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Abstract Internal variability of the Asian monsoon1

system and the relationship amongst its sub-systems,2

the Indian and East Asian Summer Monsoon, are not3

sufficiently understood to predict its responses to a fu-4

ture warming climate. Past environmental variability5

is recorded in Palaeoclimate proxy data. In the Asian6

monsoon domain many records are available, e.g. from7

stalagmites, tree-rings or sediment cores. They have to8

be interpreted in the context of each other, but visual9

comparison is insufficient. Heterogeneous growth rates10

lead to uneven temporal sampling. Therefore, comput-11

ing correlation values is difficult because standard meth-12

ods require co-eval observation times, and sampling-13

dependent bias effects may occur.14

Climate networks are tools to extract system dy-15

namics from observed time series, and to investigate16

Earth system dynamics in a spatio-temporal context.17

We establish paleoclimate networks to compare pale-18

oclimate records within a spatially extended domain.19

Our approach is based on adapted linear and nonlin-20

ear association measures that are more efficient than21

interpolation-based measures in the presence of inter-22

sampling time variability. Based on this new method we23

investigate Asian Summer Monsoon dynamics for the24

late Holocene, focusing on the Medieval Warm Period25

(MWP), the Little Ice Age (LIA), and the recent period26

of warming in East Asia. We find a strong Indian Sum-27

mer Monsoon (ISM) influence on the East Asian Sum-28
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mer Monsoon (EASM) during the MWP. During the29

cold LIA, the ISM circulation was weaker and did not30

extend as far east. The most recent period of warming31

yields network results that could indicate a currently32

ongoing transition phase towards a stronger ISM pen-33

etration into China. We find that we could not have34

come to these conclusions using visual comparison of35

the data and conclude that paleoclimate networks have36

great potential to study the variability of climate sub-37

systems in space and time.38

Keywords Asian Summer Monsoon · Complex39

Networks · Irregular Sampling · Little Ice Age ·40

Medieval Warm Period41

1 Introduction42

Monsoonal precipitation dynamics and their possible43

change due to global warming are a matter of polit-44

ical and public concern in most of South-East Asia,45

and especially in India and China, as lives and pros-46

perity depend critically on the monsoons’ rainfall de-47

livery [12,28,67]. The Asian (Summer) Monsoon has48

shown abrupt changes in the past and its intensification49

(weakening) was likely concurrent with cultural pros-50

perity (demise) [8,9,68]. The Asian monsoon system is51

comprised of two main sub-systems, the Indian Sum-52

mer Monsoon (ISM) and the East Asian Summer Mon-53

soon (EASM) (Fig. 1), both mainly driven by seasonal54

changes in the land-sea thermal contrast and related55

atmospheric pressure changes.56

The Intertropical Convergence Zone (ITCZ) plays a57

governing role in monsoonal circulation and variations58

of its mean northward extent have been linked with59

summer monsoon strength [6,18,29,49]. The defining60

geography (composition of landmass, mean altitude,61
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position and extent of surrounding seas) however, is62

quite different for ISM and EASM. The extent to which63

the two sub-systems interacted in the past is a matter64

of current research [60,62,67,69,11]. As a third player,65

the mid-latitude westerlies dominate the area north and66

west of the (variable) monsoon boundary [11]. The rela-67

tive strength of these circulation systems and thus their68

areas of influence, varied in the past [23,35,62], and69

our knowledge about the complex spatio-temporal pro-70

cesses and variability behind them is insufficient [12].71

Numerous paleoclimatological studies focused on the72

reconstruction of individual climatic parameters, such73

as moisture or precipitation [5,32,38,39,47,62,67,66],74

temperature [66], or droughts [5,12,49,66] by use of75

proxy records. Furthermore, linkages among the Asian76

Monsoon system and the North Atlantic realm [22,24,77

29,63,60], El Niño/ Southern Oscillation (ENSO) [46],78

and solar forcing [21,61,68] have been explored. How-79

ever, the mechanism(s) and variability of the interac-80

tions between ISM and EASM during the Holocene81

(and beyond) remain far from being fully understood82

[61,67,62]. Using numerical meta-analysis and recon-83

structions of moisture indices, Wang et al. found an84

asynchronous evolution of the ISM and the EASM for85

the Holocene on centennial timescales [62]. The spa-86

tial distribution of the paleoclimatic records used in87

the study of Wang et al. did include only four records88

from India (out of a total 92) and focused mainly on89

China and Tibet, with no record in the ISM domain90

below 27◦N [62]. It is important to note that the cur-91

rently general low number of datasets from the Indian92

peninsula might lead to systematic biases towards the93

Tibetan plateau and China, complicating or even pre-94

cluding meaningful interpretation of results, a caveat95

that must be accounted for.96

Based on ensemble runs of a coupled climate model97

run with anthropogenic forcing, May found an increase98

in monsoonal rainfall, accompanied by a decrease in99

the intensity of the overall lower-tropospheric large-100

scale circulation at a warming of 2◦C relative to pre-101

industrial ISM conditions [34]. Derived from global cli-102

mate modeling results and observations, an overall stag-103

nation in precipitation but a redistribution towards ex-104

tremes (prolonged dry and wet spells) was supported in105

[28]. Decreasing reliability of rainfall and increased vari-106

ability of precipitation amounts would have disastrous107

impacts on rain-fed agriculture all over Asia.108

In the paleoclimatic context, we strive to under-109

stand whether the weakening of the large-scale circu-110

lation associated with a warming scenario, as found for111

the time period 2020–2200 AD in the modeling study by112

May [34], is paralleled by an increased influence of the113

ISM on the EASM domain during the MWP (1100–700114

years BP) and during the recent warm period (RWP,115

1850–1980 AD), in contrast to an expected diminished116

influence during the LIA (100–400 years BP). Given117

that the Asian Summer Monsoon is, amongst other fac-118

tors, differential-heating driven, and thus modulated, to119

some extent, by northern hemisphere temperature, we120

hypothesize that the eastward ISM penetration depth121

was higher during periods of extended northern hemi-122

sphere warmth (e.g. the MWP) than during cool pe-123

riods and vice versa. We define the boundaries of LIA124

(MWP) in agreement with the timings given by Jones et125

al. [26] and within the periods of relative cold (warmth)126

in the East Asian temperature reconstruction by Os-127

born & Briffa [37].128

On short (annual to multi-decadal) timescales, we129

are not aware of any study systematically investigat-130

ing the interactions between both sub-systems. As we131

find that the understanding of any system is funda-132

mental to comprehending its links to other systems, we133

aim to investigate the extent of interaction between the134

traditional ISM domain over continental India and the135

EASM domain over China. To this end we propose here136

the construction of paleoclimate networks, based on sig-137

nificant association between proxy records of past cli-138

mate variability. Palaeoclimate records come with par-139

ticularities, when compared to data used in climate net-140

work studies up to now. They are heterogeneously sam-141

pled in time (1) and space (2) which, if ignored, leads142

to biased and possibly incorrect results. Previous cli-143

mate network studies have focused on the analysis of144

gridded datasets, from reanalysis data [16,14,20,50,58,145

65] or recent observations [19,31,30] and were thus re-146

stricted to the recent, observational period. Palaeocli-147

mate records are, in contrast, spatio-temporally inho-148

mogeneously distributed. However, due to the increas-149

ing number of (Asian monsoon) records published in150

the last decades [62], the spatio-temporal reconstruc-151

tion of past climates becomes feasible [12,62]. In differ-152

ence to previously analyzed climate networks, paleocli-153

mate networks cannot make use of direct information154

about climate parameters (e.g. temperature) and have155

to rely on proxy data that are usually irregularly sam-156

pled in time and space. Generally, fewer datasets are157

available the further back in time the analysis is ex-158

tended. Also, much less paleoclimate data is available159

from India, compared to China. One option would be160

to include only datasets that span all time periods of161

interest and an equal number from both regions of in-162

terest (ISM and EASM domain). However, this would163

decrease the robustness and significance of the results.164

Therefore, we strive to sample all regions consistently165

in order to retain comparability for different time slices,166

and include all records in the database where they meet167
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Fig. 1: Study area with generalized summer wind directions of the ISM and EASM (gray arrows), the westerlies

(dashed arrows), as well as the spatial coverage of the records considered in the paleoclimate networks. Numbers

of the nodes were assigned according to the longitude of the respective study site and furthermore refer to the

entries in Tab. 1. Sites that are at close proximity might show displaced to prevent overlap of the dots and labels.

Colors of the dots indicate the type of archive: orange – tree sites, white – stalagmites, purple – other archives

(marine sediment (1), ice core (10), reconstruction using historic documents and tree ring data (27)).

the temporal sampling requirements. Possible bias ef-168

fects should nevertheless be kept in mind for the sub-169

sequent analysis and need to be discussed.170

To improve spatial resolution and robustness of the171

estimates with increasing node numbers, we forsake the172

reconstruction of direct physical flows (which would173

limit us to using only precipitation or temperature re-174

constructions), but instead combine records of precip-175

itation and temperature. We argue that temperature176

and precipitation amounts over land covary, as the mois-177

ture-carrying capacity of atmospheric flows increase with178

temperature. We do not claim that the relationship, es-179

pecially in monsoonal and tropical climate, co-varies in180

a strict linear correlation sense either positively or neg-181

atively, but that a (nonlinear) association between the182

climate variables probably exists. Trenberth et al. found183

a negative correlation between monthly mean anoma-184

lies of boreal summer (MJJAS) surface air tempera-185

ture and precipitation amount of reanalysis data (1979–186

2002) over much of India and China and state that187

“neither precipitation nor temperature should be in-188

terpreted without considering the strong co-variability189

that exists” [55]. Therefore, until a higher density of190

records for individual climate parameters is established,191

we believe it is justified to use both to reconstruct the192

flow of dynamical information, measured by the extent193

of linkages, significant associations, between the time194

series of individual nodes. Combining different archives195

increases the robustness of the analysis against indi-196

vidual archive-specific biases, e.g., trees might provide197

information where stalagmites cannot or vice versa. In198

contrast to other analysis methods, every node retains199

its individuality in the network and its role in the fi-200

nal result, the network, can be assessed both visually201

(e.g. in force-weighted network representations) or quan-202

titatively (by computing network statistics). Further-203

more, should incompatibility be suspected, node re-204
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moval is straightforward and does not require re-compu-205

tation of the whole network.206

Using published paleoclimate records from the ASM207

domain, we analyze late Holocene Asian monsoon dy-208

namics during the MWP, the LIA, and the recent warm209

period (RWP, here: 1850–1980 AD). We review litera-210

ture and methodology of complex (climate) networks211

in Subsect. 2.1. In Subsect. 2.2 we then set out to212

document paleoclimate network construction and intro-213

duce linear and nonlinear similarity measures adapted214

to paleoclimate data. We describe the ASM paleocli-215

mate data in Sect. 3 and the results we obtain from the216

paleoclimate networks in Sect. 4. In Sect. 5 our results217

regarding the Asian monsoon synchronization for the218

past millennium are compared to previously published219

findings and we discuss the robustness and advantages220

of the paleoclimate network approach compared to the221

usually employed visual comparison.222

2 Methods223

We propose a new, complementary tool for the recon-224

struction and investigation of spatio-temporal dynam-225

ics of climate systems in the past: Palaeoclimate net-226

works. The approach is inspired by climate networks227

which are a relatively new, but a powerful and increas-228

ingly popular tool to reconstruct Earth system dynam-229

ics. In the following we first describe climate networks230

and subsequently develop the paleoclimate network ap-231

proach.232

2.1 Climate networks233

Climate networks are a relatively new tool to explore234

spatio-temporal variability of climate parameters and235

assess dynamical information flow between spatially dis-236

tant regions [16,14,31] and the stability of the climate237

system and its teleconnections [20,50,57,65]. They are238

inspired by complex networks theory, which, from soci-239

ology through gene networks to citation networks con-240

sist of two main components: nodes, or vertices and241

links, also called edges. The nodes might be represent-242

ing actors, genes, or authors of scientific papers. The243

links can be drawn from co-starring in the same movie,244

sequential expression of genes, or co-authorships.245

Climate networks are based on observations of cli-246

mate dynamics (time series) at certain points, the nodes.247

Computed from these time series, pairwise similarity248

calculation (linear correlation or nonlinear interrelations,249

like mutual information (MI) [15] or recurrence-based250

measures [17]) yield a correlation matrix with entries251

for each pair of nodes. This matrix is then thresholded252

using either a fixed value for the correlation or a pre-253

scribed link density. The resultant adjacency matrix A254

is a sparse binary matrix with the i,j th entry being non-255

zero if and only if the time series representing nodes256

i and j are significantly associated. Network statistics257

can subsequently be employed to assess overall charac-258

teristics of the network such as the degree distribution259

(e.g., how many links do the individual nodes have) or260

more abstract measures such as betweenness, where in-261

formation flow through the network is quantified.262

2.2 Palaeoclimate networks263

2.2.1 Difference to recent climate networks264

Major difference between modern observational or re-265

analysis data and proxy data is the heterogeneous sam-266

pling of the paleoclimate records. Whereas modern ob-267

servations are represented regularly, hourly, daily, or268

monthly, many paleoclimate proxies are reconstructed269

with sampling intervals (e.g. from stalagmites or ice270

cores), varying intrinsically from sub-annual to cen-271

tennial resolution. By nature, annually laminated sed-272

iments or tree ring chronologies should not suffer from273

this complications. However, missing data can occur in274

them as well and it was recently reported that tree-ring275

based temperature reconstructions might be biased, as276

trees might be missing rings in exceptionally cold years277

after volcanic eruptions [33]. Carefully cross-dated, such278

flaws could be identified and corrected for in the final279

chronology. The final dataset would then, again, be ir-280

regular in time.281

As they are reconstructed from natural archives with282

varying sedimentation rates, paleoclimate time series283

are generally unevenly sampled. They can contain hia-284

tuses and might have poor chronological control. These285

features require special measures for similarity assess-286

ment, as physically meaningful signal reconstruction is287

often not feasible, and standard interpolation methods288

introduce strong bias effects [2,40,44,51].We have re-289

cently shown that using a Gaussian kernel-based corre-290

lation estimator, Pearson correlation can be estimated291

more efficiently than if using interpolation [40]. Here,292

we additionally put forward an algorithm to estimate293

MI, a nonlinear dependence measure, for unevenly sam-294

pled data. In Subsect. 2.2.2 we review these similarity295

measures and show, that our MI estimation algorithm296

compares favorably to an approach using standard lin-297

ear interpolation techniques. All records in one network298

are required to have recorded climate variability at com-299

parable temporal resolution. For periods of interest in300

the range of few centuries, annual to multi-annual res-301

olution is required to meet the numerical demands of302
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the estimators. Not all records, however, will cover the303

whole period of interest, and some will display large304

gaps. While our methodology is able to cope with such305

complications, individual significance tests for each pair306

of nodes, mimicking their temporal coverage, have to307

be conducted. This is in contrast to standard climate308

network construction, where usually a link density se-309

lecting, e.g., the 5% strongest associations as links is310

used [16,31,30].311

2.2.2 Similarity measures for irregularly sampled time312

series313

Linear dependence, or similarity in linear properties,314

between two time series (i.e. the dynamical processes315

behind them) is often estimated employing the cross316

correlation function (XCF) [10,40]. The association be-317

tween observations might, however, also be non-linear318

and not follow a specific functional form, which can319

not be captured by linear correlation. Bivariate (cross)320

mutual information as a measure of dependence addi-321

tionally captures nonlinear associations [13], which is322

why we will use it along with correlation as similarity323

functions Si(m∆t
xy), with the index i indicating, which324

measure was calculated and m representing a lag time325

step of a width of ∆txy. We use a lag vector resolution326

of ∆txy = max(∆tx, ∆ty), choosing the larger of the327

average sampling rates ∆tx and ∆ty of the two time328

series. The scales of variation of MI and XCF are dif-329

ferent, but we do not employ the absolute values in the330

network analysis. We determine the significance of the331

numerical estimates with respect to critical values from332

surrogate data and subsequently convert to a binary333

scale (0 for no, 1 for significant association) that we can334

intercompare. Standard methods require regular obser-335

vation intervals and therefore signal reconstruction on336

an evenly sampled grid. However, the original irregular-337

ity causes positive spectral bias towards low frequencies338

and consequently high-frequency variability is underes-339

timated when it is overcome by conventional interpo-340

lation methods [2,40,44,51]. Gap-filling and meaning-341

ful signal reconstruction is non-trivial, as, physically,342

surrounding climate processes during archive growth343

(e.g. with sufficient moisture availability) and impeded344

growth (e.g. in a drought period) are potentially very345

different and inferring from observations of one on po-346

tential observations of the other is probably very er-347

ror prone. A negative coupling strength bias has been348

found for the pairwise correlation estimate of irregular349

time series and linear Pearson correlation can be es-350

timated more efficiently employing a Gaussian kernel-351

based, adapted, correlation estimator [40].352

Gaussian kernel-based Pearson correlation The main353

idea of Pearson correlation is to take a mean over con-354

currently observed and standardized products of ob-355

servations from time series of stationary stochastic pro-356

cesses. Concurrency of observations is rare for unevenly357

sampled time series and would need to be forced via sig-358

nal reconstruction to allow the application of standard359

methods. Key idea of the Gaussian kernel-based estima-360

tor is to calculate a weighted mean over standardized361

observations, avoiding signal alteration. The Gaussian362

weights rate, e.g., a product of observations that are (al-363

most) concurrent higher than a product of observations364

that are far apart. The resultant estimator was tested365

on synthetic and real datasets and shown to be more366

efficient for irregular time series than other techniques367

(e.g. linear interpolation, inversion of the Lomb-Scargle368

periodogram) [40].369

Mutual information for irregularly sampled time series370

Mutual information MI(X,Y ) is a measure of the de-371

pendence (linear or nonlinear) between two random vari-372

ables, X and Y . This measure from information the-373

ory can be interpreted as the uncertainty reduction in374

variable X, given that we observed Y . It is symmetric,375

i.e. relationships of opposite sign but the same associ-376

ation strength give the same MI. The measure yields377

a null result if, and only if, the two random variables,378

in our case time series of observations, are independent379

[27].380

MI can be estimated using

MI(X,Y ) =
∑
x,y

px,y log
px,y
pxpy

, (1)

where px,y is the two-dimensional joint probability den-

sity function of the variables X and Y and px resp. py
are the one-dimensional probability distributions of X

resp. Y . Different estimators are applied to estimate

mutual information, starting from the joint probability

distribution, itself estimated from an x− y scatterplot.

In case of irregular sampling, however, the bivariate ob-

servations (Xt, Yt) at regular observation points t re-

quired for a scatterplot are not readily available. We

therefore perform a local reconstruction of the signal,

estimating for each point i {txi , xi} a local signal re-

construction by calculating a weighted mean of signal

{tyj , yj}, centering the weight around txi . If there are no

or too few observations yj available around txi this re-

construction is not performed. From this we get a new,

bivariate set of observations {txi , xi, yreci }. We then re-

peat the procedure by stepping through tyj , which yields

{tyj , xrecj , yj}. From these sets of observations we can

estimate the joint density of X and Y using standard

estimators for MI. We have compared the performance
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of MI estimation for standard linear interpolation and

our reconstruction scheme at varying sampling irregu-

larities. We followed the sampling sensitivity analysis

described in [40]. We generated AR1 processes at very

high time resolution and then re-sampled the observa-

tions onto the irregular observation times. The driving

process is given by

X(ti) = ΦX(ti−1) + ξi (2)

and we couple a second process to it at a time lag l

Y (tj) = αX(ti−l) + εi (3)

ξ and ε represent Gaussian distributed noise processes,381

Φ represents the prescribed autocorrelation and α the382

coupling parameter. Here we chose Φ = 0.5 and α = 0.8383

and, at unit average sampling rate, a time series length384

of 250 units. The expected value for mutual informa-385

tion of these processes at the lag of coupling is given386

by MI(X(t), Y (t + l)) = −0.5 log(1 − ρ2xy(l), where387

ρxy(l) = α = 0.8, as the processes follow a bivariate388

normal distribution [36]. We can then set out to esti-389

mate MI(X(t), Y (t + l)) from the simulated time se-390

ries and, comparing the result to the expected value,391

calculate the Root Mean Square Error (RMSE) of the392

estimators. We show the results in Fig. 2. With increas-393

ing sampling irregularity (i.e. larger gaps) the RMSE394

of the linear interpolation routine increases systemati-395

cally. This effect is also visible for the Gaussian-kernel396

based signal reconstruction, but it is much milder. We397

therefore conclude that estimating MI using local Gaus-398

sian kernel reconstruction is more efficient than using399

standard interpolation.400

2.2.3 Constructing a paleoclimate network401

The adapted similarity measures (Gaussian kernel-based402

correlation and MI estimation: gXCF andgMI ), form403

the basis for a network analysis of paleoclimate records,404

because employing them we can hope to be able to cap-405

ture the true dependence structure with small sampling406

bias. Network construction is conducted according to407

the following steps:408

1. In the first step, paleoclimate records in the study409

region, representing, presumably, one climatic com-410

ponent (e.g. monsoonal rainfall amounts) are iden-411

tified and checked for comparability: While their412

time sampling does not have to be equal, the av-413

erage sampling interval should be of the same order414

of magnitude. Within the time slice of interest, the415

record should consist of at least 100 observations,416

to ensure the power of the similarity tests.417

2. In the second step we pre-process the suitable datasets.418

We limit the time series to a time window of width419

W . For each record we subtract a nonlinear trend420

which we estimate by applying a Gaussian kernel421

smoother of a bandwidth of W/2. We choose the422

bandwidth such that we remove centennial-scale trends423

but do not smooth high-frequency (annual to decadal)424

variability. The data, within this time window, now425

has zero mean and unit variance.426

3. In the third step, the degree of similarity is esti-427

mated for all pairwise combinations of records. Within428

the overlap of the individual pairs, we calculate lagged429

MI and Pearson correlation in the ‘standard’ way,430

involving interpolation to an average time scale, iXCF431

and iMI, and using the adapted estimators, gXCF432

and gMI. To compensate for possible dating uncer-433

tainties, we determine the largest absolute value of434

the similarity function S(m∆txy), within time lags435

of m = 0 ± 1 around zero lag. As a result we get436

four matrices with MI, resp. correlation estimates.437

4. We then conduct pairwise significance tests for each438

similarity measure S as described in [40]: We con-439

struct surrogate time series following the null hy-440

pothesis that both records are uncoupled irregu-441

larly sampled autoregressive processes of order 1.442

The persistence time for the test time series is es-443

timated from the original records. The similarity444

function S(m) for these artificial data is estimated445

1000 times, so that the critical values, the 2.5 and446

97.5 % quantiles of the distribution of similarity es-447

timates, can be determined.448

5. Finally, these critical values are used to threshold449

the correlation matrices. If a significant correlation450

exists between the records i and j, i.e., Si,j
est < Si,j

2.5451

or Si,j
est > Si,j

97.5, we set A(i, j) = 1. If no significant452

similarity is found we set the entry to zero. We re-453

peat this for all four similarity estimators and obtain454

four adjacency matrices. We then sum the matrices455

to obtain the final, weighted, adjacency matrix for456

the network. The nodes i and j are linked, if any457

A(i, j) > 0. Link weight scales between zero (no458

link) and four (all measures find a significant link).459

Employing gMI, gXCF, iMI, and iXCF all together460

we can improve the robustness of the network de-461

tection, as then the resulting link weight reflects our462

certainty of a true similarity and cannot be due to463

the peculiarity of one measure.464

6. The obtained network can now be visualized and465

analyzed.466
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Fig. 2: Evaluation of the MI estimators for irregularly sampled time series. For each patch on the images we

generated 100 coupled AR-processes. Signal construction and sampling irregularity of the time series increases

along the x and y axis (analog to [40]). For each pair of time series we estimated MI, (A) based on interpolation

to a mean sampling rate and (B) using an adapted Gaussian kernel scheme (right panel). Colors indicate the

RMSE of the estimated cross-MI at the lag of coupling. For the interpolation scheme, a strong trend towards poor

performance is clearly visible for increasing sampling irregularity, while the Gaussian-kernel reconstruction scheme

still performs much better.

2.2.4 Basic paleoclimate network measures467

We calculate weighted node degree Di =
∑

j Wi,j , given468

by the sum of link weights Wi,j of a node i linking it469

to all j others. The overall link density L, is given by470

L =
∑

( i,j)Wi,j

4N , the sum of link weights divided by the471

possible sum of link weights, depending on the number472

of nodes N and involved similarity measures (here, 4).473

To understand the spatial distribution of our links, we474

define a third measure, PConn, the percentage of re-475

alized connections (PConn) between subdomains. We476

define it as the fraction of realized vs. possible links477

between nodes west of 95◦ longitude (nodes in the tra-478

ditional ISM domain) and nodes east of 95◦ longitude.479

We then generate 1000 random networks, redistributing480

links randomly (at the adjacency matrix level), and es-481

timate PConn from each. From the resultant distribu-482

tion of PConnsim we can find the fraction p of random483

networks that show a lower PConn than our observed484

PConnreal.485

Similarly, we calculate the average link density of all486

nodes and nodes east/west of the boundary to deter-487

mine if they show uniform or differing characteristics.488

3 Data489

In our analysis we include published proxy data from490

the Asian monsoon domain between 66◦ and 116◦E,491

and 10◦ to 39◦N (Fig. 1). We include tree-ring and sta-492

lagmite data as well as one annually laminated sedi-493

ment core [59], one ice core [54] and one reconstruction494

of summer temperatures compiled from tree-ring data495

and historic documents [66]. The data had to cover at496

least one of the periods (−30 to 100, 100 to 400 or 700497

to 1100 years BP) with at least 100 observations.498

Tree ring width chronologies (indicated by rwl-crn499

in Tab. 1) were used as provided, and raw tree ring500

width series (rwl) were assembled into chronologies by501

first detrending the individual tree series with a 50-502

year Gaussian kernel smoother (to remove youth bias),503

standardizing and then averaging the individual trees504

for the corresponding years.505

4 Results506

We derive small, but due to the spatial and archive-507

specific heterogeneities still very complex, networks from508

the datasets in Tab. 1. For each time period (MWP,509

LIA, late RWP) we select records fulfilling the data re-510

quirements described in Subsect. 2.2. We subsequently511

describe the retrieved networks visually, qualitatively,512

and quantitatively.513

4.1 Medieval Warm Period (MWP)514

In total, 10 records could be included in the network for515

the MWP (700–1100 years BP), out of which we had516
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Table 1: Table of all paleoclimate records used in this study. Records are listed from West to East. Proxy names

marked with asterisks (*) represent reconstructions of climate parameters. Tree data from China without accom-

panying reference are available and were downloaded from the ITRDB database at http://www.ncdc.noaa.gov/.

No Name Lat. [◦N] Lon. [◦E] Archive Proxy Reference

1 SO90-39KG-56KA 25 66 marine varve thickn. [59]

2 Akalagavi 15 74 stal δ18O [64]

3 Karakoram 36 75 tree *rainfall [56]

4 ktrc 10 77 tree rwl-crn [5]

5 imrf 13 77 tree *rainfall [38]

6 INDI019 30 78 tree rwl-crn [4]

7 INDI021 30 79 tree rwl-crn [4]

8 Jhumar 19 82 stal δ18O [48]

9 Dandak 19 82 stal δ18O [3], [48]

10 DasuopuC3 28 85 ice core δ18O [54]

11 Wah-Shikar 25 92 stal δ18O [48]

12 CHIN006 36 98 tree rwl [45]

13 CHIN005 37 99 tree rwl [45]

14 CHIN017 29 99 tree rwl [12]

15 CHIN019 29 100 tree rwl [12]

16 CHIN021 29 100 tree rwl [12]

17 CHIN001a 37 100 tree rwl-crn noaa-tree-5408; Zu, R.Z.

18 CHIN018 29 100 tree rwl [12]

19 CHIN020 30 100 tree rwl [12]

20 CHIN003 38 100 tree rwl-crn noaa-tree-5407; Zu, R.Z.

21 Wanxiang 33 105 stal δ18O [68]

22 Dayu 33 106 stal δ18O [52]

23 VIET001 12 108 tree rwl-crn [8]

24 Jiuxian-c996-1 33 109 stal δ18O [9]

25 Heshang 30 110 stal δ18O [25]

26 CHIN004ea 34 110 tree rwl-crn noaa-tree-5352; Wu, X.D et al.

27 NCPrecipIndex 37 112 historic + tree *JJA precip. [66]

28 Shihua 2003 39 116 stal *Temp [53]

http://www.ncdc.noaa.gov/
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Fig. 3: Temporal coverage of the Asian Monsoon records considered in the paleoclimate networks. While many

(22, resp. 25) datasets cover RWP and LIA, we find only 10 records at adequate resolution for the Medieval Warm

Period. All data was transformed to zero mean and unit variance for the plot. Shaded areas indicate the time

windows studied.

Table 2: Palaeoclimate record composition and results obtained from the networks for the three considered time

periods, MWP, LIA and RWP.

MWP LIA RWP

Time frame [yrs BP] 700–1100 100–400 −30–100

No. of records (All/ tree/ stal/
other)

10 (4/5/1) 25 (16/6/3) 22 (16/3/3)

No. of records East/West of 95◦E. 4/6 10/15 8/14

Weighted degree

(mean/<95◦E/>95◦E)
8.00 / 11.25 / 5.83 15.92 / 12.20 / 18.40 11.00 / 9.00 / 12.14

PConn (p-val) 0.24 (0.76) 0.14 (0.16) 0.13 (0.56)
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four tree, five stalagmite and one annually laminated517

marine record. References to data sources are given in518

Tab. 1. The node distribution is spatially biased, as519

more records are available from longitudes East of 95◦E520

(Tab. 2).521

After pairwise similarity assessment and significance522

testing at the 95%-level, we observe a well-connected523

network (Fig. 4). Still, the mean correlation levels for524

all measures (reported in Tab. 2) are not significantly525

different from zero (for gXCF and iXCF) and the in-526

trinsic estimator bias of approximately 0.6 (for gMI and527

iMI ). Note that though we report the upper and lower528

quantiles for MI, we only used the upper quantile to529

threshold the Correlation matrix, as MI is a symmetric530

measure (see also Subsect. 2.2.2).531

Between the 10 nodes we find 22 links, which have532

an overall weight of 40 (link weights scale from zero to533

four, as described in Subsect. 2.2). We find two links534

with highest certainty (weight=4, Wanxiang↔Dandak535

and Wanxiang ↔ Shihua), showing a strong West-East536

connection. The Dandak record is also linked with high537

certainty to Jhumar cave, SO90-39-KG-KA and the tree538

ring chronology CHIN006). It is the node with the high-539

est weighted degree, followed by the Wanxiang record.540

The weighted node degree is visualized by the size of541

the nodes in Fig. 4. The tree-ring record from Viet-542

nam, VIET001, is the node with the lowest degree, it543

is linked only to one, the easternmost marine record544

(1). Link weight, in Figs. 4A and 4B, is indicated by545

both width and darkness of the links. The nodes in546

the network in Fig. 4B are not placed according to547

their geographic origins but according to an iterative548

force-weighing algorithm. Linked nodes are attracted549

to each other, while nodes without connections are re-550

pelled. Isolates, only loosely connected nodes, here the551

VIET001 or CHIN005 tree ring records, tend to be552

pushed to the margins, while hubs, i.e., nodes that are553

strongly connected through the network (here: the Dan-554

dak stalagmite record), remain central.555

Finally, we divide the nodes into two sections, West556

and East of 95◦E and estimate regional degree and557

PConn, as defined in Subsect. 2.2.4.Were the two do-558

mains actually asynchronous and independent, we would559

not expect to find a significant fraction of realized links560

between nodes across the artificial border and, by con-561

sequence, PConn to be low. Assuming independence562

of the regions, we would also expect the node degree563

statistics on both sides to be homogeneous. However,564

at an average weighted degree of 8 we find that nodes565

in the West show an almost twice as high degree as566

further East (Tab. 2). We find PConn = 0.24, so ap-567

proximately one quarter of the possible links are re-568

alized. Conducting our simple statistical test in which569

we redistribute the links randomly across the network570

for each similarity measure, we find that 76% of these571

networks have fewer connections between the subnet-572

works, so the connectivity across the artificial border is573

rather high.574

4.2 Little Ice Age (LIA)575

In the more recent period of the LIA (100–400 years576

BP) we were able to include 25 records, 16 from trees,577

6 stalagmite and 3 other records (Records no. 1, 10 and578

27, see Tab. 1). Again, the node distribution is spatially579

biased towards China, with two thirds of the records580

located east of 95◦E.581

108 links connect the nodes, with a weight sum of582

199 and a weighted link density of ≈ 17%. We find 5583

links of highest and 16 of high certainty (Fig. 5). The584

‘supernodes’, having the highest degree, are th e Chi-585

nese stalagmite record, Dayu (sum of weights 27) and586

the tree chronology, CHIN018 (weight sum 26). The587

South Indian record of Akalagavi has the lowest link588

weight sum (5). At the same time, the previously (dur-589

ing the MWP) almost isolated Vietnamese tree-ring590

record, VIET 00, is now well-connected to the network591

(weight sum 14) and is with highest certainty associ-592

ated to tree-ring record CHIN018! In the force-weighted593

representation (Fig. 5B), however, it is still pushed out-594

wards, similar to the almost isolated Akalagavi record595

from Southern India.596

During the time period of the LIA, the average de-597

gree east of the artificial 95◦E boundary is 30% higher598

than on the Indian side of the boundary, while the over-599

all weighted degree is almost twice as high as compared600

to the MWP. This is concordant with twice the num-601

ber of available nodes. The estimated PConn is lower602

(0.14) across the border and relatively few, only 16%,603

of the randomly generated networks have a lower con-604

nectivity.605

4.3 Recent Warm Period (RWP)606

For the RWP (−30–100 years BP, i.e., 1850–1980 AD)607

we included 22 records, out of which 16 came from trees,608

three from stalagmites and three from other sources609

(Number 1, 10 and 27 in Tab. 1). Roughly 60% of610

the nodes lie west of 95◦E, the spatial bias is there-611

fore slightly lower than in the preceding time intervals.612

There is no apparent overall association amongst all613

nodes, as the mean correlation levels are well between614

the critical values, given in Tab. 2.615

The obtained network is rather sparsely connected616

(Fig. 6). We find 62 links between the 22 nodes with an617
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A MWP network in geo-coordinates

B MWP network force weighted

Fig. 4: Network for the MWP: (A) network embedded in the observation space with true geo-coordinates; (B) a

force-weighting algorithm was applied in which linked nodes are attracted and unlinked nodes repelled, providing

a complimentary network view independent of the nodes’ locations. The darker and thicker a link, the higher its

weight; the size of a node corresponds to its weigthed node degree, whereas the node color indicates the type of

archive (cp. Fig. 1).
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A LIA network in geo-coordinates

B LIA network force weighted

Fig. 5: Network for the LIA: (A) network embedded in the observation space with true geo-coordinates; (B) a

force-weighting algorithm was applied in which linked nodes are attracted and unlinked nodes repelled, providing

a complimentary network view independent of the nodes’ locations. The darker and thicker a link, the higher its

weight; the size of a node corresponds to its weigthed node degree, whereas the node color indicates the type of

archive (cp. Fig. 1).
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A RWP network in geo-coordinates

B RWP network force weighted

Fig. 6: Network for the RWP: (A) network embedded in the observation space with true geo-coordinates; (B) a

force-weighting algorithm was applied in which linked nodes are attracted and unlinked nodes repelled, providing

a complimentary network view independent of the nodes’ locations. The darker and thicker a link, the higher its

weight; the size of a node corresponds to its weigthed node degree, whereas the node color indicates the type of

archive (cp. Fig. 1).
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overall link sum of 121. The overall weighted link den-618

sity is ≈ 13%. Only two links of highest certainty are619

observed (Heshang↔ CHIN001a; CHIN021↔CHIN20)620

and seven of high certainty. The most connected node is621

the Chinese tree-ring record CHIN017, and the Akala-622

gavi record has the second highest weighted degree (17).623

SO90-39-KG is an isolated node in this time interval,624

with no link to the rest of the network and the Indian625

tree-ring chronology INDI019 has only a weighted de-626

gree of 2. VIET001 has an above-average weighted de-627

gree (16) and is, like the South Indian Akalagavi record628

(17) well-connected to the network, both are centrally629

located in the force-weighted network representation630

(Fig. 6B).631

Although the across-border connectivity PConn is,632

at 0.13, lower for the RWP than for the previous LIA633

period, the significance of the estimate (p=0.54) is low634

due to the overall lower number of connections (a lower635

average degree than in LIA) and the result can not be636

distinguished from a randomly generated network of the637

same link density.638

4.4 Comparison of Medieval Warm Period, Little Ice639

Age, and the Recent Warm Period640

Summarizing the above results we find that641

– the warmer MWP featured a high overall link den-642

sity, a strong West-East connection and a higher643

node degree west of the artificial boundary.644

– the colder LIA showed an lower link density, a lower645

West-East linkage and a higher degree east of 95◦E646

longitude. Within the ISM domain, fewer links con-647

nect meridionally than zonally.648

– during the relatively warmer RWP we derive the649

lowest overall link density and a medium West-East650

connectivity, consistent with a more uniform net-651

work.652

– although the net connectivity PConn is decreas-653

ing towards the present (0.24, 0.14, 0.13) for MWP/654

LIA/ RWP, this is consistent with an decrease in655

link density (0.22, 0.17, 0.13). If we account for this656

effect by standardizing the fraction of realized zonal657

edges by dividing by the average link density, we658

observe a pattern that is in accordance with the659

significance test results: PConn/D ≈ (1.1, 0.8, 1.0)660

is high 1000 years ago, drops for the period of the661

LIA and is higher, though not at the MWP level, for662

the most recent RWP network. In compliance with663

this, the p-values we obtained show the same pat-664

terns, (0.76, 0.16, 0.54). These p-values indicate how665

PConn is to be interpreted with respect to the null666

hypothesis of the network being homogeneous and667

random. The high value of p during the MWP points668

towards a stronger zonal linkage than expected from669

random graphs of the same link density. The low670

value for the LIA reflects a lower connectivity, which671

is inconsistent with an overall association between672

the areas east and west. The RWP network is prac-673

tically random (p = 0.54, close to the median of the674

PConn from surrogate networks).675

The mean correlation level in the time section, consider-676

ing all pairwise similarities, is close to to the zero, resp.677

the bias level for MI (results not shown). We would like678

to point out that, although we do have a shift towards679

a higher fraction from tree-ring records towards today,680

the average tree-link density is slightly higher but com-681

parable to the link densities observed amongst the rest682

of the nodes for LIA and RWP (see Tab. 2) and much683

lower for the MWP.684

5 Discussion and Conclusions685

Medieval Warm Period The MWP paleoclimate net-686

work, representing a period of northern hemispheric687

warmth, shows strong zonal connectivity between the688

subdomains, linking India and China very effectively.689

This strong eastward flow of dynamical information in-690

dicates a strong ISM circulation, with a strong ISM691

penetration into the mainland of China. A tempera-692

ture modulation of ISM strength has been observed693

on decadal to millennial timescales [9,68,60,11] and is694

expected from model results [42]. Increased northern695

hemisphere temperature could have allowed an earlier696

retreat of the Tibetan High in spring parallel to a more697

northward intrusion of the ITCZ. This could then have698

resulted in an earlier ISM onset, and a prolonged and699

enhanced ISM season. We hypothesize that increased700

circulation allowed deeper eastward ISM penetration701

into China, and that the northern ITCZ is the main702

factor linking India and China during the MWP sum-703

mers.704

Little Ice Age In contrast to the MWP, the cool LIA705

yields a comparably weaker information flux towards706

the East and strong regional associations within China,707

pointing towards increased regional scale, or EASM, in-708

fluence in this region. The low number of meridional709

links over India during the LIA and the disconnection710

between the ASM sub-systems could be explained if we711

invoke a southward mean ITCZ position, leading to a712

relative strengthening of local weather effects in India713

and China, and a disruption of the link between the ISM714

and EASM domains. At the same time the Vietnamese715

tree-ring record is now strongly connected to sites in716
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central China, and we find highly significant links across717

the Tibetan Plateau. A relative increase in the Tibetan718

High and an increased importance of local effects dur-719

ing this cold phase would explain these observations.720

In agreement with this the (at present ISM-dominated)721

record from Wanxiang cave [9] was found to show a722

wetter MWP and RWP with stronger, and a drier LIA723

with weaker monsoon periods, respectively. A link be-724

tween the Indian Dandak cave record, located centrally725

in the zonal ISM inflow corridor, and Wanxiang cave726

was observed for the onset phase of the LIA [3,40]. Un-727

fortunately, we have no insight in this link during the728

entire LIA period because the Dandak record does not729

fully cover the LIA. However, for the Jhumar stalagmite730

record, which is located in close proximity to the Dan-731

dak site, we do not find highly significant multi-annual732

to decadal scale similarities during the LIA period, cor-733

roborating our hypothesis of a weakened teleconnection734

between India and China at that time.735

Recent Warm Period The paleoclimate network for the736

most recent time period does neither indicate strong737

nor weak zonal information flow. Link orientation ap-738

pears to be almost random, which could be consistent739

with a transition from the ‘cold state’ (emphasized Ti-740

betan High and local effect importance, and decreased741

ISM meridional components) to a ‘warm, MWP-like,742

state’ (deep eastward ISM penetration, strong merid-743

ional links within India). This is also supported by node744

degree statistics, which show an equal distribution of745

links on both sides of the artificial 95◦E boundary. Our746

observation period does, however, include the transi-747

tion from the LIA [37] and increasing anthropogenic748

impacts and alteration of the atmosphere, also in mon-749

soonal Asia [41,68], and we must be careful not to over-750

interpret this results.751

752

Though the quantitative accordance between the753

two warmer periods is striking, the low spatio-temporal754

resolution of the MWP proxies is a potential source of755

uncertainty. While we strove to ensure comparability756

by sampling all regions in both networks, archive com-757

position becomes tree-oriented toward the present. Al-758

though a source of uncertainty, the bias should be neg-759

ligible, because the tree-specific link densities are not,760

or little, higher than for the rest of the archives. This761

could be due to the fact that the tree-sites we included,762

especially those in Central China, are located in moun-763

tainous areas, where strong geographic heterogeneities764

in form of valleys and mountains induce local moisture765

flow divergences.766

The low number of available paleoclimate proxy records767

from the late Holocene is the reason why we chose768

to combine temperature and precipitation-dominated769

records, based on the assumption of a functional rela-770

tionship between the parameters. If a sufficient num-771

ber of datasets representing variability of one climate772

parameter across the Asian monsoon domain is avail-773

able, we could attempt to reconstruct physical flows774

as in more recent climate network analysis [16,30], but775

at present such an analysis, at least for sub-decadal to776

decadal scale variability, is not feasible in the ASM do-777

main. On decadal to centennial time scales, such an778

analysis might, however, be feasible with the inclusion779

of other terrestrial and marine archives (e.g. pollen,780

coral, or lacustrine records). Our study focused on the781

Asian monsoon, but it is equally possible – and informa-782

tive – to use available paleoclimate records from other783

locations in addition to study the regional response to784

forcing factors like the North Atlantic Oscillation, or785

El Niño Southern Oscillation (ENSO). Future exten-786

sions of this method may consider directionalities and787

indirect couplings, e.g., derived from recurrence based788

methods [17,70]. Furthermore, it would be informative789

to use the new method for time intervals during in-790

terstadial, stadial, and interglacial times. Such study791

could shed light on the variability of, e.g., monsoonal792

teleconnections during these periods.793

Discussion of the paleoclimate network approach The794

paleoclimate network approach is a potentially very795

powerful tool to complement the currently mostly visually-796

based paleoclimate data interpretation. While it is pos-797

sible to compare a few records by eye (performing so-798

called ‘wiggle matching’), this becomes more difficult799

when the number of datasets grows. Indeed, the sim-800

ilarity between some of the time series in Fig. 3 is801

obvious (e.g. between the Dandak and Jhumar δ18O802

time series), but the advantage of the paleoclimate net-803

work approach is that we obtain figures for the degree804

of similarity, not only concerning the relationship be-805

tween two proxy records, but also its ties to all other806

records included in the analysis. Therefore, to address807

the question (“How did the subsystems interact during808

the different time periods?”) we were able to compute809

a connectivity index from realized links connecting the810

subdomains. The results indicate that interaction was811

stronger during the MWP than during the LIA, and812

the recent warming finds more MWP-like conditions.813

Contemplating the time series in Fig.3 by eye alone we814

could not possibly have come to such a similar conclu-815

sion.816

Uncertainties of the records should be incorporated817

into similarity assessment wherever possible. This can818

be done, for example by comparing, visually or numer-819

ically, on an absolute time scale [7], where the dating820
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errors are moved into the proxy domain and the time821

scale becomes certain. Provided with a proxy record822

with confidence bounds it is possible to incorporate823

these uncertainties into the paleoclimate network ap-824

proach numerically (i.e. via Monte Carlo simulations).825

A basic prerequisite for this, however, is the access to826

dating information for all data that should be included,827

a requirement not met at the moment.828

More generally, a paleoclimate network is a tool that829

enables us to obtain a spatio-temporal fingerprint of the830

climate system, a visual representation that summa-831

rizes what we can see by eye – and more. We could use832

it also to study proxy response to climate parameters833

be they linear or nonlinear [1,43], as it relies on asso-834

ciation measures suitable for irregular sampling. Simi-835

larly, weather station data is often riddled with gaps,836

making it necessary to reconstruct these missing data837

– or cut the time periods to the sections of overlap.838

To compare them amongst each other – and to proxy839

reconstructions – Gaussian kernel-based correlation es-840

timation [40] and mutual information are well-suited.841

Such a systematic validation could, for example, take842

place in the framework of interacting networks [14], or843

in a potential multivariate extension of the paleoclimate844

networks.845

We have attempted to reconstruct monsoonal dy-846

namics of the last millennium using a combination of847

different paleoclimate archives and proxies from Asia.848

Using a paleoclimate network approach we find that the849

warm climate of the Medieval Warm Period was char-850

acterized by a strong zonal ISM penetration into China,851

whereas during the cold Little Ice Age the meridional852

component within the EASM was strengthened. We hy-853

pothesize that the ITCZ (itself responding on a variety854

of factors) is the major influencing factor connecting the855

two sub-systems of the Asian monsoon domain during856

warm intervals. During cold periods, the Tibetan High857

would have forced a retreat of the ITCZ and local effects858

become more dominant. Though we can, at present, not859

make a statement about the future of the ISM strength,860

we find that the most recent period (1850 to 1980 AD)861

is dynamically more similar to the MWP than to the862

LIA.863
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