent-continent collision between the Eurasian plate and 
the smaller Apulian plate [e.g., Coward and Dietrich, 1989]. 
Although there are significant differences in the existing 
models for the complex tectonic evolution of the Alps, we can 
approximately separate the events associated with the Alpine 
orogeny into two groups which account for the emplacement 
of large loads within and below the lithosphere. The first one, 
which started in the late Cretaceous/Paleogene times, involves 
a great deal of deformation of the downgoing Eurasian plate 
either by crustal [Mattauer, 1986] or lithospheric [Nicolas et 
al., 1990] wedging, depending on the favored interpretation 
for the location of the decoupling zone. The second event, 
during the late Paleogene/Neogene, led to successive 
emplacement of nappes, the external massifs and the folding 
of the previously undeformed foreland. By middle to late 
Miocene, crustal shortening across the eastern Alps was 
replaced by a dextral strike slip zone named Insubric line (see 
Figure 5a for location) [Royden and Burchfiel, 1989]. 

A considerable amount of uplift must have taken place in 
the Alps during the past 40 Ma as suggested by the grade of 
metamorphism observed on exposed rocks. The maximum 
inferred uplift occurs to the north of the Insubric line where 
rocks were previously at depths of 20-25 km [Zingg et al., 
1990]. The crustal structure beneath the Alps is fairly well 
constrained by recent deep reflection surveys, in particular 
across its western and central portions [Mueller et al., 1980; 
Meissner et al., 1987; Laubsher, 1990; Nicolas et al., 1990]. 

Table 2. Mean Estimated < T• > for Varying Te and R 

R 'r• = 20 km % = 40 km 'r• = 80 km 

NULL 21:k2 44_+9 95:k29 

-0.2 17:k2 36x'-6 70t:14 

-0.4 13:k2 29-•-_8 55+11 

-0.6 11:[-4 18+8 38+12 

-0.8 2:k2 4:!:3 19't8 



15,168 MACARIO ET AL.: COHERENCE METHOD 

30 

,.,20 

0 

0 

Case R ---0.2 

Te= 20 km 

I i 

5 10 15 Z0 

[a] 

Te= 40 km 

( 8 km 

o 10 20 30 40 50 60 

lO lO 

Te= 80 km œC] 8 8 /T-•/e 69+ 14km 
,- 6 6 

• 4 4 

Z 2 

o , • r!lll o 
0 Z0 40 60 80 

Te, km 

Case R =-0.6 

0 I Te=20 km 
0 = - 

o 

o , 

0 5 10 15 zo 

[d] 

Te= 40 km 

I , , 

[el 

0 10 20 30 40 50 60 

Te= 80 km 

'/T'?/e = 38 + 12 km 
. 

0 20 40 60 80 

Te, km 

If] 

Figure 4. Coherence estimates (open circles) and 
corresponding standard deviations averaged over 100 runs for 
the cases shown in Figure 4. The predicted coherence 
estimates obtained using T o and <TS> are shown as dotted and 
solid lines, respectively. 

The average crustal thickness of 20-30 km beneath the 
Molasse foreland basin progressively changes to 40-60 km 
beneath the fold/thrust belt; Moho depths beneath the Po 
basin vary between 20 and 30 km. The heat flow data across 
the western Alps follow a similar trend as Moho depths, that 
is, lower values beneath the maximum topographic relief (-63 
roW/m2), progressively increase outward (~110 mW/m 2) 
[Mueller et al., 1980] . 

The Alps are probably the most extensively studied 
orogeny. Topography and gravity values are known at over 
306,000 points. A minimum curvature algorithm applied 
iteratively from a coarse to a fine grid [Smith and Wessel, 
1990] was used to generate the topography and Bouguer 
gravity grids shown as contoured maps in Figure 5. The 
dimensions of the grids are 1122 x 558 km and consists of 
256 (longitude) x 128 (latitude) points. The main feature in 
the gridded topographic map for the Alps is the fold/thrust belt 
system reaching a maximum elevation above sea level of 
~3000 m. The largest amplitude gravity low observed in the 
Bouguer gravity maps for the Alps (--200 mGal) lies 
approximately where the crust reaches its maximin thickness 
(40-60 km) [Meissner et al., 1987]. The narrow positive 
gravity anomaly on the concave part of the arcuate western 
Alps (Figure 5b) is associated with the presence of high- 
density mafic/ultramafic bodies defining the Ivrea Zone 
[Mueller, 1982]. 

Like other thrust belts, the Alps are characterized by a 
positive-negative Bouguer gravity anomaly "couple". Based 
on a gravity study, Lyon-Caen and Molnar [1989] proposed 

that the Alps are not flexurally supported by the lithosphere 
but are dynamically supported by a relict subducted slab. 
Alternatively, Karner and Watts [1983] interpreted the 
positive component of the gravity anomaly "couple" as due to 
subsurface loads in the form of obducted crustal blocks and the 

negative component to the flexural deformation of the 
foreland basin. By invoking the presence of subsurface loads 
(assmptions on the mass and depth were constrained by the 
gravity signal), they performed a one-dimensional forward 
modeling of this positive-negative gravity anomaly "couple" 
observed in the Alps. According to their results, the flexural 
rigidity of the lithosphere changes by a factor of 2 across the 
orogenic belt, that is, T o values of 25 km for its highly arcuate 
western portion and 50 km for the more linear eastern portion. 

Using foreland basin stratigraphy to constrain the 
basement configuration for the central Alps, Sinclair et al. 
[1991] obtained To values in the range 5-15 km, which are 
~10-20 km less than the T o estimate proposed by Karner and 
Watts [1983] for the western Alps. In the gravity studies 
mentioned here, the two dimensionality assumed when 
performing a one-dimensional modeling across highly arcuate 
orogenic belts is questionable. Wans and Cochran [1974] 
showed that the amplitude of deflection computed assming a 
two-dimensional square load may be as much as 4 times less 
than the one predicted by one-dimensional loads. In this paper 
we reassess To estimates in the Alps using a two-dimensional 
coherence analysis in which no a priori assmptions on the 
mass and depth of the subsurface loads are made. 

Coherence Study 

Figure 6a illustrates the observed coherence values (open 
circles) and respective error bars obtained by Fourier 
transformation of the Bouguer gravity and topography data 
shown in Figure 5. The predicted coherence curve (solid line) 
for the best fitting To assumes a single subsurface interface 
(Moho) at a depth of 30 km which was obtained by downward 
continuation of the Bouguer gravity. After solving for the 
load components for an initial guess of T o , the predicted 
coherence was calculated using (7). The best fitting T o for the 
entire Alps, defined as the one that yields the smallest misfit 
between observed and predicted coherence, is -27 km. The Tc 
range for which the predicted coherence curves fall within 1 
standard deviation for at least 2/3 of the coherence estimates 
within the transitional wave bands is 23-42 km . 

In order to evaluate whether the Alpine fold/thrust belt 
consists of provinces of different rigidities, we divide the 
gridded data into two different subsets: the highly arcuate 
(radius of curvature is -251 km to the west of 9 ø E; Figure 6b) 
and the more linear segment (radius of curvature is -501 km to 
the east of 9 ø E; Figure 6c). According to our results, the 
elastic thickness of the continental lithosphere for the arcuate 
western portion of the Alps (T O ~31 km; range 30-39 km) does 
not differ significantly from estimates obtained for the linear 
eastern portion (T o ~35 km; range 33-40 kin). The slightly 
larger T O estimates for west and east Alps relative to value 
obtained for the entire Alps is not statistically significant. 

The correlation coefficients between the initial surface and 

subsurface loads (inverse loads) obtained for the best fitting T c 
values for western and eastern Alps are shown in Figure 7. The 
inverse loads were calculated using Forsyth [1985] 
formulations. No significant correlation between surface and 
subsurface loads is found for either the western or the eastern 

Alps. Assuming a maximum linear correlation coefficient 
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Figure 6. Observed (open circles) and predicted (solid line) 
coherence estimates for (a) the entire fold/thrust Alpine 
system, (b) the highly arcuate western portion of the Alps, and 
(c) the linear eastern portion. Error bars denote 1 standard 
deviation using Bendat and Piersol [1980] formulation. The 
best fitting T• is the value that minimizes the misfit between 
observed and predicted coherences. A subsurface interface 
(Moho) at a depth of 30 km together with the parameters 
shown in Table 1 were assumed in the T o inversion. 

for arcuate mountain belts. Although it is intuitive to think 
that thinner plates are easier to bend than thicker ones, other 
factors may also affect the curvature of mountain belts in plan 
view. We suggest that plate processes combined with the pre- 
collisional geometry of the passive margins offer the simplest 
explanation for the observed difference in shape between the 
western and eastern Alps. The arcuate shape of the western 
Alps is probably related to the Paleogene to Recent 
convergent trend, whereas the linear shape of the eastern Alps 
is most likely related to the dextral strike-slip motion that 
replaced convergence in the Miocene. 

The thickness of the lithosphere obtained from gravity 
studies together with estimates on the time of loading have 
often been used to infer the depth of the controlling isotherm 
and the thickness of the thermal plate [e.g., Karner and Watts, 
1983; McNutt et al., 1988]. As pointed out by McNutt et al. 
[1988], To estimates yield a lower bound on the thermal plate 
thickness because most of the processes acting on the 
lithosphere will always tend to make it less rigid. In the Alps, 
for example, there is significant evidence from K-Ar dating on 
different groups of mineral associations in the Lepontine 
(central Alps) and Tauern (eastern Alps) regions for a peak 
metamorphic phase related with high temperatures at -15-30 
Ma [Ernst, 1973; Frey et al., 1974]. More recently, it has 
been also suggested that heat advection by upward-migrating 
fluids may represent an effective way of raising temperatures 
in the lower crust [Hoish, 1991]. Given the uncertainties 
related to the permissible range of To estimates and the thermal 
age of the lithosphere, we believe that the thickness of the 
thermal plate and/or the controlling isotherm for the Alps 
cannot be objectively constrained. 

Summary and Conclusions 

This study provided important insights on the accuracy of 
To estimates obtained using the coherence method. By running 
simple Monte Carlo computer simulations we were able to 
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between initial surface and subsurface loads of-0.4 at long 
wavelengths (approximately the topmost value for the longest 
wavelength in Figure 8a), the permissible range of To 
estimates is 23-55 km (D = 7.0 x 1022 -9.6 x 102•N m)(using 
the Monte Carlo <T•> estimated for a To of 40 km and linear 
correlation coefficient R = - 0.4; see Table 2). 

Based on a compilation study of 15 mountain belts 
(including Karner and Watts [1983] results), McNutt et al. 
[1988] proposed a positive correlation between To values and 
radius of curvature. The lack of significant differences between 
our best fitting T o results for the western and eastern Alps does 
not lend further support to this hypothesis. It is important to 
point out that most of To estimates used in the McNutt et al. 
[1988] compilation study were derived from one-dimensional 
modeling which, as stated before, might be proned to errors 
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Figure 7. Correlation coefficients between the amplitude of 
the initial surface and subsurface inverse loads for (a) west and 
(b) east Alps. The inverse loads were obtained assuming a 
Moho depth of 30 kin, the parameters in Table 1 and best 
fiuing T O shown in Figure 6. 
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quantify the bias and variance in T o estimates when surface and 
subsurface loads are statistically correlated. The main 
conclusions can be summarized as follows: 

1. For the case when there is no statistical correlation 

between surface and subsurface loads (R=0), the mean 
estimated <To> values obtained using the coherence method are 
in excellent agreement with the computer simulated T o. 

2. The accuracy of <T? estimates decreases as the plate 
thickness increases. 

3. The ratio of flexural wavelength to the dimensions of the 

sturdy area place an important constraint in the accuracy,..of 
<To> values. Upwardly biased and poorly resolved <T•> 
estimates are obtained when the dimensions of the study area 
are not adequate to fully resolve the longest wavelengths. This 
may explain why To values obtained using the coherence 
method are often higher than To estimates obtained using 
forward modeling techniques. 

4. As the degree o,..f correlation increases we observe a clear 
downward bias in <T? values. When surface and subsurface 
loads are correlated by only a small amount (e.g., R=-0.2), the 
fit between predicted and simulated coherence is still good for 
the longest wavelengths within the diagnostic wavebands; at 
smaller wavelengths the simulated coherence will always be 
higher than the predicted ones. 

In the second part of this study we used the coherence 
method to reassess T o estimates for the Alps in light of the 
results/limitations discussed above. The main conclusions are 
as follows' 

1. The best fitting To value for the entire Alps is ~27 km 
(range 23-42 km). 

2. The similarity between our estimated T• results for the 
western (-31 kin; range 30-39 kin) and eastern Alps ( -35 kin; 
range 33-40 km) obtained using the coherence method does 
not support the hypothesis that To and horizontal radius of 
curvature of mountain belts are correlated. In the worst 

possible scenario of 40% correlation at long wavelengths 
between initial surface and subsurface loads (R=-0.4), the 
estimated T o for west and east Alps may vary in the range of 
23-55 km as predicted by the Monte Carlo simulations in the 
first part of this study. We suggest that the observed 
difference in the shape of the western and eastern Alps can be 
most simply explained in terms of plate processes combined 
with the precollisional geometry of the passive margins. 

3. Given the combined uncertainties in To and thermal age 
estimates, we cannot constrain the thermal thickness of the 

lithosphere and/or the controlling isotherm for the Alps. 

Appendix: Degree of Correlation and Pearson's 
Linear Correlation Coefficient 

Consider two uncorrelated zero-mean surfaces s• and s 2 
(function of x,y). If E{.} is the expectation operator, then the 
two surfaces are uncorrelated when [Papoulis, 1984] 

E{s•s,}=0 (A1) 
Suppose, also, that both s• and s2 have a variance o2: 

E { s } = E { s,, } = o 

Consider now a third surface s• related to s• and s2 by R 
(-1< R < 0): 

s3 = R s•+ s2 

The Pearson's linear correlation coefficient p is def'med for 
the surfaces s• and s 3 as 

p• 
E { s,,s, } 

4E{ s,'}E { s,'} (A4) 
We have 

E{s,s,}=E{s•[Rs,+'•l-R:s:]} E{Rs•:} Ro: = = (A•) 

because E { s • s 2 } = 0 (equation (A1)). It also follows that 

E{s3: }=E{[ Rs•+'•I-R 2 s:] } 
-E{R: : - s, }+E{(1-R ) s: 

(R: = + 1 - R:) o: = o: (A6) 

Substituting (A5) and (A6) in (A4), we obtain 

R o 2 

@ = •- = R (A?) 
where R is Pearson's correlation coefficient. If we rescale si 
and s3 by constant rnultiplicative factors c•l and c•a, that is, 
def'me 

the result is unchanged: 

p= = =p 
dE { •',:}E { ?,:} a• aadE { s ,:}E { s,:} (A9) 
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