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Abstract 

Soil degradation by water erosion in a sub-humid West-African catchment:       
a modelling approach considering land use and climate change in Benin 

Soil degradation threatens agricultural production and food security in Sub-Saharan 

Africa. In the coming decades, soil degradation, in particular soil erosion, will become 

worse through the expansion of agriculture into savannah and forest and changes in 

climate. This study aims to improve the understanding of how land use and climate 

change affect the hydrological cycle and soil erosion rates at the catchment scale.  

We used the semi-distributed, time-continuous erosion model SWAT (Soil Water 

Assessment Tool) to quantify runoff processes and sheet and rill erosion in the Upper 

Ouémé River catchment (14500 km2, Central Benin) for the period 1998-2005. We 

could then evaluate a range of land use and climate change scenarios with the 

SWAT model for the period 2001-2050 using spatial data from the land use model 

CLUE-S and the regional climate model REMO. Field investigations were performed 

to parameterise a soil map, to measure suspended sediment concentrations for 

model calibration and validation and to characterise erosion forms, degraded 

agricultural fields and soil conservation practices. 

Modelling results reveal current “hotspots” of soil erosion in the north-western, 

eastern and north-eastern parts of the Upper Ouémé catchment. As a consequence 

of rapid expansion of agricultural areas triggered by high population growth (partially 

caused by migration) and resulting increases in surface runoff and topsoil erosion, 

the mean sediment yield in the Upper Ouémé River outlet is expected to increase by 

42 to 95% by 2025, depending on the land use scenario. In contrast, changes in 

climate variables led to decreases in sediment yield of 5 to 14% in 2001-2025 and 17 

to 24% in 2026-2050. Combined scenarios showed the dominance of land use 

change leading to changes in mean sediment yield of -2 to +31% in 2001-2025. 

Scenario results vary considerably within the catchment. Current “hotspots” of soil 

erosion will aggravate, and a new “hotspot” will appear in the southern part of the 

catchment. Although only small parts of the Upper Ouémé catchment belong to the 

most degraded zones in the country, sustainable soil and plant management 
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practices should be promoted in the entire catchment. The results of this study can 

support planning of soil conservation activities in Benin. 

Kurzfassung 

Bodendegradation durch Wassererosion in einem semi-humiden west-
afrikanischen Flusseinzugsgebiet: ein Modellierungsansatz unter 

Berücksichtigung von Klima- und Landnutzungsänderungen in Benin  

Bodendegradation gefährdet die Agrarproduktion und Ernährungssicherheit in Afrika 

südlich der Sahara. In den nächsten Jahrzehnten wird die Bodendegradation, 

insbesondere die Bodenerosion, durch die Ausdehnung landwirtschaftlicher Flächen 

in die Savannen und Wälder und durch Klimaveränderungen zunehmen. Die 

vorliegende Studie versucht, das Verständnis der Zusammenhänge zwischen Klima- 

und Landnutzungswandel und dem Wasserkreislauf und Bodenerosionsraten auf der 

regionalen Skala zu verbessern. 

Das semi-distributive, zeit-kontinuierliche Erosionsmodell SWAT (Soil Water 

Assessment Tool) wurde verwendet, um die Abflussprozesse sowie Flächen- und 

Rillenerosion im Oberen Ouémé - Flusseinzugsgebiet (14500 km2, Zentral-Benin) für 

den Zeitraum 1998-2005 zu quantifizieren. Anschließend konnten mit dem SWAT-

Modell verschiedene Landnutzungs- und Klimaszenarien für den Zeitraum 2001-

2050 berechnet werden. Dafür wurden räumliche Daten des Landnutzungsmodells 

CLUE-S und des regionalen Klima-Modells REMO verwendet. Felduntersuchungen 

wurden durchgeführt, um die Bodenkarte zu parametrisieren, Schwebstoffkonzen-

trationen zur Modellkalibrierung und -validierung zu messen sowie Erosionsformen, 

degradierte Äcker und Bodenschutzmassnahmen zu charakterisieren.  

Im Rahmen der Modellierung wurden aktuell besonders erosionsgefährdete Gebiete 

im Nordwesten, Osten und Nordosten des Oberen Ouémé Einzugsgebietes 

identifiziert. Infolge der schnellen Expansion von Ackerflächen aufgrund des hohen 

Bevölkerungswachstums (z.T. bedingt durch Migration) nehmen Oberflächenabfluss 

und Bodenabtragsmengen zu. Die mittlere Sedimentaustragsrate am Gebietsauslass 

des Oberen Ouémé - Flusses könnte sich dadurch bis 2025 je nach 

Landnutzungsszenario um 42 bis 95% erhöhen. Im Gegensatz dazu führten 
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simulierte Veränderungen der Klimavariablen zu einer Abnahme der mittleren 

Sedimentaustragsrate um 5 bis 14% in 2001-2025 beziehungsweise 17 bis 24% in 

2026-2050. Kombinierte Szenarien ergaben eine Dominanz der 

Landnutzungsänderungen und daraus resultierende Veränderungen der Sediment-

austragsrate von -2 bis +31% in 2001-2025. Die Ergebnisse der Szenarienanalyse 

variieren erheblich innerhalb des Einzugsgebietes. Aktuell besonders 

erosionsgefährdete Gebiete  werden in Zukunft noch stärker betroffen sein; hinzu 

kommt ein zusätzlich erosionsgefährdetes Gebiet im südlichen Teil des 

Einzugsgebietes. Obwohl nur ein kleiner Teil des Oberen Ouémé - Einzugsgebietes 

zu den am stärksten degradierten Teilen des Landes gehört, sollten nachhaltige 

Boden- und Pflanzenmanagement- praktiken im gesamten Gebiet gefördert werden. 

Die Ergebnisse dieser Studie können die Planung von Bodenschutzmassnahmen in 

Benin unterstützen. 

Résumé 

Dégradation des sols soumis à l’érosion par l’eau dans un bassin versant 
subhumide de l’Afrique de l’Ouest: une modélisation prenant en compte les 

changements  d’utilisation des sols et des changements climatiques au Bénin 

La dégradation des sols menace la production agricole et la sécurité alimentaire en 

Afrique sub-saharienne. Dans les décennies à venir, la dégradation des sols, et plus 

particulièrement l’érosion des sols, risque de s’aggraver encore du fait de l’extension 

de l’agriculture vers la savane et la forêt ainsi que des changements climatiques. 

Cette étude a pour but d’aider à comprendre comment des changements d’utilisation 

des sols et des changements climatiques affecte le cycle hydrologique et les taux  

d’érosion des sols à l’échelle du bassin versant.  

Nous avons utilisé le modèle d’érosion SWAT (Soil Water Assessment Tool) semi-

distribué et continu dans le temps pour quantifier les processus de ruissellement et 

d’érosion en nappe et linéaire dans le bassin versant de l’Ouémé supérieur 

(14500 km2, au centre du Bénin) entre 1998 et 2005. Nous avons ensuite pu réaliser 

une gamme de scénarios d’utilisation des sols et de changements climatiques à 

l’aide du modèle SWAT pour la période 2001-2050 utilisant les données spatiales du 

modèle CLUE-S d’utilisation des sols et du modèle climatique régional REMO. Des 
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investigations de terrain ont été réalisées pour paramétrer une carte des sols, pour 

mesurer les concentrations de sédiments suspendus afin de calibrer et valider le 

modèle et pour caractériser les formes d’érosion, les sites agricoles dégradés et les 

pratiques de conservation des sols. 

Les résultats de la modélisation révèlent que les « points chauds » actuels de 

l’érosion des sols se situent dans les parties nord-ouest, est, et nord-est du bassin 

versant de l’Ouémé supérieur. À la suite d’une rapide expansion des zones 

d’agriculture liées à la forte croissance démographique (due en partie aux 

migrations) et de l’augmentation des ruissellements de surface et de l’érosion des 

sols de surface qui en résultent, la production moyenne de sédiments à la sortie du 

bassin versant de l’Ouémé supérieur devrait augmenter, selon les scénarios 

d’utilisation des sols, de 42 à 95% d’ici à 2025. Au contraire, les modifications des 

variables climatiques ont entraîné une diminution de la production sédimentaire de 5 

à 14% pour la période 2001-2025 et de 17 à 24% pour la période 2026-2050. Les 

scénarios combinés ont montré que les changements d’utilisation des sols dominent, 

entraînant un changement de la production moyenne de sédiments de -2 à +31% in 

2001-2025. Les résultats des scénarios varient considérablement à l’intérieur du 

bassin versant. La situation des «points chauds» actuels de l’érosion des sols va 

s’aggraver et un nouveau «point chaud» apparaître dans la partie sud du bassin 

versant. Même si seules de petites parties du bassin versant de l’Ouémé supérieur 

font partie des zones les plus dégradées du pays, il faut encourager des pratiques 

durables de gestion des sols et des plantes dans tous le bassin versant. Les 

résultats peuvent se révéler utiles pour planifier les activités de conservation des sols 

au Bénin. 
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1. INTRODUCTION 
 

1.1. Background 
 

Human-induced soil erosion began when land was first settled and used for intensive 

agriculture. Today, five to seven million hectares of agricultural land are lost each 

year, more than any prior time period in human history (Lal 1990). One fourth of the 

agricultural area worldwide has already been damaged, as overall agricultural 

productivity has become heavily reduced (Steiner 1994). In Africa, more than 500 

million hectares of land are affected by land degradation (Oldeman et al. 1991). The 

first global assessment of soil degradation (GLASOD) by Oldeman et al. (1991) 

identified water erosion as the dominant type of soil degradation causing one fourth 

of the productivity loss in Africa (Oldeman 1998). Nutrient depletion due to extremely 

low consumption of fertiliser and shortened fallow periods is an additional major 

cause of soil degradation in Sub-Saharan Africa. The net nutrient removal exceeds 

the net replenishment by a factor of 3 to 4 in many countries (Stoorvogel & Smaling 

1990). As such, soil erosion and nutrient depletion threaten agricultural productivity 

and food security in Sub-Saharan Africa (Sachs 2005). An agricultural growth of 4% 

per year would be necessary to ensure food security for the rapidly growing 

population in Africa (FAO 2001b). Unfortunately, estimations forecast either 

stagnation or decreases in crop yields resulting from a decline of soil fertility in the 

region (FAO 2001a).  

Soil degradation and climate change display a strong connection, as more frequent 

and intense extreme weather events, such as floods and droughts, enhance soil 

erosion and desertification, while reductions in average rainfall diminish soil erosion. 

Higher surface temperatures lead to an increase in the loss of organic carbon from 

soil, reducing overall fertility. Soil degradation also aggravates climate change by the 

decomposition of organic carbon in the soil, resulting in a lower biomass production 

(Steiner 1994).  

Africa is highly vulnerable to climate change. The roots of its vulnerability lie in the 

harsh climate, its heavy reliance on rain-fed agriculture and its low adaptive capacity 

due to human poverty, soil degradation, and institutional deficits. Agricultural 

production in many African nations is projected to be severely compromised due to 
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climate variability and change (UNEP 2007). Thus, climate change and soil 

degradation have the potential to undermine recent progress in the fight against 

hunger in Sub-Saharan Africa where the percentage of population classified as 

undernourished has declined from 35% in 1990 to 32% in 2003 (FAO 2006).  

In West Africa, the mean temperature and climate variability are projected to increase 

due to climate change. However, for the changes in mean rainfall, climate models do 

not yet provide consistent results (IPCC 2007). There is evidence from 

meteorological observations and modelling that the total annual rainfall may 

decrease in the sub-humid regions in West Africa within the next decades. This 

applies also to the small West-African country Benin.   

Despite the flat relief of the country, soil erosion and nutrient depletion are 

considerable problems in Benin, because high rainfall intensities and low-input 

farming systems are prevalent. The dominant erosion forms are sheet and rill 

erosion. Sheet erosion, i.e. the erosion of a thin layer of soil from the land surface by 

runoff water, is especially dangerous, because it is difficult to observe and measure 

at the regional scale (Schmidt 2000). The traditional fallow farming systems in Benin 

are only sustainable for long fallow periods of at least 5 to 10 years. However, 

population growth and poverty force people to reduce the fallow periods without 

compensation by other soil fertilisation strategies. In Benin, the use of mineral 

fertiliser is limited to cotton and maize. The integration of agriculture and animal 

husbandry is only practised by semi-sedentary Fulani herders. Additionally, Benin 

displays a moderate nutrient depletion rate comparable to that of Burkina Faso and 

Niger, while Nigeria and Ghana are characterized by high rates of nutrient depletion, 

and Kenya by very high rates of depletion (Stoorvogel & Smaling 1990). The 

dominant strategy for farmers in Benin is to increase the area of land under crop 

cultivation, which leads to extreme negative impacts on the environment on the 

whole (Mama & Oloukoi 2003).  

 

1.2. Aims of research 
 

The effects of global change on the water cycle are not yet well understood. 

A quantitative understanding of the effects of climate and land use change on water 

availability and soil degradation in tropical developing countries is scarce, and 
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management strategies for adaptation are still insufficient. Studies which assess the 

effects of climate change on hydrology at the catchment scale are hampered by 

uncertainties in climate projections, insufficient knowledge of land cover change, and 

the inadequate resolution of general circulation models (GCMs) (Mahé et al. 2005).  

In order to address these issues, the German Ministry of Education and Research 

launched the GLOWA programme (GLOWA = global change of the water cycle) in 

2000. The multidisciplinary IMPETUS project (Integrated management project for an 

efficient and sustainable use of freshwater resources in West Africa) is one of five 

GLOWA projects. The project aims to investigate the effects of global change on the 

water cycle and water availability at the regional scale in the Wadi Drâa in Morocco, 

and the Ouémé catchment in Benin. The first phase of IMPETUS (2000−2003) 

focused on the identification and analysis of factors influencing the water cycle, while 

the second phase (2003−2006) was dedicated to the modelling of scenarios of future 

impacts on the water cycle. In the current and final phase (2006−2009), management 

options for decision making are being elaborated based on scenario analysis and 

decision support systems for different problem clusters. More details about the 

IMPETUS-Project are provided in the project reports (e.g. IMPETUS 1999, 2003, 

2006, 2008). 

The present study is embedded within the IMPETUS project. The primary objective of 

this work is the analysis of soil degradation in the Upper Ouémé catchment in Central 

Benin. A special focus is on the quantification of soil erosion by water under recent 

conditions and future land use and climate change. Junge (2004) investigated current 

soil erosion at the local scale in the Aguima subcatchment of the Upper Ouémé. This 

study focuses on the regional scale, and the time periods 1998−2005, 2001−2025, 

and 2026−2050.   

 

The present study addresses the following questions: 

1. What are the characteristics of soil degradation in the Upper Ouémé 

catchment? What are the physical and chemical properties of the dominant 

soil types? 

2. What amounts of soil are lost in the Upper Ouémé catchment on a regional 

scale? How do climate and land use changes affect the rates of soil loss in the 

time periods 2001-2025 and 2026-2050?  
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3. Where are the current and future “hotspots” of soil erosion, and which 

measures are appropriate for soil conservation in the Upper Ouémé 

catchment? 

 

As part of the IMPETUS project, this study is closely linked to both earlier and current 

investigations carried out by other project members addressing hydrological, hydro-

geological, and pedological processes (e.g. Junge, 2004; Giertz, 2004; Sintondji, 

2005; El Fahem, 2008), land use/land cover change (Mulindabigwi, 2006; Judex, 

2008), socioeconomic aspects related to land degradation and resource 

management (Doevenspeck, 2005; Singer, 2005) and climate change (Paeth et 

al. 2008) in the Upper Ouémé catchment.  

 

1.3. Structural overview 
 

After a brief introduction to the background and the aims of this dissertation, 

Chapter 2 characterizes the Upper Ouémé catchment. Chapters 3 and 4 summarize 

the scientific knowledge about hydrological and erosive processes and common 

hydrological and erosion models. Chapter 5 describes the methods applied in the 

present study, including a description of the Soil Water Assessment Tool (SWAT 

model). Based on soil investigations in the field, Chapter 6 discusses the 

characteristics of the soils in the Upper Ouémé catchment and the current status of 

soil degradation. These soil investigations serve as a basis for model 

parameterization, calibration, and validation. Chapter 7 presents the primary results 

of this study, highlighted by the modelling results for the recent time period and for 

the period between 2001 and 2050, taking into consideration changes in climate and 

land use. The uncertainties inherent to the modelling process and the input data are 

analysed in Chapter 8. Finally, conclusions from the modelling results and 

management options for soil conservation are discussed in Chapter 9. 
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2. RESEARCH AREA 
 
The Upper Ouémé catchment (HVO) is 

located in the central part of the Republic 

of Benin between 9° – 10.5°N and 1.5° – 

3°E Greenwich. Benin borders the Gulf of 

Guinea in West Africa, and is surrounded 

by the countries Nigeria, Togo, Niger and 

Burkina Faso (Fig. 2.1). The Ouémé River 

is the longest river of the country. The 

Upper Ouémé catchment covers an area 

of 14500 km2, and is delimited by a small 

ridge to the East, the Atacora Mountains 

to the West, and low mountain ranges to the North, which serve as a divide to the 

Niger catchment. Altitude differences in the Upper Ouémé catchment are small 

 
Fig. 2.2 Overview of the Upper Ouémé catchment (HVO), including elevation and commune borders. 

Fig. 2.1 Location of the Upper Ouémé catchment 
(─) in Benin (West Africa).  
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(Fig. 2.2). Elevations in the Upper Ouémé catchment range from 225 to 400 meters 

above sea level, except for some isolated inselbergs in the vicinity of the geological 

Kandi fault in the southern part of the catchment. This relief rises from the Ouémé 

flood plain to the Djougou plateau in the West and the Parakou plateau in the East. 

The Upper Ouémé catchment covers parts of the Atacora department (commune 

Péhunco), the Donga department (communes Djougou, Copargo, Bassila) and the 

Borgou department (communes N’Dali, Parakou, Tchaourou, Sinende, Bembéréké). 

 

2.1. Climate 
 

Benin is located in the Dahomey gap, a dryer region of the Guinea coast zone where 

the Guinean tropical rainforest is interrupted by savannah formations. Benin covers 

four climatic zones: (1) a littoral humid tropical zone (1200–1400 mm rainfall per 

year), (2) a littoral and inland sub-humid zone (900–1200 mm rainfall per year), (3) a 

wetter inland zone (1200–1400 mm rainfall per year) in the West of Djougou and 

Nikki; and (4) a continental dry northern zone (900–1200 mm rainfall per year) (Faure 

& Volkoff 1998). In South Benin the rainfall regime is bimodal, with a short dry 

season during August and a longer dry season from November to March. In central 

and northern Benin, only one dry season occurs lasting from October to March 

(Faure & Volkoff 1998).   

The Upper Ouémé catchment 

belongs partially to the dry 

northern zone and the wetter 

inland zone with one dry 

season and a mean annual 

rainfall between 1100 and 

1400 mm.  The climate 

diagram of the Parakou station 

(Fig. 2.3) illustrates the 

monthly distribution of 

precipitation and temperature 

in Central Benin. The highest rainfall totals occur in August and September, whereas 

the highest temperatures are recorded in March and April, at the beginning of the 

           

 

 

 

 

 

 

 

 
Fig. 2.3 Climate diagram station Parakou, mean rainfall 
values for 1961–1990 (modified from Giertz (2004)).  
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rainy season. The average observed annual evapotranspiration in the region is 

800 mm (Walling et al. 2001); maximum values are recorded at the end of the dry 

season.  

Interannual rainfall variability in the Upper Ouémé catchment is high. For the Parakou 

and Beterou stations, the mean rainfall for 1998–2005 was significantly lower than 

the long-term mean for 1922–2005 (Table 2.1). However, the Djougou station 

recorded significantly higher values.   

2000 and 2001 were the driest years on record in the Upper Ouémé catchment, and 

1998 and 2003 were the wettest years in the period between 1998 and 2005. Since 

the 1970s, a rainfall 

deficit has been 

observed in tropical 

West Africa (Fig. 2.4, 

Hulme et al. (2001) 

and Ojo et al. (2004)). 

Rainfall at Beterou, 

Djougou and Parakou 

was almost 10% 

below the long-term 

average in the 1970s 

and 1980s, but has 

remained near the 

average since 1990.   

The rainy seasons in 

West Africa are 

primarily triggered by 

the northward and 

southward movement 

Table 2.1 Mean annual rainfall (1922–2005) for the Beterou, Djougou, and Parakou stations, and 
classification of rainfall sums for 1998–2005 (Data source: DMN Benin, oral comm. Diederich 
(IMPETUS)), dry/wet year: > 50mm below/above long long-term average. 

Station Long-term mean 
[mm/yr]

Mean             
1998-2005 [mm/yr] Dry years Wet years

Beterou 1196 ± 212 1150 ± 142 2000, 2001 2002
Djougou 1301 ± 220 1354 ± 211 2001, 2002 1999, 2003
Parakou 1199 ± 204 1113 ± 173 2000, 2001, 2002, 2005 1998  

 
Fig. 2.4 Observed rainfall variability for different regions in West Africa 
in 1950–2006 (unpublished from Fink & Kotthaus (IMPETUS)). The 
Upper Ouémé catchment belongs to the climate zone Guinea coast.  
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of the Intertropical Convergence Zone (ITCZ). As part of the Hadley circulation, two 

dominant air masses in the region, the wet South-West monsoon and the dry North-

East trade wind (Harmattan) shift in accordance with the ITCZ. As a consequence, 

four different weather zones determine the seasonal rainfall characteristics in the 

Upper Ouémé catchment (Fig. 2.5). From November to mid-February, zone A 

dominates, resulting in dry air masses and low rainfall amounts. In this period, the 

Harmattan deposits dust from the Sahara desert. Zone B is prevalent between mid-

February and mid-April, and between mid-October and the end of November, leading 

to short localized thunderstorms. Zone C, with its heavy rainfalls due to squall lines, 

is the main contributor for rainfall in the Upper Ouémé catchment. In 2002, these 

highly organized convective systems accounted for at least 50% of total annual 

rainfall in the region (Fink et al. 2006).  

Squall lines develop 

over the central 

Nigerian highlands and 

reach the research area 

at night between 2:00 

am and 3:00 am. The 

development of squall 

lines is not yet well 

understood, but appears 

to be triggered by the 

African Easterly Jet 

stream (IMPETUS, 

2003; Leroux, 2001). 

Low intensity, persistent 

monsoonal rainfalls associated with Zone D occur in the Upper Ouémé catchment 

only in August.  

 

2.2. Hydrology 
 

The Ouémé River displays significant differences in its water level between the rainy 

and the dry seasons. All tributaries in the Upper Ouémé catchment are ephemeral 

 

 
Fig. 2.5 Structure of the ITCZ over West-Africa, and weather zones in 
the course of the year in the Upper Ouémé catchment (HVO) 
(modified from Weischet & Endlicher (2000)).  
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rivers that dry up during the dry months. The last limnigraph of the Upper Ouémé at 

Beterou records continuous water flow from June to mid-December. Large tributaries 

such as the Terou River in the south-western part of the catchment and the Donga 

River in the north-western part of the catchment drain eastwards, while the smaller 

rivers are aligned in NNW-SSE direction like the rift system of the bedrock.  

As a consequence of the rainfall deficiencies in the last decades, runoff amounts in 

West Africa have been significantly lower than the long-term average (Ojo et 

al. 2004). Figure 2.6 underscores this observation for the Upper Ouémé outlet at 

Beterou. 

The dominant hydrolo-

gical processes in the 

catchment vary over the 

course of the year, and 

along the hill-slope. At 

the beginning of the 

rainy season, surface 

runoff is the dominant 

runoff pathway because 

the vegetation cover is 

still low, and the frequent appearance of macro-pores leads to a fast saturation of the 

soil. From mid-August through the end of October or November, the hydromorphic 

soils in the inland valleys are completely saturated. Soil moisture displays a high 

seasonality and extremely high small-scale variability (Giertz 2004). In general, the 

water content of savannah soils is lower than that of agricultural soils due to a higher 

permeability and thus a faster deep infiltration on savannah land (Giertz 2004).  

The groundwater table in the Upper Ouémé catchment fluctuates between 12 meters 

in depth in the dry season and zero to four meters in depth in the rainy season 

(El Fahem 2008). Two groundwater aquifers can be distinguished: (i) a seasonal 

aquifer in the saprolite and (ii) a permanent fractured aquifer in the Precambrian 

basement with a depth of about 40 meters (IMPETUS 2001). The floating ground 

water table in the saprolite develops during the rainy season as a consequence of 

accumulating water over impermeable plinthite and clay-rich saprolitic decomposition 

material (Fass 2004). Groundwater recharge in the Aguima catchment was estimated 

Fig. 2.6 Deviation from the mean annual discharge of the Ouémé at 
the Beterou station from 1950–2000 (IMPETUS 2002).  
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at 113 mm for 2002 by Fass (2004) from the climatic water balance and the changes 

in the soil water storage.  

The most important discharge gauges in the Upper Ouémé catchment are at the 

Aguima, Terou (Saramanga, Igbomakoro, Wanou), and Donga Rivers (Pont, Affon) 

(Fig 2.7). 

In this study, particular attention will be given to the heavily agriculturally used 

Donga-Pont subcatchment (586 km2) and the less extensively used Terou-

Igbomakoro subcatchment (2324 km2).  

In the period between 1998 and 2005, the measured runoff amounts in the main 

subcatchments ranged from 100 to 400 mm per year corresponding to areal annual 

rainfall sums between 900 and 1650 mm (Fig. 2.8). The highest runoff coefficients 

were observed at the Donga-Pont outlet, and ranged from 0.11 to 0.26 and from 0.10 

to 0.23 for the Donga-Pont and Terou-Igbomakoro subcatchments, respectively. For 

all studied subcatchments, the highest runoff coefficients were obtained in the years 

with the highest annual rainfall, specifically 1998, 1999, and 2003. For the Terou-

 
Fig. 2.7 Principal gauged subcatchments of the Upper Ouémé catchment.    
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Wanou subcatchment, discharge data was only available for the comparatively wet 

period between 1998 and 2000. This might explain the high runoff coefficients at this 

outlet.    

 

2.3. Geology 
 

The Upper Ouémé catchment is located on metamorphic and crystalline rocks 

forming the Dahomeyan basement as part of the Precambrian basement (Faure & 

Volkoff 1998). The Dahomeyan crystalline basement is divided into two main blocs, 

the western and eastern, separated from each other by a tectonic disruption, the 

Kandi fault  (Fig. 2.9). The eastern bloc is composed of granite gneissic rocks 

corresponding to a medium metamorphic gradient. In contrast, the western bloc 

consists of granolithic and aluminous gneissic rocks corresponding to a high 

metamorphic gradient (Faure & Volkoff 1998). Other major geological units of Benin, 

outside of the Upper Ouémé catchment, are the Atacora Mountain and three 

sedimentary basins: the coastal basin, the Kandi basin and the Volta basin.  

Rainfall - runoff relationships 1998-2005

0

100

200

300

400

500

800 900 1000 1100 1200 1300 1400 1500 1600 1700

Rainfall [mm/yr]

R
un

of
f [

m
m

/y
r]

Terou-Igbomakoro: 2324 km2

Donga-Pont: 586 km2

Ouémé-Beterou: 10090 km2
Ouémé-Sani: 3195 km2

Terou-Wanou: 3137 km2

 
Fig. 2.8 Rainfall - discharge relationships for the main subcatchments in the Upper Ouémé catchment 
between 1998 and 2005. The regression lines refer to the Terou-Igbomakoro (-) and Donga-Pont (--) 
subcatchments.  
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The geological map of the Upper Ouémé catchment distinguishes four principal litho-

stratigraphic units (Faure 1977a). West of Djougou, gneisses with muscovite and two 

micas and leucocratic rocks, rich in quartz and muscovite, are prevalent. East of 

Djougou, a large biotitic gneiss panel is located from Gangamou in the northeast to 

Bassila and Partago in the East (Fig. A.1, Appendix A).  

These gneisses are darker than the ones 

West of Djougou; the contents of quartz 

are lower and biotitic micas prevail. 

Syntectonic granites dominate the north-

eastern and the south-western area of 

the Upper Ouémé catchment. 

Embrechites, with variable mineralogical 

compositions, cover the south-eastern 

part of the catchment and the 

underground portion of the Ouémé River. 

A porphyroid formation with large 

feldspars and melanocratic properties is 

visible around the Inselbergs of Kpessou 

and Wari-Maro in the south of the 

catchment.   

The geological map contains two units of 

particular interest for soil scientists. First, 

the map classifies alterites, which are 

strongly weathered rocks corresponding 

in most cases to ferralitic soils. The alterites show a thickness up to 10 meters in the 

western part of the catchment (Office Béninois des Mines 1984). Second, the map 

classifies lateritic hardened soil horizons on the summits or at the lower slope, at the 

surface or subsurface.   

   

2.4. Geomorphology and soil genesis  
 

The Upper Ouémé catchment is characterised by a gently undulating relief with 

slightly inclined slopes. Faure & Volkoff (1998) classified seven geomorphologic units 

 
Fig. 2.9 Main geological units in Benin (modified 
from Faure & Volkoff (1998)). 
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on the crystalline basement in Benin. Three, in particular, cover the Upper Ouémé 

catchment: (1) the Djougou plateau, (2) the strongly dissected Pira peneplaine, which 

is characterized by steep convex slopes and a general lowering of thalwegs; and (3) 

the Parakou plateau on a granitic substratum. Swoboda (1994) distinguished four 

geomorphologic units in the savannah zone of northern Benin: peneplaines along the 

main water divide, high and low pediplaines, and inland valleys.   

Apart from the prevalent 

pediments, inland valleys are 

a characteristic morphologi-

cal form of the research 

area. Inland valleys are flat, 

long valley forms without 

clear drainage systems, and 

covered by grass savannah vegetation (Fig. 2.10). Inland valleys have been formed 

in the Quaternary, and show recent morpho-dynamics, specifically removal of fine 

soil fractions and deepening. Morphologically, inland valleys can be flat, concave, or 

convex. Inland valleys on granite and gneiss are generally U-shaped with concave or 

flat valley bottoms (Windmeijer & Andriesse 1993). At their borders, inland valleys are 

connected to the lower slopes of the pediment, which are often characterized by iron 

crusts and the ex-filtration of interflow.  

The pediplaines developed in the Quaternary as a consequence of polycyclic phases 

of activity and stability. The last phase of activity completed approximately 

2000 years ago, and was followed by an on-going period of stability with a 

predominance of soil formation. The pedimentation process (Fig. 2.11) drastically 

reduced the influence of the geology on recent geomorphologic forms.  

The pedisediments in the Upper Ouémé catchment form a 20–30 cm thick loamy 

sand layer (Hillwash, A-horizon), which was deposited at the end of the last activity 

period. The thickness of the Hillwash horizon varies locally and tends to increase 

downward slope. It compensates for the irregular surface of the underlying gravel 

and saprolite horizons (Bremer 1995). The gravel-rich B-horizon, bearing rounded 

crust fragments and concretions, was likely deposited approximately 7000 years ago 

(Fölster 1983). The pedisediments cover a saprolitic C-horizon. 

 
Fig. 2.10 Cross-section of an inland-valley in granite/gneiss in 
the Sudan-Guinea Zone (from Windmeijer & Andriesse (1993), 
adapted from Raunet (1985)).  
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The autochthonous soils, which developed over the saprolite, were completely 

removed in the Quaternary (Fölster 1983). 

Saprolite is a highly 

weathered material. It 

is characterized by a 

high percentage of 

new secondary 

minerals (kaolinite, 

sesquioxides) and 

significant depletions 

in cations and silica 

under an extensive 

maintenance of the 

rock structure 

(Fölster 1983). The 

saprolitic horizon is 

often biogeneously aerated, strongly acid, and shows high aluminium saturation, as 

well as higher nutrient contents than the B-horizon. The material contains 90% 

kaolinite in the clay fraction and displays a typical pseudo-primary structure and red 

or heterogeneous mottles, indicating iron oxidation and hydromorphisation. The 

drainage in saprolite is limited to very coarse pores, but the saturated hydraulic 

conductivity can be very high in tectonically stressed rocks with many rifts 

(Wiechmann 1991). In the Aguima subcatchment in the South of the Upper Ouémé 

catchment, saprolite was found at depths up to 12 meters (IMPETUS 2002).   

A number of different processes have formed the soils in the sub-humid tropics. The 

dominant processes are saprolithisation, humification, clay eluviation, ferralisation, 

plinthisation, and hydromorphisation. Humification refers to the decomposition of 

organic material in the topsoil. The mixing of the organic material and mineralized soil 

is supported by roots and soil fauna, particularly termites and lumbricides. Generally, 

the wet and warm climate causes a high litter decomposition rate, which results in 

lower organic carbon contents in the soils of the tropics than in the soils of temperate 

climates (Lal, 1990; Mulindabigwi, 2006). Clay eluviation describes the transport of 

clay by percolating water in coarse pores, leading to vertical differences in soil 

texture (Fölster 1983).  Ferralisation describes the combined processes of excessive 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 2.11 Morpho-dynamic activity phases and formation of slope  
pediments (gravel and Hillwash); polycyclic deposit sequence A–C 
(modified from Fölster (1983)). 
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silica removal and a high accumulation of sesquioxides (Goethite, Hematite, 

Gibbsite) and kaolinite in clay fractions. Presently, the distribution of ferricretes is 

irregular due to past polycyclic erosion and accumulation phases. In the Upper 

Ouémé catchment, large superficial ferricretes can be found on the plateaus around 

Bassila, Parakou and Djougou (Junge 2004). Plinthisation describes the hardening of 

pediment gravel due to an accumulation of ferri-oxides, primarily Goethite, in the B-

horizon. As a consequence of the lateral transport of soluble iron and the 

accumulation of water in depressions, plinthic horizons generally occur at the lower 

slopes or, as a result of relief inversion, at the summits (Fölster, 1983; Van 

Wambeke, 1991). Hydromorphisation describes the phenomenon of redox reactions 

in the subsoil due to a fluctuating water table or impounding water. Hydromorphic 

horizons frequently occur in inland valley soils or over a plinthic, poorly draining 

horizon. They are characterized by light grey to blue and red mottles. More details 

about the soil formation processes in the humid and sub-humid tropics can be found 

in Junge (2004), Fölster (1983) and Schachtschabel et al. (1998).    

In general, the Upper Ouémé catchment is dominated by ferruginous soils which are 

classified as Acrisols or Lixisols according to the World Reference Base (FAO-ISRIC-

ISSS 1998).  Ferralsols, Plinthosols, Gleysols and Vertisols also occur. Figure 2.12 

illustrates a simplified version of the soil map for the Upper Ouémé catchment. The 

soil maps of Benin were elaborated by French researchers from ORSTOM (now IRD) 

at the scale 1:200000 in the 1970s; soil types were distinguished according to the 

French soil classification system CPCS. The main soil types and their properties will 

be described in detail in Chapter 6. 

Overall, the Upper Ouémé catchment forms a not very heterogeneous land area with 

respect to its geology and its distribution of dominant soil types. However, soil 

variation along the toposequences is high and often exceeds the variation between 

different regions in the catchment. Vegetation and land use are adapted to this 

variability. 

 



2.RESEARCH AREA 
 

 

16

 

2.5. Vegetation and land use 
 

The West African savannah can be divided from South to North into the Guinea 

zone, the Sudan zone, and the Sahel zone (Chevalier 1990). The Upper Ouémé 

catchment belongs to the Northern Guinea zone (wet Savannah zone). The potential 

natural vegetation in this area is dry deciduous forest (Anhuf 1994). Brush and grass 

savannah are naturally conditioned only in depressions and inland valleys with long 

periods of water impoundments or on land with extremely nutrient-poor soils 

(Reiff 1998). Today, the Upper Ouémé catchment is characterized by a mosaic 

pattern of different savannah types consisting of substitute societies or succession 

stages. This pattern is a consequence of agricultural land use, particularly fallow 

systems and shifting cultivation, cattle grazing, and selective logging (Williams & 

Balling 1996). The recent vegetation types in the region can be classified into seven 

 
Fig. 2.12 Simplified soil map of the Upper Ouémé catchment, modified from ORSTOM (Dubroeuq, 
1977a/b; Faure, 1977a/b; Viennot, 1978).  
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types according to the definition of the Yangambi Conference (Table 2.2). This 

classification is based on the physiognomic aspects of vegetation.  

The land use map of the Upper Ouémé catchment was derived by Thamm et 

al. (2005) from a Landsat-TM satellite scene from 26.10.2000 (Fig. 2.13). The map 

classifies 14% of the catchment as cropland, 29% as forest and woodland savannah, 

and 56% as brush and grass savannah. The highest fractions of cropland are 

concentrated around the cities of Djougou and Parakou and along main roads. In 

contrast, the cropland area in the southern and central parts of the catchment is 

significantly lower. The central part is dominated by a protected forest (Fôret classée 

de l’Ouémé superieur).  

Agriculture is the primary economic sector of Benin. Local farming systems are 

characterized by non-mechanized low-input agriculture; tillage is carried out manually 

with hoe and blade. Few farmers use ox-ploughing, most of whom living in the 

northern part of the catchment. Fallow systems are dominant and migrants practice 

shifting cultivation. In the north-western part of the catchment, land is scarce and 

therefore fallow periods were shortened and fields become more permanent 

(Mulindabigwi 2006). 

 

Table 2.2 Types of vegetation in the research area (modified from Meurer, 1998; Sturm, 1993; Reiff, 
1998; Orthmann, 2005). 

Vegetation type Description Tree cover 

Forêt galerie 
(Gallery forest) Closed forest along rivers >75% 

Forêt dense 
(Dense forest) 

Mixed forest, mostly deciduous trees in the upper 
layer, not influenced by fire, dominant tree:  
Anogeissus leiocarpus 

>75% 

Forêt claire 
(Open forest) 

Small or medium-sized trees, more or less 
touching the canopy, sparse grass and herb layer, 
influenced by fire; often on small lateritic hilltops 

 
50–75% 

Savane boisée 
(Woodland savannah) 

Trees and shrubs form an open canopy; often on 
large lateritic sites 25–50% 

Savane arborée 
(Tree savannah) Grass savannah with scattered trees and shrubs 2–25% 

Savane arbustive 
(Brush savannah) Grass savannah with scattered shrubs Trees <2% 

Shrubs:<5%

Savane herbeuse 
(Grass savannah) 

No trees and shrubs, herb layer is dominated by 
grass; in depressions (inland valleys) and on 
shallow lateritic sites 

<2% 
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The principal crop in the catchment is yam (species Dioscorea cayanensis and 

Dioscorea rotundata). A large number of yam varieties are cultivated. Other important 

crops include cassava, sorghum, maize, cashew, groundnut, and cotton. The 

growing season typically lasts from May to October. The cultivation of rice in inland 

valleys is not yet widespread in the Upper Ouémé catchment, but shows a high 

potential to ensure food security in the future. Drought-resistant, four-month rice 

varieties are not yet available for farmers (Mulindabigwi 2006). The cashew cash 

crop is intercropped during the first 4 to 5 years, and later cultivated as monoculture. 

Only cotton farmers have access to mineral fertiliser, pesticides, and credits, since 

the government supports this production line (Maliki et al. 2002a). Therefore, the use 

of chemical fertiliser is limited to the cotton cash crop, and partially to maize fields; 

organic fertiliser is used only locally. Other efficient techniques to prevent soil erosion 

and to further improve water management are rarely applied (Mulindabigwi 2006). 

Rows of plantings 15–25 cm in height and earth mounds 50–150 cm in height for yam 

and cassava are employed in order to increase the arable soil depth, to loosen the 

 
Fig. 2.13 Land use map of the Upper Ouémé catchment derived from Landsat-TM data by Thamm et 
al. (2005). 
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soil, and to facilitate harvest. The mound density and height varies as a function of 

the crop variety, soil fertility, and topographic position (Mulindabigwi 2006). 

Traditionally a 4 to 5 year production cycle is followed by a long-term fallow period of 

10 to 15 years (Poss et al. 1997). Due to recent population growth, fallow periods 

have been shortened to only a few years without modifications in nutrient 

management. As a consequence, nutrient deficiencies are widespread. 

Dagbenonbakin (2005) calculated annual losses of 96 kg nitrogen, 11 kg 

phosphorus, and 119 kg potassium per hectare for a typical yam-cotton-maize-

groundnut-sorghum rotation in the Upper Ouémé catchment.  

The only ethnic group who traditionally practices animal husbandry are the Fulani 

herders. Some have been settling in Benin for decades and cultivate food and cash 

crops. Others, from the Sahelian zone, enter the country during the dry season 

searching for fertile pasture land. Most herders practice a large transhumance up to 

100 km from December to April and a small transhumance up to 20 km from July to 

October (Meurer 1998). 

Over the last decade pronounced land use changes have taken place in the Upper 

Ouémé catchment (Thamm et al. 2005). Judex (2008) determined annual agriculture 

area expansion rates of 4.5% to over 15% for the communes in the catchment. For 

example, the cultivated area increased by 261% in the Tchaourou commune and by 

127% in the Bassila commune between 1992 and 2002. This large agricultural 

expansion in the less densely populated rural municipalities in the southern Upper 

Ouémé catchment can be explained by high immigration rates (cf. Section 2.6) and 

extensive low-input agricultural systems. Settlers in the southern part of the 

catchment clear approximately 1500 ha of savannah and woodland per year in order 

to cultivate primarily yam (Doevenspeck 2005). But not also migrants, relying on 

slash and burn agriculture, but also development projects promoting market-

orientated cashew and tree plantations, as well as the increasing agricultural activity 

of women accelerate the expansion of the agricultural area. An annual deforestation 

rate of 2.5% (2000–2005) was published for Benin in FAO (2005).  

Land degradation is accelerated in the north-western part of the catchment. 

Following the five-phase model of ecological degradation developed by 

Mulindabigwi (2006) (Fig. 2.14), this part of the catchment has already entered the 

third stage termed “ecological degradation”. This stage displays a strong degradation 

of vegetation and soils, a reduced agricultural expansion, increasingly permanent 
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cropping, high erosion rates, reduced bush fire, a gradual fragmentation of land, land 

conflicts between families, and forms of migration. In contrast, the situation in the 

southern Upper Ouémé catchment belongs to the second stage termed “breakdown 

of ecological equilibrium,” which is characterized by fallow systems, a rapid 

expansion of agricultural areas, and intensive bush fires. The fourth stage, termed 

“structural food insecurity,” and the fifth stage, termed “misery and irreversible 

ecological degradation”, are not present in the Upper Ouémé catchment yet. 

However, the strong expansion of cashew plantations in the catchment could lead to 

a direct transition from the second stage to the fourth stage during which fallows 

disappear before the disappearance of natural vegetation (Mulindabigwi 2006).   

 
2.6. Population and migration 

 

7.86 million people live in the Republic of Benin. The last census in 2002 recorded a 

national population growth of 2.9% and an average population density of 

60 inhabitants per km2 (INSAE 2003). However, the population is irregularly 

distributed (Fig. 2.15). One fifth of the population lives in the periphery of Cotonou, 

which equals one percent of the total land area of the country (Doevenspeck 2005). 

Since the official implementation of the political-administrative decentralisation in 

2002, the original six departments have been restructured into twelve. The 

 
Fig. 2.14 Phase model of ecological degradation developed by Mulindabigwi (2006), modified. 
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communes have received increased responsibility, but to date these new authorities 

are hypothetical and bureaucratic due to a lack of financial and human capacities. 

Apart from the commune of Parakou (325 inhabitants/km2) and the commune of 

Djougou (46 inhabitants/km2), the communes in the Upper Ouémé catchment show 

population densities below 20 inhabitants per km2. However, overall, the population is 

growing rapidly in the whole country (Fig. 2.15).  

The less densely populated communes of Tchaourou and Bassila in the south of the 

catchment showed population growth rates of 4.9% and 4.8% per year between 1992 

and 2002, respectively, due to high immigration rates (INSAE 2003). The Upper 

Ouémé catchment is part of the transition zone between central and northern Benin, 

which has been a target area of a multi-ethnic migration movement since the 1970s 

(Doevenspeck 2005). Most immigrants left their point of origin in the North-West of 

Benin and the border regions of Togo due to soil degradation, crop yield decline, and 

Fig. 2.15 Population densities in the communes of Benin for 1992, 2002, and 2025 based on INSAE 
data and projections (modified from Doevenspeck (2005)).  
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social restraints (Fig. 2.16).  Seasonal forms of job migration are often the starting 

point for later, definitive immigration.   

Today, migrants form the majority of the population in the southern Borgou 

department. The most important ethnic groups in the Upper Ouémé catchment are 

the Yom, Dendi, Bariba, Nagot, and Fulani (French: Peulh). According to the 

projections of Doevenspeck (2005) based on census data from 1992 and 2002, the 

population in the Upper Ouémé catchment will more than double in the period 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.16 Motivations for migration to the southern Upper Ouémé catchment: a) problems in the home 
village, b) reasons for transmigration (modified from Doevenspeck (2005)).    

 
Fig. 2.17 Demographic projections for the Upper Ouémé catchment (from Doevenspeck (2005), 
business as usual scenario). 
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between 2002 and 2025 (Fig. 2.17). The settlements along the main roads and in the 

north-eastern part of the catchment are predicted to grow faster than the settlements 

in the Djougou region where land is already scarce.  
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3. HYDROLOGICAL PROCESSES AND SOIL 
DEGRADATION IN THE TROPICS  

  
This chapter provides an overview of discharge and erosive processes and the 

characteristics of soil degradation with a special focus on the sub-humid and humid 

tropics.    

 

3.1. Hydrological Processes in the tropics  
 

Several studies on hydrological processes have been conducted in the West-African 

wet savannah zone (e.g. Giertz, 2004; Varado et al., 2005; Le Lay & Galle, 2007). 

A detailed overview of research on hydrological and erosive processes in the humid 

tropics is provided in the comprehensive reviews of Bonell & Balek (1993), 

Bonell (1999), and Bonell (2005).  

Dominant hydrological processes  

Water circulates permanently through atmosphere, biosphere, pedosphere and 

lithosphere. The principal processes driving the water cycle are precipitation, 

interception, discharge, and evapotranspiration. Evapotranspiration includes all 

processes by which water at the earth’s surface is converted to water vapour, 

including evaporation from the plant canopy, transpiration, and evaporation from the 

soil. A fraction of rainfall is stored in the canopy (interception). Interception affects 

infiltration, surface runoff, and evapotranspiration, and reduces the erosive energy of 

rain drops.  

Total discharge is fed by overland flow and subsurface flow. Overland flows can be 

created by three mechanisms (Fig. 3.1, ABF). Overland flow can be induced by an 

infiltration excess (Hortonian overland flow), and this mechanism is generally 

dominant if high intensity rainfalls hit soils with low infiltration capacities. Overland 

flows can also be caused by saturation excess. This process is often observed in 

saturated, flat areas at the foot slope and on soils with low water holding capacity or 

subsoils with low permeability. The third mechanism is called return flow. In this case, 

overland flow is created due to a decreased permeability at the lower slope or 

specific slope morphologies that favour the emergence of subsurface flow on the 
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surface. Under natural forests, Hortonian overland flow typically does not appear in 

the humid tropics, even for extreme rainfall intensities, because macropores increase 

the saturated conductivity of the topsoil (Bonell 1999). 

Fig. 3.1 Runoff generation mechanisms (modified from Anderson & Burt (2005)). 
 

If the permeability of the soil is reduced, e.g. due to compaction or the destruction of 

the macro-porosity after converting natural vegetation into agricultural land, 

Hortonian overland flow becomes more dominant (Fig. 3.2, b). In contrast, overland 

flow due to saturation excess is an important mechanism for runoff generation under 

natural vegetation, in particular at the bottom of the slope (Fig. 3.2, a). Often 

subsurface storm flow is a major contributor to the development of saturation excess 

overland flow at the lower slope and in convergent areas (Douglas & Guyot 2005). 

The lateral movement of water in the shallow subsurface, the so-called interflow, is 

also a major runoff pathway in the soils of the West African savannah region 

(Bonell 1999; Giertz 2004). Acrisols and Lixisols with subsoils with low permeabilities 

or plinthic horizons along the slope promote interflow. At the lower slope, this water 

often ex-filtrates from the Plinthosols and re-infiltrates in the sandy Gleysols at the 

border of the inland valleys as long as they are not saturated (Giertz 2004). Interflow 

may also transport significant amounts of sediment in macropores and pipes, but this 

phenomenon has not yet been well investigated (Douglas & Guyot 2005).  

Infiltration and the movement of water in the unsaturated zone are complex 

processes, which are influenced by various factors, including catchment 

characteristics such as soil texture, hydraulic conductivity, land use, and land 

morphology, all of which are independent of the rainfall event. In contrast, rainfall 
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intensity, initial soil water content, and groundwater level vary between different 

events. 

Macropores, which were created by earthworms, termites, and ants, provide 

preferential flow paths and allow for a fast contribution to groundwater flow, 

especially during heavy rainfalls. However, in dry soils the macropores are not well 

connected, and the water infiltrates into the soil matrix. Giertz (2004) observed mean 

saturated hydraulic conductivities of 11.2 to 41.6 cm per day for the loamy-sandy 

topsoils in the Aguima subcatchment in Central Benin, depending on the degree of 

land use. Permeabilities in uncultivated soils were 3.7 times higher than in cultivated 

soils. The inter-annual soil water dynamics are primarily restricted to the two upper 

meters above the saprolitic weathering material.  

Water that percolates through the unsaturated zone into the saturated zone 

contributes to the groundwater flow. Most hydrological models in the tropics 

distinguish a shallow and a deep aquifer representing a saprolitic aquifer over a 

fractured aquifer. Water from the shallow aquifer can still return to the surface (return 

flow) or can re-enter the unsaturated zone by evapotranspiration from deep rooted 

plants. Water that enters the deep aquifer (deep recharge) is often assumed to be 

lost from the system.    

Giertz (2004) emphasized the important role of inland valleys in small catchments in 

the humid tropics. However, the effects of inland valleys on discharge peaks are a 

topic of on-going debate in the literature. Many authors have stated that inland 

valleys smoothen discharge peaks due to the high water holding capacity of clay-rich 

soils and reduce surface runoff due to dense grass vegetation. In contrast, some 

 
Fig. 3.2 Prevalent runoff generation processes under natural vegetation and agriculture (modified from 
Giertz (2004)). 
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authors have observed higher discharge peaks and amounts of overland flow due to 

saturation excess (e.g. Balak & Perry, 1973). However, as the size of inland valleys 

is seldom greater than a few hectares and their occurrences are generally connected 

to first-order streams, their influence on the hydrology of catchments with a size of 

several thousand square kilometres remains limited.  

 

3.2. Erosion Processes 
 

Erosion and sedimentation processes take place on the slopes and in the river beds 

of a catchment. Soil erosion by water on the slope is directly linked to overland flow. 

Therefore, the occurrence of soil erosion is strongly connected to the hydrological 

processes mentioned in the previous section.   

Dominant erosion processes 

Soil erosion by water can be defined as the detachment of soil particles and their 

subsequent transport (Schachtschabel et al. 1998). Cohesive soils, typically heavy 

textured or clayey soils, have a more cohesive force and require more energy for 

detachment. On the other hand, clayey soil particles are easier to transport. Thus, 

transport-limited conditions have to be distinguished from detachment-limited 

conditions. 

Table 3.1 characterizes the different types of erosion forms. Splash erosion 

describes the process by which rain drops hit the ground and detach soil particles. 

The intensity of the splash effect is directly linked to the vegetation height and ground 

and canopy coverages. Splash erosion decreases exponentially with increasing 

ground coverage (Lal 1990). Sheet erosion denominates the removal of a thin and 

fairly uniform layer of soil from the land surface by runoff water. Although soil 

detachment by splash proceeds transport by sheet flow, both processes may occur 

simultaneously during a rainfall event. Linear erosion forms are created by turbulent 

discharges. Depending on their deepness, they can be classified as rills or gullies. 

Shallow erosion rills, with a depth of up to 10 cm, and deep erosion rills, with a depth 

of up to 30 cm, are primarily created on sandy soils because of their low shear 

strength (Richter 1998). While splash and sheet erosion are caused by raindrop 

impact with and without overland flow, channel flow is crucial for detachment and 

transport during rill erosion (Lal 1990). The flow velocity in the channel is highly 
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influenced by the slope steepness. Gully erosion denotes the process during which 

water flowing at high speed gouges out gullies or deep depressions. The defined 

minimum depth of a gully varies between 30 and 50 cm in the literature (e.g. Sirvio et 

al., 2004; Richter, 1998). 

Rill and gully erosion 

frequently take place along 

foot paths and roads. In the 

tropics, large rills and 

gullies often lead to the 

exposure of nutrient-

depleted subsoil (Hashim 

et al. 1998). 

Crusting describes the 

phenomena by which soil 

particles silt upward leading 

to a decline in infiltration 

rates and a sealing of the surface. Structural crusts are directly related to the splash 

impact of raindrops, while depositional crusts result from the settling of fine particles 

carried in suspension by runoff. Tropical Lixisols are particularly prone to crusting 

and surface sealing. With continuous mechanized cultivation, the infiltration rate of 

some Lixisols may decline by several orders of magnitude in only three or four years. 

Crusting and surface sealing are among the major causes of high runoff rates on 

tropical soils (Lal 1990). All erosion processes are driven by various factors. 

Factors affecting soil erosion by water  

The main factors affecting soil erosion are soil properties, rainfall intensity, land use, 

and land morphology (Fig. 3.3). Rainfall intensity is especially high in tropical regions 

since precipitation is generally not created by cyclones or front effects, but rather by 

convection leading to a high proportion of torrential rains with locally limited, high 

intensity peaks (see Section 2.1). Richter (1998) has considered rainfall with 

intensities higher than 5 mm per 30 minutes to be erosive.  

Soil properties play an important role in erosion because they determine the resisting 

force of the soil. The erodibility of a soil is a function of physical, chemical, and 

biological soil properties, but also is affected by climate and the management 

Table. 3.1 Classification of erosion forms (composition from 
Sirvio et al., 2004; Richter, 1998; Auerswald, 1993). 

Process Limits Characteristics 

splash erosion on the surface, 
locally 

only detachment, no long 
transport 

sheet erosion 
(low, moderate) on the surface laminar, often underesti-

mated 
sheet erosion 

(severe) on the surface laminar, tree root 
exposure, severe crusting 

rill erosion 
(shallow) 

2–10 cm deep, 
< 50 cm wide 

frequent on sandy soils, 
high density 

rill erosion 
(deep) 

10-30 cm deep, 
> 50 cm wide 

entire topsoil concerned 

gully erosion > 30 cm deep permanent 

tunnel erosion < 200 cm wide 
seldom, mainly in arid 
zones; caused by inter-
flow over unstable subsoil 

crusting on the surface favoured by compaction 
and sheet erosion  
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system. Dynamic changes in soil erodibility during a rainfall event are not yet well 

understood (Lal et al. 1998). In general, soils with a high percentage of bonding 

material, organic matter, and clay contents have a high aggregate stability 

(Richter 1998) and a high water retention capacity, and thus reduce the extent of 

water erosion. In contrast, soils with silty or very fine sandy textured topsoils, low 

infiltration rates, and low organic carbon contents are easily erodible. Morphology, in 

particular inclination and slope length, heavily influence the flow characteristics and 

the type of erosion.   

The effects of land use change on 

the hydrological and erosive 

processes in the tropics were 

investigated by several authors (e.g. 

Lal, 1981; Giertz, 2004; Calder, 

1992). They attributed the 

observable increases in surface 

runoff and sediment yield after 

deforestation to the following three 

processes: (i) a decrease of 

interception, (ii) a lower transpiration 

leading to higher soil moisture and 

percolation, (iii) changes of soil 

properties due to land use change. Lal (1981) studied the influence of different 

deforestation techniques and types of land use conversion on surface runoff and soil 

erosion in southern Nigeria. He recorded the highest surface runoff amounts, up to 

250 mm/yr, after mechanical clearing with subsequent agricultural use. The effects of 

forest clearance are especially severe in the Sahelo-Sudano Zone where agricultural 

land use rapidly leads to a de-structuring of the top soil layer (Mahé et al. 2005). 

While increases in the total water yield due to selective logging are modest,  

suspended sediment fluxes can increase by a factor 2 to 50 (Warren et al. 2003). 

In general, a decreasing erosion risk of different land use types can be defined by the 

following sequence: bare fallow > arable land > perennial crops > grass cover > 

natural vegetation (Lal 1990). 

 
Fig. 3.3 Main factors affecting soil erosion. 
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Sediment delivery 

Generally, only a small portion of the eroded material at the hillslope reaches the 

main river channel. The remaining material is deposited at the foot-slopes and in the 

flood plains. The fraction of the eroded material divided by the sediment entering the 

main channel is called sediment delivery ratio (SDR). The SDR varies for different 

climate and catchment characteristics (soil, rocks, morphology, land use, 

anthropogenic activities). The SDR decreases with the size of the area, which can be 

explained by an increase of the time of concentration, hysteretic effects, and an 

increased chance of sedimentation (Van Noordwijk et al. 1998). Since the SDR is 

difficult to quantify, simple extrapolations of soil erosion amounts from plot-orientated 

erosion research to the regional scale are not possible. Catchments with sizes up to 

10,000 km2 generally have SDR values below 0.2 (Van Noordwijk et al. 1998), i.e. 

less than 20% of the eroded material reaches the channel. 

The majority of sediment is transported in suspension. The sediment which is 

transported near or on the riverbed, termed the bed load, is difficult to measure. 

However, in most cases it contributes less than 10% to the total sediment yield 

(Gregory & Walling 1973 in Malmer et al. 2005). Bank erosion, often undermining 

fallen riparian trees, can significantly change the morphology of the river bed 

(Douglas & Guyot 2005). 

In general, sediment flows are largely scattered and show high intra-seasonal 

variability. The relationships between discharge and suspended sediment 

concentrations (SSC) vary significantly between storm periods. The suspended 

sediment concentrations are often larger during the rising stage than during the 

falling stage (Douglas & Guyot 2005). The degree of impact of a rainfall event on the 

SSC depends on the antecedent conditions, the sediment availability, and the actual 

pattern of rainfall intensity during individual storms (Douglas & Guyot 2005). For 

example, the effects of storm flow on the sediment yield can be aggravated by water-

saturated soils due to an earlier event, active bank erosion, or the displacement of 

accumulated sediment from past erosive events (Douglas & Guyot 2005). The 

majority of sediment is transported during a few extreme rainfall events over the year.  

Nutrient depletion 

Nutrient depletion describes the process of diminishing nutrient contents in soil. Soil 

erosion is a major cause of nutrient depletion. Other causes include natural 
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weathering, wash-out, frequent burning, and removal of crops without compensation 

from organic or mineral fertilisers or crop residues (Donovan & Casey 1998). The 

macro-nutrients nitrogen (N), phosphorus (P), and potassium (K) are essential for 

plants, as they are required to produce proteins, set up fruits and seeds, take up 

nutrients, and facilitate respiration and transpiration (Mulder 2000). Nutrients occur in 

the soil in four different forms: (i) plant available nutrients in the soil solution from the 

mineralisation of soil organic matter (SOM) and mineral weathering, (ii) nutrients in 

the SOM, (iii) nutrient reserves in minerals, and (iv) nutrients that are absorbed by 

minerals and SOM, and which are available under favourable soil characteristics 

(Mulder 2000). SOM is the most important nutrient storage in traditional low input 

agricultural systems (Donovan & Casey 1998). Water percolating through the 

unsaturated zone reduces only the nutrient content in the soil solution. In contrast, 

soil erosion removes nutrients from the soil solution and nutrients bound to SOM and 

mineral soil particles.  

During the transport of the eroded material, the coarse aggregates deposit more 

rapidly. Thus, the transported material becomes finer and the nutrient content is 

increased relative to the original soil material. This nutrient enrichment associated 

with the suspended sediment load is described with the Enrichment Ratio (ER) and 

can be used for calculating the nutrient loss associated with soil erosion. However, 

like the sediment delivery, the ER is a complex and dynamic variable that depends 

on factors such as the soil type, the erosion mechanism, the scale, the biological 

activity, and the ground cover. On long slopes, the ER increases due to selective 

deposition and decreases due to entrainment. For clayey soils with limited fertiliser 

application, the relationship between soil and nutrient loss is closer than for soils of 

lighter texture for which the ER is much higher (Rose & Yu 1998).  

In summary, soil erosion and nutrient loss are often closely linked processes that 

lead to soil degradation. 

 

3.3. Soil degradation in the tropics  
 
Soil degradation defines a situation in which the deterioration of biological, physical, 

and chemical soil properties leads to a loss of economical and ecological functions of 

the soil (Steiner 1994). Physical, chemical, and biological degradation are 

distinguished depending on the affected soil properties. All three types of degradation 
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are strongly connected and show feedback mechanisms. The two most important 

processes that lead to soil degradation are soil erosion and nutrient depletion. Both 

processes can appear separately, but often aggravate each other in the sub-humid 

tropics, as the erosion of topsoil implies a loss of SOM and the associated nutrients. 

On the other hand, nutrient depletion can also be a causative factor for soil erosion 

because it reduces biomass and ground coverage (Hashim et al. 1998). Soil erosion 

affects physical, chemical, and biological soil properties. The loss of topsoil, 

preferably of fine, nutrient-rich particles, directly decreases rooting depths and water 

holding capacity. Other effects such as compaction, crusting, water-logging, and a 

decrease of biological activity are indirect consequences of the loss of SOM.  

Severity of soil degradation in the tropics 

While processes such as nutrient depletion, loss of SOM, and soil acidification are 

generally reversible, soil erosion is usually an irreversible process (Greenland 1994). 

The severity of erosion and its consequences depend on the absolute quantity of soil 

eroded and the depth and quality of soil remaining. The rate of erosion may not be 

necessarily greater in the tropics than in temperate regions, but the resulting 

productivity decline is often more drastic due to the harsh climate, low soil fertility, the 

poor quality of the subsoil (Lal 1990), or unstable soil properties (Steiner 1994). 

Harsh climatic conditions, high rainfall intensities, prolonged dry seasons, extensive 

drought periods, high population growth, and an excessive use of resources, have 

made tropical ecosystems particularly vulnerable to soil erosion and erosion-induced 

soil degradation.  

Several researchers have tried to define soil loss tolerances for specific soil types 

and environments; a threshold of 12 t/ha/yr is cited in the literature for tropical soils 

(Lal 1998). However, Lal (1985) measured a soil loss tolerance of only 1 t/ha/yr for 

shallow Alfisols, with a root restrictive layer at 20 to 30 cm in depth. Lal (1990) 

underlined that not all soils of the tropics are shallow, fragile, or structurally unstable. 

However, in many tropical soils, fertility is restricted to the SOM in the topsoil 

because the dominant clay mineral, kaolinite, has a very low potential cation 

exchange capacity (Ahn 1970). In the tropics, SOM contents under natural vegetation 

are not necessarily lower than in the temperate zone, but under cultivation, SOM 

declines about five times faster (Steiner 1994). Lal (2001) reported an SOM depletion 

of 70% within 10 years of cultivation in tropical regions.  
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Africa faces the greatest challenge of breaking the cycle of erosion-induced soil 

degradation and the resulting decline in crop productivity (Fig. 3.4). As a 

consequence, increasingly marginal lands are being cultivated (Lal 1990). Traditional 

resource-poor farming systems become unsustainable as natural fallow periods have 

to be shortened due to population growth. An intensification of agriculture is needed 

in order to stop soil depletion and to increase crop yields. On the other hand, very 

intense land use systems with high fertiliser inputs and monocultures should be 

avoided. 

Regular burning contributes significantly to 

soil degradation in the African savannah 

regions, destroying biomass, litter, and 

crop residues. Savannah fires destroy 

three times more biomass than forest fires 

(Levine 1994). Fires at the end of the dry 

season are the most harmful, because the 

soil is left uncovered during the first heavy 

rainfalls. As a consequence, soil erosion 

and crust formation are facilitated. Burning is a crucial factor for SOM destruction and 

emissions of greenhouse gases due to volatilisation. About half of the nitrogen and 

phosphorus in the burning biomass is released to the soil. Furthermore, higher soil 

temperatures accelerate the mineralization of SOM. Both processes provide a high 

nutrient availability for one to two years of crop production (Donovan & Casey 1998), 

but weaken soil fertility without long fallow periods or external inputs.  

Productivity losses due to soil erosion can be significant (e.g. Mantel & 

Van Engelen, 1999; Lal et al, 2000; Jakeman et al., 1998). Lal (1995) reported yield 

reductions in Africa from 2–40% due to soil erosion, which can be even higher on 

shallow soils. However, reliable quantifications of productivity losses due to soil 

erosion are scarce in the literature. The comparability of erosion studies is hampered 

due to missing information on regional land characteristics and climate conditions, 

non-standardized methods, poor design, short experimental periods, a lack of scaling 

procedures, and the complexity of prevailing weather conditions (Lal, 1998; Lal, 

2000). Moreover, improved agricultural technologies often compensate for the 

adverse effects of soil erosion and decline in soil quality.  

Fig. 3.4 Schematic circle of poverty and soil 
degradation. 
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Causes and effects of soil degradation 

Direct and indirect causes, as well as on-site and off-site effects of soil degradation 

on physical, chemical, and biological soil properties can be distinguished (Fig. 3.5). 

The on-site effects are more directly relevant, leading over time to a decline in soil 

fertility and harvest yields if nutrient losses are not compensated for. In contrast, 

negative short-term on-site effects on agronomic productivity due to the damage of 

seeds and individual plants, and off-site effects on water quality and infrastructure, 

are of minor importance in low-input agriculture areas without steep slopes. While the 

effects of soil erosion are generally negative, soil deposition at the bottom slope can 

be beneficial over time, and provides the basis for paddy rice fields and fertile flood 

plains (Van Noordwijk et al. 1998). On the other hand, nutrient-enriched colluvial 

materials often show hydromorphic properties, a low mechanical resilience, and a 

high degree of erodibility due to a well sorted grain size and an unsuitable soil 

structure. 

 

The most important direct causes of soil degradation in Sub-Saharan Africa are 

overgrazing by cattle, regular burning, deforestation, agricultural expansion, and low-

input farming systems with shortened fallow periods. The driving forces behind these 

problems are complex. Country-specific socioeconomic factors, such as poverty, 

insecure land tenure, institutional deficits, population growth, and migration, are 

aggravated by international economic conditions and climate change. For Benin, the 

Fig. 3.5 Causes and on-site indicators of soil degradation in Sub-Saharan Africa (composition from 
Steiner, 1994; FAO, 2001b; Oldeman et al., 1991; Lal, 1998).  
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national action plan to combat desertification (MEHU 1999) and the national action 

plan for sustainable management of natural resources and soil fertility (MAEP 2004) 

provide certain country-specific details. Both reports emphasize the lack of regulated 

exploitation of forest resources, which has led to an uncontrolled, rapid deforestation 

of tree savannah and dry forests for yam, cotton, and charcoal production in central 

and northern Benin over the past decades. Agricultural expansion and an increasing 

number of transhumant cattle-breeders from neighbouring countries also increase 

the pressure on pasture resources. In addition, the action plans mention climate 

change, and in particular, a reduction in rainfall amounts by 20% since the 1970s in 

the most affected regions in northern Benin. Both reports cite the restrictive 

international commercial policy, dumping imports, and high foreign debts forcing the 

national government to reduce fertiliser purchases and food subsidies as constraints 

for trade and market development. Institutional deficits and land tenure issues in 

Benin will be discussed in Section 9.2. 

Soil fertility management and erosion measures in Sub-Saharan Africa 

Many authors have discussed management options for Sub-Saharan Africa in order 

to reduce erosion and increase soil fertility (e.g. Donovan & Casey, 1998; Lal, 1995; 

Greenland, 1981; Lal, 1990; Syers & Rimmer, 1994; Lal, 2000; Roose & 

Barthés, 2001). Several have focused on specific countries such as Tanzania 

(Dejene et al. 1997), Benin (Saidou et al. 2004), Ghana (ICRA 2000), Kenya 

(Wamuongo 1997), and Nigeria (Igwe 1999). In 1998, the World Bank, the FAO, and 

several other partners launched the Soil Fertility Initiative for Sub-Saharan Africa 

(Donovan & Casey 1998) in order to strengthen management efforts. Integrated 

fertility management, the use of mineral fertilisers, altered farming systems, and 

investments in land improvement and efficient water use have been proposed as the 

dominant strategies to increase food production in sub-Saharan Africa (FAO 2001a). 

Apart from the application of mineral fertiliser, two main categories of technologies 

and management practices exist in order to combat soil erosion. Structural 

technologies, such as contour furrows, ridging, terracing, stone walls, cut-off drains, 

waterways (to discharge runoff), gully control measures, and contour tillage 

(Donovan & Casey 1998) aid primarily in reduction of  surface runoff. In contrast, 

organic technologies improve the soil characteristics that resist erosion and increase 

biomass production and ground coverage. For example, the incorporation of organic 
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sources improves biological activity, nutrient and water holding capacity, and the 

physical structure of the soil. The organic technologies include mulching, cover 

crops, mixed or serial cropping, strip-cropping, contour hedgerows, and the use of 

deep-rooted species to recycle nutrients (Donovan & Casey 1998). In most parts of 

central Benin, structural technologies are less efficient in preventing soil degradation 

than biologic measures due to the slightly undulating terrain and mean annual rainfall 

totals above 800 mm (Walling 1996).  

Traditional measures for addressing the loss of SOM in low-input systems in Benin 

include fallowing, crop rotations, the application of animal manure, various forms of 

inter-cropping, and reduced tillage. However, the most frequent solution for farmers 

in Benin to combat soil fertility decline remains the clearing of new land, i.e. 

agricultural expansion. The challenges for an effective soil fertility management in 

Benin are discussed in Section 9.2.    

As mentioned above, soil fertility management goes far beyond the application of 

mineral fertiliser in order to meet plant requirements. Organic sources are applied in 

order to restore nutrient deficiencies and SOM leading to higher efficiency mineral 

fertilisers. Legumes, i.e. nitrogen-fixing plants, tapping residual soil moisture and 

nutrients with their long roots, are important components of soil fertility management. 

Many legumes also reduce the incidence of pests and diseases. The amount of 

nitrogen returned from legume rotations depends on whether the legume is 

harvested for seed and forage, or incorporated as green manure. Depending on the 

soil type, the quantity and quality of SOM, and the fertility status, organic 

technologies can have substantial effects on crop yields within one or two years 

(Donovan & Casey 1998). However, since organic sources alone often enable only 

limited yield increases, a combination of organic and mineral fertiliser is increasingly 

promoted, termed Integrated Nutrient Management. Furthermore, the integration of 

crops and livestock is desirable in order to use animal manure to increase soil 

fertility.  
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4. EROSION MODELS AND THEIR APPLICATION IN THE 
TROPICS  

  
This chapter provides an overview of fundamental aspects of environmental 

modelling and the state of the art in modelling erosive processes at the catchment 

scale. Special attention is given to applications of the model SWAT (Soil Water 

Assessment Tool) and to modelling studies in tropical catchments. 

 

4.1. Fundamental aspects of hydrological modelling 
 

Models are simplified representations of complex systems. They are valuable tools 

for better understanding environmental processes and supporting decision-making. 

However, all environmental models deal with problems arising from the complexity of 

nature and limitations in measurements, process understanding and computational 

power. As regards spatially distributed hydrological models, Beven (2001) mentions 

the problems of non-linearity, scale and uncertainty. The problems of scale and non-

linearity refer to the fact that many natural phenomena act at different spatial and 

temporal scales, in different media and with complex interactions (Jakeman et 

al. 1998). Indeed, observations at the local scale often cannot be directly transferred 

to the regional scale because different processes become dominant. Scale-specific 

process descriptions and measurement techniques are needed but are not always 

available. For example, local measurements of soil erosion with splash-cups, erosion 

nails, runoff plots or sediment traps may be appropriate for parameterising an erosion 

model at the field scale (Lal 1990), but these measurements cannot be extrapolated 

to large catchments because sedimentation then becomes more important. At the 

regional and macro-scale, measurements of runoff and sediment in rivers are 

adequate for validating erosion models. Finally, information about erosion processes 

at multiple scales is needed in order to derive conclusions regarding land 

management.   

The problem of uncertainty addresses the difficulties of obtaining adequate data as 

model input and for model calibration and validation (see Chapter 8). It is a challenge 

to obtain representative measurements that reflect the spatial heterogeneity of the 

medium. Since modelling assumptions are also an important source of uncertainty, 
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choosing an appropriate model for the considered scale and purpose is crucial. 

According to the spatio-temporal resolution and the type of equations they are based 

on, we distinguish different types of hydrological models (Fig. 4.1).  

Fig. 4.1 Classification of hydrological models (modified from Dyck & Peschke (1995)). 

There exist deterministic and stochastic hydrological models. Deterministic models 

can be physically-based, conceptual or empirical, depending on the degree of 

understanding of the processes involved in the equations. Conceptual models are 

theory-driven, while empirical models, e.g., regression models, are only based on 

observations and experiments. Although physically-based models contain the highest 

degree of process understanding, they often include empirical process descriptions, 

like Darcy’s law or the roughness-velocity relationship of Mannings (De Roo 1993). 

Hydrological models are termed distributed, if the spatial distribution of input 

variables like land use or soil parameters is taken into account. In contrast, lumped 

models assume homogeneous input parameters. Many regional hydrological models 

deal with subbasins and hydrological response units (HRUs), i.e. homogeneous 

combinations of land use and soil information. In most cases, HRUs have no spatial 

representation. Such models are termed semi-distributed because the spatial 

heterogeneity is only captured to a certain extent. On the other hand, these models 

are computationally more efficient than grid-based models. Distributed models are 

often criticized for their high numbers of parameters, leading to large uncertainties 

and difficulties in handling of the model. In contrast, lumped models are simple, 

robust and require only a few parameters. However, if the purpose of the modelling is 
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to gain insight into the spatio-temporal pattern of hydrological processes, to ensure 

transferability in space and time and to perform long-term simulations and scenario 

analysis, complex models are indispensable. Finally, hydrological models can be 

time-continuous or event-based. Event-based models represent single runoff events 

without considering periods without runoff.  

 

4.2. Soil erosion models 
     

Soil erosion modelling emerged with the empirical universal soil loss equation 

(USLE). The USLE was developed at the US Department of Agriculture (USDA) in 

1965 and updated and republished in Wischmeier & Smith (1978). The equation is 

based on small plot studies in the eastern Rocky Mountains and delivers long-term 

estimates of average annual sheet erosion. The USLE is widely applied throughout 

the world. However, the equation has several deficiencies, due to its empirical 

character and lack of integration of deposition and wind and gully erosion. Therefore, 

sediment yield can only be calculated indirectly by multiplication with the sediment 

delivery ratio. Furthermore, the USLE is not suitable for single events or single years 

(Dickinson & Collins 1998) and often underestimates soil loss, especially for extreme 

events. Some limitations have been overcome by replacing the rainfall erosivity factor 

by more complex terms (e.g., MUSLE, RUSLE). For example, De Roo (1998) 

combined the wetness index, the stream power and the sediment transport capacity 

with the USLE to estimate erosion risk.  

The SLEMSLA model, which is an adaptation of the USLE to South African 

conditions, considers the seasonal rainfall energy, intercepted rainfall energy, soil 

erodibility, slope length and slope to estimate soil loss from sheet erosion between 

contour ridges (Dickinson & Collins 1998). The MUSLE is a common component of 

semi-physically based erosion models like CREAMS/GLEAMS, HSPF, SEDNET, 

EPIC, SWRRB and SWAT (see Table 4.1). In the last 15 years, a new generation of 

erosion models like WEPP and MEDALUS/MEDRUSH have evolved, completely 

replacing the USLE and its modifications with physically-based process descriptions. 

However, such models are very parameter-intensive.  

Most time-continuous erosion models run on a daily time-step and are applicable to 

hillslopes or small catchments (see Table 4.1). Only a few models, namely SWRRB, 
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SWAT and Medrush, are also applicable to large catchments. Continuous 

simulations are essential for long-term studies focusing on sediment yields and the 

effects on crop yield. Therefore, event-based models are not shown in Table 4.1, but 

are listed for completeness: ANSWERS/MODANSW, KINEROS2, EROSION3D, 

EUROSEM, EUROWISE (LISEM-gullies), WASCH, SMODERP, GUEST and PEPP. 

Merrit et al. (2003), De Roo (1998) and Borah & Bera (2004) reviewed the most 

common erosion models.   

 

4.3. Application of erosion models in the tropics  
 

Erosion modelling studies in the tropics are limited. Most model applications in 

developing countries use modifications of the empirical USLE combined with a GIS 

approach to identify hotspots of soil erosion (e.g., Dickinson & Collins, 1998; Igwe, 

1999; Gobin et al., 1999; Fistikoglu & Harmancioglu, 2002). Only a few authors have 

Table 4.1 Overview of time-continuous, (semi-)physically-based erosion models (composition from 
Merrit et al. (2003), De Roo (1998), Bronstert & Plate (1997)).  
Erosion model Application Time scale Spatial scale Sediment
SWAT (Soil and Water 
Assessment Tool)

Hydrology, sediment, 
nutrients and pesticides

Continuous; 
daily/subdaily

Catchment; 
HRUs MUSLE

SWRRB (Simulator for Water 
Resources in Rural Basins)

Water balance and 
hydrology and 
sedimentation

Event or 
continuous; 
daily

Catchment, 
HRUs MUSLE

MEDRUSH Hydrology, erosion Continuous; 
daily/hourly Catchment mainly physically-

based

WEPP (Water Erosion 
Prediction Project) Hydrology, erosion 

Event or 
continuous; 
daily

Hillslope, 
catchment; 
grid

mainly physically-
based

LISEM (Limburg Soil Erosion 
Model) Hydrology, erosion Event or 

continuous

Small 
catchment; 
grid

mainly physically-
based

HILLFLOW 3-D Hydrology, erosion Continuous; 
daily/subdaily

Hillslope, small 
catchment

mainly physically-
based

OPUS Hydrology, erosion
Event or 
continuous, 
daily/subdaily

Hillslope MUSLE or 
physically-based

AGNPS (Agricultural Non-point 
Source Pollution)

Hydrology, erosion, 
nutrients and pesticides

Event or 
continuous; 
daily

Field; 
grid/HRUs 

RUSLE, HUSLE 
for delivery ratio, 
deposition

CREAMS (Chemical, Runoff 
and Erosion from Agricultural 
Management Systems

Hydrology, erosion, 
nurients and pesticides

Event or 
continuous; 
daily/subdaily 

Hillslope USLE, sediment 
transport capacity

EPIC (Erosion-Productivity 
Impact Calculator

Hydrology, erosion, 
nutrients, crop/soil 
management, economics

Event or 
continuous; 
daily

Field USLE, MUSLE
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applied more complex erosion models like SWAT (e.g., Tripathi et al., 2003; 

Jayakrishnan, 2005) or WEPP (e.g., Leon, 2005; Larose et al., 2004). 

Applications of SWAT 

In the following, a broad overview of applications of the SWAT model dealing with 

hydrological and sediment processes and/or climate and land use change is 

provided. The focus is not restricted to applications in the tropics, as studies in this 

area are rare and often limited. Gassman et al. (2006) and Gassman et al. (2007) 

presented comprehensive overviews of the complete body of SWAT applications. 

More specific reviews can be found in Arnold & Fohrer (2005) and 

Jayakrishnan (2005). 

Gassman et al. (2007) have classified more than 250 peer-reviewed published 

SWAT-related articles into the categories of hydrologic assessments, climate and 

land use change studies, pollutant load assessments, model comparison, model 

interface, sensitivity analysis and calibration techniques. Beyond these, SWAT has 

been applied to a wide variety of very specific questions, including, for example, 

canal irrigation, grazing studies, flood retarding structures and models coupled with  

groundwater, as well as economic and ecological models. The number of SWAT 

applications worldwide has been growing quickly over the last years due to the 

numerous advantages of the model (see Section 5.3). Nevertheless, most 

applications are limited to hydrological studies of catchments in temperate climate 

regions of the United States and Europe. In Europe, many applications are related to 

water quantity and water quality issues in the context of the EU water framework 

directive (e.g., Van Griensven & Bauwens, 2005; Krysanova et al., 2005). In the last 

decade, several projects of the EU, like CHESS, EUROHARP and tempQsim, 

applied the SWAT model (Gassman et al. 2007). In the United States, the major 

focus is the impact of best management practices on sediment and nitrogen losses 

(e.g., Chaplot et al., 2004; Vache et al., 2002; Gitau et al., 2004; Kirsch et al., 2002;  

Atwood, 2001; Santhi et al., 2006; Bracmort et al., 2006). Although the majority of 

SWAT applications only consider stream flow, sediment flows have also been studied 

in the United States (e.g., Rosenthal & Hoffman, 2000; Srinivasan et al., 1998; 

Saleh et al., 2000; Santhi et al., 2001; Benaman & Shoemaker, 2005; White & 

Chaubey, 2005; Cotter et al., 2003; Hanratty & Stefan, 1998; Kirsch et al., 2002; 

Muleta & Nicklow, 2005) and in India (Tripathi et al., 2003; Tripathi et al., 2005). Most 
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of these studies confirmed the robustness of SWAT in predicting stream and 

sediment flows at different catchment scales (Gassman et al. 2007). However, some 

difficulties in representing stream and sediment flows were reported (e.g., Benaman 

& Shoemaker, 2005; Muleta & Nicklow, 2005). Benaman & Shoemaker (2005) 

explained the strong underestimation of sediment loads in the winter by limitations in 

SWAT for simulating erosion caused by snowmelt. Muleta & Nicklow (2005) 

attributed their rather poor results for model validation to a relatively short calibration 

period of less than three years. The high uncertainties in sediment prediction were 

reflected by the wide 95% confidence limits, with the upper bound exceeding the 

lower bound by a factor six (Muleta & Nicklow, 2005). 

Many authors have also addressed climate or land use changes. Climatic inputs are 

derived from historical climate trends, downscaled GCM projections (e.g., 

Limaye et al., 2001; Krysanova et al., 2005; Hanratty & Stefan, 1998; Takle et 

al., 2005; Thomson et al., 2003; Varanou et al., 2004) or nested regional climate 

models (e.g., Stone et al., 2001; Giorgi et al., 1998). Only a few climate change 

studies have focused on sediment flows (e.g., Nearing et al., 2005; Hanratty & 

Stefan, 1998; Boorman, 2003; Varanou et al., 2004; Sintondji, 2005). Spatially 

explicit scenarios of future land use change have mainly been performed in Germany 

(e.g., Fohrer et al., 2001; Fohrer et al., 2005; Hattermann et al., 2003;  

Haverkamp, 2000; Volk & Schmidt, 2003; Krysanova et al., 2005).  

Several authors have investigated the effects of spatial discretisation and the quality 

of input data on the model output. In most studies, flow predictions are insensitive to 

the spatial discretisation. In contrast, sediment yield is often sensitive (e.g., 

Bingner et al., 1997; Manguerra & Engel, 1999; Fitzhugh & Mackay, 2000; Jha et 

al., 2004; Chen & Mackay, 2004). Jha et al. (2004) and Haverkamp et al. (2002) 

established a procedure to determine an appropriate number of subcatchments so as 

to reduce this effect. Chaubey et al. (2005), Cotter er al. (2003) and Di Luzio et 

al. (2002) identified the resolution of the digital elevation model as the most critical 

input parameter, followed by land use and soil data. High sensitivities to climate 

inputs were reported by Moon et al. (2004) and Hernandez et al. (2000). King et 

al. (1999) indicated a high sensitivity of model performance to the applied surface 

runoff estimation technique. 
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SWAT applications in the tropics 

Only a few peer-reviewed articles about SWAT applications in developing countries 

have been published (e.g., Govender & Everson, 2005; Tripathi et al., 2003; 

Jayakrishnan et al., 2005; Schuol & Abbaspour, 2006; Tripathi et al., 2005), although 

many applications have been presented in conference proceedings (see Table 4.2). 

Many studies must be considered as preliminary and often show severe limitations or 

unsatisfying simulation results due to limited data availability. For example, some 

authors report using only one uniform soil type for the whole catchment (e.g., 

Ndomba, 2006) or a lack of sediment data (e.g., Jayakrishnan et al., 2005; 

Table 4.2 Overview of SWAT applications in tropical developing countries; * peer-reviewed articles, 
ME Coefficient of Model Efficiency, R2 coefficient of determination, WY water yield, SY sediment yield 

Area WY SY
Author(s) Catchment(s) Characteristics [km2] timestep R2 ME R2 ME [mm/yr] [t/ha/yr]

KIM et al. 
(2003)

a:Yongdam,   
b:Bocheong 

(Korea)

mountainous; forest 
and rice, rainfall 
1100-1200 mm 

a: 930   
b: 348 daily 0.77 

0.65
0.77 
0.65

0.75 
0.55

0.76   
0.50

691     
653 -

GOVENDER & 
EVERSON 

(2005)

2 experimental 
catchments 

(South Africa)

a:grassland, b:pine 
forest; rainfall 1300-

1400 mm, slopes 
0.25 m/m

a: 0.68   
b: 1.95 daily 0.86 0.65 a: 496  b: 

230 -

MUTHUWATTA 
(2004)

Lake Naivasha 
(Kenya)

mountainous, 640-
1500 mm rainfall 3200 monthly 0.66 0.54 -

SCHUOL & 
ABBASPOUR 

(2006)*

West-Africa 
(Niger, Volta, 

Senegal)
4000000 monthly -1.16 

to 0.82
-0.63 

to 0.54 -

BARSANTI et 
al. (2006)

a:Taquarizinho 
b:Aquidauana 

(Brazil)

wetland with gullies, 
a:intensive land use, 

b:more natural; 
rainfall a:1350 mm, 

b:1250 mm

a: 1500,  
b: 15200

monthly, 
SY 

partially 
estimated

a:0.79 
b:0.82 
SY b: 
0.84

a:0.61 
b:0.58

a:133   
b:239

a:0.19-
0.63 

b:0.03-
0.07

JAYAKRISH- 
NAN et al. 

(2005)*

Sondu        
(W-Kenya)

mountainous, 
intense dairy farming 3050 monthly, 

only flow -0.69 -0.08 144

JACOBS & 
SRINIVASAN 

(2006)

Upper Tana 
(Kenya)

mountainuous, mean 
annual rainfall <700-

1800 mm, sub-
humid

10000
none, 

relative 
mode

- - - - - -

NDOMBA 
(2006)

Simiyu        
(N-Tanzania)

flat terrain, 1100-
2000 m a.s.l., rainfall 

1000 mm, pasture 
and fields

10659 daily, only 
flow 0.58 78 0.52

LAWAL et al. 
(2004)

Zagbo        
(S-Benin)

rainfall 1000 mm, 
plateau, mainly 

fields and fallows
56 none - - - - 0.6-2.7 

MACHADO & 
VETTORAZZI 

(2003)

Ribeirao dos 
Marins (Brazil) pasture and fields 60

monthly, 
only 

sediment
0.92 0.83

0.02-17 
per 

subbasin

SINTONDJI 
(2005)

Terou         
(N-Benin)

lowlands, mainly 
savannah, sub-

humid, 1150 mm
2336

monthly 
(weekly), 
only flow

0.73 
(0.66)

0.7 
(0.62) 0.70 0.60 245 4.3

TRIPATHI et al. 
(2003)*, 

TRIPATHI et al. 
(2005)*

Nagwan       
(E-India)

1300 mm rainfall; 
rice and grassland, 
mean slope 2.3%, 

sub-humid

90 daily
0.91, 
SY 

0.89

0.87, 
SY 

0.89

144 to 
468 per 

subbasin

4; 1.7 to 
19 per 

subbasin

Calibration Validation

stream and sediment flow

only stream flow
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Ndomba, 2006) and stream flow data for model calibration and validation (e.g., 

Jacobs & Srinivasan, 2006). A coarse 1 km-DEM (e.g., Jayakrishnan et al., 2005; 

Ndomba, 2006) and very limited rain gauge data (e.g., Jayakrishnan et al., 2005; 

Muttuwatha, 2004) are common. As a consequence, many authors only focus on 

monthly and yearly model output (see Table 4.2). Most applications in developing 

countries focus on large river catchments of 300 to 10000 km2, although a few 

studies deal with catchments smaller than 100 km2 (e.g., Machado & Vettorazzi, 

2003; Lawal et al., 2004; Govender & Everson, 2005; Tripathi et al., 2003).  

While some authors only consider streamflow, most authors also address sediment 

flows (e.g., Jacobs & Srinivasan, 2006; Ndomba, 2006; Lawal et al., 2004; 

Machado & Vettorazzi, 2003; Sintondji, 2005; Barsanti et al., 2003; Tripathi et al., 

2003). However, calibration and validation of the sediment budget have been 

conducted only by Machado  & Vettorazzi (2003), Tripathi et al. (2003), and 

Barsanti et al. (2003).  

Identification of erosion-prone subbasins so as to implement the best management 

practices was the major focus of several studies (e.g., Tripathi et al., 2003; Lawal et 

al., 2004; Sintondji, 2005; Ndomba, 2006). In contrast to many European and North 

American studies, the main indicator is not the water quality itself, but the sediment 

yield as a measure of the degradation of soil and land resources. Therefore, so-

called soil loss tolerances play an important role in many studies. Studies of land use 

change often refer to the past, since spatial information about future land use is 

lacking (e.g., Barsanti et al., 2003; Lawal et al., 2004). Other authors conduct 

reforestation scenarios (e.g., Jacobs & Srinivasan, 2006) or plant management 

scenarios (e.g., Kim et al., 2003; Tripathi et al., 2005) in order to reduce surface 

runoff and sediment yield. For example, Tripathi et al. (2005) obtained reductions in 

sediment yield up to 20% in the sub-humid Nagwan watershed in East India for 

management scenarios combining zero tillage and chemical fertiliser compared to 

conventional ploughing. Jacobs & Srinivasan (2006) simulated reductions of the 

sediment yield up to 7% in the Masinga reservoir supplied by the Upper Tana 

catchment in Kenya after full reforestation up to 1850 m above sea level.  

Climate and land use changes have been addressed together only by 

Sintondji (2005) and Busche (2005) in the framework of the IMPETUS project. Their 

scenario calculations in the Terou-Igbomakoro catchment in Benin are based on 

results from the regional climate model REMO and the land use/land cover change 



4.EROSION MODELS AND THEIR APPLICATION IN THE TROPICS 

 

47

model CLUE-S. Climate change impact studies with the SWAT model remain rare in 

developing countries.  

Except for Jayakrishnan et al. (2005) and Schuol & Abbaspour (2006), model results 

were satisfactory for all the above-mentioned studies. However, runoff peaks are not 

always well matched (e.g., Ndomba 2006). Govender & Everson (2005) reported 

better model performance in dry years than in wet years and difficulties in adequately 

simulating the growth of mature pine plantations.  

Most applications of the SWAT model have so far been conducted in the United 

States and Europe. However, the user community in developing countries is evolving 

quickly, in particular in China and India. Although many of these applications have 

not yet appeared in peer-reviewed journals, they can be frequently found in the 

proceedings of SWAT conferences (e.g., Yang et al., 2006; Jirayoot & Trung, 2006; 

Hao et al., 2006; Sen & Banerjee, 2005; Lee et al., 2006). In the long run, this 

development will hopefully lead to an improved understanding of the capabilities of 

the SWAT model in regions with scarce and low-quality data and to an extension of 

the SWAT user databases to tropical soils and land use types.   
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5. METHODS    
 
This chapter summarizes the methodologies applied in this study. Special attention is 

given to soil investigations and the modelling procedure. Figure 5.1 shows the 

different components of this study and their interactions.  

The modelling procedure, namely model setup, model calibration and validation and 

the scenario analysis, form the central part of the methodology. However, field 

investigations were necessary for three purposes: (1) soil investigations to 

parameterise the soil map, (2) measurements of suspended sediment concentration 

for model calibration and validation and (3) a study of soil conservation activities in 

Benin to facilitate recommendations in combination with modelling results.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Flowchart of the components of this study and their interactions.  

Model setup
Parametrisation: climate, land use, soils
Subbasin and HRU delineation
Writing Inputfiles and running the model

Model calibration
Hydrology (1998-2001), sediment (2004/5)
Manual/automatic calibration

Scenario analysis 
a) 3 land use scenarios (Lu 2005, 2015, 2025)
b) 2 climate scenarios (2001-2050)
c) 3 x 2 combined scenarios (2001-2030)

Model output
Maps, tables, hotspots of soil erosion

Model validation
Hydrology (1998-05), sediment (2006)

Sensitivity analysis/
uncertainty analysis

Database and pre-processing

Suspended sediment measurements

Evaluation of soil fertility

Soil investigations (field, lab analysis)

Post-processing of results

Database and pre-processing

Recommendations

Options for soil
conservation

SWAT model
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Recommendations

Options for soil
conservation

SWAT model



5.METHODS 
 

 

50

5.1. Soil investigations       
 

A soil survey was conducted in the Upper Ouémé catchment because physical and 

chemical soil properties for the soil units of the French soil map 

(Dubroeucq, 1977a/b; Faure, 1977a/b; Viennot, 1978) were only partially available. 

Sintondji (2005) and Junge (2004) have provided soil properties for the western part 

of the research area, the subcatchments Terou-Wanou and Aguima. Representative 

profiles for the remaining 19 soil units were investigated in the framework of this 

study.    

Soil descriptions in the field 

Several augerings were performed in each soil unit along a topo-sequence in order to 

identify a representative profile. All augerings were described according to the 

Guidelines for Soil Description (FAO 1990) and the German Soil Mapping Tutorial 

(AG Boden 1994). Mixed soil samples were taken from each horizon. Subsequently, 

one representative profile for each topo-sequence was derived, and, in these 

locations, soil profiles of 1.20 to 1.80 meter depth were excavated. After a detailed 

description of the profiles, soil samples were taken from each horizon. 

Figure 5.2 indicates the locations of all 34 representative profiles in the Upper 

Ouémé catchment. Due to poor infrastructure, most profiles are located close to main 

roads. Details of the characteristics of the soil units are provided in Chapter 6 

including a list of the names and fractions of the soil units displayed in Fig. 5.2. 

Photos of the 19 representative profiles can be found in Fig. A.2 in Appendix A. 

Except for soil units 3 and 62, all profiles were derived from 3 to 7 augerings along 

the topo-sequence. Transect investigations by Sintondji (2005) were not included in 

Fig. 5.2 because only the representative profiles are documented.   
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Laboratory analysis  

The soil samples were oven-dried at 105°C and sieved with a 2 mm sieve to 

separate coarse and fine soil fractions. The samples were analysed at the Institute of 

Geography in Bonn (Germany) following the Procedures for Soil Analysis 

(Van Reeuwijk 1995) to classify the soils according to the World Reference Base for 

Soil Resources (FAO-ISRIC-ISSS 1998) and to guarantee comparability with earlier 

investigations from Junge (2004) and Sintondji (2005). 

During the laboratory analysis, the following parameters were determined: organic 

carbon (Corg), soil texture, pH, organic nitrogen, cations (K, Ca, Na, Mg), base 

saturation (BS) and potential cation exchange capacity (CECpot). Laboratory methods 

are listed in Table 5.1. Because the inorganic carbon and nitrogen contents were of 

minor importance, the C/N-ratio was calculated as the quotient of organic carbon and 

organic nitrogen content. A comparative laboratory analysis of Junge (2004) showed 

good agreement between the calculated C/N-ratios and the analysis results via C/N-

analyser. 

 

Fig. 5.2 Locations of investigated transects and representative profiles. 
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Table 5.1 Determined parameters and applied laboratory methods. 

Parameter Laboratory method
Corg Ashing according to LICHTERFELD: 2g soil treated with Potassium-

Bi-Chromate  
pH Potentiometric measurement in a solution of 10g soil and 25ml 0.01 

M CaCl2  
Texture If Corg>3% destruction with H2O2, dispersion with Na4P2O7, wet-

sieving and pipette analysis (Koehn procedure)    
Organic Nitrogen According to KJIELDAHL 
Cations 
(Na,K,Mg,Ca) 

a) Ammonium Acetate Method (AA): 5g soil with 100ml 1 M NH4-OAc 
percolated at pH 7 (according to THOMAS) 
b) Mehlich: 10g soil with 100 ml BaCl2 percolated at pH 8.1 
Subsequently, measurements of cation concentrations in the 
percolate via Atom Absorption Spectrometer (AAS) 

CECpot a) AA: Following the extraction of basic cations re-exchange with 
200ml 0.9 M Na-Acetate/0.1 M NaCl solution and Ethanol (80%), 
spectral-photometric measurement of the NH4-concentration in the 
extract (according to KEENEY and NELSON) 
b) Mehlich:  Following the extraction of basic cations re-exchange 
with MgCl2-solution and measurement of the Ba-concentration in the 
extract via AAS  

The base saturation BS  as a percentage of the sum of exchangeable bases of 

potCEC  was derived as follows:   

  [ ] [ ]
[ ] 100% 1

1

⋅
+++

= −

−

 soil kgcmolCEC
 soil kgcmolNa KMgΣ Ca

BS 
cpot

c  

 

potCEC  values were determined by the percolation procedure of the Ammonium 

Acetate Method (Van Reeuwijk 1995). A comparative analysis with the German 

standard method (Mehlich) was performed (see Excursus 5.1). The obtained potCEC  

values were referred to the clay content of the soil, as this parameter is needed for 

classification according to the World Reference Base (Eq. 5.1). In order to eliminate 

the portion of organic carbon from the measured cation exchange capacity, the 

potCEC  value was further reduced by 3.5 cmolc per percent Corg according to Klamt & 

Sombroek (1988) (Eq. 5.2-5.4).  
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clay kg cmol CEC
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−     (5.1) 
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Excursus 5.1: Comparison between Mehlich Method and Ammonium Acetate 
Method (AA) for determining CECpot, cations and BS 

Many methods exist for measuring cation exchange capacity. Some methods use 

buffered solutions such as Ammonium Acetate at pH = 7 (Ammonium Acetate 

Method) or Barium chloride at pH = 8.2 (Mehlich Method). Iron and aluminium oxides, 

kaolinitic clays and organic matter have variable charges that depend on the pH and 

ionic strength of the reagent. Therefore, measured CEC values may be highly 

sensitive to the method (Ciesielski 1997). This can severely affect fertiliser 

recommendations from different soil-testing programs (Wang et al. 2004). Although 

the AA Method is widely used internationally and also recommended by 

Van Reeuwijk (1995), the buffered pH value of the method is often inappropriate, e.g. 

for acid soils (Ciesielski 1997). In this study, the German standard method (Mehlich 

Method) was compared with the Ammonium Acetate Method according to 

Van Reeuwijk (1995). For the AA method, the official percolation procedure was 

slightly modified in order to simplify handling and speed up the procedure. Instead of 

a percolation tube, a hopper was filled with wadding and quartz sand (Fig. 5.3).  

      
Fig. 5.3 Percolation tube.                   Fig. 5.4 Comparison of Mehlich and AA methods for CECpot. 

First attempts with lake sand led to errors in potassium measurements because lake 

sand contains high amounts of potassium. Quartz sand only causes problems with 

sodium, which is negligible for the analysed soils. Samples with high clay contents 

caused no problems due to the loosening effect of the sand. For the Mehlich method, 
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calcium measurements were corrected if extracted non-exchangeable cations 

caused base saturations higher than 100%. Figure 5.4 shows the result of the 

comparison. For 27 out of 35 samples, CECpot values for both methods correlate 

quite well (R2 0.79, deviations +/-20%). However, for the eight clay-rich samples with 

CECpot values higher than 10 cmolc per kg, Mehlich delivers much lower values. This 

difference was even stronger if samples were centrifuged instead of percolated for 

the AA method. The AA method is probably more efficient in extraction due to the 

loosening effect of the sand. It is well known that the Mehlich method has difficulties 

in treating clay-rich soils. The comparison of Junge (2004) supports this explanation. 

For 21 sand-rich soil samples, slightly higher values were obtained with the Mehlich 

method (+20%). For two samples, one of them clay-rich, Junge (2004) received 

much lower values with the Mehlich method. Figure A.3 in Appendix A shows the 

comparison for the cations K, Na, Ca and Mg. For sodium and magnesium, both 

methods correlate well with slightly higher values for the AA method. Calcium 

samples with CECpot values lower than 10 cmolc per kg also correlate well. However, 

calcium values for clay-rich samples after correction of the base saturation to 100% 

are more than doubled for the AA method. For potassium, the AA method 

underestimates Mehlich values. A systematic error during the measurements is 

unlikely because measurements were performed independently by two different 

persons. As illustrated in Chapter 6 most representative profiles show CECpot values 

lower than 10 cmolc per kg. Clay-rich samples with CECpot higher than 10 cmolc/kg 

only appear for soil profiles 21 and 29. Thus, CECpot and calcium values for these 

two profiles are subject to larger uncertainties than for the other profiles.  

 

[ ] [ ] 100
% clay

CEC
clay kg cmolCEC )fraction clay( potsoil1

c.)corr(potclay ⋅=−      (5.4) 

Derivation of further soil parameters 

Soil erodibility K was determined using an empirical equation recommended in 

Wischmeier & Smith (1978) that considers soil texture, organic matter, permeability 

class and aggregate class:    

( ) ( ) ( )DASMK org −⋅+−⋅+−⋅⋅= 4033.02043.012
10

77.2 6

14.1

   (5.5a) 
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where  

 K  soil erodibility, USLE K factor [t m2 h / m3 t cm] 

           U  silt [%] 

 S  sand [%] 

ffS   very fine sand [%] 

 orgS   organic matter [%]  

 A   aggregate class [-] 

 D   permeability class [-] 

 

Physical soil properties, namely saturated hydraulic conductivity (Ksat) and available 

water capacity, were determined with the pedo-transfer function of 

Rawls & Brakensiek (1995). This function requires the bulk density as input. As 

measurements were not available, bulk densities were estimated by a regression 

model derived from measured soil data from Giertz (2004) and Sintondji (2005). The 

parameters clay (T), silt (U), sand (S), rock fragment, Corg and their quadratic and 

cubic terms were considered as predictors. Best results for the bulk density were 

obtained by a stepwise, multiple, linear regression as a function of Corg, silt and rock 

fractions (Eq. 5.6). Splitting the dataset according to different soil type did not 

improve results.  

 

rock005.0005.0106.01712.1 ⋅+⋅−⋅−= UCBd org  405.02 =R  α<0.01  (5.6) 

where 

 Bd  bulk density [cm3/cm3]   

 orgC  organic carbon [%] 

 U  silt [%] 

 rock  rock fragment [%]  

 

Furthermore, SWAT requires the hydrologic group according to the US Natural 

Resources Conservation Service (NRCS) as an input parameter to attribute the curve 

number. The SWAT user manual (Neitsch et al. 2000a) contains a table for deriving 

the hydrologic group depending on infiltration rates, profile depths and Ksat. In order 

to avoid reproducing errors in the estimation of hydraulic conductivity, in this study 

the hydrologic group was attributed only according to soil texture, effective soil depth 
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and shrink-swell potential. Table 5.2 summarizes the attribution and the selection 

criteria. 

 
5.2. Measurements of suspended sediment 

 

Suspended sediment concentrations can be measured by filtering water samples. 

However, this method does not allow a high temporal resolution with manageable 

effort. On the other hand, simple discharge-sediment relationships are problematic as 

they are often inaccurate due to hysteretic effects (Van Noordwijk et al. 1998). 

Turbidimeters seem to be a good alternative for continuously measuring sediment 

flows. The turbidity refers to the ability of particles to scatter incoming light, i.e., the 

reduction of the transparency of water caused by the presence of fine dispersive, 

suspended particles.  

The sediment load depends on various factors, including the belowground geology, 

the land use and the structure of the catchment. The main sources of suspended 

sediment are soil particles. These are directly delivered by soil erosion or remobilised 

from sediment. The turbidity is also influenced by the nutrient situation in the water 

body regulating the development of algae or the presence of organic particles. As a 

consequence of this complexity, site-specific relationships between turbidity and 

suspended sediment concentration must be derived from filtered water samples. 

However, robust relationships cannot always be identified (e.g. Riley 1997).  

In the present study, three multi-parameter probes type YSI 600-04, including a 

turbidity sensor YSI 6136 with wipers, were installed at three outlets in the Upper 

Ouémé catchment in April 2004 (Fig. B.1, Appendix B). Two were installed at the 

outlets of the Terou-Igbomakoro and the Donga-Pont subcatchments, while the third 

Table 5.2 Definition of the input parameter hydrologic group. 

Hydrologic 
group 

Infiltration 
rate Applied criteria Unit in the soil map 

A High Sandy topsoil (Ss) 80 
B Moderate Soil texture: Su2, Sl2, Sl3, St2 

 
14, 16, 23, 25, 29, 31, 
32, 45, 46, 48, 53-57, 
62, 90, 94, 95, 96, 97 

C Slow Soil texture: Su3, Su4, Sl4, St3, 
Loam 
Or effective soil depth < 50 cm  

2, 3, 17,18, 24, 28, 35, 
58, 60, 61, 70, 91, 101 

D Very slow Soil texture: Clay  21  
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was mounted at the Lower Aguima outlet. In 2006, the turbidity probe from the Lower 

Aguima was moved to Donga-Kolonkonde because permanently low water levels 

and sedimentation processes in the river bed complicated measurements. The 

Donga-Kolonkonde subcatchment (105 km2) was of special interest because it 

covers one of the most degraded areas in the Upper Ouémé catchment.  

Turbidity, electrical conductivity, water temperature and 

water level were recorded automatically each 

30 minutes at outlets Terou-Igbomakoro, Donga-Pont, 

Lower Aguima and Donga-Kolonkonde. Once a month 

the probes were cleaned, batteries were changed and if 

necessary, the heights of the probes were adjusted. In 

order to avoid accumulating stones and mud in the 

probe cages, the instruments were covered by caves. 

For each gauged site, a specific relationship between 

turbidity and suspended sediment concentration (SSC) was determined via linear 

regression analysis (see Chapter 7, Fig 7.3). Between 69 and 87 1.5 litre water 

samples were taken at each site for gravimetric determination of SSC values using a 

fluted filter with a diameter of 110 mm. In addition, suspended sediment 

concentrations were measured daily at the river Ouémé in Beterou by manual water 

sampling and subsequent filtration of the water samples.  

 

5.3. Erosion modelling with SWAT and scenario analysis 
 

For this study, the model SWAT (Soil Water Assessment Tool) was chosen. SWAT 

fulfils the following criteria:  

• time-continuous, also suitable for long simulation periods  

• spatially differentiated (semi-distributed) 

• applicable to large-scale catchments (regional scale >10.000 km2) 

• GIS interface  

• manageable demand of input parameters 

• freely available, widespread user group, sufficient documentation and support 

• partly process-based, not completely empirical 

 

Fig. 5.5 Turbidity probe after 
installation in the river bed 
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Most descriptions of erosion processes in SWAT are based on empirical 

relationships like the USLE factors. However, real process-based erosion models like 

WEPP or Erosion3D are not yet applicable for large-scale catchments. In this study, 

the model version SWAT2005 was used in combination with the User Interface 

AVSWATX. 

 
5.3.1. Model description 

 

The SWAT model was developed at the United States Department of Agriculture 

(USDA) for studying long-term impacts of climate, land use and agricultural 

management on water quality and quantity (Arnold et al. 1998). It includes elements 

of several other models, like CREAMS (hydrology), GLEAMS (pesticides), EPIC 

(crop growth), ROTO (routing) and QUAL2E (in-stream kinetics) (Gassman et 

al. 2007). The SWAT model allows the simultaneous simulation of hundreds of 

subbasins. It includes databases for plant growth, tillage, pesticides, fertiliser, urban 

areas and soils, mainly for North American conditions. Conservation practices like 

terracing, strip-cropping, contouring and conservation tillage can also be considered 

in the model. Furthermore, SWAT contains a daily and sub-daily weather generator 

(WXGEN). Like the models AGNPS and ANSWERS, SWAT is loosely coupled to a 

GIS via an ArcView User interface (De Roo 1998). As mentioned above, the model 

has several advantages: SWAT is a computationally efficient, semi-distributed, time-

continuous model that is applicable to large catchments. The SWAT model is a very 

flexible and robust tool that can be used to simulate a variety of catchment problems 

(Gassman et al. 2006). 

Gassman et al. (2006) summarized various adaptations of the SWAT model to 

provide an improved simulation of specific processes. Among them are ESWAT (Van 

Griensven & Bauwens 2005) with enhanced in-stream kinetics, SWIM (Krysanova et 

al. 2005), and SWAT-G (e.g. Lenhart et al. (2005)) with several modifications for low 

mountains catchments. Moreover, several interface tools have been developed; first 

SWAT/GRASS, later ArcView-SWAT (AVSWAT) for SWAT2000 and AVSWATX for 

SWAT2005 and recently an ArcGIS interface (ArcSWAT) and a MapWindow 

Interface (MWSWAT). Further interface tools, like AGWA 

(www.tucson.ars.ag.gov/agwa/), IOSWAT (Haverkamp 2005), i-SWAT (Gassman et 
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al. 2003) and VizSWAT, have been developed to support input generation, output 

mapping and execution of SWAT simulations. 

The main new features of SWAT2005 compared to SWAT2000 are a sub-daily 

precipitation generator, automatic calibration, uncertainty analysis and tree growth. 

SWAT consists of seven model components: hydrology, weather, sedimentation, soil 

temperature, crop growth, nutrients and pesticides. Table 5.3 provides a brief 

overview of the process descriptions of the model components of hydrology, 

sedimentation, crop growth and channel routing. 

In the following, the descriptions of the components hydrology and sediment in the 

SWAT Theory Manual (Neitsch et al. 2002b) are summarized, as they are of 

particular importance for this model application.  

Hydrology component 

Figure 5.6 illustrates the components of the hydrologic cycle. The hydrology 

component of SWAT is based on the water balance equation (Eq. 5.7a/b). Runoff 

amounts are predicted for each subbasin and then routed to the channel. 

Fig. 5.6 Schematic representation of the hydrologic cycle in SWAT (Neitsch et al., 2002b). 
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 sQQQETR baselatsurfa ∆++++=                 (5.7a) 

                                                                                                                   (5.7b)                       

where  

       R  rainfall [mm] 

       aET     actual evapotranspiration [mm] 

surfQ  surface runoff (e.g. Hortonian, saturated, ex-filtration) [mm] 

latQ  lateral flow [mm] 

baseQ  baseflow, shallow aquifer storage [mm] 

s∆  storage, change in soil water content [mm] 

Surface runoff 

SWAT provides two methods for estimating surface runoff: the SCS curve number 

procedure (Soil Conservation Service 1972) and the Green & Ampt infiltration 

method (Green & Ampt 1911). The Green & Ampt method requires hourly rainfall 

data. 

In this study, the SCS curve number method was chosen. As a result, surfQ  is 

estimated as a function of daily rainfall, initial abstractions and a retention parameter: 

)(
)( 2

SIR
IR

Q
aday

aday
surf +−

−
=         (5.8) 

where 

surfQ  surface runoff [mm] 

dayR  daily rainfall [mm] 

S   retention parameter [mm] 

aI  initial abstractions [mm] (surface storage, infiltration prior to runoff, 

canopy interception), commonly approximated as 20% of S . 

 

The retention parameter S  is a function of the daily curve number CN  (Eq. 5.9). 

Neitsch et al. (2002b) provide an overview of curve numbers for specific land use and 

soil characteristics. SWAT adjusts the daily curve number according to the 

antecedent soil moisture conditions. A default slope of 5% is assumed.  

⎟
⎠
⎞

⎜
⎝
⎛ −⋅= 1010004.25

CN
S        (5.9) 

Recharge – revap – return flow – water use – deep recharge Qbase = Recharge – revap – return flow – water use – deep recharge Qbase =
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SWAT calculates the peak runoff rate, the time of concentration for overland and 

channel flow, the surface runoff lag and the runoff volume for each HRU and 

subbasin separately. The peak runoff rate is the maximum runoff flow rate that 

occurs within a given rainfall event. It is an indicator of the erosive power of a storm 

Table 5.3 Main components of the SWAT model, process description and factors considered in the 
model (cursive, if not applied). 
SWAT component Process description Considered factors  
Hydrology 
Surface runoff SCS-CN equation, Green & 

Ampt infiltration method 
Hourly or daily rainfall, soil 
and land use properties 

Percolation Storage routing, travel time, up 
and downward flow   

Available water capacity, 
hydraulic conductivity 

Lateral flow Kinematic storage model,  
up and downward flow 

Slope, porosity, flow 
length, soil water 

Groundwater flow Linear storage model,  shallow 
and deep aquifer 

 

Potential 
evapotranspiration 

Priestley-Taylor, Penman-
Monteith or Hargreaves 

Minimum and maximum 
air temperature, solar 
radiation, relative 
humidity, wind velocity 

Actual evapotranspiration Soil evaporation 
 
Plant transpiration 

Soil depth, water content 
 
ETpot, LAI 

Transmission Lane’s method Channel dimensions, flow 
duration 

Sediment/crop growth 
Sedimentation MUSLE USLE-factors, surface 

runoff, peak flow rate, 
rock fragment  

Soil temperature per soil layer  damping depth, surface 
and  mean annual air 
temperature 

Crop growth Heat units concept, potential 
biomass 

LAI as a function of heat 
units and biomass, water 
and temperature stress 
adjustments, harvest 
index 

Nitrogen Simplified N-cycle in the soil, 
enrichment ratio for loading 
function 

 

Phosphor Partitioning insolute and 
sediment phase, loading 
function similar to nitrogen 

 

Agricultural management Effects on biomass and 
nutrient cycle 

Tillage operations, 
fertiliser, grazing 

Channel routing 
Flood routing Manning’s equation, continuity 

equation 
Travel time, flow rate,  
transmission and 
evaporation losses 

Sediment routing Stokes Law fall velocity, SDR 
for each particle size 

River bed degradation 
(optional)  
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and can be used to predict sediment loss. The peak runoff rate is calculated using 

the modified rational method as a function of surface runoff, subbasin area, time of 

concentration and the fraction of daily rainfall during time of concentration: 
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   (5.10) 

where  

peakq  peak runoff rate [m3/s] 

C  runoff coefficient [-], quotient of surfQ  and dayR  

 i  rainfall intensity [mm/h], quotient of tcR  and conct  

Area   subbasin area [km2] 

tcR  rainfall during time of concentration [mm] 

dayR     daily rainfall [mm] 

conct  time of concentration for the subbasin [h] 

tcα  fraction of daily rainfall that occurs during the time of concentration [-] 

surfQ  surface runoff [mm]. 

 

The time of concentration is the amount of time from the beginning of a rainfall event 

until the entire subbasin area contributes to flow at the outlet. It is calculated as a 

function of subbasin slope length, average flow channel length, overland flow velocity 

and the average channel velocity estimated from Manning’s n. For large subbasins 

with a time of concentration greater than one day, SWAT incorporates a surface 

runoff storage feature to lag a portion of the surface runoff release to the main 

channel (Eq. 5.11).  
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where 

surfQ   surface runoff discharged to the main channel on a day [mm] 

surfQ ,
  generated surface runoff in the subbasin on a day [mm] 
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1 , −istorQ  surface runoff stored or lagged from the previous day [mm] 

surlag  surface runoff lag coefficient [-] 

conct   time of concentration for the subbasin [h] 

 

As surlag decreases, more water is held in storage. As a consequence, the simulated 

stream flow hydrograph is smoothed. The peak runoff rate is corrected by 

transmission losses in the ephemeral channel.   

Potential and actual evapotranspiration according to Penman & Monteith 

SWAT offers three evapotranspiration models: the Penman-Monteith method 

(Monteith, 1965; Allen et al., 1989), the Priestley-Taylor method (Priestley & 

Taylor 1972) and the Hargreaves method (Hargreaves et al. 1985). SWAT can also 

read in daily ETpot values if the user prefers to apply a different method. In general, 

ETpot describes the amount of water transpired by a short green crop, completely 

shading the ground, of uniform height and no shortage of water. As reference crop 

for ETpot according to Penman-Monteith, the SWAT model uses alfalfa at a height of 

40 cm with a minimum leaf resistance of 100 seconds per meter. The Penman-

Monteith equation is:  
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where 

Eλ  latent heat flux density [MJ/m2/d]  

    E  depth rate of evaporation [mm/d] 

    ∆  slope of the saturation vapour pressure-temperature curve, de/dT             

                     [kPa/°C] 

          netH  net radiation [MJ/m2/d] 

    G  heat flux density to the ground [MJ/m2/d] 

           airρ  air density [kg/m3] 

           pc  specific heat at constant pressure [MJ/kg/°C], 

           0
ze       saturation vapour pressure of air at height z [kPa] 

           ze        water vapour pressure of air at height z [kPa] 

           γ        psychrometric constant [kPa/°C] 
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SWAT assumes that the daily soil heat flux G  is equal to zero. The aerodynamic 

resistance is calculated as a function of the height of wind, humidity and temperature. 

Furthermore, the wind speed and roughness length are considered for momentum 

and vapour transfer. Taking into account the reference crop, the equation for 

aerodynamic resistance simplifies to:  

z
a u

r 114
=            (5.13) 

where 

  ar   aerodynamic resistance [s/m] 

zu  wind speed [m/s] 

 

The canopy resistance cr  for a well-watered reference crop can be estimated as the 

quotient of the minimum surface resistance for a single leaf and one-half of the 

canopy leaf area index: 

 

( )LAIrrc ⋅⋅= 5.01         (5.14) 

where 

  cr   canopy resistance [s/m] 

 1r  minimum effective stomata resistance of a single leaf [s/m] 

LAI  leaf area index of the canopy [-] 

Actual Evapotranspiration 

When precipitation falls, SWAT first fills the canopy storage before any water is 

allowed to reach the ground. The maximum storage capacity varies as a function of 

LAI. SWAT first evaporates any rainfall intercepted by the plant canopy. Next, SWAT 

separately calculates the maximum amount of transpiration and soil evaporation 

using a modified approach of Ritchie (1972). Transpiration is determined as a 

function of LAI and ETpot using equations 5.12 to 5.14. Maximum transpiration is 

calculated as a function of ETpot, aboveground biomass, residue and two terms 

defining the upper and lower limits. The upper limit is defined as 80% of the plant-

available water on a given day. If an evaporation demand for soil water exists, SWAT 

first partitions the evaporative demand between the different layers. SWAT does not 

allow a different layer to compensate for the inability of another layer to meet its 
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evaporative demand. The depth distribution used to determine the maximum amount 

of water allowed to be evaporated is: 

)00713.0374.2exp(, zz
zEE ll

szsoil ⋅−+
⋅=     (5.15) 

where  

zsoil,E  evaporative demand  at depth z  [mm] 

ll
sE  maximum soil water evaporation on a given day [mm] 

  z  depth below the surface [mm] 

 

The coefficients in Eq. 5.15 were chosen so that 50% of the evaporative demand is 

extracted from the top 10 mm of soil and 95% from the top 100 mm of soil. This 

assumption can be modified by the soil evaporation compensation coefficient 

(ESCO). As the value of the ESCO is reduced, the model can extract more of the 

evaporative demand from lower levels.  

The actual amount of transpiration in a day equals the plant water uptake for the day, 

which depends on the amount of water required by the plant for transpiration and the 

amount of water available in the soil. The depth distribution used to determine the 

maximum amount of water uptake from the soil surface to a depth z  is: 

[ ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−−⋅=

root
w z

zβ
β

exp1
]- exp-1

E
w

w

t
zup,     (5.16) 

where 

zup,w  potential water uptake from the soil surface to a depth z  [mm] 

tE  maximum plant transpiration on a given day [mm] 

  z  depth below the surface [mm], rootz  rooting depth [mm] 

 wβ  water use distribution parameter [-]  

   

As default, wβ  is set to 10, so that 50% of water uptake will occur in the upper 6% of 

the root zone. This assumption can be modified by the plant uptake compensation 

coefficient (EPCO). As the value of the EPCO is increased, the model allows more of 

the water uptake demand to be met by lower layers in the soil. 
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Percolation 

Water can flow in the soil under saturated or unsaturated conditions. SWAT records 

the water contents of the different soil layers but assumes that the water is uniformly 

distributed within a given layer. Unsaturated flow between layers is indirectly 

modelled with the depth distribution of plant water uptake and that of soil water 

evaporation (Eq. 5.15). Water is allowed to percolate if the water content of a soil 

layer exceeds the field capacity of the layer. The amount of water that moves from 

one layer to the underlying layer is calculated using the storage routing technique 

(Eq. 5.17). 
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⎜
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Kt
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TT

t

excesslylyperc eSWeSWw 11 ,,,    (5.17) 

where 

ly,percw   amount of water percolating to the underlying soil layer [mm] 

  excess,lySW  drainable volume of water in the soil layer [mm] 

t∆   length of time step [h] 

percTT  travel time for percolation [h] 

lySAT   amount of water in the soil layer when completely saturated [mm]  

lyFC   water content of the soil layer at field capacity [mm] 

satK   saturated hydraulic conductivity for the layer [mm/h] 

 

If infiltration is explicitly modelled using the Green-Ampt approach, a crack-flow 

model allows bypass flow to be considered.  

Lateral flow  

SWAT uses a kinematic storage technique to compute subsurface flow as a function 

of drainable volume of water, saturated hydraulic conductivity, soil slope, hill slope 

length and drainable porosity, as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⋅

⋅⋅⋅
⋅=⋅⋅=

hilld

sat
latlat L

slpKSW
vHq

φ
2

024.024 0     (5.18) 
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where 

latq  lateral flow [mm/d] 

0H  saturated thickness normal to the hillslope at the outlet expressed as a 
fraction of total thickness [mm/mm] 

 
latv  velocity of flow at the outlet [mm/h] 

24  conversion factor hours to days 

SW  drainable volume of soil water [mm] 

slp  slope [m/m] 

dφ  drainable porosity [mm/mm] 

satK  vertical saturated hydraulic conductivity [mm/h]  

hillL  hill slope length [m] 

 

For times of concentration greater than one day, SWAT incorporates a lateral flow 

storage feature to lag a portion of lateral flow release to the main channel. 

Groundwater flow 

In each subbasin, SWAT simulates an unconfined aquifer that contributes to the flow 

in the main channel (shallow aquifer) and a confined, deep aquifer. Water that enters 

the deep aquifer is assumed to contribute to stream flow somewhere outside the 

catchment. Water leaves groundwater storage either by discharge into rivers and 

lakes, by upward movement from the water table into the capillary fringe or by 

seepage to the deep aquifer. Equation 5.19a shows the daily water balance for the 

shallow aquifer. The shallow aquifer storage is recharged by percolation from the 

unsaturated zone and reduced by baseflow, deep aquifer recharge, upward flows into 

the soil zone and withdrawal. Baseflow is implemented as a linear storage with a 

specific recession coefficient (cf. Eq. 5.19b). 

 

 sadeeprevapgwrchrg1i,shi,sh wuwwQwaqaq −−−−+= −    (5.19a) 

 ( )t
rchrg

t
i,gwi,gw e1weQQ ∆α∆α −− −+⋅=      (5.19b) 

where 

i,shaq   shallow aquifer storage on the day i [mm] 

1i,shaq −   shallow aquifer storage the day before [mm] 
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rchrgw   recharge entering the aquifer [mm] 

gwQ   groundwater flow or baseflow into the main channel [mm] 

revapw   amount of water moving into the soil zone as response to water         
  deficiencies [mm] 
 

deepw  amount of water percolating from the shallow aquifer into the 
deep aquifer [mm] 

 
sawu   water use from the shallow aquifer [mm] 

α  base flow recession constant [-], describes the lag flow from the                      
aquifer, estimation by baseflow filter techniques  

 

Besides several specific groundwater coefficients, SWAT defines minimum 

thresholds for the shallow aquifer for the occurrence of return flow and water flow to 

the unsaturated zone or deep aquifer.     

Sedimentation component 

The sedimentation component of the SWAT model is based on the Modified 

Universal Soil Loss Equation (MUSLE). The MUSLE is a revision of the USLE where 

the rainfall energy factor is replaced by a runoff factor. This improves sediment yield 

prediction and eliminates the need for delivery ratios because the runoff factor 

represents the energy for detaching and transporting sediment. Furthermore, the 

equation can be applied to individual storm events. The equation is: 

 

( ) CFRGLSPCKareaqQ8.11SY USLEUSLEUSLEUSLE
56.0

hrupeaksurf ⋅⋅⋅⋅⋅⋅⋅⋅=  (5.20a) 

( )rock053.0eCFRG −=          (5.20b) 

where  

           SY   sediment yield [t/ha] 

surfQ   surface runoff [mm] 

peakq   peak runoff rate [m3/s] 

USLEK   USLE erodibility factor [0.013 t m2 h/m3 t cm] 

USLEC   USLE crop management factor [-] 

USLEP   USLE erosion control factor [-] 
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USLELS   USLE slope length factor [-] 

CFRG   coarse fragment factor [-] 

rock   rock fragments in the first soil layer [%] 

 

SWAT also computes the USLE for comparison purposes. Calculations of surface 

runoff and peak runoff rate have already been reviewed in Eqs. 5.8 to 5.11. In the 

following, a short definition of the USLE factors is given. 

Erodibility factor USLEK  

Details regarding the calculation of the USLEK  factor can be found in Section 5.1 and 

Neitsch et al. (2002a).  

Cover and management factor USLEC  

The USLE cover and management factor USLEC  is defined as the ratio of soil loss 

from land cropped under specified conditions to the corresponding loss from a clean-

tilled, continuous fallow. This factor represents the reducing effects of plant canopy 

and plant residue on soil erosion. Because the plant cover varies during the growth 

cycle of the plant, SWAT updates USLEC  daily using Eqs. 5.21a and 5.21b. 

 

( ) ( )⎣ ⎦ ⎣ ⎦ ⎣ ⎦( )mn,USLEsurfmn,USLEUSLE Clnrsd00115.0expCln8.0lnexpC +⋅−⋅−=  (5.21a) 

⎣ ⎦ 1034.0Cln463.1C aa,USLEmn,USLE +⋅=       (5.21b) 

where 

mn,USLEC  minimum value for USLEC  for the land cover [-] 

aa,USLEC  average annual value for USLEC  for the land cover [-] 

surfrsd   amount of residue on the soil surface [kg/ha] 

Support practice factor USLEP  

The support practice factor USLEP  is defined as the ratio of soil loss with a specific 

support practice to the corresponding soil loss with up- and down-slope culture. 

Support practices include contour tillage, contour strip-cropping and terrace systems. 
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For example, values of USLEP  for contouring range from 0.5 to 0.6 for slopes lower 

than 12% and from 0.7 to 0.9 for slopes up to 25% (Wischmeier & Smith 1978). 

Topographic factor USLELS  

The topographic factor USLELS  is the expected ratio of soil loss per unit area from a 

field slope to the soil loss from a 22.1 m long, 9% slope under otherwise identical 

conditions. The topographic factor is calculated as follows: 

( )( )065.0sin56.4sin41.65
1.22

L
LS hillhill

2
m

hill
USLE +⋅+⋅⋅⎟

⎠

⎞
⎜
⎝

⎛= αα     (5.22a) 

[ ]( ) [ ]( )hilltan835.35slp835.35 e16.0e16.0m α⋅⋅− −⋅=−⋅=      (5.22b) 

where 

USLELS   USLE slope length factor [-] 

hillL   slope length [m] 

m   exponential term [-] 

hillα   angle of the slope [-] 
slp   slope of the HRU expressed as rise over run [m/m] 

 
5.3.2. Modelling procedure  

 

The general modelling procedure applied in this study was presented earlier 

(Fig. 5.1). Detailed information about each step is given in Chapter 7.  

Effort was spent during model parameterisation to prepare climate and soil data (field 

survey, laboratory analysis, estimation of physical properties, determination of 

additional model parameters like erodibility and hydrologic group). Land use types 

from the land use map were referred to existing land use types in the SWAT crop 

database. Vegetation dynamics were adapted to local conditions by modifying 

several parameters.  

After the model was set up, it was manually calibrated at two outlets (Terou-

Igbomakoro, Donga-Pont). First, hydrology was calibrated at yearly and weekly time 

steps using daily discharge measurements, separated into slow and fast components 

using the baseflow filter from Arnold & Allen (1999). Then, sediment yield was 

calibrated at weekly and daily time steps using daily values of suspended sediment 
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concentration derived from turbidity measurements (see Chapter 7). Figure 5.7 

shows the applied manual calibration procedure and the criteria for model evaluation. 

Model performance was analysed visually and with statistical measures like the 

coefficient of determination (R2) and the coefficient of Model Efficiency (ME) (see 

Section 5.5). Explanations of the calibration parameters can be found in Section 7.1 

and Neitsch et al. (2002a). The different scenarios for the scenario analysis are 

described in Section 7.2.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7 Applied procedures for manual calibration of hydrology and sediment budget. 
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5.4. Sensitivity and uncertainty analyses and automatic 
calibration  

 

The following explanations of the SWAT algorithms for the automatic calibration and 

the sensitivity and uncertainty analyses were taken from Huisman et al. (2004). The 

algorithms were implemented in SWAT2005 by Ann van Griensven (UNESCO-IHE, 

Delft). 

 
5.4.1. Sensitivity analysis 

 

The algorithm used in SWAT for the sensitivity analysis is called the Latin Hypercube 

One-factor-At-a-Time design (LH-OAT) and was proposed by Morris (1991). The LH-

OAT sensitivity analysis combines the strengths of global and local sensitivity 

analysis methods. Latin Hypercube (LH) sampling for Monte Carlo analysis is robust 

and efficient. It replaces random sampling from the input distributions by a stratified 

sampling that better covers the sampling hypercube with fewer samples. For LH 

sampling, the distribution of each parameter is divided into m ranges, each with a 

probability of occurrence of 1/m. Parameter tuples are then randomly generated, 

ensuring that each range is sampled only once (Fig. 5.8). The model is run m times 

with these parameter sets. The results are typically analysed with multivariate linear 

regression methods.  

The main limitations of LH sensitivity analysis 

are: i) the assumption of linearity in the 

multivariate regression analysis, and ii) the 

ambiguous attribution of changes in output to 

individual parameters, as all parameters are 

changed simultaneously. The latter limitation is 

overcome by the One-factor-At-a-Time (OAT) 

sensitivity analysis. Using this method, each 

parameter is sequentially changed so that only 

one parameter is changed per model run. The 

disadvantage of the OAT design is that it 

measures only local sensitivities since the 

 
Fig. 5.8 LH-OAT sampling for a two 
parameter set. Initial parameters of the 
LH sampling (x) and the OAT points (•) 
are shown (from Huisman et al. 2004). 
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sensitivity of the model output to a parameter may depend on the values of other 

model parameters (partial sensitivity). In the LH-OAT sensitivity analysis, the OAT 

method is repeated for each LH sampling point (Fig. 5.8). Finally, the global 

sensitivity is calculated as the average of the local sensitivities. The variance of this 

set provides a measure of the uniformity of the sensitivity over the entire parameter 

space. Thus, the LH-OAT sensitivity analysis method combines robust, efficient 

LH sampling, ensuring complete sampling of the parameter space, with the precision 

of an OAT design, allowing unambiguous attribution of changes in the output in each 

model run to a specific model parameter.  

 

5.4.2. Automatic calibration  
 

The automatic calibration algorithm in SWAT is based on the Shuffled Complex 

Evolution algorithm developed at the University of Arizona (SCE-UA). 

SCE-UA is a global search algorithm that minimizes a single objective function of up 

to 16 model parameters. It combines the direct search method of the simplex 

algorithm with a controlled random search, a systematic evolution of points directed 

to global improvement, competitive evolution and the concept of complex shuffling. In 

the first step, SCE-UA selects an initial parameter set by random sampling of the 

parameter space. The feasible parameter range is determined by user-defined upper 

and lower bounds for each model parameter. After random sampling, the parameter 

sets are divided into several complexes. Each complex is evolved independently 

using the simplex algorithm. The complexes are periodically shuffled to form new 

complexes in order to share information gained. In this way, SCE-UA searches the 

entire parameter space and finds the global optimum with a high success rate. 

A large number of applications of the SCE-UA in calibrating hydrological models 

confirm the robustness, effectiveness and efficiency of the algorithm.  

The results of the automatic calibration normally depend on the choice of objective 

function. SWAT2005 currently offers two types of objective functions: i) the sum of 

squared residuals (SSQ) and ii) the sum of squares of the difference between the 

measured and simulated values after ranking (SSQR).  
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The equations are: 

 
2
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simulatedjmeasuredj xxSSQR  

where 

 n    number of pairs of measured and simulated variables (i=1 to n) 

 j   rank 

measuredx  measured variable 

simulatedx  simulated variable. 

 

Typically, SSQ is chosen in the optimization procedure. However, this objective 

function focuses on matching the peaks and neglects accurate matches of lower 

values. In contrast, the SSQR method aims to fit the frequency distribution of the 

measured and simulated time series. It does not consider the time of occurrence of a 

given value of a variable.  

 

5.4.3. Uncertainty analysis 
 

The uncertainty analysis in SWAT2005 addresses the uncertainty in the calibration 

parameters. It uses the model runs from the automatic model calibration instead of 

re-running the model for a range of parameter values, as is commonly done in other 

algorithms for uncertainty analyses. First, the simulations are divided into ‘good’ and 

‘bad’ simulations based on a threshold value c  for the objective function. All 

simulations with a value of the objective function below this threshold are accepted 

as ‘good’ simulations. The threshold value is calculated using 2χ -statistics. The 

formula for a single objective calibration using the sum of squared residuals (SSQ) is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⋅Θ=
pn

OFc p 95.0,
2

* 1)( χ  

where 

 c      threshold value for the objective function 
n        number of parameters   
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p      number of free parameters 
*Θ      optimal parameter set consisting of p  free parameters ( 1

*Θ , …, p
*Θ ) 

)( *ΘOF   minimum of the SSQ. 

The parameter uncertainty can then be calculated by analyzing the properties of the 

accepted parameter sets. 

 

5.5. Soil evaluation  
 

The terms land and soil evaluation are often used in the same sense, since most 

land evaluation schemes focus on soil evaluation without considering socioeconomic 

and political components (Dorronsoro 2002). Rossiter (1994) provided an overview of 

land evaluation methods. In general, capability and suitability classifications can be 

distinguished. While capability refers to a general kind of land use rather than specific 

land use systems, suitability includes the needs of specific crops (Rossiter 1994). 

Capability classifications focus primarily on determining the maximum intensity of 

land use consistent with low erosion risks and sustained productivity (Landon 1984). 

The most common capability classifications include the USDA land classification 

system and the Fertility Capability Soil Classification System (FCC). The 

FAO framework for Land Evaluation provides the basis for various evaluation 

schemes with a strong focus on socioeconomic conditions. Soil and terrain 

databases (SOTER) often form the basis for assessing land qualities. For example, 

Igué (2000) applied the SWEAP model (a SOTER-based program for assessing 

water erosion hazard) to central Benin. The semi-quantitative parametric FAO/ITC 

Ghent method, modified by Sys (1993), is commonly used in the tropics and sub-

tropics to calculate land suitabilities for specific crops (Dorronsoro 2002). 

Graef (1999) applied this method to south-western Niger, and Weller (2002) to 

southern Benin.  

The Fertility Capability Classification (Sanchez et al. 2003) was applied in the 

framework of this study. The FCC is a technical soil classification system that groups 

soils according to main fertility-related soil constraints, which can be interpreted in 

relation to specific farming systems or land utilization types (Sanchez et al. 2003). 

The classification is based on topsoil and subsoil parameters. An FCC code consists 

of three components: (1) type, (2) substrata type (optional) and (3) modifiers 
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(optional) (see Table A.5, Appendix A). The FCC type describes the general texture 

of the surface layer (0-20 cm). The FCC subtype is used to distinguish marked 

textural changes between the topsoil and subsoil. Type and subtype can include a 

prime (') symbol to denote 15-35% gravel, or a double prime (") to denote >35% 

gravel. The modifiers are 13 lower-case letters, which can be used alone or in 

combination. They are determined from one or more diagnostic land characteristic. 

For example, the modifier e indicates a low cation exchange capacity. To obtain this 

modifier, a soil profile must fulfil at least one of the following criteria: (1) effective 

CEC <4 meq/100g soil, (2) sum of cations at pH7 < 7 meq/100g soil or (3) sum of 

cations, Al and H ions at pH 8.2 <10 meq/100g soil. Figure 5.9 provides an example.  

The system has been criticized for some of its specific class limits, e.g. for the prime 

modifier, and the generality, which does not allow specific fertility management 

recommendations. Rossiter (1994) criticized the inconsistent structure of the code, 

where, e.g., different modifiers (a, h) are used for two intensities of the same 

phenomenon (soil acidity).  

Nevertheless, the FCC classification can provide a lot of information about the land 

quality indicator 'susceptibility to erosion': the FCC classes Ci, Cx and Lx indicate low 

susceptibility due to high permeabilities, and the modifiers v and bv characterize 

highly-erosive soil materials. Soils with a textural change to clayey subsoils (e.g., SC, 

LC) or to rock (e.g., SR or LR) can degrade easily due to erosion and are susceptible 

to erosion if the finer-textured surface layer saturates. However, due to the general 

nature of the FCC classes, usually only two or three severity levels can be separated 

by the FCC code (Rossiter 1994). 

The individual chemical and physical soil properties of the representative profiles 

have been evaluated according to the classification of Landon (1984). Table A.4 in 

Appendix A lists the different classes and thresholds.  

The FCC code “Lehk” summarizes the following soil characteristics:

good water-holding capacity (L throughout, no primes), medium infiltration capacity (L), 

low ability to retain nutrients for plants (Le), deficient in bases (hk); applications of bases 

and N should be splitted to avoid leaching (Le), requires liming for Al-sensitive crops (h), 

potential danger of over-liming leading to unavailability of micronutrients (e), low ability to 

supply K (k) so that K-fertilizers will be required for plants needing high levels of K. 
 

Fig. 5.9 Example of the Fertility Capability Classification (FCC). 
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5.6. Statistical analysis     
 

More than one statistical test should be implemented to evaluate model performance. 

The coefficients of determination ( 2r ) and Model Efficiency (ME) are often used as 

statistical tests to analyse stream flow, as it is easy to compare these values with a 

fixed ideal reference value of one. In this study, the following indices are applied:  

 

• Pearson coefficient of correlation  ( r ) or coefficient of determination ( 2r ) 

• Coefficient of Model Efficiency (ME) according to Nash & Sutcliffe (1970) 

• Index of Agreement (IA) according to Willmott (1981). 

 

The coefficient of correlation r  describes the linear dependency between measured 

and simulated values within the range -1 to 1 (see Eq. 5.24). The index is strongly 

influenced by the mean value. A model that systematically over- or underpredicts will 

still result in good r  and 2r  values. 
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n   number of variables 

ix   measured variable 

i'x   simulated variable 

 

The Coefficient of Model Efficiency (ME) describes the degree of agreement between 

observed and simulated values (see Eq. 5.25). The ME has a range of values 

between - ∞ to 1. Negative values indicate that the goodness of the model results is 

lower than the mean of the observed data (Krause et al. 2005). A disadvantage of the 

Coefficient of Model Efficiency is the high dependency on the mean and the 

consideration of differences between observed and predicted values as squared 

values. As a consequence, larger values in a time series significantly influence the 

outcome. Similar to 2r , the coefficient is not very sensitive to systematic model over- 

or underprediction, especially during low flow periods (Krause et al. 2005). 
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n  number of variables 

   ix   measured variable 

i'x   simulated variable 

   ix   arithmetic mean of n),1,(i xi …=  
 

In general, model results with a Model Efficiency larger than 0.5 are considered 

satisfactory. The model yields good results for values between 0.8 and 0.9. Results 

are very good for values higher than 0.9 (Takle et al. 2005).  

The Index of Agreement evaluates the performance of temporal characteristics of the 

discharge curves (see Eq. 5.26). Therefore, small time lags in observed versus 

simulated flow result in a significantly lower Index of Agreement (Coffey et al. 2004). 

The index covers a range of 0 to 1. A value of 1 indicates complete agreement 

between measured and simulated values.  
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n  number of compared values 

ix  measured variable 

x  arithmetic mean of n),1,(i xi …=  

i'x  simulated variable 

ix'  arithmetic mean of n),1,(i 'x i …=  
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6. SOIL DISTRIBUTION AND DEGRADATION IN THE UPPER 
OUÉMÉ CATCHMENT 

 
In this chapter, dominant soil types in the Upper Ouémé catchment are characterized 

and evaluated according to their fertility. Furthermore, special attention is given to the 

soils in inland valleys. The extent of soil degradation in the catchment is illustrated by 

the results of an interdisciplinary survey and the characterisation of typical erosion 

forms and degraded fields.  

  

6.1. Soil characteristics in the Upper Ouémé catchment  
 

The soil maps of Benin from ORSTOM delineate 38 soil units in the Upper Ouémé 

catchment (see Chapter 2, Fig. 2.12). The explanatory notes of the soil maps 

describe one characteristic profile for each unit. Detailed quantitative data regarding 

physical and chemical soil properties are not always available. In order to get 

complete and current descriptions of representative profiles, soil investigations were 

performed in the framework of this study complementing investigations by 

Sintondji (2005).  

 

6.1.1. Properties of the representative profiles 
 

In this work, 19 representative profiles have been studied in September 2004. The 

corresponding soil units cover 77% of the Upper Ouémé catchment; the remaining 

23% are covered by soil units that were studied by Sintondji (2005). His 

representative profiles were used for modelling but are not discussed in this chapter. 

All profiles were taken on savannah land and old fallows. The majority of studied 

profiles (16) are fersialitic, while two profiles, types 90 and 91, are ferralitic, and soil 

type 101 is hydromorphic. The texture of the soil horizons varies from sandy sand to 

loamy clay, with generally low silt contents (Fig. 6.1). Almost all topsoils have a 

loamy-sandy texture, usually classified as loamy sands (Sl2, Sl3) according to the 

German soil classification, or as loamy sand (LS)/sandy loam (SL) according to the 

USDA classification. Only the topsoils of soil types 17, 18 and 21 have a loamy 

texture. In the second horizon, sandy textures also dominate. However, soil types 17, 
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21 and 48 show clay contents higher than 20%. In the fourth horizon, the majority of 

profiles feature loams and clays, with clay contents varying between 20 and 55%. 

Only soil types 31, 74 and 80 have lower clay contents. The third horizon shows a 

wide range of textures, including typical soil textures for the second and fourth 

horizon.  

The 19 representative 

profiles were classified 

according to the French 

CPCS classification 

system and the World 

Reference Base (WRB) 

(see Table 6.1). The 

classification systems are 

not directly comparable. 

For example, the CPCS 

class sols ferralitiques 

covers Ferralsols as well 

as Ferric Acrisols. The 

fersialitic soils (sols 

ferrugineux tropicaux) 

have been classified as 

Acrisols, Lixisols, Plinthosols or Arenosols. 

In the following, we summarise and evaluate the soil properties of the topsoils 

according to Landon (1984) (Tables 6.2, 6.3; for evaluation criteria, see Table A.3 in 

Appendix A). Knowing the topsoil properties is crucial in order to determine the 

erodibility and fertility of the soils. The depth of the first horizon varies between 5 and 

23 cm. Ten of 19 soil types have topsoils with gravel contents higher than 23%, with 

a maximum of 43% recorded for hydromorphic soil 101. Estimated bulk densities 

vary between 1.41 and 1.65 g/cm3. The estimated available water capacities (AWC) 

range from 9 to 18%, which is rather low. The estimated saturated hydraulic 

conductivities (Ksat) lie between 6 and 141 mm/h for the topsoils. Except for the 

Vertisol, these Ksat values are significantly higher than the ex-situ measured Ksat 

values of Giertz (2004) and Sintondji (2005), but they correspond well with the 

Fig. 6.1 Soil texture of the representative profiles for horizon 1 to 4. 
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median Ksat values from in-situ measurements by Giertz (2004) on savannah/fallow 

land. 

Eleven soil types belong to Hydrologic group C (slow infiltration rates), seven to 

Group B (moderate infiltration rates), and only the Vertisol is classified as Group D 

(very slow infiltration rates). 

The erodibility factors (KUSLE) are slightly lower than the values obtained by 

Junge (2004) and Van Campen (1978) for erosion plots in the Aguima subcatchment 

and near Parakou, respectively. According to the classification of Bolinne & 

Rosseau (1978) (Table A.4 in Appendix A), most topsoils are sufficiently resistant to 

erosion due to very low fractions of easily erodible very fine sand and silt. However, 

soil type 21 (the Vertisol) contains 41% silt and is classified as medium resistant to 

erosion. Investigations by Junge (2004) showed that KUsle can be significantly higher 

on cropland and hydromorphic soils at the bottoms of inland valleys.  

Organic carbon contents range from 0.2 to 2.4% (Table 6.3). Except for soils 17 and 

101, they are classified as very low. The nitrogen contents are low and within the 

range reported by Swoboda (1994) for soils in the commune Péhunco. The C/N-

ratios are between 10 and 25. 

Table 6.1 Representative profiles – Classification according to the World Reference Base (WRB) and 
the French soil classification system (CPCS). (g – granite, gn – gneiss, ggn – granitogneiss) 
Soil WRB classification

Soil type Characteristics Parent material
Soil map 

[%]
3 Sols peu evolues sur quartzite du socle Orthi-Dystric Leptosol 0.01

14 Sol bruns 
eutrophes 
hydromorph

Ferrali-Plinthic Cambisol 
(Endoskeletic) 0.73

17 Sols ferrugineux tropicaux ggn with biotite Humic Lixisol 2.20

18 peu lessivés gn ferro-magnesian
Ferri-Endostagnic Acrisol 
(Endoskeletic) 3.31

21 sur roche basique Hypereutric Vertisol 3.53
25 kaolinitic horizon ggn with biotite Endoskeleti-Albic Acrisol 3.92

29 basic Eutric Gleysol or Gleyic Lixisol 0.78
31 lessivés sans concretions g, acid Arenosol 1.70
45 lessivés à concretions embrechite Haplic Acrisol 18.78
48 g, gn with two micas Profondic Lixisol 5.15

55 kaolinitic horizon
gn, with muscovite and 
two micas Haplic Lixisol 1.66

56 kaolinitic horizon g Plinthic Acrisol (Hyperochric) 20.84
58 kaolinitic horizon g, gn calco-alkaline Humic Lixisol 7.34

62 lessivés induré ggn, with two micas
Albi-Petric Plinthosol (stagnic, 
endoeutric) 0.90

70 kaolinitic horizon gn ferro-magnesian Albi-Petric Plinthosol 1.47

80 appauvris sans concrétions
g, calco-alkaline with 
biotite Plinthic Arenosol 0.73

90 Sols ferralitiques weak desaturation ggn, acid Acric Ferralsol or Ferric Acrisol 1.98

91
young, weak 
developed

gn, with muscovite and 
two micas Plinthic Ferralsol (Lixic) 0.14

101 Sols hydromorphes gleyey
alluvio-colluvial fluviatile 
material Eutric Gleysol 1.95

CPCS classification
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For ratios higher than 20, nitrogen availability is very limited, and straw residues 

increase the C/N ratio, while legumes decrease it (Landon 1984). The pH value of 

the topsoils is low to medium, ranging from 4.5 to 6.3. The cation contents in the 

topsoil are generally low to medium. Sodium and potassium contents are low for all 

soil types except for soils 17 and 58. Calcium contents are high for soils 17, 21 and 

101, leading to a base saturation of 100%. The cation exchange capacity varies 

between 1.2 and 12 cmolc/kg. While CECpot values are low to very low, base 

saturation is high for almost all soil types. Only profiles 3, 18, 29 and 56 show a 

medium base saturation.  

Appendix A provides detailed information about the location and properties of all 

representative profiles, including a photo of each profile (see Appendix A, Figs. A.1, 

A.2, Table A.2). In the following, we describe four important soil types in the 

catchment in detail. Soil types 56, 45, 58 and 48 together cover about 52% of the 

catchment area and are all classified as sols ferrugineaux tropicaux lessivés à 

concretions (clay eluviated soils with nodules) according to the CPCS classification. 

However, soils 56 and 58 show a kaolinitic horizon over a nutrient-poor granitic 

substratum and/or nutrient-richer calco-alkaline granito-gneiss. Soils 45 and 48 occur 

directly over embrechite (nutrient-rich) and granite/granitic gneiss, respectively. 

Table 6.2 Physical properties of the topsoils. 

Soil 
type

Depth 
[cm]

Clay  
[%]

Silt 
[%]

Sand 
[%]

Gravel 
[%]

Texture1   

[-]
Texture2   

[-]
Bd* 

[g/cm3]
AWC* 

[mm/mm]
Ksat* 

[mm/h]
Hydrol. 
Group

KUSLE*  
[-]

3 10 10 15 75 39 Sl3 SL 1.54 0.11 97 B 0.09
14 11 10 22 68 12 Sl3 SL 1.48 0.13 68 C 0.14
17 21 26 28 45 28 Lts L 1.41 0.15 11 C 0.16
18 8 19 27 53 27 Ls4 SL 1.51 0.14 15 C 0.20
21 13 21 41 38 24 Ls2 L 1.44 0.18 6 D 0.30
25 10 9 14 77 26 Sl3 SL 1.58 0.10 86 B 0.08
29 20 8 15 76 7 Sl3 SL 1.65 0.10 56 C 0.17
31 15 6 10 84 0 Sl2 LS 1.58 0.10 138 B 0.06
45 20 8 10 82 24 St2 LS 1.60 0.10 130 B 0.05
48 13 10 12 79 5 Sl3 SL 1.54 0.10 141 B 0.06
55 8 9 14 77 27 Sl3 SL 1.63 0.10 74 C 0.11
56 21 6 10 84 13 Sl2 LS 1.68 0.09 78 C 0.07
58 23 16 18 66 25 Sl4 SL 1.49 0.12 60 C 0.07
62 18 7 13 79 3 Sl2 LS 1.61 0.10 82 C 0.09
70 5 8 28 64 14 Su3 SL 1.49 0.15 47 C 0.21
80 15 3 8 89 7 Ss S 1.67 0.09 113 B 0.03
90 12 8 12 80 18 Sl2 LS 1.64 0.09 81 B 0.07
91 5 13 17 69 24 Sl4 SL 1.57 0.11 51 C 0.11

101 5 16 26 59 43 Sl4 SL 1.41 0.14 49 C 0.13
Mean 13 11 18 71 19 - - 1.55 0.12 73 - 0.12
Min 5 3 8 38 0 - - 1.41 0.09 6 - 0.03
Max 23 26 41 89 43 - - 1.68 0.18 141 - 0.30

* estimated 1 AG Boden (1994) 2 USDA (1993)  
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The study sites of the representative profiles 45, 56 and 58 are characterised by 

undulated pediplaine relief, a position at the mid-slope with an inclination of about 2° 

and the occurrence of sheet erosion. In contrast, profile 48 is positioned at the upper 

slope with an inclination of 2.5°. The sites are covered by savane herbeuse (profiles 

45, 56), savane arbustive (profile 48) or savane arborée (profile 58). 

Soil type 56 – Plinthic Acrisol (Hyperochric)  

The representative profile for soil type 56 is classified as 

Plinthic Acrisol due to the occurrence of a clay-eluviated 

and a skeletic horizon. In addition, the profile is called 

hyperochric due to the very pale topsoil (Fig. 6.2). 

A brown, sandy topsoil overlies a yellowish brown B-

horizon of loamy sand and a brown, sandy loam, both 

with a high content of gravel and large ferro-magnesium 

nodules. Below 81 cm, there is a multicoloured kaolinitic 

horizon. Traces of light mica have been found in all B- 

horizons; horizons 3 and 4 were indurated. 

Table 6.3 Chemical properties of the topsoils. 

Soil 
type

Corg 

[%]
N    

[%]
C/N 
[-]

pH   
[-]

K 
[cmolc/kg]

Na 
[cmolc/kg]

Mg 
[cmolc/kg]

Ca 
[cmolc/kg]

CECpot 

[cmolc/kg]
BS    
[%]

3 1.6 0.09 19 5.0 0.04 0.01 0.8 3.1 6.9 57
14 1.7 0.08 20 5.9 0.13 0.01 1.2 4.0 6.2 87
17 2.1 0.14 15 6.2 0.36 0.01 1.6 17.6 10.8 100*
18 1.2 0.07 16 5.9 0.12 0.02 1.0 2.9 6.9 58
21 1.2 0.05 25 5.6 0.08 0.08 3.4 12.2 12.0 100*
25 1.1 0.08 14 5.8 0.08 0.01 0.8 3.4 4.6 96
29 0.2 0.02 10 4.5 0.01 0.03 0.4 0.7 2.0 54
31 1.0 - - - - - - - - -
45 1.1 0.07 15 5.7 0.09 0.02 0.9 4.3 6.0 87
48 1.4 0.09 16 5.8 0.15 0.01 1.0 5.1 7.9 79
55 0.7 0.04 15 5.3 0.05 0.01 0.5 2.4 4.0 74
56 0.2 0.01 11 4.6 0.03 0.01 0.1 0.3 1.2 37
58 1.8 0.11 17 5.7 0.52 0.02 1.4 8.6 10.3 100*
62 0.6 0.04 17 4.7 0.13 0.02 0.4 2.2 4.4 63
70 1.2 0.08 15 5.6 0.16 0.02 1.0 3.1 5.4 79
80 0.4 0.02 17 5.2 0.07 0.01 0.4 1.1 2.0 75
90 0.5 0.04 15 5.2 0.05 0.02 0.4 1.2 2.7 61
91 1.1 0.08 14 5.5 0.10 0.01 1.0 4.4 7.0 79

101 2.4 0.19 13 6.3 0.19 0.01 1.8 10.2 11.2 100*
Mean 1.1 0.07 16 5.5 0.13 0.02 1.0 4.8 6.2 77

Min 0.2 0.01 10 4.5 0.01 0.01 0.1 0.3 1.2 37
Max 2.4 0.19 25 6.3 0.52 0.08 3.4 17.6 12.0 100

*after Calcium correction

Fig. 6.2 Soil type 56 – 
representative profile (west of 
Parakou). 
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Very fine roots and biogenous pores were only visible in the two upper horizons. As 

illustrated in Figure 6.3, clay and silt contents increase significantly with depth. PH 

values between 4.6 and 5.2 indicate an acidic environment. Organic carbon contents 

are very low (<0.3%) throughout the profile. Nitrogen contents are low to very low, 

and the low C/N ratios of 10 to 14 indicate strongly limited nitrogen availability for 

plants. Cation exchange capacity increases with depth from 1.2 to 4.4 cmolc/kg but 

remains very low. Cation contents are generally low, and base saturation varies 

between 30 and 43%. Thus, the profile shows several physical and chemical 

constraints, including high leaching potential, low nutrient reserves and high gravel 

contents (see next section). 

Figure 6.4 schematically shows a soil transect along an approximately 1200 m long 

topo-sequence with five augerings that was studied west of Parakou in order to 

choose the location for a representative profile for soil type 56. Except for the the 1st 

Fig. 6.3 Physical and chemical properties of soil type 56 (representative profile). 

Fig. 6.4 Soil catena in soil unit 56. 
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augering at the inland-valley fringe, the 3rd to 5th augerings showed a similar 

sequence of diagnostic horizons and soil textures as the representative profile, for 

which a position was selected between augerings 3 and 4. Augering 2 did not exhibit 

a skeletic horizon. In contrast to the representative profile, topsoils of all augerings 

were very dark brown, not pale. Due to the occurrence of plinthic horizons below a 

depth of 6 to 20 cm, drilling was only possible to a depth of 54 to 80 cm. As is typical 

for the sub-humid savannah, gravel content was high, especially on the slope 

summit. Laboratory analysis of the soil properties of augerings 2 and 4 revealed 

higher soil fertility for these than for the representative profile due to higher Corg 

contents in all horizons, in particular the topsoil, and higher clay content in the topsoil 

of augering 2. As a consequence, C/N ratios are also more favourable for crop 

cultivation for these augerings. Values for pH were very similar. The subsoil gravel 

contents in augering 4 reached up to 86% (by weight), which was significantly higher 

than for the representative profile. In contrast to the other augerings and the profile, 

augering 1 at the inland-valley fringe described a hydromorphic soil with very low 

gravel contents, sandy textures and subsoil colours indicating reducing and oxidising 

conditions.  

To summarise, the augerings along the soil transect reflect the large heterogeneity of 

soil properties along the slope, which cannot be captured by one single profile. 

Nevertheless, the profile can be considered acceptably representative, although the 

pale topsoil was not identified as typical.   

Soil type 45 – Haplic Acrisol 

This profile is a typical Acrisol. A very dark brown, humus-

rich, sandy A-horizon overlies a dark brown, sandy B-

horizon with 49% gravel (mainly small ferric nodules). 

Underneath, the soil texture changes abruptly to dark 

yellowish brown, sandy clay that overlies brown, sandy 

clay; both with gravel contents below 9%. In the 5th horizon, 

the gravel content is extremely high (84%), and ochre 

mottles occur. The transitions between the horizons are 

clear, but irregular. The degree of root penetration and 

biogenous porosity is slightly higher than for profile 56. The 

pH remains nearly constant between 5.4 and 5.7, reflecting medium acidity. Organic 

Fig. 6.5 Soil type 45 – 
representative profile (near 
Beterou). 
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carbon content drops from 1.1% in the topsoil to about 0.3% in the rest of the profile 

(Fig. 6.6). The nitrogen content is very low throughout the profile. The C/N ratios 

decrease from 15 to 9 with increasing depth. 

The cation contents, CECpot and base saturation are lowest in the second horizon. 

Base saturation is high in the topsoil but drops in the subsoil to medium values. The 

main constraints with regard to agricultural production are the high gravel content in 

the 2nd and 5th horizons and a high erosion risk due to abrupt textural changes (see 

next section). No detailed soil transect along the slope was studied for this soil unit, 

but the representativeness was checked by comparing it with the typical 

characteristics for this soil unit presented in the descriptions of the soil map of Benin.  

Soil type 58 – Humic Lixisol  

The representative profile for soil type 58 is classified as a 

Humic Lixisol due to the occurrence of a thin argic horizon 

(Bt) and a very humus-rich, very dark grey topsoil with 

1.8% organic carbon. The loamy-sandy topsoil overlies a 

dark brown loamy sand and a dark yellowish brown sandy 

loam with red clay mottles and 47% gravel content. 

Underneath, a colourful saprolitic horizon with a sand-rich 

clay texture and abundant mica occurs. Transitions 

between the horizons are generally abrupt, but gradual 

and irregular for the 3rd horizon. Penetration by fine and 

medium size roots and biological activity is relatively high 

in the upper horizons. Except for the peak in the 3rd horizon, gravel content is about 

 
Fig. 6.6 Physical and chemical properties of soil type 45 (representative profile). 

Fig. 6.7 Soil type 58 – 
representative profile (west 
of Parakou). 



6.SOIL DISTRIBUTION AND DEGRADATION IN THE UPPER OUÉMÉ CATCHMENT 

 

87

20% (Fig. 6.8). The pH ranges from 5.1 to 5.7. Organic carbon contents decrease 

with depth from 1.8 to 0.2%. The nitrogen content is low in the topsoil and very low in 

the subsoil (<0.03%). 

The C/N ratios have values of 16 to 24, which are more favourable for crop 

cultivation than for soil types 45 and 56. CECpot is also significantly higher, ranging 

from 6 to 10 cmolc/kg soil. Base saturation is high throughout the profile. Thus, soil 

type 58 has a higher chemical fertility than the Acrisols discussed previously. 

However, water-logging could be a problem due to the clay-rich 4th horizon. 

Figure 6.9 schematically shows the corresponding soil transect for soil type 58 along 

a topo-sequence with five augerings that was studied west of Parakou near the road 

to Beterou and from which the location for the representative soil profile was chosen 

at the middle slope between augerings 2 and 3. In this transect, the depth and soil 

texture of the horizons vary less among the augerings than in the catena for soil 

Fig. 6.8 Physical and chemical properties of soil type 58 (representative profile). 

 
Fig. 6.9 Soil catena in soil unit 58. 
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type 56. Except augering 3, all augerings and the profile exhibit red mottles in the 

subsoil, comparatively high organic carbon contents of 0.7 to 2.8% in the topsoil, and 

rather low pH values between 5 and 5.7. With regards to the topsoils, the depth is 

very similar among augerings and the profile, but significantly lower for augering 4. 

The topsoil Corg and nitrogen content of the profile lie in the upper range obtained for 

the augerings, and the clay content is slightly higher than for all augerings. As a 

consequence, soil fertility of the representative profile is slightly higher than for most 

augerings. Except for augering 3, all augerings exhibit an argic horizon below 36 to 

55 cm depth, like the representative profile. For augerings 1 and 5 positioned near or 

on the summits, subsoils show significantly elevated gravel contents of 37 to 66%. 

However, augering 2, which was located close to the profile, did not show any 

horizon with extreme gravel content, as observed also in the representative profile. 

A saprolitic horizon with quartz pieces, as identified for the representative profile 

below 58 cm, was only exhibited by augering 5. For all other augerings, no saprolitic 

horizon was encountered within a depth of 1m. Augering 3 represents the 

hydromorphic soils at the fringe of an inland valley and is characterized by nearly 

pure sands without gravel which were wet below 50 cm depth and show pronounced 

features of oxidation below 60 cm.  

In a nutshell, some soil properties, like gravel content and organic carbon content 

vary considerably along the hillslope but the chosen profile can be considered as 

acceptably representative. 

Soil type 48 – Haplic Lixisol  

The representative profile is classified as Haplic Lixisol due 

to the occurrence of an argic horizon (Bt).  

A thin, very dark greyish brown, sandy topsoil overlays two 

dark brown sandy B-horizons and a brown, argic horizon 

(Fig. 6.10). Underneath, a brown, loamy sandy horizon 

occurs. Little pieces of quartz can be found throughout the 

profile. For most horizons, transitions are gradual and regular 

or irregular. Penetration by fine roots and biological activity is 

high in the upper three horizons. While gravel content is low 

in the topsoil, horizons 3 to 5 have extremely high gravel 

contents of 72 to 87%. Values for pH range from 5.2 to 5.8 

Fig. 6.10 Soil type 48 – 
representative profile 
(near Beterou). 
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(Fig. 6.11). Organic carbon contents decrease from 1.8 to 0.2% with increasing 

depth. Nitrogen contents are very low in the entire profile; the C/N ratios range from 

14 to 18.  CECpot is lower than for profile 58 with values between 4 and 8 cmolc per 

kg soil.  

Cation contents are more elevated than in the previous profiles but still are classified 

as low (K, Na) or low to medium (Ca, Mg). Base saturation is generally high, but 

medium for horizon 3 and 5. The profile is chemically comparatively fertile but shows 

severe limitations through the extreme gravel contents in the subsoil. 

Figure 6.12 schematically visualizes the corresponding soil transect with five 

augerings for soil type 48 along a topo-sequence which was studied near Beterou 

and from which the location for the representative soil profile was chosen at the 

upper slope. Slopes were very long and only slightly inclined; therefore and due to 

difficult access no augerings were performed at the lower slope and valley bottom. 

As shown in Fig. 6.12, the depth of the horizons varies considerably among the 

augerings. Topsoil depths range from 7 to 35 cm with lowest values on the summit. 

 
Fig. 6.11 Physical and chemical properties of soil type 48 (representative profile). 

Fig. 6.12 Soil catena in soil unit 48. 
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Corg contents in topsoils are similar as for the profile but significantly higher in 

augering 3. Except for augering 1, subsoils in the augerings and the profile contain 

extremely high gravel contents and mica and quartz pieces. Soil colours of horizons 

vary considerably among the augerings. Augerings 3 and 5 exhibit argic horizons as 

the representative profile. Augerings 1 and 4 showed slight increases in clay content 

with depth which may justify argic horizons but would require a laboratory analysis of 

the soil textures. Comparing the soil samples from augering 2 and 3 with the profile 

values, pH, Corg and nitrogen are very similar within one meter depth. However, while 

clay contents in the representative profile are between 9 and 21%, they are below 

10% in augerings 2 and 3.  

In summary, some soil properties like topsoil depth and soil colour vary considerably 

along the studied hillslope and clay-rich subsoils forming argic horizons as in the 

case of the representative profile are not always found in the first meter depth. 

However, the chosen profile reflects well the average soil properties along the slope.   

 
6.1.2. Evaluation of soil quality 

 

In the following, we evaluate the quality of the profiles according to the Fertility 

Capability Classification (Table 6.4, see criterias in Table A.5, Appendix A).  

For most profiles, the physiological deepness is medium to deep. Soil types 17, 25 

and 29 are very deep but show several physical and chemical constraints. Except for 

soils 29, 45, 48, 55 and 70, all soils are limited by low nutrient reserves (modifier k). 

Due to the dominance of nutrient-poor kaolinitic clays, organic matter is the main 

contributor to soil fertility. However, organic carbon contents are significantly lower 

than 2% for most soils and decline rapidly under agricultural land use. Soil types 3, 

14, 25, 56, 80, 90 and 91 are prone to intensive leaching of nutrients (modifier e). 

Furthermore, some soils show a low pH, further limiting the availability of important 

nutrients like phosphorus. Without vegetation, such soils degrade easily and 

irreversibly due to acidification, leading to the release of aluminium and fixation of 

phosphorus (Stocking 2003). A high erosion risk due to abrupt textural changes was 

identified for soil types 18, 21, 45, 56 and 90. Gravel contents higher than 35% in at 

least one horizon are a constraint in all soils except for types 21, 31, 45, 58 and 80. 

Water-logging limits agricultural use in areas with soil types 58 and 90. Soil 3 

(Leptosol) is not suitable for agricultural land use due to many constraints. 
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Phosphorus contents have not been determined, but phosphorus is a limiting factor 

in many soils in the region.  

The soils with the highest fertility and the lowest number of restrictions are the 

Lixisols and Cambisols. However, most Lixisols and Cambisols in the catchment 

show high gravel contents in the second horizon. If we tried to define a coarse 

sequence of soil types according to their soil fertility, the order would be: Cambisol > 

Lixisol > Acrisol > Gleysol > Plinthosol > Arenosol > Leptosol. Vertisols appear only 

locally in the catchment and show a number of physical constraints for cultivation. 

The Upper Ouémé catchment is dominated by Acrisols and Lixisols, i.e., soils that 

Table 6.4 Evaluation of the representative profiles according to the Fertility Capability Classification 
(FCC) (Sanchez et al. 2003). 
Soil WRB soil group FCC unit Interpretation

3 Orthi-dystric 
Leptosol

L''d+ehk high leaching potential, low nutrient reserves, gravel content 
>35%, too dry to grow a crop without irrigation

14 Ferrali-Plinthic 
Cambisol

L''ehk high leaching potential, low nutrient reserves, gravel content 
>35% 

17 Humic Lixisol L'L''k low nutrient reserves, gravel content >35% in second horizon, 
15-35% gravel in first horizon

18 Ferri-Endostagnic 
Acrisol

L''C''hk low nutrient reserves, gravel content >35% in first and second 
horizon, high erosion risk due to abrupt textural change

21 Hypereutric 
Vertisol

L'C'k low nutrient reserves, gravel content 10-35%, high erosion 
risk due to abrupt textural change

25 Endoskeleti-Albic 
Acrisol

L''ek high leaching potential, low nutrient reserves, gravel content 
>35% 

29 Eutric Gleysol 
(Gleyic Lixisol)

LL'' gravel content >35%  in second horizon

31 Arenosol S
45 Haplic Acrisol S'L' gravel content 10-35%, high erosion risk due to abrupt 

textural change 
48 Haplic Lixisol LL'' gravel content >35%  in second horizon
55 Haplic Lixisol L'' gravel content >35% 
56 Plinthic Acrisol SL''ehk high leaching potential, low nutrient reserves, high erosion 

risk due to abrupt textural change
58 Humic Lixisol L'g+k prolonged water logging, low nutrient reserves
62 Albi-Petric 

Plinthosol
LL''k low nutrient reserves, gravel content >35%  in second horizon

70 Albi-Petric 
Plinthosol

L'L'' gravel content >35% in second horizon, 15-35% gravel in first 
horizon

80 Plinthic Arenosol Sehk high leaching potential, low nutrient reserves
90 Acric Ferralsol 

(Ferric Acrisol)
S''L''eghk high leaching potential, water logging, low nutrient reserves, 

gravel content >35%, high erosion risk due to abrupt textural 
change 

91 Plinthic Ferralsol L''ek high leaching potential, low nutrient reserves, gravel content 
>35% 

101 Eutric Gleysol L''L'k low nutrient reserves, gravel content >35% in first horizon, 15-
35% gravel in second horizon
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are chemically more fertile than many soils in Southern Benin, but with rooting depths 

constrained by high gravel contents in the subsoil. 

Hydromorphic soils in the inland valleys are characteristic for the Upper Ouémé 

catchment and are very important for the hydrological cycle, but they were not 

chosen as representative profile due to their limited occurrence.  

 

6.2. Soil characteristics in inland valleys 
 

Investigations of inland valleys in the small Aguima subcatchment by Giertz (2004) 

and Junge (2004) revealed common properties of the soils, a typical geomorphologic 

form and a position above a first order stream. The topsoils in the inland valleys 

showed higher organic carbon contents than did those at the slope due to the 

reduced litter decomposition under wet conditions (Schachtschabel et al. 1998). The 

soils in the centre of the inland valleys had a loamy texture, whereas those at the 

border of the inland valleys were characterised by loamy sands (Junge 2004). This 

clay enrichment can be explained by the accumulation of clay particles that were 

transported along the slope by surface runoff and interflow (Faure & Volkoff 1998).  

These local observations led to the question of if these patterns were valid for the 

entire Upper Ouémé catchment and if it might be possible to include the 

hydromorphic inland valley soils in the French soil map for hydrological and erosion 

modelling. Besides knowledge about the properties of inland valley soils, this would 

require an efficient method to determine the distribution of inland valleys in the Upper 

Ouémé catchment based on field observations, aerial photographs or remote 

sensing. 

Field observations within this 

study in 2004 and by the 

inventory of Giertz & Steup in 

cooperation with the Inland 

Valley Consortium (IVC) of 

Benin in 2006 showed that the 

majority of inland valleys in the 

catchment are only a few 

hectares in size and are slightly Fig. 6.13 Inland valley near Parakou (October 2004). 
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concave. Forty-eight percent of inland valleys counted were positioned above a first 

order stream, 25% at the union of two streams, 20% along a stream and 7% 

downstream. All 521 inland valleys listed cover a total of 35 km2 of the catchment 

(14500 km2). On average, an area of 3.4 km2 is discharging into an inland valley 

(Schönbrodt 2007). 

Classifying inland valleys using Landsat data is extremely difficult, as individual trees 

or shrubs at the borders of small inland-valleys or agricultural use change the signal 

at the satellite image. The fact that classified inland valleys are scarce in the Djougou 

region can be explained by the higher degree of cultivation of inland valleys in this 

region. Furthermore, the Landsat image was taken on 26.10.2000, when several 

inland valleys may have been already dry, leading to a classification of inland valleys 

as grass savannah (savane herbeuse). Field observations revealed that the land use 

classification only correctly classifies large inland valleys. Small classified inland 

valleys often did not correspond to inland valleys in the field and vice versa. Aerial 

photographs taken in 2003 by the PAMF project covering a corridor between Dogué 

and Djougou seem to allow a better delineation of smaller inland valleys but do not 

capture the whole catchment.  

Soil properties of five inland valleys were studied in March 2004 in order to examine 

the degree of heterogeneity between inland valleys in the Upper Ouémé catchment. 

A detailed field study of the soil characteristics of representative inland valleys was 

not feasible due to time and labour constraints. In the following, we discuss some 

general findings and the physical and chemical properties of the topsoils. Appendix A 

summarises the transect locations near Dogué (S-HVO), Boko (E-HVO) and Sérou 

(W-HVO) (Table A.5, Appendix A) and the characteristics of all studied soil profiles in 

the inland valleys (Table A.7, Appendix A). For each transect, 5 to 11 augerings of 

1 m depth were conducted. 

Soil textures varied considerably between and within the inland valleys (Fig. 6.15). 

Two transects (Boko1, Sérou2) showed only sandy textures (Fig 6.14), while Sérou1 

displayed only loamy and clayey textures. The two inland valleys near Dogué are 

characterised by loamy sands above 70 cm depth and sandy loams or sandy clays at 

the fringes (Dogué1 and 2) and valley bottoms (Dogué2) (Fig. 6.16). Two profiles of 

transect Dogué2 were Fluvisols with topsoils significantly richer in silt and organic 

carbon and higher pH values. The profiles at the valley bottom of Dogué1 display 

loams over the whole first metre.  
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Nevertheless, the studied inland valley soils in the Upper Ouémé catchment have the 

following common physical  properties: (1) vertical differences in soil texture from top- 

to subsoil with increasing clay content and decreasing silt content, (2) a dominance 

of loamy sands (Sl2, Sl3) in topsoils and loams (Lts) and sandy clays (Ts) in the 

subsoil (Fig. 6.15), (3) changes in the sand fraction from fine sand to coarse sand, 

and (4) low pH values and in general, low gravel contents (0-15%) increasing with 

depth. 

The subsoil horizons are 

usually influenced by oxidation 

(Bgo horizon) and/or reduction 

(Bgr horizon). While the soils 

of transects Dogué1, Dogué2 

and Sérou1 show pronounced 

gleyic properties, this is less 

obvious for transects Boko1 

and Sérou2. Indurated plinthic 

horizons have not been found. 

In addition, saprolite was rarely 

encountered within the first 

metre. This corresponds to 

observations by Schön-

brodt (2007) and Junge (2004) 

 
Fig. 6.14 Soil catena in inland-valley Boko1. 

Fig. 6.15 Soil texture of inland-valley profiles, horizon 1 to 4. 
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that saprolite occurs in most cases below 1.5 to 2 metres depth.   

The mean physical and chemical properties of the topsoils in the inland valleys are 

shown in Table 6.5. The results are compared with findings by Schönbrodt (2007), 

who studied 13 inland valleys of 1 to 10 ha size representative of 3 regions in the 

Upper Ouémé catchment that were defined for the survey of Giertz and Steup in 

cooperation with IVC Benin based on their positions at the river, their geomorphology 

and the changes in water height and surface during water saturation.  

The depth of the A-horizon varies between 9 and 36 cm, with a mean of 23 cm, 

which is significantly higher than for the representative profiles (mean 13 cm, see 

Table 6.2). The organic carbon content of all sampled topsoils varies from 0.3 to 

2.8%, with a mean of 1.3% for the inland valley bottom and 0.9% at the fringe, which 

is nearly identical to the values found by Schönbrodt (2007). Thus, in general, the 

organic carbon content is higher than on the hillslopes but still very low according to 

the classification of Landon (1984). Inland valley Sérou1 is an exception, with organic 

carbon contents of 1.4 to 2.8% and significantly higher clay content in the topsoil, 

leading to a significantly higher CECpot and above-average contents of calcium and 

 
Fig. 6.16 Soil catena in inland-valley Dogué2. 

Table 6.5 Topsoil characteristics of studied inland-valleys. 

Inland-
valley Depth Sand Silt Clay Gravel Text. Corg N C/N pH CECpot K Na Mg Ca BS

[cm] [%] [%] [%] [%] [-] [%] [%] [%] [-] [cmolc/kg] ~ ~ ~ ~ [%]
Dogué1 fringe 28 61 25 14 0.0 Sl4 1.0 0.06 18 4.5 5.1 0.09 0.04 0.4 1.5 39
Dogué1 bottom 25 44 35 21 0.0 Ls3 1.3 0.08 16 4.8 7.7 0.12 0.07 1.0 3.3 59
Dogué2 fringe 24 66 24 10 0.0 Sl3 1.0 0.05 19 5.1 5.4 0.09 0.04 1.1 2.4 62
Dogué2 bottom 22 57 33 10 0.0 Sl3 1.2 0.06 19 4.8 6.0 0.08 0.09 0.8 2.5 59

Boko fringe 17 83 11 6 2.6 Sl2 0.6 0.03 18 5.7 3.4 0.04 0.04 0.3 2.4 81
Boko bottom 18 76 16 9 10.5 Sl3 0.7 0.04 15 4.6 3.3 0.08 0.06 0.3 1.2 50

Sérou1 bottom 15 14 36 50 0.4 Tu2 2.1 0.14 15 4.4 13.2 0.14 0.13 1.4 4.3 46
Sérou2 bottom 30 82 12 6 6.9 Sl2 0.6 0.03 22 4.9 3.4 0.06 0.05 0.2 1.9 60  
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magnesium. The mean C/N ratios for the inland valleys are between 15 and 22, i.e., 

higher than the mean ratios of 13 to 16 obtained by Schönbrodt (2007) and the mean 

of 17 obtained by Mund (2004) for the savannah zone in the Cote d’Ivoire. Mean C/N 

ratios tend to be higher at the fringe than at the bottom (see also Schönbrodt, 2007). 

Smaling et al. (1985) considered narrow C/N ratios of 10 to 15 to be favourable with 

regards to nitrogen availability in the inland valleys of the Nigerian Guinea savannah 

zone. CECpot values of topsoils are low (Dogué1/2, Sérou1) or very low (Boko, 

Sérou2), and base saturation is medium to high. Contents of cations are low (sodium, 

potassium) or low to medium (calcium, magnesium) in all topsoils. In general, soil 

chemical characteristics are more favourable on the sites that were recently under 

rice cultivation, i.e., Dogué1/2 and Sérou1. 

To conclude, the studied soils in the inland valleys of the Upper Ouémé catchment 

show a number of common characteristics but also large heterogeneity among them 

and within each site. Schönbrodt (2007) could not identify significant differences in 

soil properties of the inland valley soils among the North/East, West/Central and 

South/South-east regions of the catchment. 

Finally, integrating inland valleys into the SWAT model does not seem feasible due to 

their small size, highly variable soil properties and difficulty in determining the 

distribution of inland valleys without conducting a costly and time-consuming field 

survey. Although a field survey has been conducted by Giertz & Steup in cooperation 

with the IVC in the meantime and produced a map of inland valleys (Fig. 6.17), 

methodological problems remain for their consideration in a regional-scale erosion 

model. First, the actual number of inland valleys in the catchment is significantly 

higher than the inventoried 521, as the survey captured only accessible inland 

valleys close to villages and roads (Fig. 6.17). Second, the typical scattered 

distribution of small inland valleys in the catchment is hard to incorporate into a 

regional, semi-distributed model with a coarse soil map at the scale 1:200000.  

Nevertheless, inland valleys are very important for hydrology at the local scale and 

agriculture due to the higher soil fertility and water availability. Knowing their 

hydrological and pedological properties is crucial for efficient, sustainable 

management. Of the 521 inventoried inland valleys in the Upper Ouémé catchment, 

69% were used for agriculture, and 2.5% had sophisticated water regulation. Of the 

110 inland valleys captured by the earlier national inventory, only 11% were used for 

agriculture.  
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6.3. Soil degradation in the Upper Ouémé catchment 
  

The Upper Ouémé catchment is one of the less intensively used regions in Benin, 

with a younger settling history than South Benin or the regions around Ouaké and 

Boukombé. As a consequence, most of the area can be described as slightly or non- 

degraded. However, around the cities Parakou and Djougou and in the north-western 

part of the area, soil degradation is moderate to severe.  

 

Interdisciplinary survey in the Upper Ouémé catchment 

The representative, interdisciplinary survey conducted by IMPETUS researchers in 

2005 in the Upper Ouémé catchment also includes information about the degree of 

soil degradation and the distribution of soil conservation measures in the area. For 

example, 38% of the 434 interviewed farmers considered their land to be degraded.  

 
Fig. 6.17 Inventoried inland valleys from the study of Giertz & Steup (unpublished) in cooperation 
with the IVC Benin (from Schönbrodt 2007, modified).  
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Although the sample size at the communal level is not large enough to allow 

representative conclusions at this level, a spatial analysis of the results gives some 

hints. As expected, soil degradation is often cited as a problem in the communes 

Copargo (82%), Ouaké (70%), Parakou (66%) and Djougou (63%); i.e., in areas with 

dense populations and long settlement histories (Fig. 6.18). In contrast, in all other 

communes, less than 30% of the farmers perceive soil degradation as a problem; 

with the lowest value obtained for the commune Ndali (7%). In several villages in the 

commune Ouaké and in the district Banikani of Parakou, all 20 interviewed farmers 

are facing soil degradation. Overexploitation and a shortage of fallow periods are 

cited as the main reasons, although land scarcity and permanent cultivation are also 

mentioned by several farmers.  

Questions about the colour and texture of the topsoils of the dominant soil also 

provide hints about the degree of soil degradation. While in the commune Bassila 

humus-rich topsoils dominate (44%) with a dark colour (79%), the fraction of humus-

rich topsoils is below 15% in the communes Copargo and Ouaké. In these degraded 

areas, grey sandy (60-70%) and gravel-rich topsoils (20-25%) are mostly cited. 

Technologies applied to improve and sustain the soil quality include crop rotation as 

the dominant strategy (35%), followed by burning (14%), erosion measures (13%) 

and other technologies (25%, mainly mineral and organic fertiliser, drainage) 

(Fig. 6.19). 

On the communal level, it becomes obvious that erosion measures are mainly 

mentioned in the communes Bassila, Ouaké and Tchaourou, especially in villages 
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Fig. 6.18 Percentage of farmers facing degraded soils 
in the HVO based on data from HVO-Survey (2005).  
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(2005). 
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with contacts with development projects. Improved fallow is most frequently cited in 

the commune Ndali (Fig. 6.20). In the more degraded communes Copargo, Djougou 

and Ouaké, the category of other technologies (especially fertiliser) becomes more 

important. Although traditional non-mechanised soil tillage with axe and hoe 

dominates in the whole catchment, ox-ploughing is practiced by about 15% of the 

interviewed farmers in the communes Ndali and Tchaourou (Fig. 6.21). Tractors are 

only used in the commercial plantations around the city Parakou.  

Erosion forms in the Upper Ouémé catchment 

Junge (2004) quantified net erosion losses from a footpath and a small unpaved road 

in the Aguima subcatchment. On the regional scale, such investigations are not 

feasible. In addition, the use of remote sensing techniques and air photographs is 

very limited in this sub-humid region with dense vegetation and a dominance of sheet 

and rill erosion. Therefore, erosion forms in the Upper Ouémé catchment were 

studied more generally to identify characteristic features of typical erosion forms and 

roughly validate the simulated spatial pattern of sediment yield. Special attention was 

paid to the regions with the highest calculated soil loss rates (see Chapter 7), i.e., the 

subcatchments around Djougou and Parakou. The elevated occurrence of erosion 

forms in these regions was confirmed during field observations. Sheet and rill erosion 

on fields and rill erosion along paths and roads were identified as the dominant 

erosion forms in the catchment (Fig. 6.22). Gullies can be found not only along large 

unpaved roads in the countryside but also in Parakou city (Fig. 6.23). However, these 

gullies are not only created by runoff, but they also often serve as channels and are 

mechanically deepened by engineering activities. 
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Such establishment and maintenance of roads can lead to a heavy surface sealing of 

the adjoining slopes (Fig. 6.24). De Haan (1998) observed gully erosion at the 

beginning of the rainy season or along steep slopes, roads and rivers in the northern 

Borgou department. In general, the ground is covered by vegetation in the rainy 

season. However, bare soil is exposed on urban land, roads, paths and former sand 

excavation sites. 

On former sand excavation sites, which frequently occur along the main roads, part 

of the soil profile was removed, and the soil hardened due to heavy vehicles, leading 

to enhanced soil erosion and crusts several metres in width (Fig. 6.25). Exposed 

roots of plants and trees are typical for these sites.  

 

 
Petit mil field near Moné 

 
Petit mil/soybean field near 

Djougou 

 
Rice field near Alayomdé 

Fig. 6.22 Sheet and rill erosion on fields.  

 
Road near Kolonkondé  (a) 

 
Road near Igbomakoro (a) Road near Moné (b) 

Fig. 6.23 Rill erosion (a) and gully erosion (b) along paths and roads. 
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As a consequence of relief inversion, crusts are also frequently exposed on summits 

(Fig. 6.27). In the most degraded areas, topsoil erosion and tillage have led to the 

exposure of the gravel-rich, reddish subsoil (Fig. 6.26). 

Table 6.6 provides typical characteristics of the studied observed erosion forms (3 to 

4 sites each) in the Upper Ouémé catchment. Although not statistically 

representative, the studied sites capture the variety and dimensions of erosion forms 

encountered during the field investigations. The locations and general characteristics 

of the 13 studied sites are summarised in Table A.8 in Appendix A. 

Most studied sites with erosion forms displayed low vegetation cover, a position at 

the lower or mid slope, a high gravel content on the surface and different degrees of 

surface sealing. Gullies were rarely found, with a maximum depth of two metres.  

Slight sheet erosion is hardly visible, but it takes place on most single-cropped fields 

as vegetation cover is not dense and cover crops are rarely used. However, on some 

fields sheet erosion is moderate to severe and leads to visible reductions in crop 

performance. 

 
During heavy rainfalls 

 
One day after heavy rainfall 

Fig. 6.24 Surface runoff on crusted surface next to road. 

 
Fig. 6.25 Crusting and soil erosion in former sand excavation sites.  
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Although they are closely associated with erosion forms, accumulation forms were 

not studied as they are less critical for soil quality and plant growth in the catchment.   

Characterisation of degraded fields 

Besides soil erosion by water, topsoil deterioration due to regular burning and 

nutrient mining belong to the major soil degradation processes in the Upper Ouémé 

catchment leading to less productive, exhausted soils. In the catchment, exhausted 

fields were visually recognised by a number of indicators, including poor yield 

performance, occurrence of crusts, surface gravel or erosion forms, exposure of 

subsoil, low vegetation cover, increased pest infestations, and absence or 

occurrence of location-specific indicator plants. However, to avoid incorrect 

  

Fig. 6.26 Gravel accumulation on yam field near Barei. Fig. 6.27 Crusting on summits.  

Table 6.6 Typical characteristics of observable erosion forms in the Upper Ouémé catchment. 

Erosion 
form Land use Slope 

[%]
Slope 

position
Width x Length 

[m x m]
Depth 

[m]
Vegetation 
cover [%]

Surface 
gravel [%] Sealing

Sheet

agricultural 
fields, 

sometimes 
reduced crop 
performance

2 mid av. 100x150 m < 0.02 variable variable
none or slight, 

siltation on 
surface

Rills path/roads 2-4 mid/low

deep rills av.  0.5 
x 50 m, shallow 
rills up to 1 km 

long 

0.05 - 
0.4 ~10 variable partially

Gully next to roads 3-4 mid/low av. 2x150 m, up 
to 1 km long 0.6 - 2 < 10 < 10 very frequent

Surface 
sealing

mainly former 
sand excavation 

sites (5-10 
years old)

1-2, at 
side 

slopes 
4-6

low

excavation sites 
av. 70x300 m, 

crusts up to   5x5 
m  

- < 30 30-85

massive; 
mosaic of 

crusts, sheet/ 
rill erosion and 
accumulation
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interpretation due to other dominant factors (e.g., adverse weather, pests and 

diseases), visual observations were complemented with farmer interviews and soil 

augerings of 1 m depth. Only all three sources combined allow a full understanding of 

the degradation status of an agricultural field and possible options to improve it. 

Ideally, reference soil data should be used either from an earlier point in time 

(chronosequential sampling) or from a nearby non-degraded site (paired sampling). 

We performed soil augerings on 20 visually degraded, agricultural fields and 

5 nearby non-degraded sites as reference. Farmer interviews were conducted at 16 

of the 20 sites plus 5 additional sites without soil investigations. Most studied sites 

are positioned on the middle and upper slopes. Fields on marginal land at the lower 

slope with near-surface indurated soil horizons were not considered. Visually, the 

exhausted fields are characterised by high contents of surface gravel/crust debris 

(max. 95% cover, mean 40%) of small (Ø <0.5 cm) or medium to large size (1 to 

30 cm), reduced vegetation cover (min <10% cover, mean 35%), and occurrence of 

sheet and rill erosion. Often, crop performance is reduced and crops are planted in 

the direction parallel to the slope (see details in Table A.8, Appendix A). However, 

farmer interviews and soil investigations revealed that not all of these sites are 

characterised by low productivity. Two soil profiles with extremely high surface gravel 

contents (sites F9, Pr2) are chemically very fertile and deliver good yields if an 

appropriate crop is chosen. The farmer interviews provided information about the 

land use history of the sampled fields, including crop cycles, duration of the fallow 

period, plant management and perceived problems with regard to rainfall, soil 

properties and crop yield (see details in Table A.9, Appendix A). As pointed out 

earlier, farmers are well aware of soil degradation (see Excursus 6.1).  

The interviewed farmers cultivate the fields for 3 to 7 years (mean 4.2 years) followed 

by a fallow period of 2 to 5 years (mean 2.9 years). Farmers report fallow periods of 6 

to 20 years in the past. On the study sites, farmers were in the 3rd to 5th years of 

cultivation, i.e., towards the end of the cropping cycle, and were encountering 

difficulties in maintaining good yields without fertiliser input. 

The farmers consider the current fallow periods insufficient to restore soil fertility. 

They adjust their cropping cycle accordingly, alternating between tubers and cereals 

or cereals and legumes (Mulindabigwi 2006), and include legumes such as 

groundnut (60% of interviewed farmers), niebe and soy bean. 
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Excursus 6.1: Farmer’s knowledge about soil types and soil degradation 

Most African farmers are aware of various forms of soil degradation on their farms (Dejene et 

al. 1997). Various local soil classifications exist which reflect soil properties and degree of 

degradation. Farmers in Central Benin classify their soils as a function of topography, surface 

material, easiness of soil tillage and production capacity (Junge, 2004; Agossou & Igué, 

2003): a) stony soils on summits and ridges; b) gravel rich soils in the valleys, c) inland-valley 

soils (Gandonou 2000). Local indicators of soil degradation in Benin include the colour of the 

topsoil (“terre noire” = arable land, rich in organic matter, “terre rouge” = exposed subsoil), 

location-specific indicator plants and a specific smell and taste (Agossou & Igué, 2003; 

Gantoli, 1997). Farmers in Tanzania mention as indicators, for example, rill and gully erosion, 

increased run-off, the exposure of roots, decreases in crop yield, change in colour of crop 

leaves, stunted crops, the emergence of weeds and unpalatable species and the 

disappearance of termite mounds and grass or herb layer (Dejene et al. 1997).  

 

About 7% of the cropping area in the Upper Ouémé catchment is covered by 

legumes, in particular in the north and west (Mulindabigwi 2006). Most farmers 

cultivate cassava at the end of the cropping cycle due to its low water and soil fertility 

demands, high litter production (pseudo-fallow) and easy conservation (see also 

Mulindabigwi, 2006; Saidou et al. 2004). Yam is only cultivated on newly reclaimed 

land far away from the villages or on long-term fallows (> 6 years). Three of the 

interviewed farmers were motivated by development projects to apply laborious soil 

conservation measures such as yam cultivation on short-term fallows in combination 

with dung or Gliricidia or installation of Vetiver hedges to prevent soil erosion. In 

addition, several farmers cite cultivation perpendicular to the slope as a practised 

measure for soil conservation; however, 50% of the sampled fields are cultivated in 

rows parallel to the slope. In general, spontaneous fallow and inclusion of groundnut 

in the crop cycle are the dominant strategy for restoring soil fertility; active soil fertility 

management is rare (Floquet et al. 2002). Crop residues are generally left on the field 

but often subject to burning. Five farmers reported burning the field annually, while 

six farmers try to protect the field through fire bands. About half of the farmers 

cultivate cotton and therefore have access to chemical fertiliser, which they use for 

cotton and maize. Only one farmer applies chemical fertiliser to groundnut and rice 

as well. Nearly no farmers are applying organic manure outside the homestead, but 

they allow Fulani herders to let their cattle graze after harvest. Only one farmer buys 
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organic manure. The interviewed farmers consider the soils on the studied fields to 

be generally fertile but exhausted due to overexploitation. In general, no significant 

differences in the responses between autochthonous and allochthonous interviewed 

farmers were observed.  

Table 6.7 compares the mean physical and chemical topsoil properties of the 

16 exhausted fields with the mean properties of the 19 representative profiles and the 

two profiles on sacred land. The properties of all studied profiles are summarised in 

Table A.10, Appendix A). 

Table 6.7 clearly shows the pronounced decrease in chemical soil fertility of the 

topsoils from the sacred to the fallow land and the exhausted fields. As soil texture 

and gravel content are similar among the three categories, the significant decrease in 

cation contents and CECpot can be mainly attributed to the lower organic carbon 

content. Although Corg on the exhausted fields is 20% lower than on the fallows and 

65% lower than on the sacred land, values are still much higher than on the highly 

degraded fields in Ouaké (not shown here). There, the studied soils had only 0.2 to 

0.3% Corg and base saturations as low as 15%. Data from Igué (published in 

Floquet et al. (2002)) show similar values for the terre de barre region in Southern 

Benin comparing sacred forest (Corg 5.7%, CECpot 16.2 cmolc/kg, BS 100%, pH 7.3) 

and fields after 1-2 years cultivation (Corg 2.8%, CECpot 6.6 cmolc/kg, BS 77%, pH 

6.1) and long term cultivation (Corg 0.8%, CECpot 3.9 cmolc/kg, BS 21%, pH 4.2). Nye 

& Greenland (1960, cited in Mulindabigwi (2006)) reported a 45% loss of Corg in a 

four year fallow system, while Hölscher et al. (2005) cite 20 to 40% loss of base 

cations in slash and burn agriculture through volatilisation and ash particle transport. 

Organic carbon or organic matter is often considered a very important indicator of soil 

degradation, besides nutrient levels and physical conditions (Greenland 1994). 

However, Mulindabigwi (2006) questions this indicator for the Upper Ouémé 

catchment because almost the entire catchment is subject to regular burning.  

In the following, two examples of exhausted fields with reference sites are discussed 

to illustrate variations in soil properties in more detail: Figure 6.28 shows a cassava 

Table 6.7 Comparison of mean topsoil soil properties of exhausted fields, fallow and sacred land in the 
Upper Ouémé catchment. 

Sites # Pro-
files Depth Sand Silt Clay Gravel Corg N C/N pH CECpot K Na Mg Ca BS

[cm] [%] [%] [%] [%] [%] [%] [%] [-] [cmolc/kg] ~ ~ ~ ~ [%]
exhausted fields 16 11 78 13 8 22 0.9 0.04 22 5.3 2.7 0.12 0.01 0.8 2.7 72
fallow/savannah 

(repr profiles) 19 13 71 18 11 19 1.1 0.07 16 5.5 6.2 0.13 0.02 1.0 4.8 77

sacred land 2 9 75 14 11 25 2.6 0.18 15 6.1 12.2 0.37 0.01 1.4 9.4 62  
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field in Serou in the western Upper Ouémé catchment; the background is the border 

of a sacred forest that was taken as reference.  

While the reference showed no surface gravel, 80% vegetation cover and a thick 

litter layer, the cassava plot was covered by 40% medium-size gravel and only 50% 

vegetation. Surface crusts were visible, and soils were reported to be shallow. 

Cassava was planted in slope-parallel rows with 30 cm high earth mounds following 

a one year fallow in the crop cycle sorghum – fallow – cassava (2 years) – sorghum. 

Due to the hardened subsoil, soil augerings in the cassava field and the sacred forest 

reached only 35 and 61 cm, respectively. Both augerings exhibited a similar 

sequence of three horizons with 26 to 40% gravel, mainly of ferric nodules. The third 

horizon was red and showed saprolitic characteristics. However, the depths of the 

horizons for the field augering are a bit smaller than for the forest, and topsoil 

contents of clay, organic carbon and nitrogen were more then twice as much on the 

forest site (see Table A.10, Appendix A). Organic carbon content was 4.4%, which is 

very high compared to the 0.9% Corg on the cassava field. Consequently, CECpot, 

cations and base saturation were also substantially higher in the topsoil as well as in 

the subsoil. The CECpot of 21.7 cmolc/kg in the topsoil is about 3.5 times higher than 

the average CECpot obtained for the representative profiles. PH values were also 

significantly higher in the forest. Although the C/N ratio is more favourable for crop 

cultivation on the cassava field, overall soil fertility is significantly higher at the 

reference site.  

 
Fig. 6.28 Exhausted cassava field (soil augering 

Pr8) and sacred forest (soil augering Pr7) in 
Serou. 

 
Fig. 6.29 Sorghum field with high variability of 

plant growth near Copargo (soil augerings 
Pr10, Pr11). 
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The second example is a sorghum field near Copargo in the north-western Upper 

Ouémé catchment with 80% large surface gravel, 50% vegetation cover and very 

poor plant growth. Planting rows run parallel to the slope. As a reference, an 

augering was conducted a few metres to the back of the field, where sorghum grows 

more than twice as high, according to the farmer due to a cut tree causing locally 

higher soil fertility. There, surface was covered by only 30% gravel and 40% 

vegetation. In both cases, the auger did not reach the first metre depth due to 

hardened subsoil. However, while the augering covers 77 cm including an A-horizon 

16 cm thick for the reference, for the less fertile plot only the first 50 cm was 

accessible, and the A-horizon was only 4 cm thin. Below 41 and 44 cm, respectively, 

both augerings exhibit a dark red, mottled horizon with high bulk density. Soil 

augerings confirmed the higher soil fertility of the reference resulting from 

significantly elevated Corg contents in the topsoil and higher pH, nitrogen, cations and 

clay contents and lower gravel contents (in particular ferric nodules and quartz) 

throughout the entire profile (Table A.10, Appendix A). The high potassium and 

magnesium contents are striking.  

In summary, the descriptions of the soil characteristics in the Upper Ouémé 

catchment revealed that the catchment is dominated by Acrisols and Lixisols. 

Although these soils are chemically more fertile than many soils in Southern Benin, 

nutrient availability is often limited, and physical restrictions due to high gravel 

contents and indurated horizons in the subsoil are high. Examples of transect studies 

illustrate the high variability of soil properties along the slope that can only partially be 

captured by the representative profiles for the dominant soil types. In particular, 

hydromorphic soils in the inland valleys are typical for the catchment but not 

dominant and therefore not considered in the representative profiles and the French 

soil map. Including the inland valleys in the soil map was not feasible due to their 

small dimensions and heterogeneous soil properties. Information about the degree of 

soil degradation in the Upper Ouémé catchment from an interdisciplinary survey, 

observations of erosion forms and a characterisation of degraded fields by farmer 

interviews and soil sampling showed that soil erosion and nutrient depletion are 

considerable problems in the western part of the catchment and near Parakou. In 

many parts of the catchment, nutrient depletion due to shortened fallow periods, low 

inputs and regular burning is more critical than the actual loss of topsoil. However, 

creeping soil erosion is dangerous due to its irreversibility, the important role of the 



6.SOIL DISTRIBUTION AND DEGRADATION IN THE UPPER OUÉMÉ CATCHMENT 
 

 

108 

humus-rich topsoil for soil fertility and the potential exposure of unfavourable 

subsoils. Farmers are aware of the various forms of soil degradation but rely on 

fallow periods, crop rotation, and, if accessible, mineral fertiliser to maintain soil 

fertility. Regular burning and further expansion of cropland is widely practiced, while 

active soil management is rare. Rill erosion along paths and roads and sheet erosion 

on the fields are the dominant erosion forms in the catchment. Thus, gully formation 

and extensive surface sealing do not need to be considered in erosion modelling in 

the catchment. 
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7. EROSION MODELLING IN THE UPPER OUÉMÉ 
CATCHMENT 

 
This chapter presents the results of erosion modelling with SWAT. First, the results of 

the calibration and validation of the SWAT model and then the findings of the 

analysis of climate and land use scenarios with SWAT are presented. Each part is 

introduced with a brief overview about the underlying databases and pre-processing 

steps. 

 

7.1. Model setup 1998-2005, calibration and validation 
 

This section presents the databases used to set up the SWAT model for the time 

period 1998-2005 and the results of model calibration and validation with regard to 

hydrology and the sediment budget. The influence of spatial discretisation on the 

model performance is also analysed. Finally, the model results for the period 1998-

2005 are discussed.    

 

7.1.1. Databases and pre-processing 
 

The input data for the model setup originate from various sources (see Table 7.1).  

Table. 7.1 Model input data and corresponding data sources. 
Variables x t Period Source

Climate data
min/max-temperature [°C], solar 
radiation [W/m2], wind velocity 

[m/s], relative humidity [%]
2 stations daily 1998-2005 DMN, IMPETUS

precipitation [mm] 13 stations daily 1998-2005 DMN, CATCH, IMPETUS

Soil data soil map 5 sheets 1977 Dubroeucq, 1977a/b; Faure, 
1977a/b; Viennot, 1978

soil properties representative 
profiles 2003/04 IMPETUS, own 

measurements

Discharge data total discharge [m3/s] 8 outlets daily 1998-2005 CATCH, IMPETUS

total discharge [m3/s] 3 outlets hourly, half-
hourly 1998-2005 CATCH, IMPETUS

Turbidity 
measurements

turbidity [NTU], electric 
conductivity [mS/cm], water level 

[cm], water temperature [°C]
3 outlets 30 min 2004-2006 own measurements

suspended sediment 
concentration [mg/l]

1 outlet: 
Beterou daily 2004-2006 own measurements

Land use map 12 land use types 28.5 m-grid 26.10.2000 IMPETUS

DEM elevation [m a.s.l.] 90 m-grid February 
2000 NASA SRTM
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Whereas land use and soil data mainly originate from the IMPETUS project, 

discharge measurements were provided by the French research project 

AMMA/CATCH and IMPETUS. The climate data were recorded by the National 

Directorate of Meteorology (DMN) in Benin.  

Land use data 

The land use and land cover classification for the Upper Ouémé catchment was 

provided by Thamm et al. (2005) and Judex (2008), based on Landsat 7 ETM+-data 

from the years 2000 and 2001 (26.10.2000, 29.10.2001). The derived land use map 

(see Fig 2.13, Section 2.4) distinguishes two types of forests (forêt claire, forêt 

dense), four savannah types (savane arborée, savane boisée, savane herbeuse, 

savane saxicole), fields and two settlement classes. The classification follows the 

French nomenclature of land use types according to the Yangambi Conference 

(Sturm 1993). Furthermore, the classification includes the class ‘fallow,’ which 

describes degraded areas, frequent in the north-western part of the catchment. 

Fallows, in the original sense, are classified as different savannah types depending 

on their age. The original classes of land use were attributed to land use classes in 

the database of the SWAT model (Table 7.2).  

To define hydrological response units (HRUs), i.e. homogeneous soil and land use 

combinations, a threshold of 10% for land and soil use was defined to avoid too 

many small HRUs. As a consequence, the number of land use types decreased from 

12 to 6. Special attention was given to a similar percentage of agricultural land before 

Table 7.2 Attribution of the classes of land use for the Upper Ouémé catchment to the SWAT land 
use types.  
Land use map SWAT land use type SWAT_Code Portion [%]
cropland agriculture - generic AGRL 13.75
forêt claire forest decidious FRSD 8.75
forêt dense forest evergreen FRSE 1.29
inland valley wetlands non-forested WETN 1.83
savane arborée, savane 
arbustive range brush RNGB 45.33

savane boisée forest mixed FRST 19.18
savane herbeuse, degraded 
fallows range grasses RNGE 8.26

savane saxicole Juniperus grass JHGR 0.43
settlement - high density urban medium/low density URML 0.02
settlement - low density urban low densitiy URLD 0.43
water forest evergreen FRSE 0.16
no vegetation (inselberg) urban institutional UINS 0.57
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and after HRU delineation (see Table 7.3), because a small deviation can heavily 

affect modelling results. However, the fractions of savane arborée/arbustive and 

savane boisée were significantly increased at the cost of forêt claire, savane 

herbeuse and inland valleys. 

The land use types were adjusted to local conditions in Benin by modifying plant 

heights and the parameters determining the annual development of the leaf area 

index according to Mulindabigwi (2006). During parameterisation of the rangeland 

class in SWAT (RNGB, RNGE), a problem of unlimited biomass growth appeared. In 

order to allow a correct representation of biomass growth, a new land use class 

SAVA with similar properties was created. Values for the USLE crop factor C were 

taken from Junge (2004), Sintondji (2005) and Roose (1977).     

Soil data 

A digitised version of the soil maps for Benin was taken from ORSTOM 

(Dubroeucq, 1977a/b; Faure, 1977a/b; Viennot, 1978), and measurements of soil 

properties from Sintondji (2005) and studied representative profiles in 2004 (see 

Section 6.1) were used. Available water capacity and saturated hydraulic conductivity 

were estimated with the pedotransfer function of Rawls & Brakensiek (1995). 

Digital elevation model (SRTM) 

A digital elevation model from February 2000 with a resolution of 3 arc-seconds (~90 

meters) was downloaded from the NASA Shuttle Radar Topography Mission (SRTM) 

(http://www2.jpl.nasa.gov/srtm/, accessed on 10.12.2004). Before using this DEM, 

missing pixels at inselbergs resulting from clouds were filled with data from 

topographic maps 1:200,000.  

Table 7.3 Distribution of land use types before and after establishing a threshold of 10% for the 
definition of hydrological response units (HRUs). 

Land use type
SWAT 
code

Portion 
before   

[%]

Portion after 
HRU definition 

[%]
Deviation 

[∆%]
savane arborée, savane 
arbustive RNGB 45.33 52.60 16.04

savane boisée FRST 19.18 20.44 6.57
cropland AGRL 13.75 14.16 2.98
forêt claire FRSD 8.75 7.82 -10.63
savane herbeuse, fallows RNGE 8.26 4.91 -40.56
inland valley WETN 1.83 0.06 -96.72  
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Parameterisation of climate data 

Data from two climate stations (Parakou 1998-2000, Dogué savannah 2001-2005) 

and 13 pluviometric stations were considered in the model (Fig. 7.2). Thus, the 

climate parameters of wind velocity, air temperature, solar radiation and relative 

humidity and therefore also ETpot were assumed to be constant in the whole 

catchment. This simplification can be justified by the flat relief and homogeneity of 

the research area. Because wind velocities at the station Dogué savannah were 

clearly underestimated due to dense vegetation, this parameter was taken from the 

nearby climate station Dogué Mt. de Gaulle. Daily values for solar radiation before 

2001 had to be estimated from sunshine duration. The 13 pluviometric stations were 

chosen from about 38 stations in the Upper Ouémé catchment considering the 

completeness of the datasets for the period 1998-2005 and a regular distribution over 

the catchment. Missing values were filled with values from the closest neighbouring 

pluviometric station. The values for the parameterization of the SWAT weather 

generator were taken from Sintondji (2005), based on climate data for the stations 

Parakou and Dogué for the years 1962-2001 and 1993-2002. However, since gaps in 

observed climate data were filled, use of a weather generator was not required. 

Model setup via AVSWAT interface 

After preparing all input datasets and adding them into the SWAT user databases, a 

new SWAT project was created with the ArcView User Interface.  

The main steps of the procedure included delineating subbasins and HRUs and 

writing all input files (Fig. 7.1).  

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1 Steps for setting up a new SWAT project with the ArcView User Interface. 
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Thresholds of 6000 ha for the minimum upstream area and 10% for the delineation of 

HRUs were chosen so as to balance the number of subbasins with the spatial 

resolution of the input data and to allow an adequate representation of the main land 

use and soil types. This configuration led to 121 subbasins and 926 HRUs in the 

Upper Ouémé catchment (Fig. 7.2).  

Suspended sediment concentration 

For all gauged sites, i.e. Terou-Igbomakoro, Donga-Pont, Lower Aguima and Donga-

Kolonkonde, a specific relationship between turbidity and suspended sediment 

concentration (SSC) was determined. Water sampling was performed in the period 

2004-2006 during the rainy season. Water sampling after large discharge events in 

2005 and 2006 significantly improved the quality of the relationship obtained with 

measurements in 2004. For Donga-Kolonkonde, water sampling started in 2006. 

Finally, for each curve, between 69 and 87 water samples were considered to 

gravimetrically determine the SSC. The SSC values were then plotted against the 

turbidity values, and the linear regression line and coefficient of determination (R2) 

were determined for the outlets Terou-Igbomakoro, Donga-Pont, Lower Aguima and 

 
 
Fig. 7.2 Delineated subcatchments, considered climate stations and locations of calibration and 
validation outlets. 
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Donga-Kolonkonde (Fig. 7.3). In order to avoid negative turbidities for very low SSC 

values, the relationship between both variables was assumed to be directly 

proportional (y = a*x) below the lowest sampled SSC value. The coefficients of 

determination (R2) ranged from 0.55 and 0.78. These values can be considered 

satisfactory and lie within the lower and mid ranges published by other authors for 

catchments in Germany (e.g., Pfannkuche & Schmidt, 2003), the United States (e.g., 

Gray et al. 2003; Inamdar, 2004; Dana et al., 2004) and Nepal (Brasington & 

Richards 2000).  

Fig. 7.3 Site-specific relationships between turbidity and suspended sediment concentration. 
 

The sediment curves were calculated for the outlets by combining the suspended 

sediment concentrations with hourly and half-hourly discharge data. For example, 

Figure 7.4 shows the sediment curve for the Terou-Igbomakoro and Donga-Pont 

catchments for the year 2005 with an hourly time step. The graphs indicate highest 

discharge and sediment peaks in mid-July. Although the Donga-Pont catchment is 

only one-fourth the size of the Terou-Igbomakoro catchment, the transported 

sediment loads in 2005 amount to almost 50% of those at the Terou-Igbomakoro 

outlet. One extreme discharge event on the 14th and 15th of July at Donga-Pont 

carried extremely high sediment loads, up to 456 tons per hour. Several sediment 
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peaks accompanied the discharge event, the highest recorded three hours after the 

discharge maxima. 

The sediment curves for the other outlets and the year 2004 are shown in 

Subsection 7.1.3, which deals with model calibration of the sediment budget. 

Calculation of annual sediment loads was hampered by several gaps in the data 

records, e.g., for the period 12.08-1.09.2005 at the Terou-Igbomakoro outlet. 

Therefore, the derived annual sediment yields should be considered as minimum 

values (see Table 7.4). 

The calculated sediment 

yields lie in the typical 

range of reported values 

for African rivers. For 

example, Walling et 

al. (2001) obtained an-

nual sediment yields between 0.15 and 0.26 t/ha/yr for the Upper Kaleya catchment 

(63 km2) in South Zambia. The authors also listed literature values for many African 

rivers, all less than 1 t/ha/yr. In Asian catchments, suspended sediment yields are 

often significantly higher due to steep slopes, silty soils and intense land use (e.g., 

Chappell et al. (2004), Douglas & Guyot 2005). The recorded maxima of suspended 

sediment concentrations from turbidity measurements also agree with those reported 

in the literature, ranging from 0.04 to 5 g/l (e.g., Gray et al., 2003; Inamdar, 2004; 

Pfannkuche & Schmidt, 2003; Lewis, 1996; TetraTech, 2004).  

Fig. 7.4 Sediment and discharge curves in 2005 at the outlets Terou-Igbomakoro and Donga-Pont 
derived from measurements. 

Table 7.4 Minimum annual sediment loads derived from turbidity 
measurements (Donga-Pont, Terou-Igbomakoro, Lower Aguima), 
and daily water sampling (Ouémé-Beterou). 

Turbiditymax 

[NTU]
SSCmax    

[g/l]
SY 2004 
[t/ha/yr]

SY 2005 
[t/ha/yr]

Donga-Pont 700 (800) 1.22 >> 0.05 0.41
Terou-Igbomakoro 248 (566) 1.08 > 0.07 >0.17
Lower Aguima 500 (756) 0.17 0.02 0.17
Ouémé-Beterou - 1.03 0.05 0.22
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Baseflow separation 

In order to learn about the fractions of discharge components in the measured total 

flow, the digital filter technique of Arnold & Allen (1999) was applied. This method 

was originally used in signal analysis and processing. The equation is: 

 

))1()((2/)1()1()( −−⋅++−⋅= tQtQtQtQ tottotsurfsurf ββ  

where 

surfQ   filtered surface runoff (quick response) 

totQ   total streamflow 

β   filter parameter (set to 0.925) 

 

Several studies have shown that the results of the digital baseflow filter compare well 

with manual baseflow separation techniques (Arnold & Allen 1999). The filter 

program delivers three baseflow curves for different climate zones. The second curve 

is most suitable for humid areas.  

Moreover, measurements of electric conductivity in 30 minute intervals at the Terou-

Igbomakoro and Donga-Pont outlets allowed baseflow separation for several events 

in 2004 and 2005. Based on the assumption that each discharge component shows a 

typical specific electric conductivity, and considering the mass balance equation, the 

fraction of surface runoff could be derived as follows: 

 

( ) ( )baseraintotQbaseQtotsurf ECEC/QECECQ −⋅−=      (7.1) 

where 

surfQ    surface runoff [l/s] 

totQ    total runoff [l/s] 

QtotEC   electric conductivity of total runoff [µs/cm] 

QbaseEC   electric conductivity of baseflow [µs/cm] 

rainEC   electric conductivity of rainfall [µs/cm], estimated as 13.7 

 

Figure 7.5 shows typical curves after a rainfall event. As discharge increases, the 

electrical conductivity is reduced. The reduction is assumed to be proportional to the 
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fraction of fast discharge components, since rainwater has only a short contact with 

the ion-rich soil.  

A comparison of the curve 

with the baseflow curve 

derived from measure-

ments of electrical 

conductivity at the Terou-

Igbomakoro and Donga-

Pont outlets in 2004 and 

2005 showed satisfactory 

agreement between both 

curves (Fig. 7.6). 

However, the baseflow 

filter delivered slightly 

lower values for the baseflow, in particular at the end of the rainy season. 

Furthermore, the filter-based baseflow curve is smoothed compared to the curve of 

conductivity measurements. 

A scatter plot of 17 and 12 analysed rainfall events of the years 2004 and 2005 in the 

Terou-Igbomakoro and Donga-Pont catchments illustrates the good correlation 

between surface runoff, which was separated based on measurements of electrical 

conductivity, and total discharge (Fig. 7.7). A linear regression delivers an average 

Fig. 7.5 Baseflow separation based on discharge measurements for 
an event at Terou-Igbomakoro outlet. 

 
Fig. 7.6 Comparison of baseflow separation according to the baseflow filter program of Arnold & 
Allen (1999) with separation based on measurements of electrical conductivity and equation 7.1. 
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fraction of surface runoff of 28% and 30% in the Donga-Pont and Terou-Igbomakoro 

subcatchments, respectively. 

The fraction of surface runoff is 

significantly higher for large events. 

From conductivity measurements, 

the average fraction of surface 

runoff is only slightly higher in the 

more intensively used Donga-Pont 

catchment. The separation of 

baseflow from measured discharge 

with the digital filter revealed a 

more significant difference 

between the two subcatchments. 

With a fraction of surface runoff of 

about 55% in the period 1998-

2005, the Donga-Pont 

subcatchment exceeded the mean value of 43% for the Terou-Igbomakoro 

subcatchments. Giertz (2004) obtained for two gauges in the small Aguima 

subcatchment 40% and 34% of total discharge as fast discharge components from 

electrical conductivity measurements. 

To sum up, although there are differences, the baseflow derived from the digital 

baseflow filter seems to be suitable for calibrating the discharge components.  

 

7.1.2. Model calibration/validation - Hydrology  

Model calibration - Hydrology  

Model calibration was performed simultaneously at the Terou-Igbomakoro and 

Donga-Pont outlets following the calibration procedure illustrated in Fig. 5.1, 

Chapter 5. Table 7.5 summarizes the calibration parameters for the hydrological 

calibration. The calibration parameters for the Terou-Igbomakoro subcatchment were 

taken from Sintondji (2005) as a starting point but had to be modified due to 

differences in the databases. Moreover, the SCS curve numbers were split into one 

to four curve numbers per land use according to the hydrologic group, considering 

soil properties. The baseflow recession constants at the Donga-Pont and Terou-
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Igbomakoro outlets were estimated with the baseflow filter program of Arnold & 

Allen (1999) for discharge data from 1998 to 2005. Subsequently, one averaged 

recession constant was assumed for the whole Upper Ouémé catchment. Automatic 

calibration was performed after extensive manual calibration and did not substantially 

change the results of manual calibration.   

In the default modus, SWAT heavily overestimated runoff. This was mainly due to 

low simulated values for actual evapotranspiration compared to values obtained by 

other authors working in this region (e.g., Varado et al., 2005; Le Lay & Galle, 2007). 

If the Priestley-Taylor method was used, ETpot values were even lower than for 

Penman-Monteith. 

In order to reduce the overestimation of runoff, groundwater parameters and the soil 

evaporation compensation factor (ESCO) were adjusted so as to maximise actual 

evapotranspiration and increase the fraction of deep aquifer recharge. Moreover, 

physical soil properties were modified, resulting in increased soil percolation and 

reduced surface runoff. The estimated saturated hydraulic conductivities (Ksat or 

SOL_K) were very low for clay-rich subsoils, causing water-logging in some profiles. 

In order to avoid this, all Ksat values smaller than 5 mm per hour were set to 5 mm 

Table 7.5 Calibrated parameters for hydrological calibration, comparison with default values and 
assumptions by Sintondji (2005); (# value did not appear, - measured values). 

Parameter Definition SWAT 
Default

SINTONDJI 
(2005)

   Hydrol. group
A B C D

CN_AGRL SCS curve number [-] 77 78 # 76 78 81
CN_FRST SCS curve number [-] 78 60 55 59 62 64
CN_FRSD SCS curve number [-] 79 66 54 58 61 #
CN_RNGE SCS curve number [-] 66 69 58 62 65 67
CN_RNGB SCS curve number [-] 69 69 58 62 65 67

CN_WETN/PAST SCS curve number [-] 60 79 # 67 # #
SURLAG Surface runoff lag coefficient [-] 4 0.2887

ALPHA_BF Base flow recession constant [-] 0.048 0.0336 0.1
GWQMN Threshold depth of water in shallow aquifer 

for return flow [mm] 0 7 20

GW_REVAP Groundwater revap coefficient [-] 0.02 0.19 0.3
REVAPMN Threshold depth of water in shallow aquifer 

for revap or percolation to deep aquifer 1 0.02 0

RCHRG_DP Fraction of deep aquifer percolation [-] 0.05 0.03 0.4
LAI_INIT Inital leaf area index [-] 0 3 3
CH_K2 Channel hydraulic conductivity [mm/h] 0 7.1359 0
ESCO Soil evaporation compensation factor [-] 0.95 0.1 0.1

SOL_AWC(layer) Available water capacity of the soil layer 
[mm/mm] - +12.5% +25%

SOL_Z Total depth of soil profile [mm] - - +30%
SOL_K(layer) Saturated hydraulic conductivity of the soil 

layer [mm/h] - - Values < 5 set to 5

0.2887

This study
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per hour. This seems more realistic, considering the frequent occurrence of biopores 

and preferential flow paths in the humid and sub-humid tropics. In contrast with 

Sintondji (2005), the channel hydraulic conductivity CH_K2 was not modified. Thus, 

water loss through the channel bed was considered insignificant. Soil investigations 

in the river beds revealed a wide range of soil textures, from sands to clays. 

Increasing CH_K2 did not improve the calibration results. 

As a result of hydrological calibration, yearly amounts of total discharge agreed well, 

in particular for the Terou-Igbomakoro subcatchment (Fig. 7.8). The mean annual 

discharge for the calibration period was slightly overestimated, by 3% and 8% for the 

Donga-Pont and Terou-Igbomakoro subcatchments, respectively (see Table 7.6). In 

addition, in 1999, discharge was significantly overestimated in the Donga-Pont 

subcatchment. Looking at the weekly curves (Fig. 7.9) and the daily data, this can be 

attributed to an underestimation of the discharge peaks at the end of August and 

beginning of October resulting from rainfall peaks. It is not clear if actual rainfall was 

higher or if the weak response of the SWAT model is responsible for the mismatch.   

The temporal characteristics were optimised by modifying SURLAG, ALPHA_BF, 

GW_DELAY, GWQMN and REVAPMN. Finally, satisfactory measures of 

performance were obtained for weekly time steps in the Terou-Igbomakoro 

subcatchment (ME 0.85, R2 0.87, IoA 0.96) and the Donga-Pont subcatchment (ME 

0.81, R2 0.81, IoA 0.95). Figure 7.9 illustrates the temporal characteristics for 

simulated and measured discharge. In general, the beginning and end of the 

discharge period are well captured. However, at the beginning of the rainy season in 

1999 and 2001, discharge was significantly overestimated in the Donga-Pont 

Fig. 7.8 Comparison of simulated and measured annual discharge for the calibration period: Terou-
Igbomakoro and Donga-Pont outlets. 
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subcatchment. Most peaks of the hydrograph are well reproduced. In the Terou-

Igbomakoro subcatchment, the simulated and measured discharge curves fit quite 

well. Nevertheless, the discharge curve for Terou-Igbomakoro is slightly biased at the 

end of the rainy season. 

A comparison of the temporal characteristics of the discharge fractions revealed that 

this bias is probably due to a retardation of the baseflow (Fig. 7.10). A further 

reduction of GW_DELAY to force the groundwater flow to appear earlier was not 

feasible because it caused significantly increased runoff amounts. However, despite 

a slight overestimation of surface runoff, the total amounts of the measured 

discharge components were well reproduced (see Table 7.6).  

The scatter plots and flow duration curves in Figs. 7.11 and 7.12 confirm the correct 

representation of weekly rainfall sums over the calibration period in both catchments. 

For the Terou-Igbomakoro catchment, the regression line between simulated and 

measured weekly discharge almost covers the 1:1 line. Discharge between 5 and 

20 mm per week is slightly underrepresented, whereas that between 1 and 5 mm is 

more frequently simulated than measured. For the Donga-Pont subcatchment, a 

small bias of the model towards lower values can be observed. The reproduction of 

Fig. 7.9 Comparison of simulated and measured weekly discharge for the calibration period: Terou- 
Igbomakoro and Donga-Pont outlets, measures of performance. 

Table 7.6 Comparison of mean simulated and measured discharge components for the calibration 
period at the Terou-Igbomakoro and Donga-Pont outlets. Baseflow here includes lateral flow and 
shallow aquifer recharge. Measured baseflow was derived with a digital baseflow filter.  

WY 
[mm/yr]

Qsurf 

[mm/yr]
Qbase 

[mm/yr]
WY 

[mm/yr]
Qsurf 

[mm/yr]
Qbase 

[mm/yr]
Donga-Pont 320 181 139 311 176 135 103 103 103
Terou-Igbo. 247 110 137 229 103 126 108 107 109

Simulated Measured WY_sim/ 
WY_meas 

[%]

Qsurf_sim/ 
Qsurf_meas 

[%]

Qbase_sim/ 
Qbase_meas 

[%]
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the frequency distribution is satisfying. However, discharge between 15 and 20 mm 

per week is significantly overestimated.  

Looking at the mean annual soil water balance for the two subcatchments and the 

Upper Ouémé catchment in the calibration period (see Table 7.7), it becomes clear 

that rainfall in the Donga-Pont subcatchment is significantly higher than in the rest of 

the catchment. Therefore, all variables of the water balance are also provided as the 

fraction of mean annual rainfall.  

As expected from the land use distribution, the highest fraction of surface runoff, 15% 

of mean annual rainfall, is obtained in the Donga-Pont subcatchment. In the Terou-

Igbomakoro and the Upper Ouémé catchments only about 10% of mean annual 

rainfall run off superficially. In contrast to modelling studies by Giertz (2004), who 

found a mean fraction of interflow of 55% in the Aguima subcatchment (30 km2), the 

SWAT model finds only an average of 3-6% of the total flow to be lateral flow. 

Problems with the SWAT model in the representation of interflow in lowland areas 
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Fig. 7.10 Discharge components: baseflow fraction from measured and simulated discharge data in 
the Terou-Igbomakoro subcatchment. 

Table 7.7 Mean simulated annual soil water balance in the Donga-Pont, Terou-Igbomakoro and 
Upper Ouémé catchments in the calibration period (1998-2001). 

Donga-
Pont

Terou-
Igbo.

Upper 
Ouémé

Donga-
Pont

Terou-
Igbo.

Upper 
Ouémé

Precipitation [mm/yr] 1279 1095 1158 100% 100% 100%
Surface runoff [mm/yr] 181 110 112 14% 10% 10%
Baseflow [mm/yr] 141 137 127 11% 12% 11%
Shallow aquifer recharge [mm/yr] 360 337 325 28% 31% 28%
Deep aquifer recharge [mm/yr] 126 118 114 10% 11% 10%
Actual evapotranspiration [mm/yr] 733 635 710 57% 58% 61%
Potential evapotranspiration [mm/yr] 1634 1635 1635 128% 149% 141%
Change in soil water storage [mm/yr] 67 47 54 5% 4% 5%  
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have been reported by several authors (e.g., Busche, 2005; Sintondji, 2005; 

Eckhardt et al., 2002). Therefore, lateral flow and shallow aquifer recharge have 

been aggregated as baseflow in Tables 7.6 and 7.7. As a consequence of the lower 

rainfall, the absolute values for actual evapotranspiration in the Terou-Igbomakoro 

subcatchment are 75-100 mm lower than in the other two catchments. 

 

Moreover, the plausibility of the mean annual water balance was checked for the 

hydrological response units. The results were consistent, showing higher actual 

evapotranspiration and higher leaf area index and biomass in forest areas than on 

savannah and agricultural land. In comparison, agricultural land was characterized by 

the highest amounts of total water yield and surface runoff, while soil water 

percolation and baseflow were significantly lower. For the inland valleys, soil water 

 
 
 

 

 

 

 

 

 

 
Fig. 7.11 Scatter plot and frequency distribution for measured and simulated weekly discharge at the 
Terou-Igbomakoro outlet in the calibration period. 

 

 

 

 

 

 

 

 

 
Fig. 7.12 Scatter plot and frequency distribution for measured and simulated weekly discharge values 
at the Donga-Pont outlet in the calibration period. 
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percolation and groundwater recharge were even lower than for agricultural land. The 

transmission losses in the channel through evaporation were smaller than 2 mm per 

year, and therefore were negligible.   

Model validation - Hydrology 

In order to validate the hydrological model component, the model parameterisation 

after calibration at the Terou-Igbomakoro and Donga-Pont outlets was applied to 

another time period (split sample test) as well as to other subbasins in the Upper 

Ouémé catchment (proxy basin test). 

 

a) Temporal validation of hydrology (2002-2005)  
 

The application of the calibrated model to the validation period (2002 to 2005) led to 

satisfactory results. Total runoff amounts were very well reproduced for the Terou-

Igbomakoro subcatchment (Table 7.8). For the Donga-Pont subcatchment, total 

runoff amounts were overestimated by about 28%, in particular concerning surface 

runoff (Fig. 7.13).  

The temporal characteristics between the measured and simulated discharge curves 

agreed very well (Fig. 7.14) and led to similar performance measures as those in the 

calibration period. For the Donga-Pont subcatchment, the performance was slightly 

better than for the calibration period.  

The overestimation of total discharge at the Donga-Pont outlet can be attributed to 

two discharge peaks in 2003 and 2005, for which the model overreacts to underlying 

extreme rainfall amounts of 150-200 m per week. However, such events are always 

difficult to capture with semi-physically-based hydrological models using the SCS 

curve number approach. 

Table 7.8 Comparison of mean simulated and measured discharge components for the validation 
period at the Terou-Igbomakoro and Donga-Pont outlets. 

WY 
[mm/yr]

Qsurf 

[mm/yr]
Qbase 

[mm/yr]
WY 

[mm/yr]
Qsurf 

[mm/yr]
Qbase 

[mm/yr]
Donga-Pont 275 168 101 214 124 91 128 135 111
Terou-Igbo. 178 82 91 187 86 101 95 95 90

Simulated Measured WY_sim/ 
WY_meas 

[%]

Qsurf_sim/ 
Qsurf_meas 

[%]

Qbase_sim/ 
Qbase_meas 

[%]
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Furthermore, a high degree of uncertainty remains in the rainfall pattern due to the 

high spatial and temporal rainfall variability in the Upper Ouémé catchment (see 

Chapter 8).  

Table 7.9 summarizes the mean annual soil water balance in the two subcatchments 

and the Upper Ouémé catchment. Compared to the water balance from the 

calibration period (Table 7.7), the rainfall amounts are higher, in particular in the 

Terou-Igbomakoro subcatchment. As a consequence, biomass growth and 

evapotranspiration increase significantly. In contrast, absolute and relative values for 

surface and groundwater flow are significantly lower than in the calibration period. 

While the mean fraction of surface runoff remains almost constant for the Donga-

Pont and the Upper Ouémé catchments, surface runoff in the Terou-Igbomakoro 

subcatchment drops from 10 to 7% of the mean annual rainfall. 

 
Fig. 7.13 Comparison of simulated and measured annual discharge for the validation period: Terou-
Igbomakoro and Donga-Pont outlets.  

 
Fig. 7.14 Comparison of measured and simulated weekly discharge for the validation period: Terou- 
Igbomakoro and Donga-Pont outlets, measures of performance. 
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b) Spatial validation of hydrology 
 

Besides the validation of the calibrated model at the Donga-Pont and Terou-

Igbomakoro outlets for the period 2002-2005 (see previous section), the model 

performance was evaluated at further validation outlets in the Upper Ouémé 

catchment (Fig. 7.2 and Fig. 2.7). If discharge data was available, the whole period 

1998-2005 was considered. Table 7.10 summarizes the performance measures and 

the discharge balance for the considered outlets. For the Donga and Terou 

subcatchments, model efficiencies lie between 0.77-0.83 and can be considered as 

satisfactory to good. Average discharge is overestimated by 10% for the Donga-Pont 

and Donga-Affon outlets, and is underestimated by 10 to 14% for the Terou-

Igbomakoro and Terou-Wanou outlets. This reflects the difficulties encountered 

during model calibration to simultaneously calibrate two quite different 

subcatchments with the same parameter set. For the Ouémé-Aval/Sani and Ouémé-

Beterou subcatchments, model efficiencies are significantly lower but still satisfying 

considering the size and position of the catchments. However, discharge is heavily 

overestimated in these subcatchments.    

Table 7.9 Mean simulated annual soil water balance in the Donga-Pont, Terou-Igbomakoro, and 
Upper Ouémé catchments for the validation period (2002-2005).  

Donga-
Pont

Terou-
Igbo.

Upper 
Ouémé

Donga-
Pont

Terou-
Igbo.

Upper 
Ouémé

Precipitation [mm/yr] 1308 1219 1209 100% 100% 100%
Surface runoff [mm/yr] 168 82 103 13% 7% 9%
Baseflow [mm/yr] 108 97 102 8% 8% 8%
Shallow aquifer recharge [mm/yr] 315 287 296 24% 24% 25%
Deep aquifer recharge [mm/yr] 110 101 104 8% 8% 9%
Actual evapotranspiration [mm/yr] 812 829 789 62% 68% 65%
Potential evapotranspiration [mm/yr] 1478 1479 1479 113% 121% 122%
Change in soil water storage [mm/yr] 62 34 42 5% 3% 3%

Table 7.10 Validation of discharge at several outlets in the Upper Ouémé catchment. 
Catchment 
Area [km2]

Simulation 
period

Model 
Efficiency r2 IoA

Discharge balance 
Qsim/Qmeas [%]

Donga-Pont 586 2002-2005 0.82 0.84 0.96 111
Donga-Affon 1308 1998-2005 0.77 0.84 0.78 109
Terou-Igbomakoro 2324 2002-2005 0.83 0.85 0.96 90
Terou-Wanou 3136 1998-2002 0.77 0.77 0.70 86
Ouémé-Aval/Sani 3506 1999-2005 0.47 0.91 0.85 156
Ouémé-Beterou 10085 1998-2005 0.59 0.89 0.82 146
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Figure B.2 in Appendix B shows the weekly discharge curves of the additional 

validation outlets beyond Donga-Pont and Terou-Igbomakoro. 

Bormann & Diekkrüger (2004) obtained similar performance measures during 

validation of the conceptual UHP model for the Upper Ouémé catchment. Similarly, 

they obtained model efficiencies of 0.76 to 0.83 for the Terou and Donga 

subcatchments and 0.54 for the Ouémé-Beterou subcatchment. 

 

7.1.3. Model calibration/validation - Sediment budget 
 

After a successful calibration and validation of the hydrological model component, the 

sediment budget could be studied in detail.  

Calibration and validation of the sediment budget referred to the sediment loadings of 

the HRUs that reach the channel as suspended sediment. Instream sediment 

deposition and bank erosion were not considered due to insufficient knowledge about 

these processes in the Upper Ouémé catchment. Thus, the dynamic geomorphology 

of the natural river beds in the catchment was not addressed.   

Model calibration - Sediment 

In order to calibrate the sediment budget, only the USLE crop practice factors and a 

parameter in the sediment transport equation (SPCON) were adjusted (Table 7.11). 

The USLE crop management factor (P_USLE) was kept as 1 because soil 

conserving tillage measures are only locally applied in the catchment. The derived 

average slope length of 91.463 m and the average slope steepness of 3 to 22% per 

subbasin were not modified.  

The default values of the USLE crop practice factors were kept for forest (FRSD) and 

the savannah types RNGB and RNGE. The C-factor was slightly increased for inland 

Table 7.11 Calibrated parameters for sediment calibration, comparison with default values, and 
assumptions used by Sintondji (2005).  

Parameter Definition
SWAT 
Default

Sintondji 
(2005)

This   
study

C_USLE: AGRL USLE crop practice factor [-] 0.2 0.4 0.18
C_USLE: WETN USLE crop practice factor [-] 0.003 - 0.005
C_USLE: RNGE USLE crop practice factor [-] 0.005 0.05 0.005
C_USLE: RNGB USLE crop practice factor [-] 0.005 0.05 0.005
C_USLE: FRST USLE crop practice factor [-] 0.001 0.01 0.003
C_USLE: FRSD USLE crop practice factor [-] 0.001 0.001 0.001

SPCON Linear parameter in channel 
sediment rounting [-]

0.0001 0.0001 0.0005
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valleys and woodland savannah. For cropland, the reduction of the C-factor from 0.2 

to 0.18 delivered the best agreement with the sediment yield derived from the 

turbidity measurements. The SPCON factor determines the maximum amount of 

sediment that can be transported in the channel during an event. For the default 

value of 0.0001, 43% of the sediment entering the channel in the Donga-Pont 

subcatchment remained in the channel through severe transport limitations in one 

subbasin. For Terou-Igbomakoro, the difference between sediment entering and 

leaving the channel was 24% for the period 1998-2005. The adjustment of SPCON to 

0.0005 significantly improved the calibration of the sediment budget for both 

subcatchments. Otherwise, successful simultaneous calibration of both catchments 

would not have been feasible. After calibration, 8%, 18%, and 3% of the sediment 

load remained in the channel for the Terou-Igbomakoro, Donga-Pont, and Upper 

Ouémé (sub-)catchments, respectively.  

Total amounts of sediment yield were compared for the days when discharge and 

suspended sediment measurements were available. Thus, the values in Table 7.12 

have to be considered as minimum values for the years 2004 and 2005. The 

simulated sediment amounts in the Donga-Pont subcatchment were overestimated 

by about 60% due to an overestimation of discharge by 30% in the period with valid 

measurements. In the Terou-Igbomakoro subcatchment, sediment yields and 

discharge were underestimated by about 10-15% in the period with valid 

measurements in 2004 and 2005 (Table 7.12).  

However, the temporal characteristics of the simulated sediment curve were 

reproduced quite well, in particular for the Donga-Pont subcatchment (Fig. 7.15). For 

the Terou-Igbomakoro subcatchment, several sediment peaks were not correctly 

matched in 2005 due to inadequately simulated discharge peaks. 

Table 7.12 Comparison of cumulative sediment and water yields in 2004 and 2005 for days with valid 
measurements in the Donga-Pont and the Terou-Igbomakoro subcatchments.  

year
# days 

considered
WY_meas 

[mm]
SY_meas 

[t/ha]
WY_sim 

[mm]
SY_sim 

[t/ha]

WY_sim/ 
WY_meas 

[%]

SY_sim/ 
SY_meas 

[%]
Donga-Pont 2004 45 37 0.047 48 0.079 130 167

2005 118 124 0.414 162 0.658 131 159
Terou-Igbomakoro 2004 160 82 0.066 67 0.056 83 85

2005 176 157 0.165 141 0.145 89 88
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The measurements of model performance for the weeks with valid measurements 

were satisfactory for the Terou-Igbomakoro subcatchment (ME 0.68, R2 0.69, IoA 

0.90) and the Donga-Pont subcatchment (ME 0.71, R2 0.87, IoA 0.94).  
The scatter plots for the weekly values reveal an underestimation of large sediment 

events at the Terou-Igbomakoro outlet and an overestimation of sediment yields at 

the Donga-Pont outlet (Fig. 7.16).  

Figure 7.17 shows the daily temporal characteristics of discharge and sediment yield 

for both subcatchments. Clearly, most over- and underpredictions of the sediment 

yield are linked to inaccurate reproduction of the discharge events. For example, in 

August 2004 a measured discharge event in the Terou-Igbomakoro subcatchment is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.15 Comparison of measured and simulated weekly discharge and sediment yield for 2004 and 
2005 at the Terou-Igbomakoro and the Donga-Pont outlets. 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.16 Scatter plots for measured and simulated weekly sediment yields at the Donga-Pont and 
the Terou-Igbomakoro outlets in the calibration period 2004/2005.  
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not captured at all, which leads to a missing sediment peak at the same time. In this 

case, the missing discharge peak corresponds to an uncaptured rainfall event in the 

rainfall data. In contrast, the mismatch of sediment peaks at the beginning of the 

2005 rainy season can be attributed to an overestimation of discharge peaks. The 

extreme event in mid-July 2005 in the Donga-Pont subcatchment led to a sediment 

peak that is more than ten times higher than the highest sediment peak in the Terou-

Igbomakoro subcatchment. The large differences in the magnitude of the sediment 

yield between both subcatchments are also reflected by a factor of ten between the 

y-axis scales in Figs. 7.15 and 7.17.  

In summary, the agreement between the measured and simulated sediment yields in 

the calibration period is quite satisfactory taking into account the various sources of 

uncertainty (see Chapter 8). 

 

Model validation – Sediment budget  
The spatial validation of the sediment budget at the Beterou outlet achieved 

satisfactory results only for the year 2005 (Fig 7.18). For 2004, the simulated 

sediment yields are almost 5 times higher than the measured values (Table 7.13). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.17 Measured and simulated daily sediment yield and total discharge at the Terou-Igbomakoro 
and the Donga-Pont outlets in the calibration period 2004/2005.  

Table 7.13 Comparison of cumulative sediment yields and discharge values in 2004 and 2005 
for days with valid measurements in the Ouémé-Beterou subcatchment.  

year # days 
considered

Qtot_meas 
[mm]

SY_meas 
[t/ha]

Qtot_sim 
[mm]

SY_sim 
[t/ha]

Qtot_sim/ 
Qtot_meas 

[%]

SY_sim/ 
SY_meas 

[%]
2004 186 175 0.04 215 0.21 123 478
2005 179 120 0.11 153 0.17 128 158  
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The 23% overestimation of discharge is not sufficient to explain this large difference 

in sediment yield. The measured sediment yields for 2004 are probably also subject 

to handling errors in the water sampling and the filtration in the first year of 

investigation (for details, see Chapter 8). Temporal validation for 2006 at the Terou-

Igbomakoro and the Donga-Pont outlets could not be performed because the rainfall 

data for 2006 was not yet available.  

 

7.1.4.      Influence of spatial discretisation on model performance 
 

Several authors have reported that model results from SWAT can be very sensitive 

to the spatial discretisation of the model because the thresholds for subbasin and 

HRU delineation affect land use and soil distribution as well as the number of 

considered climate stations (e.g., Bingner et al., 1997; Manguerra & Engel, 1999; 

Fitzhugh & Mackay, 2000; Jha et al., 2004; Chen & Mackay, 2004; see also 

Section 4.2). 

In this study, model calibration was performed for two different discretisations 

(Table 7.14). So far, we have discussed the results of discretisation 2. For 
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Fig. 7.18 Comparison of daily measured and simulated total discharge and sediment yield for 2004 
and 2005 at the Ouémé-Beterou outlet. 

Table 7.14 Comparison of model performance for the period 1998-2001 for two different 
discretisations.  

Discretisation 1 Discretisation 2
# sub-
basins

#  
HRUs

Q_sim 
[mm/yr]

Q_sim/ 
Q_meas [%] ME R2

# sub-
basins

#  
HRUs

Q_sim 
[mm/yr]

Q_sim/ 
Q_meas [%] ME R2

Donga-Pont 1 11 324 104 0.78 0.82 3 21 320 102 0.78 0.81
Terou-Igbo. 9 72 263 115 0.82 0.83 15 117 247 106 0.87 0.87
Upper Ouémé 55 462 245 - - - 121 926 236 - - -
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discretisation 2, the threshold for subbasin delineation for discretisation 1 was 

reduced from 15000 ha to 6000 ha. As a result, the number of subbasins increased 

from 55 to 121 and one additional pluviometric station was considered. Furthermore, 

all fractions of land use types for the Upper Ouémé catchment were better 

represented, except for a very slight increase in the deviation for agricultural land 

(Fig. 7.19). However, the overestimation of cropland in the Donga-Pont 

subcatchment increased from 15 to 22%. The model performance in the calibration 

period 1998-2001 could be significantly improved for the Terou-Igbomakoro 

subcatchment and remained similar for the Donga-Pont subcatchment (Tab 7.14). 

In the Donga-Pont 

subcatchment, simula-

ted runoff peaks were 

smoothed due to the 

division of the 

subbasin into three 

subbasins with two 

different rain gauges. 

Therefore, the model 

performance improved 

significantly in the 

validation period 2002-

2005. The Model 

Efficiency increased from 0.75 to 0.88 for the Donga-Pont subcatchment (Fig. 7.20). 

Fig. 7.19 Comparison of the land use distribution in the Upper Ouémé 
catchment for two different discretisations with the original distribution 
from the Landsat classification.  

 
Fig. 7.20 Comparison of measured and simulated weekly discharge for the period 2002-2005 at the 
Donga-Pont outlet for discretisation 1 (left) and discretisation 2 (right).  
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7.1.5.       Discussion of modelling results 1998-2005 
 

In this section, we present the simulation results for the whole period 1998-2005 and 

address the temporal and spatial dynamics of rainfall, water yield and sediment yield.  

The mean simulated total discharge in the period 1998-2005 amounts to 219 mm/yr 

with about 107 mm surface runoff per year (see Table 7.15). Total discharge and 

surface runoff are substantially higher in the Donga-Pont subcatchment. The mean 

annual sediment loss of 0.22 t/ha/yr in the whole Upper Ouémé catchment lies 

between the values for the Donga-Pont and the Terou-Igbomakoro subcatchments.  

The mean annual sediment yield in the Donga-Pont subcatchment is about six times 

higher than for the Terou-Igbomakoro subcatchment, reflecting a higher portion of 

cropland (factor 3.5) and higher rainfall amounts and intensities in this region. 

Standard deviations for daily precipitation are high in the small Donga-Pont 

subcatchment. Sintondji (2005) simulated significantly higher sediment yields for the 

Terou-Igbomakoro subcatchment. He obtained as mean sediment yield 4.72 t/ha/yr 

for the period 1998-2003. However, he did not calibrate or validate the sediment 

budget. 

Apart from surface runoff and actual evapotranspiration, the relative water balance is 

quite similar in the two subcatchments and the whole Upper Ouémé catchment (see 

Table 7.16). Surface runoff accounts for 13% of annual rainfall in the Donga-Pont 

subcatchment. In the Terou-Igbomakoro subcatchment, only 8% of annual rainfall 

runs off superficially. As in the calibration and validation periods, the high values for 

actual evapotranspiration in the Donga-Pont subcatchment are a consequence of the 

higher rainfall. Relative to the rainfall sums, actual evapotranspiration is higher in the 

Terou-Igbomakoro subcatchment and the Upper Ouémé catchment. If we compare 

the USLE factors for the Terou-Igbomakoro, Donga-Pont and Upper Ouémé 

catchments, we learn more about their contributions to the differences in sediment 

yield. As Table 7.17 shows, the USLE C factor, which represents land use, shows the 

Table 7.15 Land use and hydrological characteristics of Donga-Pont and Terou-Igbomakoro 
subcatchments and the whole Upper Ouémé catchment derived from modelling results 1998-2005, 
mean values and standard deviations.  

Field 
[%]

Savannah 
[%]

Forest 
[%]

Rainfall 
[mm/yr]

WY       
[mm/yr]

Qsurf    

[mm/yr]
SY          

[t/ha/yr]
Donga-Pont 39 61 0 1294 +/- 201 297 +/- 142 174 +/- 78 0.85 +/- 0.47
Terou-Igbomakoro 11 72 17 1157 +/- 170 213 +/- 103 96 +/- 41 0.14 +/- 0.06
Upper Ouémé 14 78 8 1184 +/- 121 219 +/- 68 107 +/- 28 0.22 +/- 0.06  
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highest variation between catchments with a maximum in the intensively used 

Donga-Pont subcatchment. The sediment yield, which SWAT simulates according to 

the MUSLE, equals about one-third of the sediment yield according to the USLE (see 

Table 7.17).   

 

Looking at the sources of sediment loads by land use (see Table 7.18), it becomes 

obvious that cropland is by far the main contributor in the Upper Ouémé catchment 

(96.9%), followed by brush and grass savannah (2.4%) and woodland and tree 

savannah (0.5%). The average sediment yields for cropland, inland valleys and brush 

and grass savannah are 2.13 t/ha/yr, 0.46 t/ha/yr and 0.13 t/ha/yr, respectively. Thus, 

the mean sediment yield for inland valleys is significantly higher than for other 

savannah types but less important for the total sediment load due to its very limited 

occurrence (0.06%).  

The simulated annual sediment yields of 0.06-0.26 t/ha/yr for the whole catchment lie 

within the lower range of values reported in the literature for similar catchments. For 

example, Walling et al. (2001) simulated sediment yields of 0.15-0.26 t/ha/yr in a 

small catchment in Zambia, and Wiese (1997) reported a natural soil loss rate on flat 

wet savannah land of about 0.9 t/ha/yr that increased after clearing to 14 t/ha/yr. 

Dickinson & Collins (1998) obtained sediment yields between 0.1 and 1.2 t/ha/yr for 

the Mgeni catchment in South Africa (4000 km2) using the Calsite Model. 

Table 7.16 Mean water balance for the period 1998-2005 in the Donga-Pont and Terou-Igbomakoro 
subcatchments and the whole Upper Ouémé catchment.   

Donga-
Pont

Terou-
Igbo.

Upper 
Ouémé

Donga-
Pont

Terou-
Igbo.

Upper 
Ouémé

Precipitation [mm/yr] 1294 1157 1184 100% 100% 100%
Surface runoff [mm/yr] 174 96 107 13% 8% 9%
Baseflow [mm/yr] 125 117 114 10% 10% 10%
Shallow aquifer recharge [mm/yr] 337 312 310 26% 27% 26%
Deep aquifer recharge [mm/yr] 118 109 109 9% 9% 9%
Actual evapotranspiration [mm/yr] 772 732 749 60% 63% 63%
Potential evapotranspiration [mm/yr] 1556 1557 1557 120% 135% 132%
Change in soil water storage [mm/yr] 64 41 48 5% 4% 4%  

Table 7.17 USLE factors and mean simulated soil loss rates for the Terou-Igbomakoro, Donga-Pont 
and Upper Ouémé catchments in the period 1998-2001.  

Mean      
USLE_K

Mean      
USLE_LS

Mean 
USLE_C

Mean 
USLE_P

Mean soil 
loss MUSLE 

[t/ha/yr]

Mean soil 
loss USLE 

[t/ha/yr]
Donga-Pont 0.08 (0.03-0.12) 0.42 (0.34-0.56) 0.07 1 0.85 2.40
Terou-Igbo. 0.08 (0.03-0.17) 0.39 (0.36-0.42) 0.02 1 0.14 0.40
Upper Ouémé 0.08 (0.03-0.30) 0.41 (0.27-0.86) 0.03 1 0.22 0.65  
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Table 7.18 Average sediment loadings in % and total sediment loads and sediment yields per land 
use in the Upper Ouémé catchment. 

Land use SWAT 
Code

Sediment 
load     
[t/yr]

Sediment 
load       
[%]

Sediment 
yield 

[t/ha/yr]
Cropland AGRL 432623 96.87 2.132
Dry forest FRSD 370 0.08 0.003
Woodland and tree savannah FRST 2342 0.52 0.008
Brush and grass savannah SAVA 10849 2.43 0.013
Inland valleys WETN 403 0.09 0.462  

Donovan and Casey (1998) reported an annual topsoil loss of 0.3 to 0.7 mm in Mali. 

Junge (2004) determined an average annual topsoil loss of 0.4 to 0.6 mm in the 

Aguima subcatchment from differences in topsoil depth of agricultural soil and soils 

under savannah vegetation.  

Considering an average bulk density of the topsoil of 1.51 g/cm3 (Giertz 2004), the 

simulated sediment yield of 0.22 t/ha/yr for the Upper Ouémé catchment equals an 

average topsoil loss of only 0.015 mm/yr. However, since large parts of the 

catchment are covered by forest or savannah, which contribute less than 4% to the 

total sediment load at the catchment outlet, it is more useful to calculate the topsoil 

loss for the cropland. The simulated sediment yield of 2.13 t/ha/yr on cropland equals 

an average annual topsoil loss on fields of 0.14 mm. Due to the higher amounts and 

intensities of rainfall, the sediment yield for agricultural land is higher in the Donga-

Pont subcatchment, leading to an estimated topsoil loss of 0.19 mm per year. Thus, 

the estimated topsoil loss on agricultural land in the Upper Ouémé catchment from 

SWAT is about 3 to 5 times lower than the estimate by Junge (2004) in the Aguima 

catchment. This reflects the fact that only a small portion of the eroded material 

reaches the channel (see Section 3.2). According to Van Noordwijk et al. (1998), 

generally less than 20% of the eroded material reaches the channel in catchments up 

to 10000 km2 in size.  

Likewise, the measured amounts of suspended sediment at the regional scale are 

one or two orders of magnitude lower than the soil loss rates of 12-120 t/ha/yr on 

fields and 3.8 t/ha/yr on savannah land obtained by Junge (2004) on small erosion 

plots in the catchment.  

Figure 7.21 shows the spatial pattern of the mean simulated sediment yield. The 

highest sediment yields, with a maximum of 2.21 t/ha/yr, were obtained in the 

subbasins around Djougou. 
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Furthermore, the sediment 

yield is elevated in the north-

western part of the catchment, 

along the road south-east of 

Djougou, on the Parakou 

plateau, and at the north-

eastern edge of the catchment. 

Sediment yields lower than 

0.1 t/ha/yr are simulated in 

most subbasins of the Terou-

Igbomakoro subcatchment, as 

well as in the central and 

northern parts of the catchment. As erosion and sediment transport are directly linked 

to surface runoff, their spatial patterns are very similar (Fig. 7.22). Clearly, surface 

runoff is also significantly higher in the Djougou region than in the rest of the 

catchment. This is due to 

high rainfall amounts, high 

rainfall intensities and a high 

fraction of cropland in this 

region. The fraction of 

cropland in the subbasins 

around Djougou varies 

between 28 and 48%. In the 

north-eastern region, high 

runoff is mainly caused by 

high rainfall. In the Parakou 

region, the high fraction of 

cropland leads to high 

surface runoff. The rainfall sums are comparatively low in the Parakou region, 

resulting in a rather low total water yield (see Appendix B, Fig. B.3). Variations in 

annual water and sediment yields are high (Fig. 7.23). The highest total water and 

sediment yields were simulated in 1998, 1999 and 2003. The highest monthly rainfall 

and water and sediment yield occur in August and September (Fig. 7.24).  

Fig. 7.22 Spatial distribution of the mean simulated surface 
runoff in the Upper Ouémé catchment (1998-2005). 

 
Fig. 7.21 Spatial distribution of the mean simulated sediment 
yield in the Upper Ouémé catchment (1998-2005).  
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However, annual variations in both 

months are high, in particular for the 

sediment yield. Suspended 

sediment concentrations are very 

high at the beginning of the rainy 

season, in June and July, but their 

contribution to the annual sediment 

yield remains small due to the low 

water yields in these months.  

Daily sediment flows are triggered 

by the occurrence of erosive 

rainfalls, which are usually defined 

as rainfalls of more than 10 mm per hour. To simplify, we consider all daily rainfalls of 

more than 10 mm as erosive (see also Junge (2004) and Segalen & 

Van Diepen (1984)). Then, the average number of days with erosive rainfall varies 

between 35 and 44 days 

per year depending on 

the pluviometric station. 

The corresponding 

standard deviation varies 

between 4 and 9 days. 

The highest number of 

erosive rainfalls was 

counted in the north-

western part of the 

catchment (stations 

Djougou, Tebou, 

Penessoulou), and the 

lowest number was counted at stations Parakou and Saramanga. The number of 

erosive rainfalls was particularly high in 1998, 2002 and 2003. In accordance with 

Junge (2004), the highest number of erosive rainfalls was recorded in August 

and September, explaining the high sediment concentrations in these months. In two 

out of three rainy days, rainfall exceeds 10 mm for at least one station. On all these 

days, 81% of the total sediment in the Upper Ouémé catchment was transported.  

Sediment and water yield - Upper Ouémé
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Fig. 7.23 Annual precipitation, sediment and water 
yields in the Upper Ouémé catchment (1998-2005). 
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Fig. 7.24 Mean monthly values and standard deviation for sediment 
and water yields, suspended sediment concentration and 
precipitation in the Upper Ouémé catchment (1998-2005). 
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A cumulative distribution of daily 

sediment yield for all rainy days 

shows that a few rainy days/ 

rainfall events are responsible 

for the major sediment transport 

in the Upper Ouémé catchment 

(Fig. 7.25). For example, at 

point A in Fig. 7.25, 50% of the 

total sediment was transported 

in only 12% of all rainy days 

caused by 28% of total rainfall. 

However, depending on the prior 

conditions, not all days with high rainfall caused high sediment yields. About 28% of 

all rainy days did not contribute to the sediment yield.  

As the daily sediment yield at the catchment outlet shows a superposition of several 

erosion events, it is not possible to distinguish individual erosion events. 
 

7.1.6.       Conclusions 
 

Water and sediment budgets of the SWAT model were successfully calibrated and 

validated for the Upper Ouémé catchment. The model reproduced recent water and 

sediment dynamics satisfactorily. Water balances were reasonable. The model 

performed well under a wide range of conditions, including different land uses and 

climatic conditions. Thus, the model can be used for scenario analysis. 

A finer discretisation significantly improved the modelling results. The spatial pattern 

of sediment and water yield for the period 1998 to 2005 agreed well with field 

observations. Current hotspots of soil erosion have been identified in the north-

western part of the catchment, along the road Djougou-Parakou, on the Parakou 

plateau. At the north-eastern edge of the catchment sediment yields are also 

elevated. In 1998-2005, about 28% of total rainfall was responsible for 50% of the 

sediment load. Suspended sediment concentrations reached a maximum in 

June/July, while rainfall, sediment and water yield peaked in August/September. The 

mean sediment yield of 0.22 t/ha/yr in the Upper Ouémé catchment equals an 

average topsoil loss of about 0.14 mm per year on agricultural land. The topsoil loss 

Fig. 7.25 Cumulative distribution of sediment yield and 
rainfall in the Upper Ouémé catchment (1998-2005). 
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is significantly higher in the Donga-Pont subcatchment. The simulated sediment 

yields lie in the lower range reported in the literature for similar catchments. However, 

in the future, sediment yield may increase significantly because cropland is 

expanding rapidly.  

 

7.2. Scenario analysis 2001-2050 
 

After successful calibration and validation of the SWAT model, various scenarios for 

climate and land use changes could be calculated. Before presenting the results of 

the scenario analysis, the origin, characteristics, and pre-processing of the input data 

will be discussed.  

 

7.2.1.  Databases and pre-processing  
 

The input data for the land use and climate change scenarios were mainly based on 

results of the regional climate model REMO and the land use and land cover model 

CLUE-S (Table 7.19). Future land use maps for the Upper Ouémé catchment were 

available for the years 2000 to 2025. REMO delivered daily climate data from 2001 to 

2050 and for the historic period 1960 to 2000.  

 

Land use change data 
The annual land use maps for the period 2000-2025 were generated by Judex (2008) 

with a spatial resolution of 250 meters using the land use/land cover change model 

CLUE-S (Verburg et al. 2002). CLUE-S is an integrative, spatially explicit, dynamic 

simulation model that identifies the yearly demand for each land use type and 

Table 7.19 Model input data for scenarios.  

Variables x t Period Source Author Model

Climate 
data

Min/Max-temperature, solar 
radiation, wind velocity, relative 
humidity

13 stations daily 1960-2000 IMPETUS
Paeth et 

al. 
(2008)

REMO

Min/Max-temperature, solar 
radiation, wind velocity, relative 
humidity

13 stations daily 2001-2050 IMPETUS
Paeth et 

al. 
(2008)

REMO A1B 
scenario

Min/Max-temperature, solar 
radiation, wind velocity, relative 
humidity

13 stations daily 2001-2050 IMPETUS
Paeth et 

al. 
(2008)

REMO B1 
scenario

Land use 
data Land use map 250 m grid yearly 2000-2025 IMPETUS Judex 

(2008) CLUE-S
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distributes it iteratively over all raster cells according to their occurrence probability 

and some decision rules. The occurrence probability for each land use type was 

calculated with a logistic regression model including predictors such as distance to 

roads, settlements and markets, population density, relief position, and protected 

areas. Starting from a Landsat classification of the year 1991, the model could 

satisfactorily reproduce total changes and the spatial pattern of the land use 

classification for the year 2000.  

For the land use scenarios, the demand for each land use type was modelled 

following the assumptions of socioeconomic scenarios B1 “Economic growth and 

decentralisation”, B2 “Economic stagnation and institutional insecurity”, and B3 

“Business as usual” developed in the IMPETUS project (IMPETUS 2006). Three 

corresponding land use scenarios, here referred to as L1, L2, and L3, were 

calculated with the CLUE-S model. The main assumptions for these scenarios with 

regard to population growth, crop production, and protected areas are summarized in 

Table 7.20. The differences between the population projections for the three 

IMPETUS scenarios are rather low. The most distinguishing factor between the 

scenarios is the degree of intensification in agriculture regulating the per capita 

demand of cropland. For scenario L1, i.e., under economic growth and 

decentralisation, increased use of fertiliser leads to a significant reduction in the per 

capita cropland area (-15% in 2025). In contrast, the demand of per capita cropland 

remains constant for scenario L2. For scenario L3, it is assumed that the per capita 

cropland area decreases with increasing population density but without significant 

intensification. The scenarios differ also in the degree of conservation of protected 

forests. While strong institutions are assumed to stop the encroachment of cropland 

into the forest for scenario L1, this is only the case for scenario L3 as long as land 

Table 7.20 Definition of land use scenarios L1, L2, and L3 according to Judex (2008).  

L1 "Economic growth 
and decentralisation"

L2 "Economic 
stagnation and 

institutional insecurity" L3 "Business as usual"
Population 

growth
slower than in the period 

1992-2002
faster than in the period 

1992-2002 as in the period 1992-2002

Agricultural 
production

Increased fertilizer use 
reduces cropland 

demand per capita 
(minus 15% in 2025) 

constant cropland 
demand per capita

decreasing cropland 
demand per capita with 
increasing population 

density
Protected 

areas no agricultural use agricultural use agricultural use as a 
function of land pressure
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use intensity remains below a threshold. In contrast, for scenario L2 land use 

conversion is possible in the central part of the catchment (Foret classée de l’Ouémé 

Superieur) since governmental institutions are considered to be very weak and 

development agencies have left the area. 

Figure 7.26 compares the land use map of the year 2001 with the map for 2025 

according to the “Business as usual” scenario” (L3) originating from CLUE-S model. 

For this scenario, the land use class “Cropland (>20%)” increases by 80% until 2025. 

For scenarios L1 and L2, this class increases by 56% and 119%, respectively. 

Judex (2008) resampled the original land use classification from 2000 for CLUE-S 

from 30 to 250 meters in order to reduce the computational demand and to achieve 

robust relationships during the regression analysis. As a consequence, the number of 

land use classes was reduced and the classes were re-defined according to 

thresholds. For example, the new land use class “Cropland (>20%)” characterizes 

grid cells containing 20-100% cropland. . 

This re-definition of land use classes is not suitable for erosion modelling where a 

correct representation of land use, in particular of cropland, is crucial. Since some 

cells classified as “Cropland” may actually be covered only by 20% cropland, a direct 

application of the maps would significantly overestimate surface runoff and sediment 

yield. In order to avoid this, a simple disaggregation scheme was applied to transform 

 
Fig. 7.26 Land use maps for 2001 and 2025 for scenario L3 (Business as usual) from the CLUE-S 
model.  
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the 250 meter grids of the CLUE-S land use maps into 25 meter grids with 

differentiated land use. First, a comparison of the CLUE-S map for the year 2000 with 

the original land use map for 2000 delivered the average distribution of land use 

types in each 250 meter grid cell (Table 7.21).  
Table 7.21 Percentages for the disaggregation of the CLUE-S land use map.  

Cropland 
(>20%)

Forest and 
woodland 
savannah

Tree, brush and 
grass savannah Settlement

Cropland 43% 1% 8% 26%
Forest and 
woodland 
savannah

4% 53% 14% 0%

Tree, brush 
and grass 
savannah

52% 46% 78% 6%

Settlement 1% 0% 0% 67%

Land use classes CLUE-S

La
nd

 u
se

 c
la

ss
es

 
SW

A
T

 

For example, a grid cell of “Cropland (>20%)” contained on average 43% “Cropland”, 

4% “Forest and woodland savannah”, 52% “Other savannah types”, and 1% 

“Settlement” (Table 7.21, first column). Second, for each CLUE-S map, the 250 

meter grid cells were divided into one hundred 25 meter grid cells and filled with the 

different land use types according to the distribution in Table 7.21. Figure 7.27 

illustrates the scheme for a 250 meter grid cell with the land use class “Cropland 

(>20%)”. A regular pattern was chosen in order to keep the same pattern for grid 

cells without land use changes.  

The percentages in Table 7.21 were derived as an average for the entire Upper 

Ouémé catchment. Nevertheless, the fraction of cropland in the disaggregated land 

use map for 2000 is also similar to that of the original map for the Terou-Igbomakoro 

and Donga-Pont subcatchments (cp. first and fourth columns in Fig. 7.28).  

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.27 Disaggregation scheme for the CLUE-S land use maps: Example is for the land use class 
“Cropland (>20%)”.  

25 m250 m

Tree, brush and grass savannah

Disaggregation

Cropland (> 20%)

Cropland (100%)

Forest and woodland savannah

Settlement

25 m250 m

Tree, brush and grass savannah

Disaggregation

Cropland (> 20%)

Cropland (100%)

Forest and woodland savannah

Settlement



7.EROSION MODELLING IN THE UPPER OUÉMÉ CATCHMENT 

 

143

Thus, the disaggregation scheme produces reasonable results for the year 2000 and 

could be applied to all maps of the land use scenarios. Since the integration of new 

land use maps requires a new setup of the SWAT model, not all land use maps from 

CLUE-S for the period 2001-2025 were used. Essentially, the land use scenarios 

were only performed for the land use maps for the years 2005, 2015, and 2025. After 

disaggregation, the increases in field area until 2025 ranged from 51% to 108% for 

the land use scenarios.  
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Fig. 7.28 Fractions of cropland in the original model, after aggregation for CLUE-S, and 
after disaggregation and HRU delineation.  

It has been shown that the disaggregated CLUE-S map for the year 2000 

satisfactorily represents the land use distribution of the original land use 

classification. However, the fraction of land use types in the SWAT model is also 

influenced by the applied HRU threshold of 10%. For the model with the 

disaggregated CLUE-S map (Lu00 model), the threshold leads to an underestimation 

of the fraction of cropland in the Upper Ouémé catchment by 11%, with substantial 

differences between the two subcatchments (see last two columns in Fig. 7.28). For 

the land use scenarios, the threshold reduces the cropland area by 10%, 5%, and 

1.5% for the Lu05, Lu15, and Lu25 models, respectively (Fig. 7.29). Clearly, the 

influence of the threshold decreases with increasing cropland area.  
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Table 7.22 summarizes the effects of the disaggregation and the HRU threshold on 

the cropland area in the land use scenarios. It is clear that the disaggregation leads 

to a significant decrease in the relative changes in cropland. 

However, the HRU 

threshold nearly 

compensates for this 

reduction. The 

remaining slight 

underestimation of 

the cropland area is 

even more realisitic 

if we consider that 

the use of the Lu00 

model as a 

reference instead of 

the original model 

leads to a relative 

overestimation of the 

cropland area of the land use scenarios.  

Thus, the final pattern of cropland areas adequately represents the pattern 

originating from the CLUE-S model. This allows a meaningful scenario analysis.  

Climate Change Data  

The input parameters for the climate scenarios were provided by Paeth et al. (2008) 

using the regional climate model REMO driven by the IPCC SRES scenarios A1B 

and B1. REMO is a regional climate model that is nested in the global circulation 

model ECHAM5/MPI-OM (Paeth et al. 2008). The advantages of the new set of 

REMO simulations are: (1) a comparatively high resolution of 0.5°, (2) the 
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Fig. 7.29 Fraction of cropland for the land use scenarios before and after 
HRU delineation in the SWAT model. 

Table 7.22 Land use scenarios: change of fraction of cropland according to CLUE-S results before 
and after implementation in the SWAT model.  

Land use map 2005 2015 2025
∆cropland [∆%]* L1 L2 L3 L1 L2 L3 L1 L2 L3

1. CLUE-S +12 +17 +15 +31 +57 +44 +56 +119 +80
2. CLUE-S_disagg +9 +12 +10 +22 +41 +31 +40 +85 +57
3. SWAT +7 +14 +12 +29 +51 +40 +51 +108 +75
* reference year 2000 (Lu00 model)  
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consideration of spatial patterns of future land use change, and (3) a transient forcing 

from 1960 to 2000 and three ensemble runs for two scenarios from 2001 to 2050, 

reflecting the uncertainties due to unknown initial conditions (Paeth et al., 2008).  

According to IPCC (2001) and IPCC (2007), 

SRES scenario A1B describes a globalized 

world of rapid economic growth and 

comparatively low population growth. The use 

of fossil and non-fossil energy sources is 

balanced. SRES scenario B1 also 

characterizes a future globalized world with a 

low population growth. However, in this 

scenario the economic structures change 

rapidly towards a service and information 

economy with reduced material intensity and 

the introduction of clean, sustainable 

technologies. Consequently, the predicted CO2 emissions and temperature increases 

are lower than for the A1B scenario (Fig. 7.30). Both scenarios are rather optimistic 

compared to the whole SRES scenario family. The SRES scenarios do not consider 

additional climate initiatives like the emission targets of the Kyoto Protocol.  

Current climate models cannot correctly represent the climatology of rainfall, but they 

are more reliable in terms of atmospheric circulation and thermodynamics (Paeth et 

al. 2008). Therefore, the model results cannot be directly fed into hydrological 

models. In the case of REMO, the model systematically underestimated the amount 

and variability of rainfall over West Africa including a shift in rainfall distribution 

towards more weak events and fewer extremes (Paeth, in preparation).  

To address this, so-called Model Output Statistics (MOS) are applied in order to 

adjust the rainfall data using other near-surface parameters such as temperature and 

sea level pressure wind components (Paeth et al. 2008). A cross-validated multiple 

regression analysis was used in order to adjust monthly data to the CRU 

observational dataset (CRU dataset) (Paeth et al. 2008). After post-processing the 

REMO data with the MOS algorithm, the monthly distribution of rainfall and the 

potential evapotranspiration were correctly represented. For example, at the station 

Parakou the simulated and measured rainfall data for the period 1960-2000 agreed 

very well (Fig. 7.31, left). The mean monthly potential evapotranspiration according to 

 

 

 

 

 

 

 

 

 

 
 
Fig. 7.30 IPCC SRES scenarios: Increase 
of air temperature until 2100 (IPCC 2001). 
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Penman-Monteith also shows a very good accordance in the rainy season (Fig. 7.31, 

right). Thus, the MOS algorithm could be extrapolated to the entire time period 1960-

2050. 

However, the averaged values of rainfall for 0.5° grid cells were still not suitable for 

hydrological modelling where rainfall data from individual stations is used. The 

smoothed daily rainfall distribution shifted towards weaker events of REMO would 

have led to significant underestimations of surface runoff and soil erosion. 

Therefore, the gridded rainfall data from REMO was attributed to virtual station data 

derived from simulated present-day and future precipitation in the corresponding grid 

box plus an orographic term and a stochastic term (Paeth et al., 2008). After this 

second statistical post-processing, the daily rainfall was correctly reproduced, 

including the frequency distribution of site-specific events and the magnitude of 

extreme events (Fig. 7.32). For the station Parakou, low intensity rainfalls 

(< 50 mm/day) were slightly overestimated, while high intensity rainfalls (50-

200 mm/day) slightly underestimated.  

With regard to the monthly distribution, the rainfall amounts are slightly higher at the 

beginning of the rainy season and slightly lower in the middle of the rainy season. 

Table 7.23 summarizes the changes in the rainfall characteristics for the periods 

2001-2025 and 2026-2050 for the Upper Ouémé catchment and the Donga-Pont and 

Terou-Igbomakoro subcatchments. Compared to the mean simulated rainfall for 

1960-2000 the mean rainfall decreases by 4 to 10% depending on the scenario. The 

relative changes for the Upper Ouémé catchment and the two subcatchments are 

similar.  

 
Fig. 7.31 Comparison of measured and simulated climate data for the period 1960 to 2000 at the 
station Parakou: monthly rainfall (left), calculated monthly ETpot according to Penman-Monteith (right).  
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The comparison to the measured mean rainfall for 1998-2005 leads to very similar 

results for the whole Upper Ouémé catchment, with decreases in rainfall between 

3 and 8%. However, since Donga-Pont subcatchment received above average 

rainfall amounts and Terou-Igbomakoro subcatchment received lower amounts in the 

period 1998-2005 (cp. Section 2.1, Table 2.1), the relative changes show opposite 

trends. Compared to this period, reductions in the rainfall reach up to 14% in the 

Donga-Pont catchment. Nevertheless, the period 1998-2005 was taken as the 

baseline because the model was parameterized, calibrated, and validated for this 

period.  

While Table 7.23 showed the changes in annual rainfall as averages for the 

ensemble runs and for specific time periods, Fig. 7.33 shows the temporal variation 

of annual rainfall in time and between the ensemble runs. Compared to the period 

1960-2000, the mean rainfall amounts, as well as the maxima and minima, are 

shifted towards lower values. In particular, for the period 2026-2050 almost all mean 

Table 7.23 Changes in simulated rainfall (PCP) for the Upper Ouémé catchment and the two 
subcatchments compared to the original model for the period 1998-2005.    

Original  Original A1B B1
1960-2000  1998-2005 2001-2025 2026-2050 2001-2025  2026-2050
PCP [mm] PCP [mm] ∆PCP [%] ∆PCP [%] ∆PCP [%] ∆PCP [%]

Upper Ouémé 1196 1184 -4 -8 -3 -5
Donga-Pont 1236 1294 -10 -14 -9 -12
Terou-Igbomakoro 1260 1157 2 -2 4 1  

Station Parakou - rainfall distribution 1960-2000

0%

10%

20%

30%

40%

50%

<1 m m 1-5 m m 5-10 m m 10-20 m m 20-50 m m 50-100 m m >100 m m

Rainfall amount per day

Fr
ac

tio
n 

of
 to

ta
l r

ai
nf

al
l

REMO (3 runs)
measured

 
Fig. 7.32 Comparison of measured and simulated daily rainfall distribution for the period 1960 to 2000 
at the station Parakou; the bars reflect the total range of the ensemble runs. 
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annual rainfalls for both scenarios lie below the averages for 1960-2000 and 1998-

2005, as indicated by the black horizontal lines. Furthermore, the diagram illustrates 

the large variations in rainfall among years and ensemble runs. 

Overview of the simulation runs for the scenario analysis 

After pre-processing the input data for the scenario analysis and testing the validity of 

the baseline scenarios, multiple simulation runs were performed for the scenario 

analysis. Figure 7.34 summarizes the different scenario runs and their denomination 

as they will appear in the following descriptions of the results. Each climate scenario 

required three model runs, representing the three ensemble runs from REMO. The 

use of the ensembles allowed studying of the influence of the uncertainties in the 

initial conditions of the climate model on the results of the erosion model. Averaging 

the three ensemble runs before the application would have implied a loss of 

information and a smoothing of climatic extremes. The choice of one representative 

run of the ensemble was also impossible since each ensemble run has its own 

characteristic behaviour resulting from differences in the initial conditions. After 

applying all three ensemble runs in the SWAT model, the results could be averaged. 

Then, the results of the climate scenarios were compared to the original model for 

1998-2005, as was presented in Section 7.1. Each CLUE-S land use scenario (L1 to 

 
Fig. 7.33 Simulated annual rainfall in the Upper Ouémé catchment for 1960-2050 from the REMO 
model. The mean of all three ensemble runs for each scenario (historic, A1B, B1) and the range 
covered by the ensemble runs are shown. The black horizontal lines show the mean simulated rainfall 
for 1960-2000 (─) and the mean measured rainfall for 1998-2005 (---).  
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L3) was performed for the land use maps for 2005, 2015, and 2025. The simulation 

period was kept as in the original model, i.e., from 1998-2005. The results of the land 

use scenarios were compared to the so-called Lu00 model, which is a modified 

version of the original model with the disaggregated CLUE-S land use map for 2000.  

In the combined climate and land use change scenarios, each of the three land use 

maps (2005, 2015, and 2025) was used for one decade of climate data in the period 

2001-2030. The results of the combined scenarios were compared to the results of 

the Lu00 model. In summary, the climate and land use scenarios each required 

9 model runs. For the combined scenarios, 9 SWAT projects and 54 model runs were 

performed.  

 

 

 

 

 
Fig. 7.34 Denomination of the SWAT simulation runs based on the land use and climate scenarios 
from the CLUE-S and REMO models. 
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7.2.2. Land use change scenarios  
 

Before comparing the land use scenarios to the reference scenario Lu00, the 

plausibility of the Lu00 model was intensively checked. Therefore, the model results 

of the Lu00 model were compared with the results of the original model. 

 
Comparison of the original model with the Lu00 model 
A good agreement of the yearly water and sediment yields was obtained for the 

whole catchment and the Terou-Igbomakoro and Donga-Pont subcatchments 

(Fig. 7.35). However, the Lu00 model underestimates water and sediment yields as a 

result of a lower fraction of cropland (see previous section). For the whole catchment, 

mean annual discharge and sediment yield decrease by 1.2% and 11.3%, 

respectively. For the 

Donga-Pont subcatch-

ment, both variables are 

reduced by 15.7% and 

4.7%. For the Terou-

Igbomakoro catchment, 

sediment and water yield 

are 11.2% and 0.5% 

lower for the Lu00 model 

than for the original 

model. The mean annual 

surface runoff in the 

Upper Ouémé catchment 

is underestimated by 3.7% (Fig. 7.36).  

The mean monthly values of the water yield and evapotranspiration are very similar 

in both models. The 11% underestimation of the monthly sediment yield is regularly 

distributed over the whole rainy season (Fig. 7.37). In May, the overestimation 

amounts to 20%, which is not of great importance due to the low absolute values.    
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Fig. 7.35 Simulated annual water yield (WY) and sediment yield (SY) 
for the original model and the Lu00 model.  
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In conclusion, the results of the Lu00 model are comparable to those of the original 

model. Consequently, the Lu00 model can be used as baseline scenario for the land 

use scenarios. 

 
Comparison of the land use scenarios with the Lu00 model 
The mean annual sediment and water yields of the land use scenarios were 

compared with those of the Lu00 model (Fig. 7.38). While the increases in the total 

water yield are rather small, the increases of the sediment yield are more 

pronounced. As expected, the L2 scenario “economic stagnation and institutional 

insecurity” leads to the highest increase in sediment yield. 
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Fig. 7.36 Simulated monthly water yield (WY), Qsurf, and ET in the Upper Ouémé catchment for the 
original model and the Lu00 model.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.37 Simulated monthly sediment yield in the Upper Ouémé catchment for the original model 
and the Lu00 model. 
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Until 2025, water and sediment yields increase by 7% and 95% for this scenario, 

resulting from an increase of cropland area of 108% (Table 7.24). 

For the L1 scenario, 

assuming an intensifi-

cation of crop production, 

the relative increase in 

the sediment yield until 

2015 and 2025 is only 

half as large as for the L2 

scenario. For 2005, 

sediment yield even 

decreases by 0.7% 

despite a slight increase 

in the cropland area. 

Several subbasins in the central part of the catchment show decreasing sediment 

yields for this scenario. In these subbasins without cropland, sediment yields are so 

low, that small shifts from shrub and grass savannah to forest and dense savannah 

or slightly different HRUs after pre-processing of the land use maps can lead to 

decreases in sediment yield. As agricultural expansion increases, these effects 

become negligible. The results for the “Business as usual” scenario L3 lie between 

the results for scenarios L1 and L2. Until 2025, water and sediment yields increase 

for L3 by 2% and 60%, respectively.  

In summary, the mean sediment yield of 0.19 t/ha/yr for the Lu00 model increases to 

0.28 - 0.38 t/ha/yr by 2025. The mean annual surface runoff increases from 
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Fig. 7.38 Simulated water and sediment yields for the land use 
scenarios L1, L2, L3 compared to the Lu00 model 

Table 7.24 Mean simulated annual sediment yield (SY) and water yield (WY) for the period 1998-2005 
for the land use scenarios L1, L2, L3 compared to the Lu00 model.  

Cropland 
[%]

SY 
[t/ha/yr]

WY 
[mm/yr]

Qsurf 

[mm/yr]

Compared to 
LU00 ∆Cropland 

[%]
∆SY   
[%]

∆WY    
[%]

∆Qsurf   

[%]
Lu00 12.18 0.19 217 104 - - - -

L1_Lu05 13.04 0.19 218 106 7 -0.67 0.47 1.54
L2_Lu05 13.94 0.22 219 107 14 11.28 0.98 3.08
L3_Lu05 13.68 0.21 218 107 12 9.18 0.86 2.64
L1_Lu15 15.73 0.24 220 110 29 22.05 1.82 6.00
L2_Lu15 18.43 0.28 224 115 51 44.97 3.35 10.68
L3_Lu15 17.04 0.25 222 113 40 29.74 2.65 8.35
L1_Lu25 18.39 0.28 224 115 51 42.41 3.35 10.68
L2_Lu25 25.35 0.38 232 128 108 95.33 7.32 22.70
L3_Lu25 21.36 0.31 227 120 75 59.85 4.97 15.68  



7.EROSION MODELLING IN THE UPPER OUÉMÉ CATCHMENT 

 

153

104 mm/yr to 115 - 128 mm/yr depending on the scenario. The total water yield 

increases slightly by 3 to 7%.  

If the sediment yield is 

plotted against the 

fraction of cropland for all 

scenarios, one obtains an 

almost linear relationship 

for the three land use 

scenarios L1, L2, and L3 

(R2=0.99) (Fig. 7.39). This 

linear relationship was 

also observed by 

Busche (2005) for the 

Terou-Igbomakoro sub-

catchment. As shown in Table 7.24, relative changes in cropland area lead to slightly 

smaller relative changes in sediment yield.  

Figures 7.40 and 7.41 compare the maps of the mean sediment yield and the mean 

surface runoff for the scenarios L1_Lu25, L2_Lu25, and L3_Lu25 with the 

Regression Cropland area and SY
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Fig. 7.39 Regression between the field fraction and the sediment 
yield for the land use scenarios L1 to L3. 

 
Fig. 7.40 Comparison of the mean annual simulated sediment yield (1998-2005) for the Lu00 model 
and the Lu25 model for the land use scenarios L1 to L3. 
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Lu00 model. At first glance, we see an increase of the sediment yield in the NW and 

SE of the catchment. The spatial pattern of the three scenarios for 2025 seems to be 

quite similar, but a closer look at the maps reveals differences. For example, the 

increases in the SW and the SE of the catchment are more pronounced for the L2 

scenario than for the other scenarios.  

In general, the spatial pattern with high sediment yields and high surface runoff in the 

NW, SE, and NE of the catchment remains similar by 2025. However, the scenarios 

exhibit a further hotspot of soil erosion in the southern part of the catchment. Except 

for the L2 scenario, the sediment yields in the central part of the catchment remain 

very low (<0.1 t/ha/yr) resulting from the assumption that the protected forest (Fôret 

classée de l’Ouémé superieur) is not converted into cropland. For some of these 

subbasins, the land use scenarios deliver a slight reduction of the sediment yield. 

This negative bias is caused by the pre-processing of the land use data and can 

significantly influence the results in subbasins with a very low fraction of crop land. 

For the L2 scenario, the borders of the protected forest are subject to a rapid 

expansion of the cropland area, leading to the highest relative and absolute growth 

rates in surface runoff and sediment yield in the catchment (Fig. 7.40-41). While in 

 
Fig. 7.41 Comparison of the mean annual simulated surface runoff (1998-2005) for the Lu00 model 
and the Lu25 model for the land use scenarios L1 to L3.  
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most subbasins the mean sediment yield increases by less than 1.2 t/ha/yr, the 

increase in the southern border areas of the protected forest reaches up to 3 t/ha/yr.   

For the Terou-Igbomakoro (SW) and Donga-Pont (NW) subcatchments, the maps in 

Fig. 7.40 indicate an increase in the sediment yield for all scenarios. The relative 

increase of the sediment yield in most subbasins of the Terou-Igbomakoro 

subcatchment is high. In some subbasins, the sediment yield in 2025 is 20 to 40 

times higher than in 2000. Nevertheless, the absolute increases in the Terou-

Igbomakoro catchment still remain lower than in the intensively used Donga-Pont 

subcatchment. In the subbasins of the Donga-Pont subcatchment, the sediment yield 

increases by 30 to 95%. The small differences between the three land use scenarios 

L1-L3 in this subcatchment are not visible in Figs. 7.40 and 7.41. 

In the following, the results for the two subcatchments are presented in detail. The 

bar charts in Figs. 7.42 and 7.43 show sediment and water yields for all land use 

scenarios using different y-axes for the sediment yield due to the large differences 

between the two subcatchments. 

For all land use scenarios, the sediment yield increases. This trend is more 

pronounced for the Terou-Igbomakoro subcatchment than for the Donga-Pont 

subcatchment. In contrast, total water yields increase only slightly. The differences 

between the three scenarios L1-L3 are significantly higher for the Terou-Igbomakoro 

subcatchment. For the intensively used Donga-Pont subcatchment, these differences 

are almost negligible.  
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Fig. 7.42 Relative comparison of the components of the water balance in the Terou-Igbomakoro 
subcatchment: land use scenarios Lu00 (black), Lu25-L1 (orange), Lu25-L2 (ochre), Lu25-L3 (yellow); 
mean annual sediment and water yields in the Terou-Igbomakoro subcatchment. 
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The net diagrams in Figs. 7.42-7.44 reveal the underlying changes in the 

components of the water balance. It is obvious that changes in surface runoff are the 

main driving force for changes in sediment yield besides the empirical USLE factors. 

For the 2025 land use maps, the increase in surface runoff ranges from 15 to 32% for 

the Terou-Igbomakoro subcatchment, depending on the land use scenario. 

For Donga-Pont, surface runoff in 2025 is about 13% higher than in the Lu00 model. 

All other components of the water balance, namely baseflow, soil water, and 

evapotranspiration, remain nearly constant in the two subcatchments. Precipitation 

was not included in the diagrams since it is equal for all land use scenarios. 

The net diagram for the whole 

Upper Ouémé catchment is very 

similar to the one for the Terou-

Igbomakoro subcatchment; the 

increases in surface runoff and 

sediment yield are slightly lower.  

Looking at the monthly results of 

the Lu25 models for the Upper 

Ouémé catchment, negligible 

changes in actual evapotrans-

piration and total runoff and a 

significant increase in surface runoff become visible (e.g., Fig. 7.45). 

The increases in surface runoff and sediment yield are regularly distributed over the 

whole rainy period (Figs. 7.45, 7.46). The monthly increases in sediment yield in the 
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Fig. 7.43 Relative comparison of the components of the water balance in the Donga-Pont 
subcatchment: land use scenarios Lu00 (black), Lu25-L1 (orange), Lu25-L2 (ochre), Lu25-L3 
(yellow); mean annual sediment and water yields in the Donga-Pont subcatchment.  
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Fig. 7.44 Relative comparison of the components of the 
water balance in the Upper Ouémé catchment: land use 
scenarios Lu00 (black), Lu25-L1 (orange), Lu25-L2 (ochre), 
Lu25-L3 (yellow). 
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period June to October for 2025 range between 36 to 53%, 84 to 113%, and 52 to 

73% for the three land use scenarios L1, L2, and L3. 

In conclusion, all land 

use scenarios lead to 

significantly increased 

surface runoff and 

sediment yield while 

changes in total water 

yield and all other 

components of the 

water balance are 

negligible. 

By 2025, sediment 

yields increase by 

42%, 95%, and 60% for land use scenarios L1, L2, and L3, respectively. However, 

the spatial pattern with high sediment yields in the NW, SE, and NE areas of the 

catchment changes only slightly. In particular for the L2 scenario, soil erosion is 

additionally aggravated in the south portion of the catchment. With regard to the 

Terou-Igbomakoro and Donga-Pont subcatchments, surface runoff and sediment 

yield increase enormously in the Terou-Igbomakoro subcatchment but do not reach 

the high erosion rates in the Donga-Pont subcatchment. 
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Fig. 7.45 Comparison of the mean monthly evapotranspiration, water 
yield and surface runoff in the Upper Ouémé catchment for scenario 
L3_Lu25.  
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Fig. 7.46 Comparison of the mean monthly sediment yields in the Upper Ouémé catchment for 
the Lu25 models and the Lu00 model.



7.EROSION MODELLING IN THE UPPER OUÉMÉ CATCHMENT 
 

 

158 

7.2.3. Climate change scenarios  
 

The results of the climate scenarios will be presented for the whole catchment and 

two subcatchments to point out regional variations (Table 7.25). The results of each 

climate scenario are averaged for the three runs with the SWAT model referring to 

the three ensemble runs from the climate model REMO. In order to allow for 

comparisons with land use scenarios, the results are presented for the two periods 

2001-2025 and 2026-2050. 

Compared to the period 1998-2005, mean annual rainfall is reduced by 2 to 8% in the 

Upper Ouémé catchment and by 9 to 14% in the Donga-Pont subcatchment. As a 

consequence of the reduced rainfall and slightly increased evapotranspiration the 

mean water and sediment yields decrease in the periods 2001-2025 and 2026-2050 

in both catchments for at least five of six runs. For the Upper Ouémé catchment, 

mean water yields decrease by 6 to 23% and sediment yields decrease by 5 to 27%. 

For individual ensemble runs, reductions of up to 38% for water yield and 41% for 

sediment yield are obtained (second ensemble run, A1B, 2026-2050). However, 

standard deviations of the mean values for the ensemble runs are considerably high, 

in particular for the period 2026-2050 reaching up to 17%. 

For the Donga-Pont subcatchment, the reductions in water and sediment yields are 

more drastic than for the whole Upper Ouémé catchment. For example, water and 

sediment yields decrease on average by 18 to 33% and 19 to 35%, depending on the 

scenario and the considered time period. For the second ensemble run, water and 

sediment yields for the period 2026-2050 decrease by 47% and 50% compared to 

1998-2005. However, one has to keep in mind that rainfall in the Donga-Pont 

subcatchment in 1998-2005 was significantly above the long-term average, including 

several very extreme events that caused very high surface runoff and sediment 

yields. Consequently, the relative changes tend to be overestimated. However, the 

Table 7.25 Mean simulated annual values of rainfall (PCP), sediment yield (SY), and water yield (WY) 
of the three ensemble runs for the climate scenarios A1B and B1, change in % from the original model 
(1998-2005). 

 1998-2005 Original  2001-2025 A1B 2026-2050 A1B 2001-2025 B1  2026-2050 B1
PCP 

[mm/yr]
WY 

[mm/yr]
SY 

[t/ha/yr]
PCP 
[∆%]

WY 
[∆%]

SY 
[∆%]

PCP 
[∆%]

WY 
[∆%]

SY 
[∆%]

PCP 
[∆%]

WY 
[∆%]

SY 
[∆%]

PCP 
[∆%]

WY 
[∆%]

SY 
[∆%]

Upper Ouémé 1184 219 0.22 -4 -12 -14 -8 -23 -27 -3 -6 -5 -5 -12 -17
Donga-Pont 1294 297 0.85 -10 -23 -27 -14 -33 -35 -9 -18 -19 -12 -25 -28
Terou-Igbo. 1157 213 0.14 2 1 -5 -2 -11 -21 4 10 7 1 3 -7  
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negative trend also remains if the results are compared with the model results for 

1960-2000 based on climate data from the REMO model.  

For the Terou-Igbomakoro subcatchment, the effects of climate changes are less 

clear. The average annual rainfall changes only slightly by -2 to +4%, leading to 

various responses of mean water and sediment yields. While the sediment yield 

decreases for all ensemble runs of the A1B scenario, the water yield decreases only 

for two of three ensemble runs. On average, sediment yield differs by -5% and -21% 

and water yield changes by +1% and -11% for the two periods (Table 7.25). For the 

B1 scenario, the mean water and sediment yields increase by 10% and 7% in the 

Terou-Igbomakoro subcatchment in the period 2001-2025. In 2026-2050, the mean 

annual water yield is 3% higher and the sediment yield 7% lower than in the original 

model (1998-2005). However, the ensemble runs deliver water yields in 2026-2050 

ranging from -10% to +19%, and sediment yields from -21 to +18% in both periods.  

In conclusion, for the Upper Ouémé catchment both scenarios lead, on average, to 

reduced water and sediment yields. This effect is particularly pronounced for 

scenario A1B and the time period 2026-2050. While these trends are even more 

apparent for the Donga-Pont subcatchment, no clear trend was observed for the 

Terou-Igbomakoro subcatchment.  

So far, the time periods 2001-2025 and 2026-2050 have been compared to the time 

period 1998-2005. Figures 7.47 and 7.48 show the precipitation and potential 

evapotranspiration as well as the resulting water and sediment yields in five year 

intervals for the Upper Ouémé catchment. Potential evapotranspiration increases 

over the whole period for both scenarios, resulting from rising average temperatures. 

 
Fig. 7.47 Mean simulated annual values of ETpot and precipitation (PCP) of the three ensemble runs 
for climate scenarios A1B and B1 for the period 2001-2050 for the Upper Ouémé catchment.  
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However, actual evapotranspiration remains nearly constant.  

Mean annual rainfall tends to decrease but is subject to temporal variation, which 

triggers the temporal dynamics of sediment and water yields (Fig. 7.48). The “error” 

bars in Fig. 7.48 do not reflect the mean square values but the range of results for 

the ensemble runs. Although the variation between the ensemble runs can be very 

large, a tendency towards decreased water and sediment yields can be observed, 

particularly for scenario A1B. 

While the period 2001-2010 (for A1B until 2015) shows comparatively high water and 

sediment yields, the following semi-decades until 2050 show mean water and 

sediment yields below the average for the reference period 1998-2005. The spatial 

maps for sediment yield (Fig. 7.49) show a similar pattern as for the reference period. 

The differences between the time periods 2001-2025 and 2026-2050 appear to be 

larger than the differences between the two scenarios. Until 2050, some subbasins in 

the region around Djougou and in the NE of the catchment experience a visible 

decrease in the sediment yield compared to the period 1998-2005. As mentioned 

before, the decrease of sediment yield in the Djougou region is smaller compared 

with the results for 1960-2000 based on climate data simulated by REMO. 

Correspondingly, the spatial pattern of surface runoff and water yield change towards 

lower values (Fig. 7.50 and Fig. B.5, Appendix B). Since the land use is kept 

constant, changes in total water yield drive the changes in surface runoff and 

sediment yield. 

 
Fig. 7.48 Mean simulated annual values of sediment yield (SY) and water yield (WY) of the three 
ensemble runs for the climate scenarios A1B and B1 for the period 2001-2050 for the Upper Ouémé 
catchment. 
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The decreases of surface runoff and water yield in the NW, NE, and SE of the 

catchment are more pronounced for the A1B scenario and the period 2026-2050. 

The increase of surface runoff and water yield in the S/SW of the catchment (Terou- 

 
Fig. 7.49 Mean spatial distribution of sediment yield for the climate scenarios A1B and B1 for the 
periods 2001-2025 and 2026-2050 compared to the original model (1998-2005) and the model with 
REMO climate data for 1960-2000.  

 
Fig. 7.50 Mean spatial distribution of surface runoff for climate scenarios A1B and B1 for the periods 
2001-2025 and 2026-2050 compared to the original model (1998-2005) and the model with REMO 
climate data for 1960-2000. 
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Igbomakoro) appears only in comparison to the period 1998-2005. Compared to the 

period 1960-2000, driven by REMO climate data, surface runoff also decreases in 

this part of the catchment. The results for 1960-2000 may be more representative 

since they cover a longer time period. However, the model for 1998-2005 is kept as 

the main reference because it is based on measured climate data and was 

intensively validated in space and time. 

In the following, the results for the Terou-Igbomakoro and Donga-Pont 

subcatchments are discussed in more detail. Figures 7.51 and 7.52 illustrate the 

changes in the water and sediment yields in five year increments using different y-

axes for the sediment yield due to the large differences between the two 

subcatchments.  

The temporal variation of water and sediment yields for the Terou-Igbomakoro 

subcatchment equals the variation for the Upper Ouémé catchment in Fig. 7.48. 

Likewise, all semi-decades after 2010 show mean sediment yields below the 

reference value for 1998-2005. However, the absolute values for the semi-decades 

are about 19-42% lower than for the whole Upper Ouémé catchment. For the Donga-

Pont subcatchment, the negative trend for water and sediment yields is more 

pronounced than for the whole catchment. However, the variation between the 

ensemble runs is high (see large bars in Fig. 7.52). As discussed earlier, the 

unusually high water and sediment yields in the Donga-Pont subcatchment in 1998-

2005 compared to all other semi-decades can be partially explained by the 

misrepresentative, above average rainfalls in the Djougou region in this period. This 

may exaggerate the negative linear trends for water and sediment yields in 1998-
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Fig. 7.51 Mean simulated annual values of sediment yield (SY) and water yield (WY) of the three 
ensemble runs for climate scenarios A1B and B1 for the period 2001-2050 in the Terou-Igbomakoro 
subcatchment. 
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2050 seen in Fig. 7.52. However, the trends remain similar, if the period 1998-2005 is 

not considered.   

Relative to the period 1998-2005, potential evapotranspiration, rainfall, and water and 

sediment yields decrease for the Upper Ouémé catchment and the Donga-Pont 

subcatchment (Figs. 7.53 (right), 7.54). The relative decreases in baseflow are 

stronger than the decreases in surface runoff. Evaporation remains nearly constant. 

The extreme relative increase in soil water compared to 1998-2005 for the Donga-

Pont subcatchment is caused by the extremely low value in this period, which seems 

to not be representative for this subcatchment. 

The interpretation of the net diagram for the Terou-Igbomakoro subcatchment also 

strongly depends on the choice of the reference (Fig. 7.53, left). Compared to the 

values in the period 1960-2000 water yield, surface runoff, baseflow, and sediment 
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Fig. 7.52 Mean simulated annual values of sediment yield (SY) and water yield (WY) of the three 
ensemble runs for climate scenarios A1B and B1 for the period 2001-2050 in the Donga-Pont 
subcatchment. 

Fig. 7.53 Components of the water balance in the Terou-Igbomakoro and Donga-Pont subcatchments 
for the climate scenarios relative to the original model (1998-2005).  
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yield decrease in 2001-2025 and 2026-2050. However, compared to the original 

model (1998-2005), these output variables increase for some of the scenario periods. 

For example, sediment 

yield for scenario B1 in 

2001-2025 is 7% higher 

than in the period 1998-

2005. This is caused by a 

10% higher total water yield 

and a 17% higher amount 

of surface runoff. Evapo-

transpiration, percolation 

and soil water change only 

slightly.  

The monthly distributions of sediment and water yields in the Upper Ouémé 

catchment differ between the climate scenarios, resulting from large reductions in 

monthly rainfall and slight changes in monthly potential and actual 

evapotranspiration. In the middle of the rainy season, actual evapotranspiration is 

slightly higher than in the reference period, but at the end of the rainy season it is 

slightly lower (not shown). The differences are greater for the A1B scenario than for 

the B1 scenario. Monthly rainfall is strongly reduced over the whole rainy season for 

scenario A1B compared to the reference period (1998-2005). In contrast, rainfall is 

higher for the B1 scenario from March to May and is lower in June to August.  

Figure 7.55 shows the monthly distribution for water and sediment yields. In May, the 

sediment yields for all scenarios lie above the values for 1998-2005 but are below the 

values for 1960-2000. At the end of the rainy season (Sept.-Nov.) all scenarios 

behave similar. However, in July and August the sediment yields for the scenarios 

are significantly lower than in the two reference periods, in particular for scenario 

A1B 2026-2050. The sediment yield in June varies greatly between the two 

considered time periods. While the average sediment yield in 2001-2025 slightly 

exceeds the values of the reference periods, the average sediment yield in 2026-

2050 is significantly lower than in the periods 1998-2005 and 1960-2000. The 

reductions in monthly water yield are regularly distributed over the whole period of 

June to September. In contrast, the monthly water yield increases in May and 

 
Fig. 7.54 Components of the water balance in the Upper Ouémé 
catchment for the climate scenarios relative to the original model 
(1998-2005). 
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October. The temporal pattern for the different scenarios and periods is similar but 

the absolute values differ greatly in the middle of the rainy season.   

In summary, water and sediment yields show a negative trend in most parts of the 

catchment, resulting from reduced rainfall and slightly increased actual 

evapotranspiration for the climate scenarios. For the Upper Ouémé catchment, the 

mean water and sediment yields decrease by 6 to 23% and 5 to 27%, respectively. 

The negative trend is more pronounced for scenario A1B than for scenario B1, and is 

more apparent in the period 2026-2050 than in 2001-2025. The reduction appears 

mainly in the middle of the rainy season, i.e., in August and September. The spatial 

pattern of high sediment and water yields remains similar but the NW (including the 

Donga-Pont subcatchment) and the NE of the catchment experience a visible 

decrease of sediment yield. In the Donga-Pont subcatchment, the decreases in water 

and sediment yields are more drastic than in the whole catchment. For the Terou-

Igbomakoro subcatchment, the direction of the trend depends on the chosen 

reference period. Compared to the period 1998-2005, surface runoff and water and 

sediment yields in this subcatchment slightly increase for most climate scenarios. In 

contrast, the three variables decrease if the results for 1960-2000, based on REMO 

climate data, are taken as reference. All other components of the water balance, like 

evapotranspiration, percolation, and soil water change differ only slightly among the 

climate scenarios.  
 
 

 
Fig. 7.55 Mean monthly water and sediment yields for climate scenarios A1B and B1 for the periods 
2001-2025 and 2026-2050 compared to the period 1960-2000 (REMO climate data) and 1998-2005 
(measured climate data). 
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7.2.4. Combined scenarios of land use and climate changes 
 

In this subsection, the results of the combined scenarios of land use and climate 

changes will be presented. For these scenarios, land use maps for 2005, 2015, and 

2025 from CLUE-S model were attributed to the decades within the period 2001-

2030 and then combined with the corresponding climate data from the REMO model 

(see Section 2.1, Fig. 7.34). For each combined scenario, the decades had to be 

calculated separately, but will be visualised in one diagram. The results of the three 

ensemble runs for each scenario are averaged. 

The scenario results for the Upper Ouémé catchment for the period 2001 to 2030 

unite the effects of reduced water and sediment yields resulting from climate change 

with increased surface runoff and sediment yield caused by land use change. For 

comparison with the separate land use and climate change scenarios, Table 7.26 

considers only the period 2001-2025.  

Because of the greater reduction in rainfall, climate scenario A1B combined with land 

use scenarios L1 to L3 shows a greater reduction in water yield (-10%) than scenario 

B1 combined with L1 to L3 (WY -4%). For climate scenario B1 combined with land 

use scenarios L1 to L3, surface runoff increases by 1 to 6%. Thus, decreases in 

surface runoff due to climate change are overcompensated for by increases due to 

land use change. For the A1B scenarios, the trend varies. Surface runoff increases 

slightly for A1B_L2 while it decreases by 2 to 4% for the other scenarios. Sediment 

yields are heavily influenced by both land use and climate changes. Compared to the 

Lu00 model, sediment yields increase for all scenarios except for A1B_L1 

(Table 7.26). As a consequence of the smaller reduction in water yield, the increase 

in sediment yield is greater for B1 scenarios than for the A1B scenarios. For B1 

combined with L1 to L3, sediment yield differs by +7 to +31%, while for A1B 

combined with L1 to L3 it varies by -2 to +21% compared to the reference period 

1998-2005. As in the pure land use scenarios (see Subsection 7.2.2), the 

Table 7.26 Mean simulated annual values of sediment yield (SY), water yield (WY), and surface 
runoff (Qsurf) of the combined land use and climate change scenarios in the Upper Ouémé 
catchment. The results are averages of three ensemble runs for each climate scenario. Absolute 
values and change in % from the baseline scenario Lu00 (1998-2005) are shown. 

A1B B1 A1B B1
 2001-
2025

SY 
[t/ha/yr]

WY 
[mm/yr]

Qsurf 

[mm/yr]
SY 

[t/ha/yr]
WY 

[mm/yr]
Qsurf 

[mm/yr]
SY 

[∆%]
WY 
[∆%]

Qsurf 

[∆%]
SY 

[∆%]
WY 
[∆%]

Qsurf 

[∆%]
L1 0.19 193 103 0.21 207 108 -2 -11 -4 +7 -4 +1
L2 0.24 196 108 0.26 210 114 +21 -10 +1 +31 -3 +6
L3 0.21 194 105 0.23 208 111 +8 -10 -2 +18 -4 +4

Upper 
Ouémé
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L2 scenarios lead to the highest increases in sediment yield. In most scenarios, 

increases in sediment yield due to land use change, mainly the expansion of 

cropland area, exceed the reductions in sediment yield resulting from climate 

change.    

The diagrams in Fig. 7.56 show the results for the Upper Ouémé catchment for 2001 

to 2030 in semi-decades, including linear trends and the variation between the 

 

 

 
Fig. 7.56 Mean simulated annual values of sediment yield (SY), and water yield (WY) for 
combinations of land use scenarios L1, L2, and L3 with climate change scenarios A1B and B1 for the 
period 2001 to 2030. The presented results are averages of three ensemble runs for each climate 
scenario. 
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ensemble runs (bars). As already mentioned, the water and sediment yields show 

opposite trends. However, for scenarios A1B_L1 and B1_L1 no clear trend for the 

sediment yield was observed. In general, climate variability between the semi-

decades can be very high and mask the effects of land use change on sediment 

yield. For example, the large differences in water and sediment yields for the second 

decade of the A1B scenarios and the first decade of the B1 scenarios are caused 

mainly by large differences in rainfall, while land use remained constant. Potential 

evapotranspiration differed only slightly in these two periods. 

Likewise, for the pure climate scenarios (see Subsection 7.2.3), the variation 

between the ensemble runs for the B1 scenarios is greater than for the 

A1B scenarios. Standard deviations of the mean values for the ensemble runs for the 

semi-decades vary between 0.6 and 9%. 

From the maps in Fig. 7.57, the spatial pattern of the sediment yield appears similar 

to the one for the pure land use scenarios (see Subsection 7.2.2, Fig. 7.40). 

Compared to the Lu00 model (1998-2005), sediment yield increases for all scenarios 

Fig. 7.57 Mean spatial distribution of sediment yield for the combinations of climate scenarios A1B 
and B1 with land use scenarios L1-L3 for the period 2001-2030 compared to Lu00 model (1998-
2005) and the model with REMO climate data for 1960-2000. 



7.EROSION MODELLING IN THE UPPER OUÉMÉ CATCHMENT 

 

169

in the regions around Djougou and Parakou as well as in the southern and north-

eastern part of the catchment. The very low sediment yields in the central part of the 

catchment are slightly reduced due to shifts between the observed and modelled 

savannah and forest vegetation resulting from the pre-processing of the land use 

maps. 

For direct comparison, Fig. 7.57 uses the same legend as Fig. 7.40 in 

Subsection 7.2.2 for the land use scenarios. The maximum sediment yield per 

subbasin for the combined scenarios is only 1.91 t/ha/yr, compared with the 

maximum of 3.05 t/ha/yr for the pure land use scenarios. Upward shifts in the six 

sediment yield classes are, for example, visible in the southern part of the catchment, 

in particular for the A1B_L2 and B1_L2 scenarios. Visible changes in the Djougou 

region occur mainly among the A1B and B1 scenarios independent of the chosen 

land use scenario.   

The strongest absolute increases of sediment yield occur in the Parakou region and 

in the South of the catchment. In the Djougou region, the strong absolute increases 

in surface runoff and sediment yield resulting from land use change are weakened 

due to reductions in water yield resulting from climate change (Figs. 7.57 and 7.58 

and Fig. B.8, Appendix B). In relative terms, the largest increases in sediment yield 

are obtained in the southern and south-western parts of the catchment. If the REMO 

model 1960-2000 is taken as a reference, the changes in the spatial patterns remain 

similar. However, the relative increases in sediment yield are then slightly lower 

around Djougou and Parakou, as well as in the southern part of the catchment, and 

slightly higher in some subbasins in the North-East of the catchment.  

Compared to 1998-2005, surface runoff increases strongly in the south-western part 

of the catchment, in particular for the B1 scenarios (Fig. 7.58). Compared to 1960-

2000, the increase in surface runoff in the South-West is less obvious. For scenarios 

A1B_L2 and B1_L2, surface runoff increased significantly in the South of the 

catchment independent of the chosen reference.   

In the following, the results for the Terou-Igbomakoro and Donga-Pont 

subcatchments are discussed (Table 7.27). In the Terou-Igbomakoro subcatchment, 

water and sediment yields, as well as surface runoff, increase for all scenarios 

compared to the reference period (1998-2005). The increases range from 2 to 13% 

for water yield, 14 to 32% for surface runoff, and 7 to 40% for sediment yield. 
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Although both climate and land use changes trigger the variation in sediment yield 

among the scenarios, the effects of land use change are dominant.  

In contrast, changes in water and sediment yields in the Donga-Pont subcatchment 

result mainly from changes in climate variables leading to reductions in water yield 

and surface runoff. Since the Donga-Pont subcatchment is already extensively used 

for agriculture, the expansion of cropland is limited. Therefore, the variation between 

the land use scenarios L1 to L3 is rather small. For the A1B scenarios, mean water 

yields decrease by 19%, mean surface runoff by 11%, and sediment yields by 4 to 

5% compared to 1998-2005. For the B1 scenarios, mean water yields decrease by 

13% and surface runoff by 7%, while sediment yield increases by 5 to 6%. The 

opposite trends for mean surface runoff and sediment yield for the B1 scenarios 

result from temporal variations between and within the ensemble runs.    

Figure 7.59 shows the water and sediment yields by semi-decade for the two 

subcatchments, including linear trends for the period 2001 to 2030 for the 

combinations of land use scenario L3 (“Business as usual”) with climate scenarios 

A1B and B1. The diagrams for all other combined scenarios can be found in 

 
Fig. 7.58 Mean spatial distribution of surface runoff for the combinations of climate scenarios A1B 
and B1 with land use scenarios L1-L3 for the period 2001-2030 compared to the Lu00 model (1998-
2005) and the model with REMO climate data for 1960-2000. 
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Appendix B (Figs. B.6, B.7). For the Terou-Igbomakoro subcatchment, an increasing 

trend in sediment yield is confirmed for all scenarios, while the trend in water yields is 

less clear. Although the mean water yield for 2001-2025 exceeds the value for 1998-

2005 by 2 to 13% (Table 7.27), visualisation of the data indicates a negative trend 

within this period for the B1 scenarios.  

For the Donga-Pont subcatchment, a negative trend in water yield is confirmed for all 

scenarios. The trend for the sediment yield is less clear, in particular for the 

Table 7.27 Mean simulated annual values of sediment yield (SY), water yield (WY), and surface runoff 
(Qsurf) of combined land use and climate change scenarios in the Terou-Igbomakoro and Donga-Pont 
subcatchments. The results are averages of the three ensemble runs for each climate scenario. 
Absolute values and change in % from baseline scenario Lu00 (1998-2005) are presented. 

A1B B1 A1B B1
 2001-
2025

SY 
[t/ha/yr]

WY 
[mm/yr]

Qsurf 

[mm/yr]
SY 

[t/ha/yr]
WY 

[mm/yr]
Qsurf 

[mm/yr]
SY 

[∆%]
WY 
[∆%]

Qsurf 

[∆%]
SY 

[∆%]
WY 
[∆%]

Qsurf 

[∆%]
L1 0.13 215 107 0.15 236 118 +7 +2 +14 +20 +12 +25
L2 0.15 217 113 0.17 238 124 +25 +3 +20 +40 +13 +32
L3 0.14 216 111 0.16 237 121 +16 +2 +18 +30 +12 +29
L1 0.68 229 143 0.76 246 150 -5 -19 -11 +5 -13 -7
L2 0.69 230 144 0.76 247 151 -4 -19 -11 +6 -13 -7
L3 0.68 229 144 0.76 247 150 -5 -19 -11 +5 -13 -7

Terou-
Igbo.

Donga-
Pont

 

Fig. 7.59 Mean simulated annual values of sediment yield (SY), and water yield (WY) for the 
combination of land use scenario L3 with the climate change scenarios for the period 2001 to 2030 
for the Terou-Igbomakoro and Donga-Pont subcatchments. The presented results are averages of 
three ensemble runs for each climate scenario.  
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A1B scenarios. Although the sediment yield for 2001-2025 for the B1 scenarios 

exceeds the value for 1998-2005 by 5-6% (Tab 7.27), the trend by semi-decade is 

negative and is closely related to the negative trend in water yield. 

Net diagrams show the relative changes of the main components of the water 

balance (Fig. 7.60). For the Terou-Igbomakoro subcatchment, changes in rainfall, 

evapotranspiration, and percolation differ less than 4% from the values for 1998-

2005. The increase in water yield corresponds to a strong increase in surface runoff 

(up to 32%) for all scenarios. For the Terou-Igbomakoro subcatchment, changes in 

rainfall, evapotranspiration, and percolation differ less than 4% from the values for 

1998-2005. The increase in water yield corresponds to a strong increase in surface 

runoff (up to 32%) for all scenarios. Baseflow differs by only +1% to -6% depending 

on the scenario. Soil water increases significantly. Compared to 1960-2000, the 

pattern looks different: Soil water increases only slightly and water yield, surface 

runoff, and baseflow decrease for all scenarios. Sediment yields change by -15 to 

+15% depending on the scenario. 

For the Donga-Pont subcatchment, the net diagram is similar to the one from the 

pure climate scenarios (Fig. 7.53). However, reductions in surface runoff and 

sediment yield are less drastic and sediment yield even increases slightly for the 

B1 scenarios. As discussed for the pure climate scenarios, baseflow and percolation 

are strongly reduced while percolation increases greatly compared to the period 

1998-2005. These trends are much less drastic if 1960-2000 is taken as a reference.  

For the Upper Ouémé catchment (Fig. 7.61), the effects of the two subcatchments 

are combined. Sediment yield and soil water increase strongly for all scenarios, while 

 
Fig. 7.60 Components of the water balance in the Terou-Igbomakoro and Donga-Pont subcatchments 
for the combined scenarios relative to the Lu00 model (1998-2005).  
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percolation and baseflow are strongly reduced. Although total water flow decreases 

for all scenarios, surface runoff 

increases slightly for most 

scenarios. Evapotranspiration 

remains nearly constant.  

The monthly distributions of 

water and sediment yields for 

the combined scenarios are 

similar to those of the pure 

climate scenarios, reflecting the 

shifts in the monthly rainfall 

distribution. A presentation of the monthly distributions as differences from the values 

for the original model (Fig. 7.62) makes the changes more visible.  

While monthly water yields are significantly reduced by up to 13 to 16 mm (20 to 

25%) in the middle of the rainy season compared to the original model (1998-2005), 

values in April to June and October/November are up to 2 mm and 8 mm higher, 

respectively. While the water yields for all combined scenarios lie in a narrow range 

from January to August, differences among the scenarios are more pronounced in 

September/October, with much higher water yields for the B1 scenarios than for the 

A1B scenarios. Variations among the scenarios for the sediment yield are higher but 

the temporal pattern of the deviations is similar to that for the water yield, with two 

positive peaks at the beginning and end of the rainy season and a larger negative 

 
Fig. 7.61 Components of the water balance in the Upper  
Ouémé catchment relative to the Lu00 model (1998-2005). 

 
Fig. 7.62 Deviation of mean monthly water and sediment yields for the combined scenarios for the 
periods 2001-2025 and 1960-2000 (REMO climate data) from the results for 1998-2005 (measured 
climate data). 
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peak in the middle of the rainy season. The largest differences at the beginning and 

end of the rainy season are simulated for scenario L2_B1 with +0.014 t/ha (+65%) in 

June and +0.020 t/ha (+37%) in September. The largest monthly decrease in 

sediment yield shows scenario L1_A1B with -0.023 t/ha, corresponding to -44%. 

In conclusion, all combined scenarios show a reduction in mean water yield in the 

Upper Ouémé catchment compared to the period 1998-2005. Mean surface runoff 

showed a slightly positive trend for the B1 scenarios and slightly positive and 

negative trends for the A1B scenarios. Baseflow and percolation were strongly 

reduced. Mean sediment yield increased significantly (7-31%) for all scenarios except 

for scenario A1B_L1. Thus, in general the increases in sediment yield due to land 

use change exceeded the reductions in sediment yield resulting from climate change. 

Mean sediment yield increased above all in the regions around Djougou and 

Parakou, as well as in the southern and the north-eastern part of the catchment. The 

greatest absolute increases of sediment yield occurred in the Parakou region and in 

the South, while the greatest relative increases were in the south and south-western 

parts of the catchment. For the Terou-Igbomakoro subcatchment, the results were 

mainly triggered by changes in land use leading to positive trends in surface runoff 

and sediment yield for all scenarios. Baseflow and percolation changed only slightly. 

For the Donga-Pont subcatchment, changes in climate were dominant, causing 

negative trends for water yield and surface runoff. Furthermore, percolation and 

baseflow were strongly reduced in the Donga-Pont subcatchment. Mean sediment 

yields in this subcatchment decreased or increased slightly, depending on the 

scenario. Monthly water yields in the Upper Ouémé catchment were reduced over 

the June to September period and increased in May and October without significant 

differences between the scenarios. Mean monthly sediment yields increased over the 

whole rainy season except for a significant decrease in August. While monthly 

sediment yields for the reference scenario and A1B scenarios peaked in August, the 

maximum for the B1 scenarios was reached in September.  

 

7.2.5. Scenario analysis - Conclusions 
 

In the following, the effects of the land use, climate change, and combined scenarios 

for the Upper Ouémé catchment and the Terou-Igbomakoro and Donga-Pont 

subcatchments will be summarized and compared to the results of similar studies.  
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The pure land use scenarios for 2001-2025 increase sediment yield and surface 

runoff significantly in the Upper Ouémé catchment and the two subcatchments for all 

scenarios L1 to L3 (see 1st block in Table 7.28). In contrast, the climate scenarios 

and combined scenarios lead to a more differentiated picture between the scenarios 

and catchments (see 2nd and 3rd block in Table 7.28). 

The climate scenarios reduce water yield and sediment yields in the Upper Ouémé 

catchment due to decreases in rainfall. Potential evapotranspiration increases 

significantly due to higher temperatures, but actual evapotranspiration remains nearly 

constant. Surface runoff decreases for the A1B scenarios and remains nearly 

constant for the B1 scenarios.  

In the combined scenarios, the negative trend for water yield due to climate change 

is weakened due to land use change, but remains dominant. In contrast, sediment 

yields increase for all combined scenarios except for L1_A1B, showing the 

dominance of land use change for this variable. Surface runoff decreases slightly for 

the A1B_L1 to L3 scenarios but increases for the B1_L1 to L3 scenarios. 

The intensively used and comparably wet Donga-Pont subcatchment (39% cropland) 

and the less intensively used Terou-Igbomakoro subcatchment (11% cropland) 

behave differently and cover the wide range of possible responses within the Upper 

Ouémé catchment (14% cropland). While surface runoff and water yields in the 

Donga-Pont subcatchment decrease strongly for all climatic and combined scenarios, 

Table 7.28 Comparison of effects of land use, climate, and combined scenarios on rainfall (PCP), 
water yield (WY), sediment yield (SY), and surface runoff (Qsurf) in the Upper Ouémé catchment and 
the Terou-Igbomakoro and Donga-Pont subcatchments for the period 2001-2025 compared to the 
original model. 

Orig A1B B1
SY 

[∆%]
WY 
[∆%]

Qsurf 

[∆%]
PCP 
[%]

SY 
[∆%]

WY 
[∆%]

Qsurf 

[∆%]
PCP 
[%]

SY 
[∆%]

WY 
[∆%]

Qsurf 

[∆%]
Upper Ouémé Orig - --- --- -- - - -- 0

L1 ++++ + ++ - - --- - - ++ - 0
L2 ++++ + +++ - ++++ -- 0 - ++++ - ++
L3 ++++ + ++ - ++ --- - - +++ - +

Terou-Igbo. Orig + - 0 + + ++ ++ +++
L1 +++ + ++ + ++ + +++ + +++ ++ ++++
L2 ++++ + +++ + ++++ + +++ + ++++ ++ ++++
L3 ++++ + +++ + +++ + +++ + ++++ ++ ++++

Donga-Pont Orig -- ---- ---- --- -- --- --- ---
L1 ++++ 0 ++ -- - --- --- - + -- --
L2 ++++ + +++ -- - --- --- - ++ -- --
L3 +++ 0 ++ -- - --- --- - + -- --  

Legend +  1 to  5% ++  5 to  10% +++  10 to  20% ++++ > 20%
0 < +/- 1%  - -1 to -5% -- -5 to -10% --- -10 to -20% ---- >-20%  
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both parameters increase strongly in the Terou-Igbomakoro subcatchment. Likewise, 

for most scenarios sediment yields decline in the Donga-Pont subcatchment and 

increase in the Terou-Igbomakoro subcatchment. However, for the B1_L1 to L3 

scenarios sediment yield also increases in the Donga-Pont subcatchment. This 

results from the high variation in rainfall trends between the ensemble runs.  

A comparison of the results with the scenario analysis performed by Busche (2005) 

based on the parameterised SWAT model from Sintondji (2005) for the Terou-

Igbomakoro subcatchment is not directly possible due to differences in model 

parameterisation and input data for model calibration and scenario analysis. 

However, simulated relative increases in surface runoff and sediment yield for the 

land use scenario (Business as usual) were very similar. In contrast, the climate 

scenarios from Busche (2005) based on 5 year time slices of REMO for the 

B2 scenario and the combined scenarios indicated opposite effects on surface runoff, 

water and sediment yield than those simulated in this work. This is mainly due to the 

different rainfall signal given by the more recent, time-continuous REMO simulations.      

The scenario analysis for the Upper Ouémé catchment indicates increasing sediment 

yields and decreasing water yields for the period 2001-2025 over a wide range of 

scenarios. Trends in surface runoff depend strongly on the chosen scenario. 

However, the variability within the Upper Ouémé catchment is large. In subbasins 

with a high potential of cropland expansion (e.g., Terou-Igbomakoro subcatchment), 

future sediment yields will be driven by land use changes and may therefore strongly 

increase. In subbasins with low potential of cropland expansion and strong 

reductions in rainfall (e.g., Djougou region including Donga-Pont subcatchment), 

future sediment yields may strongly decrease. While agricultural expansion in the 

entire Upper Ouémé catchment will probably slow down in the next decades, climate 

change impacts will increase with time. The simulated climate scenarios until 2050 

show that the effects on water and sediment yields cannot simply be extrapolated 

and that, after 2025, differences between climate scenarios will increase.  

In general, the spatial patterns of sediment yield and surface runoff for the “business 

as usual” scenario remain similar (Fig. 7.63, Fig. B.10 in Appendix B). In addition to 

the current hotspots of soil erosion in the Djougou and Parakou regions, as well as 

along the main roads Djougou-Beterou-Parakou, new hotspots arise in the southern 

and north-eastern parts of the catchment.  
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Fig. 7.63 Mean spatial distribution of sediment yield for the land use, climate, and combined 
scenarios compared to the Lu00 model (1998-2005) and the model with REMO climate data for 
1960-2000.  
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8. UNCERTAINTIES IN THE MODELLING PROCESS 
 

The presented research results are subject to various kinds of uncertainties. In this 

chapter, the most important sources of uncertainty in the modelling process are 

discussed and evaluated. Uncertainties can be associated with model input data, 

model structure, calibration parameters and data used for model calibration and 

validation. 
 

8.1. Uncertainties in the model input data  

Relief  

The resolution of approximately 90 meters of the digital elevation model (DEM) is 

rather low. However, considering the flat topography, the large size of the catchment 

and the coarse resolution of the other input maps, this resolution seems to be 

adequate. Since SWAT is not a raster-based but a semi-distributed model, the 

uncertainties in relief can be considered low. Nevertheless, a DEM with a higher 

resolution would improve the delineation of the river network and the subcatchments. 

Land use  

Land use classifications in the sub-humid tropics are a challenge due to high 

innerannual vegetation dynamics, small field sizes, the heterogeneous landscape 

and strong atmospheric interferences (Thamm et al. 2005). However, the land use 

map for the year 2000 is of high quality, as it was extensively validated in the field. 

The agreement of the ground data and the classified data was 80.3% (Judex 2008). 

However, the central part and some other areas of the Upper Ouémé catchment are 

difficult to reach for field validation. Furthermore, the small inland valleys and gallery 

forests cannot be distinguished accurately from grass savannah and dense forests 

(forêt dense), respectively.  

Another constraint concerning the land use data was the limited adjustment of the 

parameters in the SWAT land use database to the conditions in Benin. Only the plant 

height, the maximum leaf area index and the parameters determining the length of 

the growing period were modified using measured data for the Upper Ouémé 

catchment from Orthmann (2005), Mulindabigwi (2006) and Dagbenonbakin (2005). 
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However, despite too high biomass values, the dynamics of biomass and leaf area 

index were correctly represented. In general, discharge and sediment yield showed a 

low sensitivity to changes in plant parameters during the calibration process (see 

sensitivity analysis in Section 8.2). 

Modelling future land use and land cover is difficult, particularly in developing 

countries where geospatial data is scarce. The land use maps used for the years 

2001-2025 from the model CLUE-S are unusual for Africa and are built on 

comparatively good databases provided by IMPETUS and its partners for the Upper 

Ouémé catchment. The CLUE-S model represents the land use dynamics in the 

period 1991-2000 well (Judex 2008). The agreement between the simulated land use 

map and the land use classification from the Landsat scene for 2000 was 86% 

(Judex 2008). Nevertheless, the scenario maps contain significant uncertainties due 

to the coarse representation of the driving forces and simplified assumptions 

concerning the demand for agricultural land without using economic and agricultural 

production models. Intervention scenarios with CLUE-S showed that the construction 

of additional roads would significantly change the simulated pattern of cropland 

expansion.  

Another important source of uncertainty was the disaggregation of the CLUE-S land 

use maps for SWAT. As discussed in Subsection 7.2.1, this can lead to significant 

changes in the land use distribution. However, in the land use maps for 2005, 2015 

and 2025, the deviations are acceptable. In general, the disaggregation scheme 

tends to underestimate the total fraction of cropland. This is because the scheme 

assumes constant percentages for the land use distribution in each 250 meter grid 

cell as derived for the year 2000 for the whole catchment. As the catchment is 

characterized by cropland expansion, the actual fraction of cropland in a 250 meter 

grid cell “Cropland >20%” will probably not remain constant but increase during the 

period 2001-2025. Furthermore, the disaggregation scheme was homogeneously 

applied to the whole Upper Ouémé catchment without considering heterogeneities in 

land use intensity. A derivation and application of specific disaggregation schemes 

for intensively used areas, protected forests and the rest of the catchment might be 

more appropriate. However, the underestimation of cropland in the intensively used 

areas and the overestimation in the protected forest are partially compensated by 

applying a minimum threshold of 10% in HRU definition in SWAT.   
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All other uncertainties concerning land use scenarios are of minor importance. They 

concern, among other things, projections of population growth. The projections at the 

department level had to be disaggregated to the commune and village levels, leading 

to an underestimation of population growth in the Upper Ouémé catchment 

(Judex 2008).    

Soil data 

Uncertainties in soil data are related to the low resolution of the soil map, the 

determination of representative profiles and the analysis of soil samples.  

The soil map was elaborated by ORSTOM at the scale 1:200.000. The polygon size 

ranges from 0.1 to 833 km2 with an average of 32 km2. The soil map only shows the 

dominant soil types. Therefore, the high variability of tropical soils along the 

toposequences (see Section 6.1) cannot be incorporated. As a consequence, the 

fraction of hydromorphic and indurated soils in the catchment is underestimated. 

Since these soil types favour surface runoff, sediment yield is underestimated. 

Each representative profile was chosen after studying one transect along the 

toposequence and consulting the descriptions in the explanatory notes of the soil 

maps. One soil sample was taken from each horizon. However, the significant small 

scale variability of chemical and physical properties was only partially captured. As a 

consequence, there are high uncertainties in the chemical soil properties of nitrogen 

content, CECpot, BS and cations. Mixed samples from larger plots would probably 

reduce these uncertainties, but since these properties were not used as model 

parameters, this study focused rather on complete, consistent descriptions of 

individual representative profiles.  

Recently, Igué (2007) completed a soil map for the Upper Ouémé catchment based 

on the SOTER approach (see Section 5.5). In the SOTER map, a set of 1 to 6 soil 

profiles corresponds to each spatial terrain unit representing the soil variability along 

the toposequence. Each terrain unit was determined exclusively from the 

physiographic landform, the slope class and the relief intensity, not taking into 

account the geology. Consequently, the average size of the 31 polygons in the 

SOTER soil map is even larger than in the French soil map. On the other hand, non-

spatial information about the fraction of different soil types within the units is 

provided. It would be interesting to determine if this SOTER map can improve the 

modelling results of this study. In order to do that, the soil units would have to be 
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randomly distributed in the terrain units, because SWAT only includes a splitting 

routine for land use maps. In addition, using the SOTER map would probably require 

a new calibration of the SWAT model. 

The error ranges during laboratory analysis of the soil samples should be in the usual 

range of no more than 5 to 10%. The determination of soil texture was complicated 

by high clay, mica and iron contents in the soils. Especially for red, ferralitic soil 

probes, the measured clay content can vary enormously for different intensities of 

pre-treatment due to a lack of dispersion of clay minerals (Wiechmann 1991). During 

CECpot determination, photometric measurements of the re-exchange (Ammonium 

Acetate method) and measurements of barium using an atom absorption 

spectrometer (Mehlich method) required special attention. A further potential source 

of error was the determination of the physical soil parameters in conjunction with a 

multiple linear regression for the bulk density and a pedotransfer function (PTF) for 

the saturated hydraulic conductivity (Ksat) and the available water capacity of the soil 

(Solawc). The applied PTF did not account for high gravel contents and macropores, 

which can heavily influence Ksat in the catchment (Giertz 2004). Nevertheless, a 

correction factor for the gravel content was not applied because the estimated Ksat 

values in the subsoil were already low compared to measurements from 

Giertz (2004). A correction factor would have further reduced the Ksat values. In order 

to avoid water-logging in many profiles, all Ksat values smaller than 5 mm/hr were set 

to 5 mm/hr. Giertz (2004) obtained good agreement of total discharge and discharge 

components between the topsoil parameterisation with the Ksat value from the PTF 

from Rawls & Brakensiek (1995) and the parameterisation with the mean Ksat value 

from in-situ measurements in the Aguima subcatchment. Tietje & Hennings (1996) 

found in a comparison of six pedotransfer functions with Ksat measurements in 

Northern Germany that the PTF from Brakensiek underestimated Ksat for silt and clay 

soils. All PTFs performed best for loamy sands in their study. 

Climate data 

The climate data for the period 1998-2005 were taken from the IMPETUS climate 

station Dogué savannah and the synoptic station Parakou. Giertz (2004) concluded 

after comparing three IMPETUS climate stations near Dogué that the uncertainties 

for the climate parameters of humidity, air temperature, wind velocity and solar 

radiation are fairly low in this area. However, transferring the parameter values to the 
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whole Upper Ouémé catchment produces uncertainties. Furthermore, for the years 

1998-2000, solar radiation had to be estimated from sunshine duration. 

One general problem is the high variability of rainfall in the sub-humid zone, which is 

only poorly captured by a meteorological network. The implementation of 14, 

regularly distributed, pluviometric stations in the model is satisfactory. Additional 

stations have been used to fill gaps. In particular, in the period 1998-2000, gaps of 

several weeks were frequent for the stations Pelebina, Sonomoun, Tebou, Wewe 

and Saramanga. Some missing discharge peaks in the model results can probably 

be attributed to rainfall events not captured in the pluviometric data (e.g., on 

14.08.2004 at Terou-Igbomakoro outlet). The results for the two different 

discretisations (see Subsection 7.1.4) confirm that an additional pluviometric station 

can significantly increase performance measures and matching of discharge peaks. 

Bormann & Diekkrüger (2003) and Sintondji (2005) also obtained improved 

measures of performance for the Terou-Igbomakoro subcatchment when they 

increased the number of pluviometric stations considered in the model.  

Earlier scenario studies in the Terou-Igbomakoro subcatchment (Busche, 2005; 

Sintondji, 2005) had to build on REMO simulations for 5-year time slices in the period 

2001-2025 for the SRES scenario B2. The availability of continuous REMO 

simulations for this study significantly reduced uncertainties in the climate scenarios, 

and the ensemble runs allowed the influence of the initial conditions to be studied. 

The main uncertainties derived from the climate data for the period 2001-2050 for the 

climate change scenarios can be attributed to weaknesses of the regional climate 

model REMO and to the spatial resolution of the REMO data. As discussed in 

Subsection 7.2.1, standard post-processing with a statistical algorithm (MOS) was 

applied to the rainfall simulations. Afterwards, the simulated monthly rainfall 

distribution and the derived daily ETpot agreed quite well with the measured data in 

the period 1960-2000. However, REMO rainfall data needed a second post-

processing step in order to adequately represent the spatio-temporal distribution of 

daily rainfall. Therefore, the gridded rainfall data was attributed to historic frequency 

distributions at individual stations. The two post-processings, the second in particular, 

are a high source of uncertainty and led to a loss of information about future rainfall 

patterns.  

Although REMO considers feedbacks between vegetation and the atmosphere, 

biosphere dynamics are yet poorly represented in climate modelling. The ensemble 
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runs reflect the uncertainties in the initial conditions of the climate model. It was 

shown in Section 7.2 that the simulated sediment and water yield can vary 

enormously between ensemble runs. Last but not least, the IPCC (2007) stated that 

global circulation models (GCMs) show quite different rainfall trends for West Africa. 

REMO follows the physical parameterisation of the GCM ECHAM4. Nesting REMO 

into another GCM, using another regional climate model (e.g., MM5) or using other 

SRES scenarios could have led to significantly different results with regard to future 

runoff and soil erosion in the Upper Ouémé catchment. This must be kept in mind 

when drawing conclusions from the model results and defining adaptation strategies.  

 

8.2. Uncertainties in the model assumptions  
 

The uncertainties in the model assumptions cover the model structure, the parameter 

uncertainty and uncertainties due to the spatial discretisation of the model affecting 

the representation of land use and soils. The largest weaknesses in the model 

structure occur in the calculation of ETpot, the SCS curve number approach and the 

neglect of channel degradation. The uncertainties in the initial conditions were 

compensated for by including a three-year warm-up period in each model run. 

A spatio-temporal validation of the model beyond discharge and sediment yield 

would have been desirable in order to examine the correct representation of all 

relevant processes. However, at the regional scale, collecting such data was not 

feasible.   

Correctly determining potential evapotranspiration is a general problem in most 

hydrological models. A comparison of the Priestley-Taylor and Penman-Monteith 

methods for calculating ETpot with the SWAT model revealed differences of 15%. 

Even for the Penman-Monteith method, ETpot can differ significantly depending on the 

chosen reference crop. SWAT uses alfalfa as reference crop in contrast to other 

models that use short green grass.  

Despite its empirical nature, the SCS curve number approach seems to be 

appropriate for the regional scale where detailed spatio-temporal information about 

soil properties, rainfall variability and land use is missing (Arnold et al. 1998). If hourly 

rainfall data is available, the Green Ampt approach could be applied. However, using 

the Green Ampt approach instead of the SCS curve number approach does not 
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necessarily improve modelling results (e.g., King et al. 1999). Bormann & 

Diekkrüger (2003) and Sintondji (2005) also obtained good representations of 

discharge in the Terou-Igbomakoro subcatchment with the SCS-CN approach.  

Moreover, the channel degradation routine of SWAT was not activated in this 

application due to a lack of information about erosion and sedimentation processes in 

the channel. As the rivers in the catchment are heavily affected by channel 

deposition and degradation, this simplification can contribute significantly to the 

uncertainty of the modelling results. Adjusting the SPCON factor, which determines 

the maximum amount of sediment that can be transported in the channel, could 

compensate for unrealistic assumptions regarding the channel morphology. 

However, site-specific knowledge about channel morphology and processes could 

improve the sediment modelling. 

Several authors report limitations of the SWAT model. First, the model does not 

include an alteration of inherent soil properties due to soil erosion or agricultural 

management, which leads in the long-term to an underestimation of sediment loss in 

the Upper Ouémé catchment. Second, SWAT does not allow flows between 

hydrological response units (HRUs). Thus, the position of the land use types within a 

subbasin does not influence the water and sediment yields. Third, the interflow is not 

well represented (see Chapter 7). Fourth, the sediment routing is simplified and does 

not account for sediment size effects. Suspended sediment and bed load are not 

distinguished. Improvements of the sediment routines and the SCS curve number 

approach in SWAT are currently being developed (Gassman et al. 2007).  

An additional source of uncertainty is the influence of spatial discretisation on the 

modelling results. Several authors have shown that the thresholds for the subbasin 

and HRU delineation can significantly influence sediment results (see Section 4.5). A  

comparison of two discretisation scenarios in this application confirmed this 

phenomenon for the Upper Ouémé catchment (see Subsection 7.1.4). However, the 

main improvement in model performance for the finer discretisation was attributed to 

one additional climate station; the land use distribution in the whole catchment was 

only slightly better represented. The range of slopes in the HRUs remained nearly 

constant. As all 14 climate stations are considered in the finer discretisation, a further 

increase in the number of subbasins will probably produce only minor improvements 

of the modelling results.  
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The land use distribution is modified by applying a minimum threshold in HRU 

delineation. For the original model, the chosen HRU thresholds of 10% for land use 

and soil enabled a good representation of the original fraction of agricultural land. 

However, the fractions of grass savannah and forest were underestimated, while tree 

and brush savannah increased. The implementation of a new land use map, i.e. each 

land use scenario, in SWAT required a new HRU delineation. Thus, the land use 

distribution of the disaggregated CLUE-S maps was modified by the HRU threshold. 

As mentioned before, this effect partially compensated for the underestimation of 

cropland due to the disaggregation scheme. In order to avoid the distorting effect of 

the HRU threshold, Jha et al. (2004) recommended defining only one HRU per 

subbasin. However, this approach would have required a significantly higher number 

of subbasins and therefore much longer computation time in order to adequately 

represent the future expansion of scattered field areas in the Upper Ouémé 

catchment. The new ArcSWAT interface can reduce this effort because it includes a 

splitting routine for land use which allows different thresholds to be defined for 

different land use types.     

 

Sensitivity analysis 
The LH-OAT (Latin Hypercube - One Factor at a Time) sensitivity analysis was 

performed for the whole Upper Ouémé catchment for the calibration period 1998-

2001. 

In a first step, the sensitivity analysis referred to the mean daily discharge and 

sediment yield without using measurements. Tables 8.1 and 8.2 list the nine most 
Table 8.1 Most sensitive model parameters for the mean daily discharge for the Upper Ouémé 
catchment (1998-2001), Categories: >1 very high, >0.1 high. 

Parameter Rank_Q Mean 
sensitivity Category

CN2 SCS curve number [-] 1 3.98 very high
ALPHA_BF Baseflow alpha factor [days] 2 1.85 very high
SOL_AWC Soil available water capacity [mm 

H2O/mm soil] 
3 1.20 very high

GWQMN Threshold water depth in the shallow 
aquifer for flow [mm] 

4 0.87 high

RCHRG_DP Fraction of deep recharge [-] 5 0.45 high
CANMX Maximum canopy storage [mm] 6 0.25 high

GW_REVAP Groundwater "revap" coefficient [-] 7 0.20 high
ESCO Soil evaporation compensation factor 

[-]
8 0.19 high

SOL_Z Soil depth [mm] 9 0.19 high
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sensitive parameters. For both output variables, the SCS curve number is by far the 

most sensitive. The discharge and sediment yields are very sensitive to changes in 

the baseflow recession constant (ALPHA_BF) and the available water capacity of the 

soil (SOL_AWC). Discharge is also highly sensitive to the groundwater parameters 

GWQMN, RCHRG_DP and GW_REVAP. 

Additional parameters to which sediment yield is highly sensitive are the SPCON 

factor, the average slope steepness (SLOPE) and the surface runoff lag time 

(SURLAG).  

In a second step, a new sensitivity analysis was performed against discharge 

measurements from 1998-2001 at the Terou-Igbomakoro outlet (see Table 8.3). Due 

Table 8.2 Most sensitive model parameters for the mean daily sediment yield for the Upper 
Ouémé catchment (1998-2001), Categories: >1 very high, >0.1 high. 

Parameter Rank_SY Mean 
sensitivity Category

CN2 SCS curve number [-] 1 6.82 very high
SPCON Linear re-entrainment parameter for 

channel sediment routing [-]
2 1.60 very high

ALPHA_BF Baseflow alpha factor [days] 3 1.46 very high
SLOPE Average slope steepness [m/m] 4 1.42 very high

SURLAG Surface runoff lag time [days] 5 1.30 very high
SOL_AWC Soil available water capacity [mm 

H2O/mm soil] 
6 0.86 high

CH_K2 Channel effective hydraulic 
conductivity [mm/hr] 

7 0.76 high

USLE_P USLE erosion control factor [-] 8 0.68 high
USLE_C USLE crop management factor [-] 9 0.64 high

Table 8.3 Most sensitive model parameters for daily discharge; relative to measurements at the 
Terou-Igbomakoro outlet; categories: >1 very high, >0.1 high. 

Parameter Rank_Q Mean 
sensitivity Category

CN2 SCS curve number [-] 1 8.25 very high
ALPHA_BF Baseflow alpha factor [days] 2 2.14 very high
SOL_AWC Soil available water capacity [mm 

H2O/mm soil] 
3 2.00 very high

SURLAG Surface runoff lag time [days] 4 1.99 very high
CH_K2 Channel effective hydraulic 

conductivity [mm/hr] 
5 1.79 very high

GWQMN Threshold water depth in the shallow 
aquifer for flow [mm] 

6 1.22 very high

SOL_Z Soil depth [mm] 7 1.14 very high
RCHRG_DP Fraction of deep recharge [-] 8 1.05 very high

CH_N Mannings'n value for the main 
channel

9 0.62 high
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to the consideration of measured discharge data, the rank of the surface runoff lag 

time and the channel parameters CH_K2 and CH_N increased by ten. This can be 

explained by the fact that daily discharge values are being considered instead of the 

mean value. Except for ESCO and CANMX, the mean sensitivity increased for all 

very sensitive parameters. Except for Mannings’, the most sensitive parameters for 

discharge are identical with those obtained by Sintondji (2005) for the Terou-

Igbomakoro subcatchment. However, the rankings of the parameters vary. 

In contrast to other studies (e.g., Spruill et al. 2000), Ksat is not one of the most 

sensitive parameters, since the SCS curve number approach does not consider this 

parameter in the calculation of surface runoff. To sum up, the results of the sensitivity 

analysis confirm the high sensitivity of the SWAT model to changes of the curve 

number, the available soil water capacity and the groundwater parameters, as 

reported in the literature (e.g., Sintondji, 2005; Arnold et al, 2000).  

 In order to evaluate the effects of uncertainties in the parameter values, 1000 

simulations with different parameters sets were performed. The parameter sets were 

determined by sampling meaningful parameters ranges of the most sensitive 

calibration parameters (see Table 8.4) according to the Monte-Carlo Latin-Hypercube 

procedure.  

After running the SWAT model, the parameters were plotted against water yield, 

sediment yield and model efficiency for the Terou-Igbomakoro and Donga-Pont 

subcatchments (Figs. 8.1-8.5 and Figs. B.11-B.13, App. B).   

Because of the high sensitivity of the chosen parameters, the mean values for 

discharge and model efficiency vary considerably among the realizations (Figs. 8.1-

8.4). The mean annual discharge of all realizations is 292 mm/yr for Terou- 

Igbomakoro and 372 mm/yr for Donga-Pont, which is significantly higher than the 213 

and 297 mm/yr in the original model. This reflects the effort to reduce simulated 

discharge during calibration. During the uncertainty analysis, only 4 of the 

8 parameters, namely ALPHA_BF, RCHRG_DP, CN2, SOL_AWC, show clear trends 

for mean annual discharge. For ALPHA_BF, values smaller than 0.01 mean 

discharge drops dramatically in both subcatchments (see Fig. 8.1). This is due to the 

Table 8.4 Parameter ranges for the uncertainty analysis. 

CN2 SOL_AWC ALPHA_BF SURLAG CH_K2 GWQMN RCHRG_DP ESCO
Min value -10%* -25%* 0 0.1 0 0 0.02 0
Max value +10%* +25%* 0.1 0.5 50 40 0.35 0.2

* increase or decrease % of initial value
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extreme delay in the occurrence of base flow, leading to increased capillary rise and 

evapotranspiration. Model efficiency tends to increase with increasing ALPHA_BF.  

The decrease in discharge with increasing RCHRG_DP is evident since the deep 

recharge is considered to be lost from the system (Fig. 8.2). Model efficiencies are 

scattered over the whole parameter range, with a tendency to increase with 

increasing deep recharge.  

For changes in curve number, mean discharge and model efficiency are widely 

scattered. Both tend to increase over the whole parameter range (Fig. 8.3). Mean 

annual discharge tends to decrease with increasing SOL_AWC, but the effect on 

model efficiency is not clear. In contrast to findings from Busche (2005) and 

Sintondji (2005), for the Terou-Igbomakoro subcatchment, reductions in SOL_AWC 

tend to increase mean annual discharge. All other parameters, namely SURLAG, 

CH_K2, ESCO and GWQMN, show no clear trends for mean annual discharge in the 

considered parameter ranges (Figs. B.11, B.12). However, model efficiency shows a 

Fig. 8.1 Sensitivity of mean annual discharge and model efficiency to changes of the parameter 
ALPHA_BF (red dot: parameter value and simulated mean discharge for the period 1998-2001, red line: 
logarithmic regression). 
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negative trend with increasing values of CH_K2 and GWQMN. This confirms the 

choice of the lower limit for CH_K2 during model calibration. 

For all considered parameters, model efficiency is more widely scattered for the 

Terou-Igbomakoro subcatchment than for the Donga-Pont subcatchment. 

The mean annual sediment yields also vary considerably among the realizations 

along the parameter ranges. The mean annual sediment yield of all realizations is 

0.12 t/ha/yr for Terou-Igbomakoro and 0.79 t/ha/yr for Donga-Pont, which is only 

slightly less than the values from the original model (0.14 and 0.85 t/ha/yr, 

respectively). 

As expected, sediment yields are highly sensitive to the curve number (CN2). With 

increased CN2, sediment yield increases considerably in both subcatchments as a 

result of increased surface runoff (Fig. 8.4), and variations among the realizations for 

a certain CN2 value are much lower than for all other parameters. SURLAG and 

ALPHA_BF show slightly positive trends (Fig. 8.4-5). The drop in discharge for very 

small ALPHA_BF values is reflected by significantly lower sediment yields.       

Fig. 8.2 Sensitivity of mean annual discharge and model efficiency to changes of the parameter 
RCHRG_DP (red dot: parameter value and simulated mean discharge for the period 1998-2001, red 
line: polynomial regression). 
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Fig. 8.3 Sensitivity of mean annual discharge and mo  del efficiency to changes of parameters CN2 
and SOL_AWC (red dot: parameter value and simulated mean discharge for the period 1998-2001, 
red line: polynomial regression). 
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A slightly negative trend for the sediment yield can be observed for CH_K2 (Fig. 8.5). 

The figures for all other parameters contain no clear patterns (see Fig. B.13, 

Appendix B).  

The mean weekly curves for total discharge and sediment yield for all realizations of 

Terou-Igbomakoro and Donga-Pont and the 90% confidence interval are shown in 

Figs. 8.6 and 8.7. The width of the confidence interval for discharge is larger in the 

middle and the end than at the beginning of the rainy seasons. In the middle of the 

rainy season, the interval is shifted towards lower discharge values. 

 

 
Fig. 8.4 Sensitivity of mean annual sediment yield to changes of parameters CN2 and SURLAG (red 
dot: parameter value and simulated mean sediment yield for the period 1998-2001, red line: 
polynomial regression). 
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In contrast, the uncertainties in sediment yield are mainly related to individual 

sediment peaks, with high upper bounds of the confidence interval. This is even more 

obvious in the daily graphs showing the confidence intervals (see Fig. B.14, 

Appendix B). 

 
Fig. 8.6 Confidence interval (90%) for mean weekly discharge and sediment yield at the Terou-
Igbomakoro outlet. 
 
Large uncertainties in the sediment peaks are also triggered by uncertainties in the 

fraction of surface runoff, which are not visible in the graph for total discharge. At the 

 
Fig. 8.5: Sensitivity of mean annual sediment yield to changes of parameters ALPHA_BF and CH_K2 
(red dot: parameter value and simulated mean sediment yield for the period 1998-2001, red line: 
polynomial regression, for ALPHA_BF: logarithmic regression). 
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beginning and end of the rainy season, the confidence interval for the sediment yield 

is very small.  

 
8.3. Uncertainties in observed data for model calibration and 

validation  
 

Uncertainties in the measurements for model calibration can be very large and can 

heavily affect calibration results. In the following, the uncertainties related to the 

discharge and suspended sediment curves are discussed.  

Discharge curves 

The discharge data were derived from continuous water level records at gauging 

stations via site-specific water level (H) – discharge relationships (Q). Before 2000, 

the water level at Terou-Igbomakoro outlet was only recorded daily from a batten 

gauge. In general, H-Q relationships include high uncertainties; in natural tropical 

rivers in particular, erosion and sedimentation processes in the river bed and 

seasonal growth of bank vegetation lead to highly dynamic cross-sections. One large 

discharge event can completely change the H-Q relationship. As determining the 

relationship requires a great deal of effort, the curves are often not updated for 

several years. 

For example, at the Aguima outlet, a large discharge event in September 2003 

completely changed the H-Q relationship. In 2005, a new relationship was 

determined. Using the old relationship would have changed the discharge amounts 

by a factor of two (oral comm. Giertz). 

 
Fig. 8.7 Confidence interval (90%) for mean weekly discharge and sediment yield at the Donga-Pont 
outlet. 
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For the considered outlets in the Upper Ouémé 

catchment, the H-Q relationships were determined 

about every 3 to 10 years by the French research 

project CATCH/AMMA and the General 

Directorate of Water (DGEau Benin). For example, 

for Terou-Igbomakoro outlet, one H-Q relationship 

was used for the period 1993-2003. Moreover, the 

measurements of extreme discharge events often 

include large uncertainties due to flooding of 

riparian zones and rare corresponding 

measurements in the H-Q relationship. The high 

uncertainties in the measured discharge peaks 

hamper the evaluation of the model results 

because the model efficiency is very sensitive to extreme events. Furthermore, the 

geomorphology of the river bed limits discharge measurements at the beginning and 

end of the rainy season. For example, at the Terou-Igbomakoro outlet, discharge flow 

at the position of the limnigraph stops days to weeks earlier than in other parts of the 

river bed at the same cross-section (Fig. 8.8). As a consequence, measured annual 

discharge is underestimated.  

Baseflow separation with a digital filter programme and measurements of the 

electrical conductivity allow only a rough estimation of the discharge components. 

However, both methods lead to similar results. Thus, the digital filter programme 

seemed suitable for evaluating the simulated discharge components on an annual 

basis. 

Suspended sediment curves 

Uncertainties in the suspended sediment curves can be attributed to the turbidity 

recordings, water sampling and gravimetric determination of suspended sediment 

concentrations. In particular, in the year 2004, large gaps in the measurements 

hampered the calculation of annual sediment yields and the quality of sediment 

calibration. The high uncertainties in the turbidity records are related to pollution of 

the optical sensor during extreme events and periods with extremely low water 

levels. In periods with low water levels, the position of the turbidity sensor was 

lowered to a minimum distance of 20 cm above the river bed in order to capture small 

 
Fig. 8.8 Stagnant water around the  
turbidity probe at the Terou-Igboma- 
koro outlet (11/2005). 
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events. However, after large discharge events at the beginning of the rainy season, 

the probe was often covered by mud or leaves and the wiper could not properly clean 

the optical sensor before the next measurement. In some cases, the turbidity values 

remained extremely high for several days until the next discharge event cleaned the 

optic. Although such artificially high turbidity values were removed from the dataset, it 

was difficult to choose a suitable threshold as the problem occurred mostly after large 

events. The turbidity measurements were plotted against the discharge 

measurements in order to identify an appropriate threshold; a maximum threshold for 

turbidity of 800 NTU (nephelometric units) seemed reasonable for the Donga-Pont, 

Terou-Igbomakoro and Aguima subcatchments. In the small and very intensively 

used Donga-Kolonkonde subcatchment, higher values seemed reasonable. 

However, the threshold can significantly influence the turbidity and SSC relationship 

as well as the sediment curves, because it defines the highest suspended sediment 

peaks. A threshold of 400 NTU would have reduced the annual sediment load at 

Donga-Pont outlet by a factor 2.5. For the other two outlets, this threshold would 

have caused only minor changes. Similar problems have been reported in the 

literature.  

At three of the four installation points of turbidity probes, short-term measurements 

were taken at a higher temporal resolution in order to study the influence of the 

resolution. In all cases, the 30-minute interval for turbidity measurements was 

sufficient to capture the temporal pattern of turbidity (Fig. 8.9). However, during 

extreme events, single peaks of sediment load may be missed. According to 

Hasenpusch (1995), turbidity probes generally underestimate high concentrations of 

suspended sediment. The turbidity – suspended sediment relationship at an outlet 

may also vary during the year depending on different sediment sources. In this study, 

the different components of suspended sediment were not analysed, but as a rough 

indicator for the different sources, the colour of the filtered sediment was recorded. 

Gray, dark grey or black were dominant at all four sampling outlets, followed by 

brown sediment. At Donga-Kolonkonde outlet, red sediment also appeared. No clear 

relationship between sediment colour and date or sediment amount could be 

identified. 

The uncertainties in water sampling are rather low. Repeated measurements 

revealed that a time lag of a few minutes and a horizontal distance of a few meters 
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between the limnigraph and the sampling point did not produce large differences in 

the determined suspended sediment concentration. 

While water sampling was 

restricted to near-surface 

water, the turbidity 

measurements were 

recorded at greater depths. 

However, it was assumed 

that turbulent flow 

conditions lead to a fairly 

homogeneous vertical 

distribution of suspended 

sediment concentration at 

the main outlets.  

The most important source of uncertainty in the gravimetric determination of 

suspended sediment concentration was the air humidity of 40 to 100%, since no 

exsiccator was available. In order to minimize the falsifying effect of air humidity, the 

filters were weighed before and after filtration at the same air humidity. Furthermore, 

an optimal cooling time of 30 to 60 minutes was determined to guarantee equilibrium 

of the humidity of the filter with the surrounding air. In addition, reference filters were 

treated in the same manner as the other filters in order to survey accuracy. Following 

this procedure, the difference in determined suspended sediment concentrations due 

to slight differences in the humidity of the filters was lower than 0.01 g per litre. 

Handling errors in the gravimetric determination were higher in the first year of 

sampling (2004). Blind filtration tests with distilled water confirmed the cleanness of 

the filter paper. For water samples with very low sediment concentrations, the 

accuracy of the balance of 0.005 gram was a limiting factor.  

The model was calibrated against suspended sediment yields. This implies an 

underestimation of the total sediment yield, since the bed load was not considered. 

Sintondji (2005) measured bed loads of 45.7 tons from September 2003 to January 

2004 at the Terou-Igbomakoro outlet. However, his method implied high uncertainties 

and was not applicable to the middle discharge period with water heights above two 

meters. Beyond this, no data were available for the catchment regarding the annual 

fraction of bed load. 

Resolution of turbidity measurements - Donga-Pont
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Fig. 8.9 Temporal resolution of turbidity measurements: 
comparison of a 3-minute and 30-minute interval at the Donga-
Pont outlet. 
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8.4. Evaluation of uncertainties in the modelling process  
 

As noted, a wide range of uncertainties must be considered when interpreting the 

modelling results of this study. Table 8.5 evaluates the various sources of 

uncertainty. The uncertainties in input and calibration data are major contributors. For 

the input data, soil and rainfall data show the highest uncertainties, while of the 

calibration and validation data, the sediment measurements have higher uncertainty 

than the discharge data. The accuracy and completeness of the suspended sediment 

measurements could be significantly improved by more frequent surveillance of the 

turbidity probes, the use of an exsiccator for gravimetric determination, and improved 

discharge – SSC curves via additional water sampling during stormflow events. 

The uncertainties due to the model structure are difficult to quantify. Future studies 

should address channel degradation.  

The sensitivity analysis identified as the most sensitive calibration parameters: CN2, 

ALPHA_BF, SOL_AWC, SURLAG, CH_K2, GWQMN, RCHRG_DP and SPCON.  

Additional efforts to determine these parameters could significantly reduce parameter 

uncertainty. In particular, more detailed knowledge regarding the groundwater 

parameters (GWQMN, RCHRG_DP) and the physical soil parameters (SOL_AWC, 

CH_K2) should be acquired for the Upper Ouémé catchment.   

The uncertainties in the scenario results are significantly higher than in the modelling 

results for the period 1998-2005. This is due to higher uncertainties in the climate 

and land use data, partially caused by limited computational power and insufficient 

process understanding. According to Mahe et al. (2005), an increase in computer 

Table 8.5 Evaluation of the different sources of uncertainty in the modelling results. 
Model setup 

1998-2005
Scenario analysis 

2001-2025/50
++ very high uncertainty

Relief - - + high uncertainty
Land use map +/- ++ +/- mean uncertainty
Vegetation parameters (+) (+) - low uncertainty
Soil + + (+) high uncertainty, but low sensitivity
Climate + ++ xxx input parameter not necessary

Discretisation +/- +
Surface runoff +/- +/-
Groundwater + +
Sediment +/- +/-

Discharge data + xxx
Sediment data ++ xxx
Baseflow separation +/- xxx

Model assumptions

Calibration/Validation data

Input data
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power in the upcoming years will significantly improve climate models by allowing the 

consideration of land surface feedbacks and atmospheric aerosols. A spatially 

differentiated algorithm for pre-processing land use maps could improve the scenario 

analysis. However, the input data for model calibration and validation and scenario 

analysis were very good compared to the data availability for most large African 

catchments.  
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9. OPTIONS FOR SUSTAINABLE LAND USE 
 
In this chapter, possible options and priority areas for soil management in the Upper 

Ouémé catchment are explored based on the field investigations (Chapter 6), 

modelling results (Chapter 7) and existing experiences with soil management in 

Central Benin (Section 9.2). Therefore, modelling results are synthesized and 

simplified in a way that facilitates their communication to decision makers and 

integration into a decision-support system for stakeholders in Benin. By re-

connecting the biophysical research results to the socioeconomic and institutional 

context more specific recommendations can be derived for policy makers and 

development workers in Benin.   

 

9.1. Hotspots of soil erosion in the Upper Ouémé catchment  
 

Current and future hotspots of soil erosion have been identified in the modelling 

process (see Chapter 7). In the following some of the maps of Chapter 7 illustrating 

the spatial pattern of sediment yields will be presented again but with communal 

borders replacing the subbasin borders as these are more relevant for most 

stakeholders in Benin. However, only the parts of the communes within the 

catchment are considered. For the recent period 1998-2005 hotspots of soil erosion 

occur in the communes Djougou, Copargo and Parakou (Fig. 9.1). Surface runoff is 

also elevated in the commune Ndali and in the small part of the commune Sinende 

which lies in the Upper Ouémé catchment. As already discussed in Chapter 7, the 

hotspots result from high land use intensities (communes Copargo, Djougou, 

Parakou) and harsh climatic conditions (communes Copargo, Djougou, Ndali, 

Sinende).  

The absolute values of sediment yield have not been translated into qualitative 

categories such as low, medium and high, as such an evaluation would require 

additional knowledge about acceptable soil loss tolerances based on thresholds for 

productivity loss and expert knowledge in the country. However, the qualitative 

categories of the national action plan for desertification control (Table 9.1) and the 

map of soil degradation for Benin (Fig. 9.2) from MEHU (2003) give an idea how the 

quantitative values can be interpreted in the national context of Benin. The table and 
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the map show that the Upper Ouémé catchment covers the whole spectrum of the 

country with regard to soil degradation ranging from large protected forests to highly 

degraded areas in the north-western part of the catchment (communes Djougou and 

Copargo). The latter belongs to the regions which are strongly affected by 

desertification in its wider sense, whereas the Ndali region in the north-eastern part 

of the catchment is moderately affected (Table 9.1). The main part of the catchment 

(communes Bassila, Tchaourou, Parakou) is considered as not affected by 

desertification processes. Except for Parakou, this is consistent with the findings from 

the field investigations and modelling of this study.  

Figure 9.2 provides additional details with regard to the dominant type of soil 

degradation and the resulting extent of productivity loss in Benin. It shows that the 

most degraded areas in north-western Benin are characterised by sheet and rill 

erosion by water and wind erosion, as well as by strong nutrient depletion, which is 

 
Fig. 9.1 Mean sediment yield for 1998-2005 in the Upper Ouémé catchment (left), communal borders 
within the Upper Ouémé catchment (right). 

Table 9.1 Zones of severity of desertification in Benin according to MEHU (1999). 

Intensity of desertification Region 
Strongly affected Boukoumbé-Cobly-Matéri-Tanguieta, 

Ouaké-Djougou-Copargo, 
Karimama-Malanville-Kandi-Banikoara-Ségbana 

Moderately affected Cotton regions: Kouandé, Kérou, Kalalé, Bembéréké, 
Sinendé, Ndali, Nikki 

Slightly affected Zou-Sud, l’Atlantique, parts of Ouémé, Couffo and Mono 
Not affected All other communes  
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the major degradation type in Southern Benin. The estimated extent of productivity 

loss varies within the Upper Ouémé catchment. 

In summary, whereas a 

small part of the Upper 

Ouémé catchment belongs 

to regions of the country 

that are most affected by 

soil degradation, other parts 

are still covered by 

protected forests and not 

degraded. In comparison to 

the entire country, the 

population density and the 

fraction of cropland are still 

rather low in most of the 

Upper Ouémé catchment. 

However, this is changing.  

The impacts of land use and 

climate changes on the 

amounts of soil loss and 

future hotspots of soil 

erosion have been identified 

in Chapter 7. Figure 9.3 

shows the spatial pattern of 

sediment yield for the land 

use, climate change and combined scenarios, similar to Fig. 7.63 in Chapter 7. 

However, while Fig. 7.63 shows only the results for the “business as usual” scenario, 

Fig 9.3 presents scenarios L1 and L2 to cover the entire range of simulated future 

sediment yields. As discussed previously, increases in sediment yield are most 

drastic for the land use scenario L2_2025, for which the fraction of cropland more 

than doubles in the Upper Ouémé catchment due to increased population growth and 

a constant cropland demand per capita. This scenario assumes economic stagnation 

and that institutional insecurity is leading to a massive encroachment of cropland into 

protected forest areas in the communes Bassila, Tchaourou and Ndali. For this 

 
Fig. 9.2 Map of soil degradation in Benin (modified from 
MEHU 2003).  
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scenario, sediment yield strongly increases in all communes of the Upper Ouémé 

catchment; in particular, a new hotspot is evolving in the southern part of the 

catchment, affecting the communes of Tchaourou and Bassila. In contrast, increases 

in sediment yield are moderate for scenario L1_2025, which assumes an 

intensification of agricultural production triggered by economic growth and successful 

decentralisation, leading to an expansion of the cropping area by “only” 51%.  

As a consequence of reductions in rainfall by 3% and 4%, the climate scenarios lead 

to a decrease in sediment yield by 5% and 14% for scenarios B1 and A1B, 

respectively. Differences in the spatial distribution of sediment yield between the two 

scenarios are not visible in Fig. 9.3. Sediment yield is in particular reduced in the 

commune Djougou, but also increases in some communes (e.g., Parakou, Bassila).  

The combined scenarios A1B_L1 and B1_L2 for 2001 to 2030 combine the effects of 

climate and land use change. As a consequence of this interaction and the 

consideration of the land use maps for 2000, 2010, and 2020, and not only 2025, 

increases in sediment yield appear to be less drastic. The strong increase in 

sediment yield in the commune Djougou resulting from land use change is weakened 

 
Fig. 9.3 Mean sediment yield for the range of climate, land use and combined scenarios in the Upper 
Ouémé catchment compared to the original model (1998-2005) and the model with REMO data for 
1960-2000. 



9.OPTIONS FOR SUSTAINABLE LAND USE 

 

205

by decreases in sediment yield due to climate change. For the commune Bassila, 

slight relative increases in sediment yield due to climate change combine with strong 

relative increases due to land use change, but the absolute increase is still too small 

to be seen in Fig. 9.3. For the whole range of combined scenarios, sediment yield 

increases significantly in the southern and north-eastern parts of the catchment.          

To summarise, current hotspots of soil erosion in the Upper Ouémé in the communes 

Djougou, Copargo and Parakou are expected to become aggravated within the next 

two decades due to massive cropland expansion. The north-eastern corner of the 

catchments with already elevated sediment yields will develop into a hotspot (parts of 

communes Ndali, Sinende, Bembéréké). A new hotspot of soil erosion is expected to 

occur in the southern part of the catchment (parts of communes Bassila and 

Tchaourou). As a consequence of reduced rainfall, simulated by the climate model 

REMO, the increase in sediment yield could be weakened in some parts of the 

catchment, in particular the commune Djougou.  

However, the results of the climate scenarios must be interpreted carefully, since 

current climate models provide different signals for future rainfall trends in West- 

Africa (IPCC 2007). Although the REMO simulations follow the observed trends of 

reduced rainfall in the Upper Ouémé catchment, rainfall may also increase in the 

coming decades, and, combined with increased rainfall variability accelerate rather 

than reduce annual sediment yield. Due to these uncertainties, decision makers may 

identify future hotspots of soil erosion from the maps for the land use scenarios 

rather than for the combined scenarios. However, decision makers should also keep 

in mind that the socioeconomic scenarios behind the land use scenarios do not 

capture all possible interventions. For example, the construction of new roads or 

asphalt coatings of existing earth roads in the Upper Ouémé catchment could 

significantly influence the spatial pattern of land use (see intervention scenario by 

Judex 2008) and would hence modify the sediment yield maps presented in this 

work.   

Furthermore, the results of the climate scenarios for the Upper Ouémé catchment 

should not be misinterpreted, in the sense that less rainfall means less erosion and 

that climate change could therefore be beneficial in terms of combating soil 

degradation. First, changes in rainfall play out differently within the catchment, and 

decreases in absolute rainfall amounts do not necessarily mean less erosion due to 

increased rainfall variability. Second, decreases in the water yield due to reduced 



9.OPTIONS FOR SUSTAINABLE LAND USE 
 

 

206 

rainfall have a number of negative consequences, including reduced growth of 

natural vegetation and crops, which, in turn, would reduce vegetation cover and 

enhance surface runoff and soil erosion by water. Third, in the long run, increasing 

temperatures will increase Corg losses in the topsoil through enhanced decomposition 

and more frequent and intense fires, and they will reduce vegetation cover through 

increased heat stress of the plants, thus also enhancing soil erosion by water.   

The modelling results identified current and future hotspots of soil erosion in the 

Upper Ouémé catchment. These investigations at the catchment scale complement 

the detailed local studies from Junge (2004) about soil erosion rates for specific 

farming systems in the Aguima subcatchment. Knowledge about soil erosion 

processes at multiple scales is required to derive recommendations regarding 

suitable soil management measures at the catchment scale. Sustainable soil 

management measures not only enhance soil fertility and crop yield but also 

contribute to climate change adaptation and mitigation. Activities to improve soil 

management should build on the wide range of existing, but often very local, 

experiences in Central Benin.  

 

9.2. Soil conservation in Central Benin – Status quo 
 

The roots of soil erosion management lie in the farming system, as soil erosion 

decreases exponentially with an increase of vegetal cover (Lal 1990). Therefore, soil 

erosion prevention goes far beyond structural measures and includes a wide range of 

plant and soil management activities in order to maintain soil fertility and the 

productive capacity of the soil. Before discussing the soil conservation measures that 

have been promoted in Benin, the national institutional framework related to 

resources management and agricultural production will be presented, as it is crucial 

for the long-term sustainability of development activities. 

 

9.2.1. The institutional framework  
 

The institutional landscape in Benin is complex and dynamic. Therefore, it is 

impossible to present a complete overview of the institutional landscape related to 

natural resources management and agricultural production in Benin. In development 
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cooperation, various donors act in the country and have built parallel structures to the 

public system. Although the coordination and coherence of their activities has 

improved in the last year, in particular in the health and education sectors, it remains 

insufficient (MEHU 2005). Furthermore, institutional structures are changing due to 

the ongoing decentralisation process and the new government in 2005. Figure 9.4 

provides an overview of the main actors in the sustainable management of soil 

resources in Benin.   

Development projects 

In the seventies, soil conservation projects were initiated in Benin after several 

severe droughts, for example in the Atacora region. This region, which is strongly 

affected by soil degradation, has a long history of soil conservation activities. From 

1963 to 1969, the project SEDAGRI1 promoted the construction of terraces 

(banquettes) and walls (diguettes), and later chemical fertiliser for groundnut, 

composting and tree plantations with Acacia, Eucalyptus and Sienna. In the eighties, 

development aid focused on developing sustainable agricultural systems, but no 

significant progress was achieved. The UNSO project intensively promoted 

reforestation in the commune Ouaké from 1985 to 1990 (GTZ-AFD 2004). 

                                            
1 The names of the projects are explained at the Abbreviation Section, page xxiv. More details about 

the projects can be found in Table C.1 in Appendix C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.4 Actors in the field of sustainable management of soil resources in Benin. 
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In the nineties, several resources management projects, like PGRN (1984-1989), 

PGTRN (1999-2005) and a project to combat bush fire (1986-1990), followed. Since 

that time, more attention has been given to participatory approaches. For example, 

PGTRN elaborated local land use codes (code local) in the framework of land 

management plans (Plan de Gestion de Terroir). Land management plans were 

developed for 99 villages and 13 village-associations within this project (GTZ-

AFD 2004). Furthermore, several unions for resources management with the status 

of NGO were formed. The project PPEA, which started in 1983 as an animal health 

project in the Atacora region, changed its focus to adapting production patterns and 

established common land use planning between farmers and livestock keepers 

(Kirk 1996). In 2004, GTZ launched the programme ProCGRN with the objective of 

promoting sustainable land use considering the new institutional setting 

accompanying the decentralisation process. One major focus is to integrate 

participatory land use planning at the village level into communal development plans. 

The target regions of this programme are the departments of Cotonou, Atlantique, 

Donga and Atacora. The programme integrates several former GTZ projects 

including PGTRN, PPEFB and PRRF. In the Upper Ouémé catchment, resource 

management activities are mostly focused on managing the protected forest in the 

south (e.g., GTZ project PRRF) or on the densely populated areas in the west. The 

sequence of GTZ projects PGRN-PGTRN-ProCGRN covered only four villages in the 

Upper Ouémé catchment, namely Anum, Gondessar, Bandessar and Dangoussar in 

the Barei district (GTZ-AFD 2004).  

In the last decade, development aid has focused mainly on infrastructure, micro 

credits, decentralisation and diversification of agricultural production. Very few 

agricultural development projects address the unsustainable cultivation of the main 

food crops (Singer 2005). One exception is the project PDRT, which propagates 

cassava and other tubers as alternatives to cotton and promotes sustainable 

production methods in the whole country. In the Upper Ouémé catchment, PDRT 

works with several environmental NGOs and covers up to ten villages per commune 

(e.g., Manigri, Kikilé, Gaouga, Alafiarou, Fo-Bouré, Sonnomoun, Bori). In 2007, a 

large GEF-financed project (Forests and adjacent land management project, FAMLP) 

was launched. The project acts in 16 forests in northern and central Benin, including 

the Fôret classée in the central Upper Ouémé catchment. The project focuses on 

community-based forest management and promotes, in cooperation with the 
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extension services (CeRPAs), improved agricultural techniques and agro-forestry in 

order to combat soil degradation (World Bank 2006). The ongoing projects 

concerning soil conservation, acting partially in the Upper Ouémé catchment, are 

summarized in Table 9.2. Besides field projects, international donors also perform 

national policy consultations, e.g., at the Ministry of Agriculture (MAEP) and the 

Ministry of Environment (MEPN), and support agricultural research. However, 

responsibilities are unclear due to the decentralisation process, and the weak 

capacities of the agricultural extension services hamper the effectiveness of project 

interventions. 

Non-Governmental Organisations (NGOs) 

In the nineties, international donors strengthened the private sector and civil society 

in order to compensate for the negative effects of the structural adjustment 

programmes (Singer 2005). Today, most donors prefer to cooperate with private and 

civil entities and try to avoid involving governmental agencies in project 

implementation. Only in the education and health sectors close cooperation with 

governmental agencies still exists. In 2003, more than 3000 NGOs were registered in 

Benin (DED 2003). Among them are 77 environmental NGOs, most addressing 

Table 9.2 Ongoing projects concerning soil conservation acting partially in the Upper Ouémé 
catchment (Sources: SINGER, 2005; MEHU, 2005; own investigations). 

Project Interven- Related
name tion zone NGOs in HVO
PDRT IFAD, 

BOAD
 2001-
2008

Whole 
country

all Manioc 
production, 
sustainable 
agriculture

GERED, Alpha & 
Omega, Vie & 

environnement, 
CoVADES Benin*

FALMP GEF, World 
Bank

 2007-
2011

16 forests in 
Central/ 

North Benin

Tchaourou, 
Ndali

Community-
based forest 
management 

in process

ProCGRN GTZ,KFW, 
World 

Bank,AFD,
BAD

 2004-
2014

Atacora, 
Donga, 

Cotonou, 
Atlantique

Djougou Sustainable 
resource 

management

Alpha & Omega 

PAEB Nord DWHH, 
DED, EU

 2007-
2009

Borgou, 
Donga

Bassila, 
Ndali

Sustainable 
agriculture, 
resource 

management

GERED, 
CERABE, 

AGEDREN

Millenium 
villages

DWHH  2007-
2010

village 
Manigri

Bassila Agroforestry, 
micro credits, 
water sector

AGEDREN

Donors Period Commune 
HVO

Objectives

 
* complete list: http://www.pdrt.info. 
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environmental education. In recent years, a trend towards fusion of NGOs can be 

observed (oral comm. Zanou 2005, MEPN). The study of Singer (2005) in southern 

Borgou showed that most NGOs have almost no budget or are financially completely 

dependant on donors and therefore widely reproduce the donors´ agenda. NGOs are 

often closely linked to one donor who created or pushed this NGO in the past and 

continues this involvement for many years (cf. Table 9.2). For example, the NGO 

Alpha & Omega Environment works mainly for the GTZ project ProCGRN, while the 

NGOs AGEDREN, GERED and CERABE are financed mainly by PAEB North. Alpha 

& Omega Environment covers a wide spectrum of activities from watershed 

management, land use planning, land tenure, water sanitation and improved fire 

places to environmental education (GTZ-AFD 2004).  

Research institutions 

In the nineties, the focus of research switched from anti-erosive structures to soil 

fertility and the agricultural production system itself. Beninese studies on local soil 

erosion were performed in Alafiarou and Cotonou by the National Centre of Agro-

Pedology (CENAP) until 1998. In 1995/1996, the FAO supported national erosion 

research. On-farm soil fertility research was promoted from 1986 to 1999 through a 

German collaborative research centre at the University of Hohenheim (SFB 308). 

Since 2002, soil fertility research is mainly conducted at the National Institute for 

Agricultural Research (INRAB) in Savé, and partly also in Bohicon and Kandi. The 

INRAB section in Niaouli and the International Institute for Tropical Agriculture (IITA) 

in Cotonou focus on seed and genetic research. National research depends highly on 

external resources.  

Governmental structures and policies 

The Ministry of Agriculture (MAEP) and Ministry of Environment (MEPN) are of 

particular interest for soil resource management. Until 2006, the Directorate of 

Forests and Natural Resources of the MEPN (DFRN) was part of the MAEP. This 

institutional change is expected to improve communication in environmental policies. 

The MAEP partially finances agricultural research and agricultural consultancy 

(CeRPAs). Another important institution is the Beninese Agency of Environment 

(ABE), which is linked to the MEPN and supported by several donors (MAEP 2004). 

For example, ABE orders research studies on soil fertility at the INRAB and prepares 



9.OPTIONS FOR SUSTAINABLE LAND USE 

 

211

them for the ministries. Despite the severity of the problem, soil degradation and 

desertification are not prior topics of governmental policies. Nevertheless, there exist 

several initiatives to put this important topic on the agenda: In 2002, an operational 

plan and a strategy for sustainable soil fertility management were elaborated. Two 

years later, an action plan for sustainably managing natural resources and soil fertility 

was released (MAEP 2004). The costs for implementing the plan for integrated soil 

fertility management are estimated at 10.7 billions FCFA (16.3 million euro). The plan 

emphasises the role of participation, necessary changes in the legislative and 

institutional frameworks, the need to improve technology transfer and the distribution 

of inputs incorporating the private sector. DIFOV, INRAB, DFRN, CeRPA and the 

private sector are mentioned as acting institutions. The government is highly 

dependent on development aid. In 2002, payments of bi-national and multinational 

donors contributed 68.7% to the national income (République du Bénin 2002).   

Producer organisations (groupement villageois) and regional centres for rural 

development (CARDERs) were founded in the eighties in order to organize cotton 

production. The CARDERs (now CeRPAs) supply the producer organisations with 

input, give advices and buy cotton from the producer organisations. Ox-ploughing 

and agrarian credits were introduced. In the nineties, structural adjustment 

programmes weakened the national agencies considerably. Today, the CeRPAs 

promote above all the production of individual crops and monocultures instead of 

general sustainable production methods (MAEP 2004).  

UNCCD structures 

The Republic of Benin signed and ratified the United Nations convention to combat 

desertification (UNCCD) in 1994 and 1996. The ten-year national action plan to 

combat desertification (PAN/LCD) was approved in 1999 (MEHU 1999). The plan 

identified eight prior intervention topics, among them the efficient management of 

water resources and land tenure and land management issues. An inter-sectoral and 

multidisciplinary national committee (CNLD) was established with a permanent 

secretary at the MEPN (MEHU 2005). The participation of the civil society is 

warranted by a hierarchic participation of NGOs. In 1997, three NGOs (Friends of the 

Earth, Benin21, ACED) formed a national network, called RIOD Benin, which is now 

supported by the three founder NGOs plus six further NGOs as representatives for 

the twelve departments. In the Upper Ouémé catchment, the development 
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association ADD Ndali and the NGO CJEBS represent the NGOs in the departments 

Borgou/Alibori and Atacora/Donga (oral comm. ZANOU). An evaluation report 

(MEHU 2005) identified several constraints of the PAN/LCD. First, the programme 

was formulated without a logical framework defining the objectives, indicators and the 

evaluation procedure. Second, there is a lack of coordination between the sector-

specific interventions in different sectors and most executed projects are not directly 

initiated by the PAN/LCD. Furthermore, financing from the national budget, 

international funds and NGOs is insufficient.  

 
9.2.2. Promoted soil conservations measures  

 

A large variety of soil conservation measures has been promoted in Benin during the 

last several decades. The advantages and disadvantages of each measure are 

summarized in Table C.2 in Appendix C. In the following, the measures are 

described within the categories of cultural technology and soil tillage, plant 

management, fertiliser and general conditions. Further details about soil conservation 

measures in Benin can be found in De Haan (1998), Gandonou (2000), FAO 

(2001a), GTZ-AFD (2004), GTZ-AFD (2003), Fadohan (2004), Gantoli (1997), and 

INRAB (2001, 2002).  

Cultural technology and soil tillage 

Field limitations of earth, stone walls or bushes and tillage directions perpendicular to 

the slope were promoted by several projects, including UNSO and PGTRN (GTZ-

AFD 2004). Figure 9.8 illustrates two promoted tillage directions: perpendicular to the 

slope and shifted earth mounds for yam cultivation (en quinconce). Although most 

farmers in the Upper Ouémé catchment are aware of the relationship between tillage 

direction and erosion, many prefer a slope direction parallel to the slope to improve 

drainage in order to avoid water stagnation around the crop, which could lead to yield 

losses (Mulindabigwi 2006). In order to prevent erosion and a loss of soil humidity 

from the bare yam mounds at the beginning of the rainy season, some ethnic groups 

cover the tops of the mounds with mulch or mud (see Fig. 9.5a). 

Due to the absence of mechanisation, tillage is quite reduced. Ox-ploughing is only 

widespread in the northern Borgou department, where it was introduced by UNDP 

and the World Bank in the seventies for cotton production (De Haan 1998). In the 
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Upper Ouémé catchment, ox-ploughing is only relevant in the northern part. Studies 

on erosion plots in Alafiarou in the south-eastern part of the catchment showed 

positive effects of ox-ploughing resulting from increased infiltration rates (oral comm. 

Azontonde, CENAP). However, many environmental experts consider zero tillage 

with crop residues as mulch as a better option than ploughing. 

As mentioned in Chapter 3, massive anti-erosive structures were widely promoted in 

the seventies and eighties but were only adopted in areas with steep slopes and 

stony soils, like the Atacora Mountains. Gandonou (2000) mentioned as traditional 

anti-erosive measures for medium and steep slopes in this region stone strips 

(Cordons pierreux), honeycomb structures (Nids d’abeilles) and partitioned fields 

(Billonage cloisonné). 

Fig. 9.5 Promoted tillage directions on fields: (a) yam mounds en quinconce, (b) tillage direction 
perpendicular to the slope. 
  

In inland valleys, hedgerows (Haies de pourghère), earth mounds and stone dams 

(Micro-barrages en pieux) are constructed to protect yam fields. However, these 

measures alone cannot stop soil erosion; changes in plant management are 

essential.  

Plant management 

Activities in the seventies focused on appropriative crops, improved varieties, 

diversification and the use of mineral fertiliser. In the eighties, in-situ production of 

biomass as organic fertiliser became more important. Stylosanthes, manuring and 

composted straw were promoted (Floquet et al. 2002). In the nineties, agricultural 

research and development projects in Benin put effort into establishing legumes as 

cover crops or components of agro-forestry systems in order to improve soil fertility 

and minimise erosion. Thus, integrated management of soil fertility was propagated. 
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National and international research institutes like INRAB, IITA and SFB Hohenheim 

tested the efficiency of several legumes on research stations in southern Benin and 

later in on-farm experiments. The legumes Mucuna pruriens, Gliricidia sepium, 

Leucaena leucophaelia and Cajanus cajan were identified as most suitable. Other 

legumes, like the cover crop Pueraria javanica or the woody legume Morengas sp., 

were rejected because they were less efficient in preventing soil erosion and soil 

fertility decline or led to strong crop yield losses (oral comm. Azontonde). Although 

alley-cropping experiments with Leucaena leucophaelia in South Benin showed 

enormous increases in maize yield (oral comm. Azontonde), introduction at the farm 

level failed due to high labour and space requirements. Insufficient maintenance led 

to competition between hedges and crops and did not significantly increase the 

carbon levels of the soil (Wallace et al. 2005). Cajanus cajan, Mucuna sp. and 

Leucaena leucocephalia were also promoted by several development projects like 

PGTRN, PPEA and PBEBE. Besides agro-forestry, the project PPEA propagated 

composting, excrement from animals, crop rotation, associations (e.g., 

maize/sorghum with groundnut, niebe/yam with gombo, maize with cowpea) and the 

distribution of crop residues after harvest or herbaceous biomass during the cropping 

season to maintain humidity and prevent erosion. Today, most farmers in northern 

Benin use the deep-rooted, drought-resistant legume groundnut in crop rotation to 

improve soil fertility. In the Upper Ouémé catchment, crop rotation also follows an 

alternating pattern of soil-degrading and soil-conserving crops (Mulindabigwi 2006).  

Mucuna pruriens var. utilis (see Fig. 9.6) was tested in 1983 by CENAP researchers 

as a very efficient, fast-growing cover crop that is sown 45 days after maize and 

completely covers the soil after maize harvest (Donovan & Casey 1998). Mucuna 

 
Fig. 9.6 Cover crops in association with Maize: Niebe sp.                           Mucuna sp. 
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reaches maturity in 150 to 200 days. Afterwards, it is slashed and left as a mat of 

decomposing leaves and stalks, into which the next crop is planted directly. The on-

farm research project RAMR tested Mucuna in the Adja plateau in South Benin with 

20 farmers in 1986/87 and observed spontaneous adoption by 103 farmers in the 

neighbourhood in 1989 (UNDP 2002). The main reason was the effective 

suppression of weeds (Imperata) through Mucuna. Because of this success, Mucuna 

was widely promoted in southern Benin and later also in northern Benin. The NGO 

Sasakawa Global 2000 promoted Mucuna through the extension services 

(CARDERs) and reached more than 40.000 Beninese farmers by 1997 

(UNDP 2002). Although adoption rates were still high after 5 years (67%), many 

farmers finally abandoned the technology due to various constraints (see Table C.2 

in Appendix C) (Floquet et al. 2002). In 2001, only 24% of the farmers in the villages 

where RAMR introduced Mucuna in 1986/87 were still applying the technology 

(UNDP 2002). Land scarcity in South Benin and high labour demand were the main 

reasons for this (FAO 2001a). Today, the cover crop niebe (see Fig. 9.6) is gaining 

popularity. Traditionally cultivated for consumption in the Couffo region, the new 

niebe variety Vohounvo is as effective as Mucuna as a cover crop and offers 

additional short-term benefits. When the first crop (maize or groundnut) grows 

between March and August, niebe follows as second crop from August to October 

(oral comm. Azontonde). 

The fast-growing bushy legume Gliricidia was introduced by INRAB and 

SFB Hohenheim in 1985/1986 because legume trees needed high phosphorus 

contents and shaded too much. Gliricidia is planted in rows, and the regularly-cut 

 
Fig. 9.7 Agro-Forestry: Cajanus cajan. Gliricidia sepium. 
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branches and leaves are used as mulch to fertilise the soil (see Fig. 9.7). After two 

years of establishment, Gliricidia allows a settled cultivation of yam. The yam should 

alternate with maize or groundnut/niebe to prevent parasites (Maliki et al. 2002a). 

The project PGTRN promoted the Gliricidia-yam based cropping system from 2001 to 

2003, reaching 168 farmers in the commune Ouaké. One of the target villages, 

Bandessar near Djougou, is part of the Upper Ouémé catchment. However, auto-

diffusion was not achieved because the purchase of plants from nurseries was too 

expensive and direct seeding did not work well (GTZ-AFD 2004).  

Vetiver hedges were introduced in 1995 by the IITA (see Fig. 9.8). Although 

propagated in the whole country, e.g., by the project PGTRN, adoption by farmers 

was only successful in a few cases. Nevertheless, Vetiver hedges are still promoted 

by projects like ProCGRN and PDRT in northern Benin. 

Several projects also promoted planting trees in the field (improved fallow). During 

the fallow period, these trees improve the soil properties and offer the benefits of 

valuable wood, natural essences or food. Some trees like Afzelia Africana are cut 

after each fallow period (oral comm. Loconon, AGEDREN). The project PAEB North 

encouraged farmers in the forest region Bassila to keep trees or to plant young trees 

(up to 40 trees/ha) like Acacia auriculiformis, Afzelia africana, Milicia excelsa, 

Pseudocedrela kotchyi, and Khaya senegalensis in their fields. Acacia fallow was 

also promoted for firewood production by the Projet de Bois de Feu between 1986 

and 1995. In this period, more than 4000 Beninese farmers implemented Acacia 

fallow as forest or as fallow (Floquet et al. 2002). The managed tree fallows were well 

accepted by farmers as they directly refer to their traditional understanding of soil 

fertility management.  

  
Fig. 9.8 Vetiver hedges near Barei.    
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Development projects that tried to sensitize the population to the negative effects of 

regular burning often had great difficulty in convincing farmers, because they burn for 

multiple purposes like hunting, prevention of snake infestations, a better view of the 

terrain, a quick release of nutrients, facilitation of land preparation, reduction of pests 

and diseases and re-growth of young cattle forage. Demonstration plots showing the 

negative impact of bush fires on soil and vegetation and the fertilizing effects of crop 

residues only produced to action in land-scarce regions, like the commune Ouaké. In 

several communes in the Borgou, bush fires are prohibited, but farmers often 

continue burning (De Haan 1998). Therefore, many projects (e.g., PAEB North) at 

least recommend early fires in November/December and promote honey production 

in order to indirectly achieve protection of natural resources (oral comm. Loconon).  

Last but not least, the use of organic and mineral fertiliser is propagated over the 

whole country. Several research studies in Benin (e.g., Dagbenonbakin 2005) 

showed that the use of mineral fertiliser, or even more efficiently, the combination of 

mineral and organic fertiliser, can significantly increase crop yields, especially for 

maize. Unfortunately, most research studies are too short to observe differences in 

chemical soil properties. Most agronomists recommend the use of mineral fertiliser 

despite the negative effects on base saturation and soil acidity in the long run. 

However, fertiliser use in the Upper Ouémé catchment is restricted to cotton and 

maize because of economic constraints such as high prices, low income of farmers 

and difficult access to fertilisers and credits. Moreover, fertiliser recommendations 

are often inadequate and many farmers do not use improved seeds that are much 

more sensitive to mineral fertiliser. Organic fertiliser from animal husbandry is also 

difficult for most farmers to access and requires enormous labour effort. Many 

farmers allow herders to graze their field after harvest, but trading of manure is very 

uncommon. Semi-sedentary Fulani herders often practice mobile parking of cattle on 

their fields but more seldom cooperate with farmers (Maliki et al. 2002b). Projects like 

PGRN, PGTRN and ProCGRN have had some success in promoting composting.  

To sum up, a broad variety of measures has been tested on research stations and 

farmers’ fields and promoted for wider replication in Benin. From the point of view of 

farmers and herders, each measure has several advantages and constraints (see 

Table C.2 in Appendix C) that can differ enormously between regions, farmers and 

herders or ethnic groups.  
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9.2.3. Challenges in implementing soil conservation measures 
 

In Benin, adoption rates for soil conservation measures are often low, although many 

have been promoted for decades. Most introduced measures are only applied very 

locally and by a small percentage of farmers in the region. Measures do not spread 

easily to neighbouring regions. Experiences in other African countries have been 

similar. It is not easy to find examples of comprehensive success from which to learn 

lessons. Effective soil conservation is a complex task that requires developing 

profitable techniques, spreading knowledge, policy alignment and continuous 

monitoring (Donovan & Casey 1998). In Benin, the technologically most efficient 

measures against soil degradation often show the lowest adoption rates because of 

the high labour demand and the lack of short-term benefits. One must keep in mind 

that agro-forestry systems need to be well managed to achieve potential benefits. 

Except for groundnut and niebe, most legumes did not provide short-term benefits 

like wood, fruits, essences, food, fodder and weed control. However, a few measures 

have been widely adopted. Among them are chemical fertilisation of maize fields and 

composting in the Boukoumbé region (Gandonou 2000), diversification of crops and 

the use of groundnut in crop rotation. Furthermore, the interventions improved the 

motivation of farmers to adapt endogenous methods. 

Many explanations for the failure of soil conservation projects in Sub-Saharan Africa 

are discussed in the literature (e.g., Steiner, 1994; Bergsma, 2004; Gandonou, 2000; 

Penning de Vries et al., 1998; ICRA, 2003). They often refer to socio-economic 

factors, such as availability of labour and capital, security of tenure and institutional 

deficits that determine farmers’ responses to technological solutions presented by 

researchers. For example, knowledge about local land tenure is essential for the 

success of development projects promoting reforestation, agro-forestry or cashew 

plantations (see Excursus 9.1). However, only very few projects, like PAMF and 

PGTRN explicitly addressed land tenure issues (Singer 2005). The project PGTRN 

introduced land tenure plans and a simplified land register for rural areas.   

In the following, the main obstacles at the farmer, project and national levels are 

discussed in the case of Benin (see Table 9.3).  
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Excursus 9.1: Land tenure situation in the Upper Ouémé catchment 

In the Upper Ouémé catchment dominates the traditional land tenure system, the official 

registration is often not known in the rural areas. Traditionally, land is a collective, spiritual, 

non-saleable resource, hold in trust by the earth-priest who distributes the land and mediates 

land-related conflicts. Most marginalised groups in the land tenure system are the non-

owners, in particular tenants, pastoralists and women (Neef 1999). Women receive land from 

male family members. Allochthonous can ask the earth-priest for leasing a portion of land for 

a symbolic rent, often natural products for the lineage or a collective of landowners. In times

of increasing land scarcity different forms of rent (cash, natural products, labour) become 

more important (Doevenspeck 2005). The usage rights for pasture land are based on a 

common law system and are not specified. As a consequence of large agricultural expansion 

forced by migration, the land tenure situation for allochthonous in the Upper Ouémé

catchment has been deteriorated steadily during the last 10 to 20 years (Singer 2005). 

Despite a still high potential for extensive agricultural land in the southern Borgou department 

a shortage of land resources can be observed resulting in a monetarisation and higher

restrictions of land usage rights for allochthonous groups depending on date of settlement

(Singer 2005). Traditionally, allochthonous are not allowed to plant trees because this would

automatically guarantee their land usage rights (Schneider 1997; Adjei-Nsiah et al. 2006). 

Nowadays, immigrants in many villages get less fertile lands and have to pay higher tributes

in form of man power. The land tenure system fosters the land intensive, unsustainable yam-

cropping system by migrants and the establishment of cashew plantations by local farmers 

because the cultivation of land secures the land property rights (Doevenspeck 2005). While 

In South Benin and parts of Central Benin land scarcity leads to an increase of conflicts

about land sales, border lines and rent modalities, this is not yet the case in the Upper 

Ouémé catchment. Here, land conflicts refer mainly to traditional conflicts between farmers 

and herders. Farmers often perceive that livestock destroys their fields and herders see their 

pastures and traditional trails endangered through the enormous expansion of agricultural 

land (Gantoli 1997).  
 

 

Farmer level 

Development projects, NGOs and the extension services do not reach all farmers in 

Benin. However, even in the intervention areas of development projects, long-term 

adoption rates of soil conservation measures are usually low (Gandonou 2000). 

Obviously, the management practices were not profitable from the farmer’s point of 

view. During the last 10-15 years, the analysis of factors for non-adoption and the 
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political conditions have become a major focus of applied agricultural research in 

Benin. Several authors have systematically assessed positive factors and constraints 

with regards to the adoption of soil conservation measures from the farmer’s point of 

view (e.g., Floquet et al., 2006; Gantoli, 1997; Fadohan, 2004).  

An assessment of soil conservation activities in the region revealed that the highest 

adoption rates were obtained for measures with large immediate, additional benefits, 

minimal costs and limited labour efforts. In general, all farmers tried to minimize 

labour, accepting lower efficiency (oral comm. Loconon; Gandonou, 2000). In fact, 

labour limitations at the beginning of the growing season are a widespread 

phenomenon among poor farming households, frequently leading to poor yield by 

late planting or untimely weeding (Donovan & Casey 1998). As a consequence, agro-

forestry systems were adopted in lower densities (oral. comm. Loconon, Floquet et 

al. (2006)). For example, the legume Gliricidia was planted scattered on the field 

instead of the prescribed planting in dense rows (Fadohan 2004).

Table 9.3 Institutional obstacles for the sustainability of development projects dealing with soil 
conservation in Benin (various sources: 1Singer, 2005; 2oral comm. Azontonde; 3 Doevenspeck, 2005; 
4 GTZ-AFD, 2003). 
 

Principles for sustainability Obstacles in Benin 
Participation & ownership Exclusion of farmers in project design and evaluation 
Continuous capacity building Weak agricultural research and extension service,  low 

personal and financial capacities of NGOs, development 
projects cannot replace continuous agricultural 
consultancy2, lack of capacities at the village level 4 

Accordance to government 
policies 

Soil management no priority, no comprehensive national 
strategy 

Financial independence after 
project end 

Difficult to achieve due to low capacities 

Management, avoid parallel 
structures 

Parallel structures exist, lack of coordination among 
donors and with government 

Social conditions, 
Understanding local decision- 
making 

Local political structures not adequately considered 
(exclusion of some groups like migrants, profit of male 
and female elites)1 

Adapted technologies Agricultural research not applied enough, insufficient 
incorporation of endogenous knowledge; insufficient 
cooperation between donors, NGOs, researchers and 
extension service 

Farmer’s needs Response to degradation often migration3, focus on short-
term needs, additional labour-demand vs. non-
mechanized agriculture, insecure land tenure 

Positive environmental 
effects 

Also negative effects1, e.g. indirect promotion of 
agricultural expansion 

Realistic duration  Only a few long-term projects, lack of follow up activities 
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For the same reason, stone walls were only established on stony fields and organic 

fertiliser use was usually restricted to home fields in the Atacora region 

(Gandonou 2000). Floquet et al. (2006) investigated the adoption rates of soil 

conservation measures promoted by the SFB Hohenheim (1994-1999). By 1998, 

20% of the farmers who took part in the experiments had transferred at least one 

technology to further plots. In 2005, 65% of participating farmers in southern Benin 

still applied the Acacia fallow. All other techniques, i.e. alley-farming with Gliricidia 

sepium, live fences with Senna siamea, Cajanus cajan as a short fallow and Mucuna 

utilis as a cover crop, had been rejected after the end of the project. The Acacia 

fallow remained attractive due the easy handling and high benefits by marketing the 

wood at nearby markets. In Central Benin, a modification of the yam-based alley-

cropping system showed the highest adoption rates. Farmers had reduced the shrub 

density and NGO researchers had added a cover crop. The adoption rates at the 

sites in Central Benin were lower than in the South but had not yet reached a 

plateau.  

It is often argued that soil conservation measures are only widely adopted if they 

offer short-term economic benefits or if the problem of soil degradation is already 

severe. This also seems to be true for Central Benin. Experiences in the northern 

Borgou showed that conservation measures had little success because the final 

solution to environmental degradation for most people was to migrate to colonization 

areas in the region (De Haan, 1998; Doevenspeck, 2005). It is difficult to judge if 

farmers in Central Benin are unwilling to invest in the long-term fertility of their land 

as long as land resources are available in neighbouring regions, or if a farmer’s 

behaviour is only a consequence of wrong project design and a lack of understanding 

of the farmer’s perceptions of soil degradation and the farming system. It is important 

to consider that risk minimisation, not necessarily yield maximisation, is the dominant 

strategy of most farmers as long as no alternative income is available. Therefore, 

farmers rely on long distances between fields, crop diversification, and mixed 

cropping, and do not invest in fertiliser.  

In the strongly degraded regions in South and Central Benin, like the Adja plateau or 

the commune Dassa Zoumé, farmers more frequently adopted soil conservation 

measures. Unfortunately, in these areas, fallow periods are already very short or 

completely gone so that many measures, like improved fallows or other space-

demanding measures, are no longer applicable. Furthermore, the organic carbon 
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content of degraded soils is so weak that mineral fertiliser is less effective (Maliki et 

al. 2002a). Maliki et al. (2003) emphasized that the profitability and therefore 

adoption success depends not only on the degree of land degradation but also on the 

exploitation type, the age and the land tenure status of the farmer (see Fig. 9.9). 

Whereas traditional farmers were interested in soil conservation measures as long as 

they were not too labour-intensive, migrants were less interested due to their cash 

orientation and difficult land tenure status. Farmers who already practiced an 

integration of agriculture and animal husbandry were clearly less interested in agro-

forestry and cover crops. Adult men had the highest adoption potential for agro-

forestry, while young men preferred mineral fertiliser. Old men, women and migrants 

allochthonous had the lowest adoption potential for agro-forestry (Maliki et al. 2001).  

Project level 

Many early projects failed due to deficiencies in the participation process. To a 

certain degree, this situation in Benin has improved during the last fifteen years due 

to more participative and multi-sectorial development and research projects, the 

stronger role of local NGOs and an added focus on accompanying short-term 

benefits for farmers. Furthermore, activities have shifted from massive anti-erosion 

structures to low-tech improvements of agricultural systems. Nevertheless, several 

deficiencies in project design still exist. 

Floquet et al. (2002) identified an insufficient focus on the different clients and a lack 

of adaptation of technologies to 

different degrees of soil degradation 

and soil types as the main reasons for 

the low adoption rates in the heavily 

degraded terre de barre region in South 

Benin. Singer (2005) stated that the 

current resource management projects 

in the Upper Ouémé catchment will not 

be able to initiate sustainable land use 

in the area. He argues that the current 

emphasis of development aid on socio-

economic infrastructure and income 

generation through diversification and 

 
Fig. 9.9 Factors influencing the adoption potential 
for soil conservation measures. 
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micro-credits for women indirectly enhances the expansion of unsustainable 

production methods. He outlines how micro-credits promote agricultural production 

by women and enhance cashew plantations. Furthermore, timber logging is a 

common source of financial contributions to projects in times of village financial 

difficulty due to low cotton production. The unsustainable production of cotton and 

the exhaustive cultivation of yam as a cash crop and charcoal by migrants are not 

addressed by development projects. As a positive exception, Singer (2005) mentions 

the GTZ project sequence PGRN-PGTRN-ProCGRN, which introduced a settled yam 

cultivation system with Gliricidia. On the other hand, Singer (2005) admits that the 

recent priorities result from the failed implementation of sustainable production 

methods in the eighties when farmers gave no priority to this topic following risk 

minimisation strategies. Until now, agricultural consultancy has not been attractive to 

the private sector because farmers are used to free consultancies and free provision 

of new technical equipment.  

National level 

The sustainable use of land resources requires appropriate policies and institutional 

arrangements to encourage the intensification of smallholder farming systems 

(Dejene et al. 1997). The dysfunction of the agricultural extension services (CeRPAs) 

is one of the main obstacles to effective implementation of integrated soil fertility 

management in Benin. Extension services cannot be replaced by development 

projects with short durations and limited intervention areas or by NGOs who are 

financially completely dependent on projects. Fortunately, the CeRPAs are currently 

receiving increased attention and substantial additional financial resources to extend 

their staff and improve their services.  

The absence of a comprehensive national programme for integrated soil fertility 

management is an additional constraint. In addition, the communication between 

research institutions and NGOs is insufficient. Local NGOs often adapt and translate 

the instruction manuals for soil fertility management published by INRAB, including 

farmers’ needs (oral comm. Loconon). Unfortunately, their knowledge about local 

adoption preferences is often not transferred to national research institutions and 

other NGOs. Last but not least, efforts against soil degradation are also hampered by 

gaps in agricultural research knowledge and an insufficient funding of the national 

action plan to combat desertification.  
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The analysis of the adoption constraints during the last 10-15 years also reveals that 

the direct promotion of measures by individual model farmers cannot initiate a large 

scale extension of technologies in Benin (Floquet et al. 2002). Therefore, three new 

extension strategies are currently being tested (Amadji et al. 2003). The new 

approaches employed by CeRPA agents or NGOs include the formation of pairs of 

farmers, educating students in schools who can communicate the technical dossiers 

to their parents and engaging voluntary farmers as examples. Strong effort is being 

put into improving and completing appropriate technical material by INRAB and 

several NGOs. These promising approaches to increase sustainable land 

management activities are supported by various actors like ABE, GTZ, ILRI, INRAB 

and PADSE. 

 

9.3. Recommendations  
 
As illustrated in the previous section, effective soil conservation is a complex task 

that requires not only extensive knowledge about the farming systems but also a 

deep understanding of the socioeconomic and institutional settings in a country. 

Many long term measures must be taken at different levels to widely improve soil and 

plant management in Benin, which is crucial for sustainable land use, poverty 

reduction, food security and adaptation to climate change. For example, Bokonon-

Ganta et al. (2003) estimates crop yield losses in the department of Collines due to 

climate change to be 6-30% by 2025 depending on the crop type using the DSSAT 

model. Socioeconomic scenarios lead to a potential crop yield decrease of 10-40%. 

Current trends of decreasing yields for the main crops of yam, sorghum and cassava 

in some parts of Benin, like the Atacora region (Gantoli 1997), can only be reversed if 

the problem of soil degradation is addressed. In the face of rapid expansion of 

cropping areas and climate change, this is becoming even more urgent. 

Based on the findings presented in this work and discussions with various 

stakeholders in Benin, we provide several recommendations for the different actors. 

Government agencies 

Improving the institutional framework conditions is crucial for sustainable soil 

management. The national extension services (CeRPAs) must be strengthened 

through substantial investments (as is currently being done) and capacity building, 
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and focus on general sustainable production methods instead of individual crops, 

such as cotton. Furthermore, a participative modernisation of traditional land tenure 

and temporary incentives for soil water conservation measures via fertiliser subsidies 

or micro-credits and farmer field schools are required.  

A national strategy for sustainable land management and a comprehensive program 

for integrated fertility management are needed. Cooperation between donors, 

CeRPAs, INRAB, NGOs and the private sector in promoting improved agricultural 

technologies needs to be strengthened and better address farmers’ needs. The 

success of soil conservation activities should be continuously monitored using 

indicators like adoption rates, rates of soil erosion and crop yields. Soil conservation 

activities should be extended and better coordinated with the national UNCCD 

structures and efforts to adapt to climate change. The National Adaptation 

Programme of Action (NAPA) of Benin, which was published in January 2008, 

includes a project proposal for improved water resources management in Central and 

Northern Benin, mainly focusing on education and stabilisation and reforestation of 

slopes and riparian zones. Efforts to combat soil degradation and adapt to climate 

change need to go beyond this and also address soil and plant management in the 

fields.  

Aid donors 

Donors should support the governmental institutions (e.g., MAEP, MEPN, ABE, 

INRAB) in formulating and implementing a comprehensive strategy for managing soil 

fertility in Benin and must make long term financial commitments for funding research 

and development projects to address soil fertility management. Development projects 

should foster stronger linkages between national research institutions and their 

counterparts, as well as NGOs, to improve coordination of soil fertility management 

research and technology development. Development projects should strengthen 

existing institutions (e.g., CeRPAs) and enable them to scale up soil conservation 

activities.  

At the project level, migrants should be explicitly addressed as a target group 

because many of them practice slash-and-burn agriculture for commercial yam-

cropping and charcoal production, which has strong negative environmental effects. 

The settled yam-based cropping system with Gliricidia promoted by ProCGRN could 

address this problem if the security of land tenure is improved. Although the adoption 
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potential for soil conservation measures is higher in regions where land is scarce and 

soils are already severely degraded, activities should not be restricted to these areas. 

Measures in not yet intensively used regions, like large parts of the Upper Ouémé 

catchment, can successfully prevent a deterioration of the physical soil properties 

and be attractive for farmers if they offer additional short-term benefits and require 

limited labour. Thus, activities to promote soil conservation should be increased in 

the entire catchment, but in particular in the north-western part of the Upper Ouémé 

catchment and around Parakou, because these areas are current and future hotspots 

of soil degradation in the catchment. For example, the project ProCGRN acting in the 

departments Atacora and Donga could extend its activities to the north-western part 

of the catchment (communes Copargo and Djougou). Previous efforts to support the 

government in establishing land use planning at the national and communal levels 

should be enhanced. 

Research 

Research must address soil erosion, nutrient depletion and land management 

practices in an integrated way. To achieve increased use of organic and mineral 

fertilisers by farmers, a key element for sustainable soil management in Africa, 

agricultural research in Benin may focus on the following areas: i) improving methods 

for an integrated management of soil fertility, e.g. the combination of mineral fertiliser 

with Acacia or Mucuna (Floquet et al. 2002), ii) stronger participation of farmers in 

identifying and evaluating soil conservation measures, iii) developing profitable 

technologies for different target groups, e.g., the transformation of Mucuna as fodder 

or the test of fire-resistant cover plants (Floquet et al. 2002) and iv) using crop 

models to model crop growth, nutrient flows and the effectiveness of fertiliser.  

With regard to soil erosion, similar studies should be conducted in other parts of 

Benin using efficient and robust models with relatively low data requirements to 

quantify sediment yields and identify hotspots at the catchment scale. Since most 

policy makers are more interested in effects on crop production rather than soil 

erosion per se, crop models must be used to link erosion to productivity loss and 

analyse the effects of different soil and plant management strategies on sediment 

and crop yields. Ideally, soil loss tolerances could be derived by building on the 

extensive knowledge of changes in soil properties and associated production losses 

from national research. 
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In the framework of IMPETUS, the crop model EPIC has been used to simulate crop 

yields in the Upper Ouémé catchment using the same spatial discretisation and land 

use and climate change scenarios as in this work (see Gaiser et al. 2006). Based on 

the results from the SWAT and EPIC models for the Upper Ouémé catchment, a 

common spatial decision support system (SDSS) called  PEDRO (Protection du sol 

et durabilité des ressources agricoles dans le bassin versant de l’Ouémé) has been 

developed and discussed with various stakeholders in Benin (see Gaiser et al., 2008; 

IMPETUS, 2008). The SDSS quantifies changes in river discharge, sediment yield, 

crop yield, agricultural production and the balance of food demand and food 

production for the presented climate and land use change scenarios. Furthermore, 

the effects of user-defined crop management practices on crop production and food 

security can be evaluated at the regional scale (Gaiser et al. 2008). Such spatially 

explicit decision support systems are still in their infancy but can, if designed in close 

collaboration with the target audience, be very powerful tools to communicate 

complex, spatially explicit research results to decisions makers and support them in 

planning. Although the application potential of SDSSs such as PEDRO for decision 

makers in Benin may be limited due to the barely existing land use planning, they 

enhance their understanding of modelling studies and scenario analyses and help to 

improve knowledge sharing between science and policy.  
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Appendix A. Soil investigations 
 
 

In the following the location and photos of all studied representative profiles are 

presented. Subsequently, a table for each representative profiles will be shown 

summarizing the measured soil properties. Each table includes the number of the soil 

unit and the classification according to the World reference base (WRB) and the 

French classification system CPCS.   

 

 
Fig. A.1 Geological map of the Upper Ouémé catchment – Sheet Djougou-Parakou-Nikki (Source: 
Office Béninois des Mines 1984).  
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Table A.1 Location of the investigated representative profiles in the Upper Ouémé catchment (Date: 
14.09.-23.10. 2004). 

Soil 
type x (UTM) y (UTM) Profile 

position Land use Location # augerings # sampled 
augerings

3 447013 1107177 Upper slope savane arbustive Kandi fault, W of 
Ndali 0 0

14 429958 1079009 Mid-slope savane arboree Bori 4 1
17 382013 1115455 Upper slope savane arbustive Kpere 6 1
18 405381 1079353 Upper slope savane arboree Sani 4 2
21 376098 1102334 Upper slope savane arbustive Kpere 4 4

25 361628 1066550 Upper slope savane arboree between Serou 
and Beterou 5 4

29 352004 107403 Upper slope savane arboree Djougou 6 6
31 424326 1017647 Mid-slope Beterou 0 0
45 423218 1014805 Mid-slope savane herbeuse Beterou 0 0

48 428466 1020744 Upper slope savane arbustive, 
herbaceaous fallow Beterou 7 5

55 352095 1105139 Summit savane arboree N of Copargo 5 2
56 451747 1033111 Mid-slope savane herbeuse W of Parakou 5 3
58 444170 1029504 Mid-slope savane arboree W of Parakou 6 4
62 436790 1044897 Mid-slope savane arbustive NW of Parakou
70 383732 1120135 Upper slope savane arboree Kpere 4 3

80 450812 1003104 Lower slope savane arbustive, 
Cashew S of Parakou 5 3

90 449280 1032748 Upper slope savane arbustive W of Parakou 8 6
91 453183 1107826 Upper slope savane arbustive NW of Ndali 6 3
101 469505 1096298 Floodplaine teak plantation Ndali 5 4
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Fig. A.2 Photos and classification of the representative profiles. 
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Table A.2 Physical and chemical soil properties of the representative profiles. 
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Table A.3 Evaluation of soil quality according to Landon (1984). 

extreme  
shallow 

very 
shallow 

shallow medium deep very deepPhysiological 
deepness [cm] < 10 10 – 30 30 – 50 50 – 100 100 – 150 > 150 
Rooting depth Limitation 
  

Very good no limitation, good structure, 0 – 2% coarse fragment, bulk density 
1 

Good 2 – 15% coarse fragment, bulk density 2 

Moderate unfavourable structure (coarse prismatic, coarse blocky), 14 – 40% 
coarse fragment, bulk density 3, 4 

Low 
Limitation, very unfavourable structure (plattig, very coarse 
prismatic, very coarse blocky), 40 – > 80% coarse fragment, bulk 
density 5 

Fig A.3 Comparison of Mehlich and Ammonium Acetate (AA) methods for determination of CECpot.  
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very low low medium high very high ... continued 
 
Air capacity [Vol.-%] < 2 2 – < 4 4 – < 12 12 – < 20 > 20 

 
very low 

 
low 

 
medium 

 
high 

 
very high Available field 

capacity [mm] < 50 50 – 90 90 – 140 140 – 200 > 200 
low medium high very high pH (H2O) < 5.5 5.5 – 7.0 7.0 – 8.5 > 8.5 

 very low low medium high very high 
CECpot [cmolc/kg soil]  < 5 5 – 15 15 – 25 25 – 40 > 40 
Corg [%]  < 2 2 – 4 4 – 10 10 – 20 > 20 
Nitrogen, total [%]  < 0.1 0.1 – 0.2 0.2 – 0.5 0.5 – 1.0 > 1.0 
 low medium high 
Exchangable Ca [cmolc/kg] < 4 4 – 10 > 10 
Exchangable Mg [cmolc/kg] < 0.5 0.5 – 4 > 4 
Exchangable K [cmolc/kg]  < 0.2 0.2 – 0.6 > 0.6 
Exchangable Na [cmolc/kg]  < 1  > 1 
Available P2O5 [ppm]  < 15 15 – 50 > 50 
Base saturation [%] < 20 20 – 60 > 60 

 
Table A.4 Classification of erodibility (K factor in USLE) according to Bolline & Rosseau (1978). 

Erodibility        
[t h N-1 ha-1] 

 
Classification 

< 0.1 Sols très resistants à l'érosion very resistent to erosion 

0.1 - 0.25 Sols assez resistants à l'érosion resistent to erosion 

0.25 - 0.35 Sols moyennement sensibles à l'érosion medium resistence to erosion 

0.35 - 0.45 Sols assez sensibles à l'érosion sensitive to erosion 

> 0.45 Sols très sensibles à l'érosion very sensitive to erosion 

 
 
Table A.5 Fertility Capability Classification System (FCC) (Sanchez et al. 1982). 
 
Type 

S sandy topsoil: LS, S (USDA definition) 
L loamy topsoil: < 35% clay, no LS, S 
C clayey topsoil: > 35% clay 
O organic soil: > 30% organic matter to 50 cm depth 
 
Substrate type 

S sandy subsoil: LS, S (USDA definition) 
L loamy subsoil: < 35% clay, no LS, S 
C clayey subsoil: > 35% clay 
R rock or hart root-restricting layer 
 
Modifier 
 
g gley Soil or mottles ≤ 2 chroma within 60 cm of the soil surface and below 

all A horizons, or soil saturated with water for > 60 days in most years 
d dry ustic, aridic or xeric soil moisture regime (subsoil dry > 90 cumulative 

days per years within 20-60 cm depth) 
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e low CEC Applies only to plough layer or upper 20 cm if shallower: CEC < 4 
meq/100 g soil by Σ bases + KCl-extractable Al (effective CEC), or 
CEC < 7 meq/100 g soil by sum of cations at pH 7, or CEC < 10 
meq/100 g soil by sum of cations,  Al and H at pH 8.2 

A Al-toxicity > 60% Al-saturation of the effective CEC within 50 cm of the soil 
surface, or > 67% acidity saturation of CEC by Σ cations at pH 7 within 
50 cm of the soil surface, or > 87% acidity saturation of CEC by sum 
of cations at pH 8.2 within 50 cm of the soil surface, or pH < 5 in 1:1 
H2O within 50 cm, except in organic soils where pH must be less than 
4.7 

h acid 10-60% Al-saturation of the effective CEC within 50 cm of the soil 
surface, or pH in 1:1 H2O between 5 and 6  

i high  
P-fixation 
by iron 

% free Fe2O3/% clay > 0.15 and more than 35% clay, or hues of 7.5 
YR or redder and granular structure. This modifier is used only in 
clay (C) types; it applies only to plough layer or upper 20 cm if 
shallower 

x x-ray  
amorphous 

pH > 10 in 1 N NaF, or positive to field NaF-test, or other indirect 
evidence of allophone dominance in the clay fraction 

v Vertisol very sticky plastic clay: > 35% clay and > 50% of 2:1 expanding clays, 
or severe topsoil shrinking and swelling 

k low K  
reserves 

< 10% weatherable minerals in silt and sand fraction within 50 cm of 
the soil surface, or exchangeable K < 0.2 meq/100 g, or K < 2% of 
sum of bases; if bases < 10 meq/100 g 

b basic  
reaction 

free CaCO3 within 50 cm of the soil surface (effervescence with HCl), 
or pH > 7.3 

s salinity ≥ 4 mmhos/cm electrical conductivity or saturated extract at 25° within 
one meter of the soil surface 

n natric ≥ 15% N-saturation of CEC within 50 cm of the soil surface 
c Cat clay pH in 1:1 H2O < 3.5 after drying and jarosite mottles with hues of 2.5 Y 

or yellower and chromas 6 or more are present within 60 cm of the 
soil surface 

` gravel a prime (`) denotes15-35% gravel or coarser particles (> 2 mm) by 
volume to any type or substrata type texture; two prime (``) denotes 
more than 35% gravel or coarser particles (> 2 mm) by volume to any 
type or substrata type texture 

 
 
Table A.6 Location of the investigated inland valleys in the Upper Ouémé catchment (Date: March 
2004). 

begin end
Transect Location x y x y # augerings Remarks
Dogué1 Dogué ~384000 ~1008000 ~384000 ~1008000 8 after rice cultivation
Dogué2 Dogué ~384000 ~1008000 ~384000 ~1008000 11 after rice cultivation

Sérou1 Sérou 357954 1068716 356959 1068220 8 after rice cultivation, 
parallel to river

Sérou2 30 km S of Sérou 388161 1050762 388242 1050692 5

Boko N of Boko 459129 1054046 459119 1053927 5 near vegetable 
cultivation  
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Table A.7 Properties of investigated inland valley soils in the Upper Ouémé catchment (*after Ca correction, ‘- not sampled, 1AG Boden (1994), 2USDA 
(1993)). 
 No. Hor Hor Depth Sand Silt Clay Gravel Text.1 Text.2 Colour Corg N C/N pH CECpot K Na Mg Ca BS

. [cm] [%] [%] [%] [%] [-] [-] [-] [%] [%] [%] [-] [cmolc/kg] [cmolc/kg] [cmolc/kg] [cmolc/kg] [cmolc/kg] [%]
 BF1 1 Ah 18 63 27 10 0.0 Sl3 SL 10YR4/2 1.3 0.06 23 4.7 5.6 0.06 0.04 0.5 2.3 53
BF1 2 B 39 79 14 7 1.3 Sl2 LS 10YR6/3 0.4 0.03 14 4.7 2.6 0.05 0.03 0.3 0.9 46
BF1 3 Bgo 51 77 10 14 18.4 St2 LS 10YR5/4 0.3 0.02 16 4.4 3.5 0.06 0.05 0.5 1.1 47
BF1 4 Bgor 100 57 12 31 19.1 Ts4 SCL 2.5Y5/6 0.4 0.03 13 4.6 8.8 0.13 0.10 2.1 3.4 65
BF2 1 Ah 36 34 43 23 0.1 Ls2 L 10YR5/2 1.5 0.10 16 5.0 9.9 0.19 0.09 1.6 4.0 59
BF2 2 Bgo/r 67 46 30 25 0.0 Ls4 L 2.5Y6/4 0.5 0.03 14 4.9 7.3 0.06 0.17 1.5 2.9 64
BF2 3 Bgr(o) 100 48 25 27 0.0 Lts SCL 2.5Y6/3 0.3 0.02 16 5.1 8.0 0.07 0.33 2.7 4.1 89
BF3 1 Ah 29 46 31 23 0.0 Ls3 L 10YR5/3,5/4 1.2 0.08 16 4.5 7.1 0.09 0.08 0.7 2.9 53
BF3 2 B 67 73 17 10 16.6 Sl3 SL 10YR6/3,2.5Y6/4 0.3 0.02 16 5.1 3.1 0.08 0.07 0.5 1.7 74
BF3 3 Bgo 76 50 19 31 19.4 Lts SCL 2.5Y6/4 0.3 0.03 10 5.1 8.1 0.12 0.12 1.6 5.0 84
BF3 4 Bgr 87 - - - - Sl4 - 10YR6/2 - - - - - - - - - -
BF4 1 Ah 22 56 23 21 0.0 Ls4 SCL 10YR4/4 0.9 0.06 16 5.0 6.6 0.12 0.03 0.9 3.4 68
BF4 2 B 39 55 21 24 1.6 Ls4 SCL 10YR5/4 0.9 0.06 15 4.8 8.0 0.12 0.03 0.9 3.5 56
BF4 3 Btc 71 51 19 31 33.1 Lts SCL 10YR6/6 0.6 0.05 12 4.8 9.5 0.09 0.05 0.9 3.5 47
BF4 4 Bgo 95 54 20 26 6.0 Lts SCL 2.5Y6/6 0.3 0.02 11 4.8 8.0 0.08 0.13 1.1 3.0 53
BF5 1 Ah 20 52 27 21 0.0 Ls4 SCL 10YR5/3 1.3 0.08 17 4.9 7.2 0.10 0.07 1.0 3.6 66
BF5 2 Bsq 42 53 19 28 14.7 Lts SCL 10YR5/4 0.8 0.06 14 4.6 7.3 0.09 0.05 0.9 2.8 53
BF5 3 Bgo 60 44 17 39 18.0 Lts CL 10YR6/4 0.5 0.04 12 4.9 9.0 0.10 0.10 1.5 3.8 61
BF5 4 Bgor 90 43 16 41 16.2 Lts C 10YR7/6 0.2 0.03 6 5.0 9.9 0.10 0.12 1.6 3.8 56
BF6 1 Ah 20 33 50 17 0.0 Ls2 SIL 10YR4/2 1.3 0.09 14 4.6 7.5 0.11 0.06 0.6 2.7 47
BF6 2 B 55 38 45 18 0.0 Ls2 L 10YR6/2, 2.5Y7/1 0.6 0.04 15 4.4 4.2 0.11 0.05 0.3 1.2 41
BF6 3 Bgo 70 44 32 24 0.0 Ls3 L 10YR7/3, 2.5Y7/3 0.4 0.04 10 4.3 4.6 0.13 0.08 0.5 1.1 38
BF6 4 Bgor 100 57 20 22 4.1 Ls4 SCL 10YR7/3, 2.5Y7/3 0.2 0.03 6 4.4 4.3 0.12 0.08 0.5 1.0 41
BF7 1 Ah 36 55 28 17 0.0 Sl4 SL 10YR5/2 1.0 0.06 16 4.5 5.3 0.12 0.05 0.4 1.4 38
BF7 2 B 76 70 13 18 1.7 St3 SL 10YR6/3 0.4 0.03 14 4.6 4.1 0.08 0.04 0.5 1.2 43
BF7 3 Bg 97 68 11 21 0.0 St3 SCL 10YR6/2 0.4 0.03 16 4.8 4.5 0.09 0.04 0.7 1.5 51
BF8 1 Ah 30 66 20 14 0.0 Sl4 SL 10YR5/3 0.8 0.05 17 4.3 4.4 0.09 0.03 0.3 0.7 26
BF8 2 B 47 70 15 15 1.4 Sl4 SL 10YR6/2 0.6 0.03 19 4.4 3.6 0.08 0.04 0.3 0.8 34
BF8 3 Bgo1 78 75 9 16 11.8 St2 SL 10YR6/4 0.4 0.02 17 4.6 3.6 0.06 0.03 0.4 1.1 42
BF8 4 Bgo2 95 72 10 18 11.4 St3 SL 10YR6/3 0.3 0.02 14 4.7 3.4 0.06 0.03 0.4 1.1 47
BF9 1 Ah 17 73 19 7 0.0 Sl2 SL 10YR5/2 0.7 0.04 18 4.7 3.8 0.07 0.02 0.2 1.2 41
BF9 2 B 59 72 21 7 0.0 Sl2 SL 10YR6/1 0.4 0.02 24 4.4 2.0 0.05 0.03 0.1 0.4 29
BF9 3 Bgo 95 67 18 15 0.0 Sl4 SL 10YR8/1,2.5Y8/2 0.2 0.01 17 4.4 2.5 0.05 0.04 0.4 0.6 45
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… continued 

 No. Hor Hor Depth Sand Silt Clay Gravel Text.1 Text.2 Colour Corg N C/N pH CECpot K Na Mg Ca BS
. [cm] [%] [%] [%] [%] [-] [-] [-] [%] [%] [%] [-] [cmolc/kg] [cmolc/kg] [cmolc/kg] [cmolc/kg] [cmolc/kg] [%]

BF11 1 Ah 25 66 25 9 0.0 Sl3 SL 10YR4/2,5/2 0.9 0.05 19 4.9 4.5 0.07 0.03 0.6 2.0 61
BF11 2 B 57 74 18 8 0.1 Sl3 SL 10YR6,2 0.5 0.03 16 4.5 2.5 0.06 0.05 0.2 0.7 41
BF11 3 Bgor1 85 77 14 9 0.9 Sl3 SL 2.5Y6/3 0.3 0.02 16 4.3 1.8 0.04 0.05 0.2 0.5 42
BF11 4 Bgor2 97 50 16 34 0.0 Lts SCL 2.5Y7/3 0.2 0.02 14 4.1 7.3 0.08 0.13 2.5 2.1 66
BF12 1 Ah 19 67 23 10 0.0 Sl3 SL 10YR4/2,5/2 1.0 0.06 18 4.7 4.7 0.05 0.05 0.5 2.0 54
BF12 2 B 45 78 15 7 0.0 Sl2 LS 10YR6/2 0.5 0.02 21 4.7 2.2 0.04 0.04 0.2 0.6 43
BF12 3 Bgo 72 85 11 4 0.8 Su2 LS 10YR7/2,2.5Y7/2 0.2 0.01 27 4.6 1.1 0.02 0.04 0.2 0.3 50
BF12 4 Bgor 95 58 12 30 3.6 Ts4 SCL 10YR8/1,2.5Y8/2 0.2 0.01 20 4.7 7.0 0.08 0.13 2.6 2.7 78
BF13 1 Ah 16 53 36 11 0.0 Sl3 SL 10YR5/2 1.0 0.06 16 4.8 5.5 0.08 0.06 0.7 2.1 53
BF13 2 B 30 70 21 8 0.0 Sl3 SL 10YRR6/2 0.6 0.03 22 4.7 2.5 0.04 0.06 0.4 1.0 58
BF13 3 Bgo 46 77 14 9 0.5 Sl3 SL 10YR7/3 0.3 0.02 16 4.8 2.6 0.04 0.07 0.4 0.9 54
BF13 4 Bgor 96 42 19 39 10.8 Lts CL 2.5Y6/4 0.4 0.03 14 4.8 12.2 0.16 0.20 4.0 6.2 86
Bf 14 1 Ah 23 49 40 11 0.0 Sl3 L 10YR4/2 1.6 0.08 21 4.4 8.1 0.10 0.15 0.8 2.9 49
BF14 2 B 65 76 18 6 3.3 Sl2 LS 10YR6/1 0.4 0.02 21 4.5 2.6 0.02 0.06 0.3 0.8 45
BF14 3 Bgo 76 46 16 38 0.0 Lts SCL 0.2 0.01 20 - 12.1 0.15 0.32 4.7 6.7 97
BF14 4 Bgr 97 - - - - Tt C 2.5Y8/1 - - - - - - - - - -
BF15 1 Ah 28 45 41 14 0.0 Slu L 10YR4/1 2.1 0.13 16 7.2 11.1 0.25 3.40 3.4 4.1 100*
BF15 2 Gor 94 46 33 21 0.0 Ls3 L 10YR5/1 0.8 0.04 22 7.0 8.2 0.11 1.76 3.5 2.8 100*
BF16 1 Ah 27 48 41 11 0.0 Slu L 10YR4/1 1.5 0.08 19 5.2 7.4 0.09 0.13 1.6 3.7 75
BF16 2 Ah/Gor 38 55 34 11 0.0 Sl3 SL 10YR6/1 0.7 0.03 21 5.1 3.5 0.06 0.11 1.1 1.6 82
BF16 3 Gor 95 55 32 13 0.0 Sl4 SL 2.5Y6/2 0.4 0.02 18 5.4 4.4 0.05 0.16 1.8 1.6 81
BF17 1 Ah 24 62 27 11 0.0 Sl3 SL 10YR4/2 1.3 0.07 19 5.6 7.6 0.12 0.07 1.9 4.0 79
BF17 2 Bgo1 49 71 22 7 0.0 Sl2 SL 10YR5/2 0.6 0.03 19 5.3 3.0 0.07 0.05 0.7 1.4 76
BF17 3 Bgo2 68 82 10 8 0.0 Sl3 LS 2.5Y7/2 0.2 0.01 19 5.8 1.9 0.03 0.09 0.9 0.8 96
BF17 4 Bgr 92 58 10 33 0.0 Ts4 SCL 10YR7/2 0.2 0.02 15 6.1 10.5 0.11 0.31 6.3 3.8 100*
BF18 1 Ah 36 64 25 11 0.0 Sl3 SL 10YR4/2 1.2 0.06 21 5.6 6.3 0.09 0.04 1.7 3.3 83
BF18 2 Bgo 68 64 23 13 0.0 Sl4 SL 10YR6/2 0.7 0.03 22 5.4 4.8 0.09 0.10 1.7 2.1 84
BF18 3 Bgr 87 57 17 26 0.0 Lts SCL 10YR6/2, 2.5Y6/2 0.3 0.01 19 7.5 9.6 0.11 0.49 5.4 4.2 106
BF19 1 Ah 17 63 26 11 0.0 Sl3 SL 10YR5/2 0.8 0.05 18 4.4 3.7 0.06 0.04 0.6 1.0 46
BF19 2 B 43 58 26 16 0.0 Sl4 SL 10YRR6/3 0.6 0.04 16 4.1 5.0 0.06 0.07 0.9 1.1 41
BF19 3 Bgor 94 40 20 41 0.0 Lts C 2.5Y6/3 0.3 0.02 16 6.5 13.6 0.18 0.40 6.9 6.2 100*
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… continued 

 No. Hor Hor Depth Sand Silt Clay Gravel Text.1 Text.2 Colour Corg N C/N pH CECpot K Na Mg Ca BS
. [cm] [%] [%] [%] [%] [-] [-] [-] [%] [%] [%] [-] [cmolc/kg] [cmolc/kg] [cmolc/kg] [cmolc/kg] [cmolc/kg] [%]

BFP1 1 Ah 17 83 11 6 2.6 Sl2 LS 10YR5/3 0.6 0.03 18 5.7 3.4 0.04 0.04 0.3 2.4 81
BFP1 2 B 51 84 10 6 5.4 Sl2 LS 10YR5/3 0.4 0.02 18 5.5 2.5 0.05 0.04 0.3 1.7 83
BFP1 3 Bg(o) 80 84 11 5 8.9 Su2 LS 10YR6/3 0.2 0.01 14 5.3 1.5 0.03 0.04 0.1 0.8 71
BFP1 4 Bcg 96 70 16 15 27.6 Sl4 SL 10YR6/6 0.1 0.01 14 5.5 2.8 0.06 0.06 0.6 1.7 86
BFP2 1 Ah 19 79 14 7 5.5 Sl2 LS 10YR4/2 0.7 0.05 15 4.8 3.6 0.06 0.07 0.5 1.8 66
BFP2 2 Bg(o)1 58 76 16 7 17.8 Sl2 SL 10YR5/3 0.5 0.03 16 5.0 3.2 0.06 0.09 0.4 1.9 76
BFP2 3 Bg(o)2 97 87 8 4 11.9 Ss S 10YR5/2 0.2 0.01 16 5.4 1.3 0.03 0.05 0.2 0.7 73
BFP3 1 Ah 18 69 22 9 11.6 Sl3 SL 10YR5/2 0.8 0.05 17 4.5 3.4 0.11 0.07 0.4 1.0 47
BFP3 2 Bg 36 72 19 10 11.6 Sl3 SL 10YR6/2 0.5 0.03 18 4.7 2.6 0.07 0.06 0.4 0.9 56
BFP3 3 Bg(o) 99 85 9 6 13.7 St2 LS 10YR6/4 0.1 0.01 18 5.2 1.5 0.04 0.05 0.3 0.6 60
BFP5 1 Ah 16 79 11 10 14.3 Sl3 SL/LS 10YR5/3 0.5 0.04 13 4.4 2.8 0.07 0.04 0.2 0.7 37
BFP5 2 B 30 77 13 10 7.9 Sl3 SL 10YR6/4 0.4 0.03 14 4.5 2.9 0.05 0.04 0.3 0.7 36
BFP5 3 Bgor1 68 72 15 13 14.2 Sl4 SL 10YR6/4 0.3 0.02 16 4.5 3.5 0.05 0.04 0.3 0.7 33
BFP5 4 Bgor2 95 77 11 12 12.6 Sl3 SL 10YR5/4 0.2 0.01 13 5.0 2.2 0.04 0.05 0.5 0.8 61

C2 1 Ah 14 2 33 64 0.0 Tu2 C 10YR3/2 2.1 0.16 14 4.0 13.4 0.06 0.11 1.1 2.9 31
C2 2 Bg(o) 60 4 30 66 0.0 Tt C 10YR4/3 1.1 0.08 13 4.2 12.0 0.03 0.10 1.9 4.1 52
C2 3 Bg 98 9 45 46 0.0 Tu2 SIC 2.5Y4/2 0.5 0.03 16 4.4 9.0 0.02 0.13 2.1 4.0 69
C3 1 Ah 10 2 33 65 0.0 Tu2 C 10YR2/2 2.8 0.18 15 4.2 15.7 0.28 0.14 1.2 4.0 36
C3 2 Bgo1 45 2 25 73 0.0 Tt C 10YR4/3 0.9 0.07 12 4.3 10.2 0.04 0.11 1.9 4.3 61
C3 3 Bgo2 99 7 28 65 0.0 Tl C 2.5Y4/2 0.7 0.05 13 4.3 9.7 0.02 0.13 2.1 3.6 60
C4 1 Ah 9 3 37 59 0.0 Tu2 C 10YR3/2 2.2 0.15 15 4.5 12.7 0.12 0.15 1.6 5.3 57
C4 2 B 24 4 32 64 0.1 Tu2 C 10YR5/3 0.9 0.07 13 4.6 11.5 0.05 0.13 2.0 4.7 60
C4 3 Bg(o) 50 11 39 50 0.0 Tu2 C 10YR5/3 0.5 0.03 16 4.3 8.8 0.03 0.27 2.8 5.7 100*
C4 4 Bgo 100 - - - - Tt C 2.5Y5/2 - - - - - - - - - -
C5 1 Ah 9 6 38 56 0.0 Tu2 C 10YR3/2 2.1 0.14 14 4.4 14.9 0.04 0.34 1.6 3.7 38
C5 2 Bg 29 3 30 67 0.0 Tt C 10YR4/3 1.1 0.02 62 4.5 12.4 0.03 0.09 2.5 5.8 68
C5 3 Bg(r) 59 5 35 60 0.0 Tu2 C 10YR5/3 0.7 0.05 13 4.3 13.3 0.03 0.16 1.9 3.8 44
C5 4 Bgr 100 - - - - Tt C 2.5Y4/2 - - - - - - - - - -
C6 1 Ah1 16 23 36 41 0.0 Lt3 C 10YR3/4 2.5 0.15 17 4.8 11.9 0.17 0.05 1.5 5.2 58
C6 2 Ah2 33 34 33 34 4.8 Lt2 CL 10YR3/4 1.2 0.08 15 4.6 8.8 0.09 0.05 1.1 3.3 52
C6 3 Bgr 65 45 23 32 1.2 Lts SCL/CL 10YR6/4 0.7 0.05 14 4.4 6.7 0.06 0.05 0.8 2.0 42
C6 4 Bgo 99 36 26 38 10.4 Lts CL 2.5Y6/2 0.6 0.04 13 4.3 7.4 0.06 0.08 1.0 2.5 49
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… continued 

 No. Hor Hor Depth Sand Silt Clay Gravel Text.1 Text.2 Colour Corg N C/N pH CECpot K Na Mg Ca BS
. [cm] [%] [%] [%] [%] [-] [-] [-] [%] [%] [%] [-] [cmolc/kg] [cmolc/kg] [cmolc/kg] [cmolc/kg] [cmolc/kg] [%]

C7 1 Ah 25 24 38 37 0.7 Lt3 CL 10YR4/3 1.9 0.11 17 4.5 11.2 0.15 0.04 1.2 4.2 49
C7 2 Ah/Bg(o) 40 26 40 34 0.7 Lt2 CL 10YR5/3 1.4 0.09 16 4.5 10.6 0.12 0.04 1.1 3.6 46
C7 3 Bg1 81 40 31 29 1.3 Lt2 CL 10YR6/3 0.6 0.04 14 4.3 6.5 0.07 0.04 0.9 2.2 49
C7 4 Bg2 99 36 31 34 0.0 Lt2 CL 2.5Y6/2 0.4 0.03 13 4.4 6.4 0.07 0.05 1.2 2.6 60
C8 1 Ah1 17 25 31 44 2.4 Lt3 C 10YR4/3 1.4 0.10 14 4.6 13.0 0.13 0.07 1.6 4.6 50
C8 2 Ah2 40 24 32 44 0.0 Lt3 C 10YR4/3 1.3 0.09 15 4.6 13.1 0.13 0.08 1.6 4.3 47
C8 3 Bgr1 73 39 25 36 0.0 Lts CL 10YR5/4 0.8 0.05 17 4.6 8.7 0.10 0.07 1.3 3.0 51
C8 4 Bgr2 100 26 25 49 0.0 Tl C 2.5Y6/2 0.3 0.02 17 - 11.8 0.15 0.26 3.3 6.0 83
C9 1 Ah 27 78 14 8 17.4 Sl2 LS 10YR5/3 0.9 0.04 22 4.5 3.4 0.04 0.07 0.2 1.4 47
C9 2 B1 51 81 12 7 2.8 Sl2 LS 10YR6/2 0.4 0.02 20 4.8 2.4 0.03 0.05 0.2 1.0 52
C9 3 B2 95 83 11 6 9.1 Sl2 LS 10YR7/2 0.2 0.01 19 5.2 1.4 0.03 0.05 0.1 0.7 63

C10 1 Ah 28 84 10 6 3.0 Sl2 LS 10YR5/3 0.3 0.01 23 4.7 2.3 0.01 0.04 0.1 0.9 47
C10 2 B1 55 83 12 5 7.3 Su2 LS 10YR8/3 0.2 0.01 16 4.9 2.1 0.02 0.09 0.1 0.7 45
C10 3 B2 100 88 9 3 5.0 Ss S 10YR8/3 0.1 0.00 24 5.4 0.8 0.02 0.02 0.1 0.3 62
C11 1 Ah1 29 86 9 5 1.6 St2 LS 10YR5/2 0.4 0.02 21 4.8 3.2 0.07 0.04 0.1 1.0 39
C11 2 Ah2 49 86 9 5 1.2 St2 LS 10YR5/3 0.4 0.02 19 4.8 2.8 0.06 0.03 0.2 1.1 46
C11 3 Bg(o) 62 82 12 6 2.2 Sl2 LS 10YR7/2 0.2 0.01 25 5.1 1.8 0.02 0.03 0.1 0.8 53
C11 4 Bgo 100 78 12 10 1.9 Sl3 SL 10YR7/2 0.2 0.01 20 5.4 2.5 0.03 0.03 0.2 1.1 57
C12 1 Ah 31 88 9 3 12.1 Ss S 10YR4/3 0.3 0.02 20 5.1 1.9 0.02 0.03 0.1 1.1 68
C12 2 Bg(r) 58 89 7 4 7.9 Ss S 10YR5/3 0.2 0.02 14 5.3 1.8 0.04 0.03 0.2 1.0 67
C12 3 Bgor 100 88 9 3 4.4 Ss S 10YR5/3 0.2 0.01 17 5.5 1.2 0.03 0.02 0.1 0.8 81
C13 1 Ah 33 73 17 10 0.6 Sl3 SL 10YR2/3 1.3 0.06 22 5.3 6.2 0.13 0.07 0.6 5.4 100*
C13 2 Bg1 66 68 16 16 0.9 Sl4 SL 10YR1.7/1 0.8 0.03 25 5.2 6.7 0.06 0.06 0.9 5.7 100*
C13 3 Bg2 99 80 9 11 9.1 St2 SL 10YR2/3 0.3 0.01 23 5.4 4.7 0.05 0.04 0.6 3.4 85
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.8 Location and characteristics of the investigated degraded fields and reference sites 

(cursive) in the U
pper O

uém
é catchm

ent and the com
m

une O
uaké (D

ate 18.09.-02.10.2005). 

N
o.

x, y
Land use

R
em

arks
Location 

Profile 
position

Inter-
view

Pr1
458535, 
1040850

Field: G
roundnut

10%
 sm

all gravel, 25%
 veg.cover, erosion betw

een row
s, 

sand accum
ulation

N
 of 

Parakou
U

pper 
slope

y

Pr2
460729, 
1031211

Field: M
aize (1

st 

yr after fallow
)

60%
 large gravel (1-7 cm

), 30%
 veg.cover

Banikani
-

y

Pr3
448425, 
1020316

Field: M
aize (2

nd 

yr after fallow
)

30%
 sm

all gravel, 60%
 veg cover, low

 yield, row
s along 

slope, rill erosion
S

 of 
Parakou

U
pper 

slope
y

P
r4

357863, 
1068455

S
acred fallow

 
(reference)

30%
 sm

all gravel, 50%
 veg.cover, erosion along footpath

Sérou
M

id-
slope

no

P
r5

357863, 
1068455

Fallow
 3rd year 

(reference)
25%

 m
edium

 gravel (0.5->2.5 cm
), 40%

 veg.cover, indicator 
plants indicating returning soil fertiliy

Sérou
M

id-
slope

no

Pr6
357980, 
1068377

Field: beans
80%

 large gravel (1-8 cm
), 10%

 veg.cover, ploughed, row
s 

along slope, no rotation, sheet erosion, low
 plant density

Sérou
U

pper 
slope

y

P
r7

357057, 
1068350

S
acred forest 
(reference)

no gravel, 80%
 veg.cover, thick litter layer

Sérou
Sum

m
it

no

Pr8
357110, 
1068333

Field: C
assava

1 yr after short fallow
, 40%

 large gravel (1-4.5 cm
), 50%

 
veg.cover, surface crusts, shallow

 soil, m
ounds 30 cm

 high
Sérou

Sum
m

it
no

Pr10
342188, 
1089756

Field: S
orghum

, 
bean, cashew

80%
 large gravel (1-30 cm

), 50%
 veg.cover, low

 yield 
(sorghum

 <1 m
), row

s along slope
C

opargo
-

no

Pr11
342188, 
1089756

Field: S
orghum

, 
bean, cashew

30%
 large gravel (1-20 cm

), 40%
 veg.cover, 2x planth height 

of Pr10 due high local soil fertility
C

opargo
-

no

Pr12
344680, 
1080790

Field: S
orghum

, 
petit m

ill
30%

 sm
all gravel, on m

ounds 60%
 gravel, 15%

 veg.cover, 
low

 yield, surface sealing, severe sheet erosion, sand 
accum

ulation

D
jougou

U
pper 

slope
no

P
r13

325543, 
1067319

Field: 
G

roundnut, 
G

liricidia 

no gravel, 60%
 veg.cover, groundnut not in row

s but on ex-
yam

 m
ounds

O
uaké

Inland 
valley 
frin ge

y

Pr14
325543, 
1067319

Field: G
roundnut, 

G
liricidia (new

)
no gravel, 40%

 veg.cover, accum
ulation of sand, groundnut 

not in row
s but on ex-yam

 m
ounds

O
uaké

Low
er 

slope
no

Pr15
339166, 
1066490

Field: Soy bean
70%

 large gravel (0.5-10 cm
), 30%

 veg.cover, row
s parallel 

to slope
B

arei
M

id-slope
y

Pr16
385867, 
1073219

Savane boisée
40%

 sm
all gravel, quartz gravel, <10%

 veg.cover but 60%
 

leaves, sealed surface, sm
all term

ite m
ounds, indurated, 

clay-rich soil

D
onga

U
pper 

slope
no

F1
355381, 
1076665

Field: C
assava, 

(m
aize,sorghum

)
10%

 sm
all gravel, 40%

 veg.cover
D

jougou
U

pper 
slope

y

F2
384606, 
1078031

Field. S
orghum

, 
groundnut

10%
 sm

all gravel, 85%
 veg.cover

G
aouga

U
pper 

slope
y

F5
350283, 
1075874

Field: G
om

bo, 
tom

ato
60%

 m
edium

 gravel (on m
ounds 90%

), 20%
 veg.cover, low

 
yield, w

eeds, crusts along path, row
s parallel to slope, sheet 

erosion

D
jougou

M
id-slope

y

F8
347263, 
1081331

Field: G
roundnut, 

bean, petit m
il

40%
 sm

all gravel (80%
 betw

een row
s), 30%

 veg.cover, row
s 

parallel to slope, traces of charcoal 
Kparsi

M
id-slope

y

F9
347263, 
1081331

Field: Yam
, petit 

m
ill, (bean)

up to 95%
 m

edium
/large gravel, 25%

 veg.cover, m
ounds "en 

quinconce" but highly eroded, good yield 
Kparsi

M
id-slope

no

F15
374078, 
1077907

Field: Petit m
ill

<10%
 sm

all gravel, 30%
 veg.cover, generally poor yield but 

for petit m
ill O

K, m
oderate erosion along field borders and 

row
s, >10 cm

 sand accum
ulation, indurated subsoil

M
oné

M
id-slope

y

F19
374745, 
1075859

Field: Sorghum
50%

 sm
all/m

edium
 gravel, 25%

 veg.cover, m
aize residues, 

good yield
M

oné
M

id-slope
y

F20b
386442, 
1006332

Field: C
assava, 

m
aize 

(h
t

d)

20%
 sm

all/m
edium

 gravel, 60%
 veg.cover (m

ounds and 
herbs), low

 yield, pseudo-fallow
D

ogué
U

pper 
slope

y

F21
384806, 
1006241

Field: M
aize

40%
 m

edium
 gravel, 15%

 veg.cover, low
 yield, row

s parallel 
to slope, indurated subsoil

D
ogué

M
id-slope

y

F22
382293, 
1006909

Field: C
assava

<10%
 sm

all gravel, 10 to 50%
 veg.cover, slight sheet 

erosion, sand accum
ulation, drought cracks, reduced yield, 

m
aize residues/w

eeds

D
ogué

U
pper 

slope
y

E1
341665, 
1068595

Field: C
otton (4

th 

year)
80%

 large gravel (iron nodules), 20%
 veg.cover, highly 

eroded but since 2004 protected by Vetiver hedges, gravel-
rich topsoil

Barei
Little hill

y
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Table A.9. Characteristics of studied degraded fields in the Upper Ouémé catchment according to farmer interviews. 
 
 
Soil Location Farmer Crop cycle

Cropping 
period 
[years]

Fallow 
period 
[years]

Change in fallow 
period, soil fertility 

restoration

Chemical 
fertilizer Manure Burning Soils Rainfall Yield Soil conservation 

measures

Pr1 Parakou m

maize - cotton - maize - 
cotton - etc.; if low soil 

fertility groundnut 
alternating with 
maize/sorghum

when 
required 2

5 for subsequent 
yam cultivation; 

requires fertilizer for 
good yield

yes (maize, 
cotton)

yes, peulh 
cattle alowed 
to graze after 

harvest

yes, early

OK, low gravel 
content but not 
very fertile due 
to accumulated 

sand, 1999 
reclaimed from 
savannah land, 
since 2002 less 

fertile

- -

Pr2 Parakou-
Banikani m maize permanent (home 

field) 3 3-4 sufficient no yes, on home 
fields no fertile 2005 less than 

2004 - domestic waste on 
homefields, tree debris

Pr3 Gouarou
m, migrant 

from 
Boukombé

sorghum - maize, 
sorghum (row) - maize, 

sorghum (mound)
3 or more 3 no no only for land 

reclamation "tired" 2005: not enough - crop residues

Pr13 Yamala m

agroforestry with Gliricidia: 
yam, groundnut, yam, 

groundnut, yam; before: 
yam, groundnut, maize, 

yam

5 2

before 2001 no 
fallow, in region 

generally 2-3 years; 
not enough but 
improved fallow 

helps

no, in the past 
yes no -

sandy, low 
gravel content, 
in general fertile 

soils but 
reduced fertility 

due to 
overexploitation

2005 less than 
2004, not enough -

improved fallow with 
Gliricidia (Legume), b) 

crop residues

Pr15 Assotè m Millet – sorghum – soy 
bean+beans – cassava 4 2 reduced no no no

OK, but was 
better before the 

90ies

2004: good, 2005: 
not enough, 

dryspell in August
- perpendicular to the 

slope, crop residues

Pr16 Foyo near 
Donga m5

yam – 
groundnut/maize/cotton – 

yam – 
groundnut/maize/cotton; 
cotton 1 year or more, 

mixed cropping: e.g. yam 
+ sorghum, yam + 

cassava (outer belt), yam 
+ beans

?? 3

parents used to have 
10-15 years; Ok if 

fertilizer is used, land 
conflicts 

yes, maize 
and cotton, 
groundnut & 
rice (every 

year)

yes, peulh 
cattle alowed 
to graze after 

harvest

yes, late

fertile, some 
gravel, sandy 

with increasing 
depth also clay

2004: good, 2005: 
not enough -

a) perpendicular to the 
slope, b) soybean & 

teak on exhausted soils 
(10-15 years), c) crop 

residues, distribute 
leaves on fieldm d) 

cashew 

F1 Djougou

m, 
Gourmantch
e, parents 

from Burkina 
Faso

cassava - maize - maize - 
groundnut o. 

maize/sorghum - cassava
5 or more 0, 2-3

with manure only 
pseudofallow with 

cassava, otherwise 2-
3 years, in the past 6-
20 years; not enough

no 

every year 
bought 
manure 
applied

-
no gravel, soil 

"tired", requires 
manure

2004: too much, 
2005: good OK

manure, crop residues 
(groundnut, others 

burned)
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… continued 

 
Soil Location Farmer Crop cycle

Cropping 
period 
[years]

Fallow 
period 
[years]

Change in fallow 
period, soil fertility 

restoration

Chemical 
fertilizer Manure Burning Soils Rainfall Yield Soil conservation 

measures

F2 Gaouga

m, old, 
Lokpa, 

migrant from 
Bellefongou

groundnut - cotton - maize 
- groundnut - 

groundnut/sorghum - 
cotton …; field2: yam/rice -

maize/rice - yam (if last 
harvest was good)

6 or more
0, other 
fields 3-

4
reduced, but still OK no -

only after 
cotton 

(feb/march)

good, soils "tired" 
but Ok through 

crop rotation, even 
yam possible but 

weeding is labour-
intensive

last year OK, this 
year dry spell in 

August 

poor due to 
insect pest groundnut cultivation

no Donga

m, old, 
Peulh, 

migrant from 
Bellefongou

yam - maize/sorghum + at 
the border Petit Mill 2 0, 2, 4 same, enough land, 

OK
yes, cotton 
und maize - sandy, gravelly, 

fertile, no erosion

2004: good, 2005: 
yam suffered from 

late rainfall this 
year, no problem 

for sorghum

OK -

F5
Sidikparo, 

near 
Djougou

f, 
autochthon, 

Yom

yam - cotton - sorghum - 
Gombo/tomato 4 3 not enough, 4th year 

already low yields
yes, maize 
und cotton

yes, peulh 
cattle allowed 
to graze after 

harvest

yes, early

 low soil fertility, 
shallow, gravelly 

soil which is 
currently not fertile, 

mounds heavily 
reduced due to 

rainfalls in 
September

2004: good, 2005: 
dry spell in August 

reduces maize 
harvest

poor (4th 
year), year1-3 

was good
crop residues

F8 near 
Kparsi

m, Yom, 
migrant from 

Kpabegou

a,b) yam – Sorgho – 
cotton (if profitable) - …; 
c) yam-sorghum-cotton-
groundnut (+beans, petit 

mills)-maize-fallow, d) 
yam-sorghum-fallow ; yam 

on long fallow

2-4 3-4 
same as parents, 

yam only good on old 
fallows

yes, cotton 
und maize

yes, peulh 
cattle allowed 
to graze after 

harvest

no 
(protection), 
but happens

variable, sandy, 
partially high gravel 

content, land 
available for yam

2005: dryspell 
August/early Sept, 

reduces yam 
harvest

very good crop residues

F15 Mone

m2, 
I.Yom,II:Peul

h, migrant 
from 

Kpassabega

I: yam-sorghum-
groundnut-

cassava_fallow, yam-
sorghum-cotton-maize-
fallow, II: yam-maize-

groundnut-
cashew/cassava-cassava-

cashew (tall); yam-
PetitMill-fallow; fallow-yam-
maize-cashew/cassava- 

cashew

I. 4, II 4-5, 
if soil very 
tired less

4

I: reduced, in the 
past 6-10 years, now 
yam already after 4 

yrs. Fallow, 
compromise

I: yes, if cotton 
then also 

maize II: no

yes, peulh 
cattle allowed 
to graze after 

harvest

no, anti-fire 
band 3m 

I:sandy soils good 
for yam, gravelly 

soil good for 
sorghum

I: 2004: OK, 2005: 
onset too late; II: 

2004: good, 2005: 
not good

I:good, II.  
II:good, but 

poor for 
petitmill 

although less 
demanding 

than sorghum

F19 Mone
f, migrant 

from Permas 
(Natitingou)

yam-sorghum/maize-
groundnut-sorghum-? 4 or more about 4 no

yes, peulh 
cattle allowed 
to graze after 

harvest

no, anti-fire 
band 4m 

gravelly, other soil 
at inland valley 

fringe sandy

2004/2005: too 
late onset good crop residues, cattle 

after harvest
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… continued 

 
Soil Location Farmer Crop cycle

Cropping 
period 
[years]

Fallow 
period 
[years]

Change in fallow 
period, soil fertility 

restoration

Chemical 
fertilizer Manure Burning Soils Rainfall Yield Soil conservation 

measures

F20b Dogue
m, 

autochthon, 
Nagot

cotton-beans-maize-
groundnut-maize-fallow-

groundnut-cassava-
evtl.Cashew; yam-maize-

cassava-fallow

3-5 3 10 would be ideal yes, cotton

yes, peulh 
cattle allowed 
to graze after 

harvest

yes, early gravelly but deep, 
little erosion

2004/2005: too 
late onset groundnut

F21 Dogue
m, young, 

autochthon, 
Nagot

a) cassava/maize-
cassava-groundnut-

cassava-maize/cassava-
fallow, b) cotton-cotton- 

fallow/cashew-
groundnut/beans-maybe 

beans/maize

3-5 2 (split 
field), yes, cotton

yes, peulh 
cattle allowed 
to graze after 

harvest

no, anti-fire 
band 4m OK, sandy 2004: good, 2005: 

too late onset
poor, years 
before good

F22 Dogue
m, 

autochthon, 
Nagot

fallow lang-yam-cassava-
cassava-fallow; yam-

sesame-cassava-cassava-
maize-Teak

3-5 5 no, in the past 
for cotton

yes, peulh 
cattle allowed 
to graze after 

harvest 

yes, early sandy, no erosion 2004: good, 2005: 
too late onset

only this 
particular field 

poor

E1 Barei m cotton permanent (4th 

year)
- -

yes, for cotton 
and Vetiver 

grass
no -

extreme gravel 
content, steep 

slope
- -

Vetiver hedges 
depending on slope, 
financed from PDRT 

since 2004

no near 
Copargo m

yam-
sorghum/niebe/groundnut/-

fallow-
cassava/beans/maize-

sorghum-fallow

2 1-2 no no yes, early
Soil 'tired', sorghum 

would require 
fertilizer

- - crop residues

no Kpabegou m yam-sorghum-
cotton/maize 3 3-5 yes, maize 

und cotton
only if high 

rainfall yes, early sandy, partially 
gravel

2005: good onset, 
but than not 

enough
- -

no Kakpala m2

yam – maize - petit 
mil/groundnut – beans – 
maize; house field: maize 

– millet – petit mil

5 2 same as father

yes, maize, if 
enough money 
also groundnut 

und yam

only house 
fields

yes, early 
(home fields 

and 
Eukalyptus 
plantations 
excluded)

gravelly, soils tired 
but fertilizer allows 
good harvest, still 

land for reclamation 
available (yam)

2004: too much, 
2005: good, 

dryspell in August 
not problematic

good due to 
fertilizer

Gliricidia-yam based 
system which allows 
yam cultivation every 
second year (yam-

groundnut-yam-
sorghum), sowing 
better than putting 

branches

no Kimkim m2, migrant 
from Togo (I)

I: maize – maize – 
groundnut – 

sorghum+millet – maize; 
II: yam - maize –sorghum -
millet – groundnut + millet -

maize

permanent
up to 10 

(far 
away)

yes, for maize 
and 

groundnut, 
seldom yam

only house 
fields

yes, early 
and late

gravel, indurated, 
soils less fertile, 

very old 
fallows/savannah 
for yam far away

2004: good, 2005: 
dry spell of 3 

weeks in August

lower field 
sizes better to 
manage, give 

better yield

traditional stone rows 
too labour intensive; 
perpendicular to the 

slope; organic fertilizer 
before yam cultivation, 
young migrate to fertile 

temporarily towards 
Bassila/Djougou
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Table A.10. Soil characteristics of studied degraded fields and reference sites in the Upper Ouémé catchment (- not sampled, 1AG Boden (1994), 2USDA 
(1993)). 
 No. Hor Depth Sand Silt Clay Gravel Text.1 Text.2 Colour Corg N C/N pH CECpot K Na Mg Ca BS

[cm] [%] [%] [%] [%] [-] [-] [-] [%] [%] [%] [-] [cmolc/kg] [cmolc/kg] [cmolc/kg] [cmolc/kg] [cmolc/kg] [%]
Pr 2-1 1 5 72 19 9 34 Sl3 SL grey 1.7 0.01 73 5.8 7.9 0.30 0.00 1.6 6.1 100
Pr 2-2 2 42 68 20 11 27 Sl3 SL brown 0.6 0.03 67 6.0 4.8 0.10 0.00 0.7 3.0 80
Pr 2-3 3 51 59 21 19 21 Ls4 SL red 0.4 0.03 15 5.8 2.1 0.10 0.00 0.5 1.1 81
Pr 2-4 4 73 - - - - Ts2 C red - - - - - - - - - -
Pr 3-1 1 20 86 10 4 24 Ss LS dark brown 0.3 0.02 9 5.6 1.7 0.12 0.00 0.2 0.6 56
Pr 3-2 2 49 80 12 7 27 Sl2 LS red brown 0.6 0.00 32 4.9 3.2 0.16 0.00 1.1 0.6 61
Pr 3-3 3 66 60 10 30 23 Ts4 SCL red brown 0.4 0.02 27 4.8 3.5 0.24 0.01 1.1 0.6 56
Pr 3-4 4 90 58 14 28 21 Ts4 SCL red brown 0.2 0.06 13 4.8 3.2 0.05 0.00 0.4 1.6 64
Pr 4-1 1 8 83 12 5 24 Sl2 LS 10YR/3.4 0.8 0.03 15 5.2 2.7 0.02 0.00 0.2 0.5 25
Pr 4-2 2 37 79 13 8 25 Sl2 LS 10YR/3.4 0.5 0.02 19 4.4 2.9 0.02 0.01 0.1 0.6 24
Pr 4-3 3 61 70 15 14 35 Sl4 LS 10YR/3.3 0.4 0.02 18 4.4 2.8 0.05 0.00 0.1 0.6 27
Pr 4-4 4 67 67 18 16 32 Sl4 LS 5YR/4.4 0.3 0.01 15 - 3.5 0.04 0.01 0.2 0.8 30
Pr 5-1 1 13 81 14 6 25 Sl2 LS 7.5YR/3.2 1.7 0.01 238 5.3 3.4 0.05 0.00 0.4 1.5 57
Pr 5-2 2 38 79 13 8 26 Sl3 LS 7.5YR/4.2 0.8 0.03 137 4.6 4.0 0.04 0.00 0.2 1.1 36
Pr 5-3 3 46 69 16 15 39 Sl4 SL 7.5YR/4.4 0.5 0.02 17 - 3.5 0.02 0.00 0.3 1.0 39
Pr 5-4 4 55 67 18 15 34 Sl4 SL 5YR/5.4 0.3 0.04 17 - 4.1 0.03 0.00 0.5 1.3 42
Pr 6-1 1 11 78 16 6 37 Sl2 LS 10YR/3.4 0.7 0.03 17 5.2 3.5 0.07 0.00 0.6 1.6 66
Pr 6-2 2 18 63 22 15 21 Sl4 SL 7.5YR/3.4 0.6 0.03 18 5.0 4.0 0.04 0.00 0.8 1.8 66
Pr 6-3 3 50 - - - - Ls4 SCL 10YR/3.3 - - - - - - - - - -
Pr 6-4 4 68 53 23 24 22 Ls4 SCL 7.5YR/4.4 0.5 0.01 16 4.7 4.7 0.04 0.00 0.9 1.5 52
Pr 6-5 5 96 45 21 35 24 Lts CL 7.5YR/5.4 0.4 0.31 73 4.5 4.6 0.03 0.01 0.8 1.6 54
Pr 7-1 1 10 67 16 17 26 Sl4 SL 10YR/2.1 4.4 0.07 14 6.9 21.7 0.72 0.01 2.6 18.4 100
Pr 7-2 2 32 76 15 10 40 Sl3 SL 10YR/4.1 1.0 0.02 15 6.3 13.6 0.26 0.00 0.8 6.2 53
Pr 7-3 3 61 67 18 15 29 Sl4 SL 5YR/4.6 0.3 0.06 16 1.3 0.07 0.07 0.7 0.4 100
Pr 8-1 1 7 84 10 6 27 Sl2 LS 7.5YR/4.2 0.9 0.04 16 6.0 4.3 0.10 0.00 0.9 2.9 92
Pr 8-2 2 26 80 11 9 36 Sl3 LS 7.5YR/4.2 0.7 - 20 5.7 2.7 0.05 0.00 0.2 0.8 37
Pr 8-3 3 35 - - - - Lts SCL/CL/C 5YR/4.6 - - - - - - - - - -

Pr 10-1 1 4 75 18 7 20 Sl2 SL 10YR/3.1 1.0 0.04 16 5.1 4.6 0.09 0.00 0.5 2.8 74
Pr 10-2 2 25 78 15 8 33 Sl2 LS 10YR/5.3 0.8 0.02 18 4.9 4.8 0.09 0.00 0.3 1.9 47
Pr 10-3 3 41 78 12 10 40 Sl3 SL 2.5Y/5.2, 

2.5YR/4.6
0.4 0.02 15 4.8 3.0 0.12 0.07 0.3 0.7 41

Pr 10-4 4 50 63 17 20 25 Ls4 SL/SCL 2.5YR/3.6 0.3 0.11 14 4.7 5.4 0.14 0.00 0.5 1.1 33
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… continued 
 
 No. Hor Depth Sand Silt Clay Gravel Text.1 Text.2 Colour Corg N C/N pH CECpot K Na Mg Ca BS

[cm] [%] [%] [%] [%] [-] [-] [-] [%] [%] [%] [-] [cmolc/kg] [cmolc/kg] [cmolc/kg] [cmolc/kg] [cmolc/kg] [%]
Pr 11-1 1 16 73 13 14 13 Sl4 SL 10YR/3.1 1.8 0.05 16 6.0 10.1 0.30 0.00 2.5 7.3 100
Pr 11-2 2 44 69 15 16 27 Sl4 SL 7.5YR/4.2 0.7 0.03 14 5.7 4.7 0.86 0.00 0.7 2.4 82
Pr 11-3 3 77 72 12 16 27 Sl4 SL 2.5Y/5.2, 

2.5YR/3.6
0.4 0.03 13 5.3 4.4 0.35 0.00 0.5 1.5 54

Pr 12-1 1 3 79 10 11 7 Sl3 SL 10YR/4.3 0.4 0.04 14 5.2 2.9 0.08 0.00 0.4 1.0 50
Pr 12-2 2 17 69 9 23 13 St3 SCL 10YR/4.3 0.6 0.04 14 4.4 5.4 0.08 0.00 0.3 0.8 23
Pr 12-3 3 48 64 10 26 10 Ts4 SCL 7.5YR/5.4 0.6 0.02 15 4.3 4.9 0.09 0.00 0.2 0.7 20
Pr 12-4 4 80 45 15 40 15 Lts SCL/CL 7.5YR/5.6 0.2 0.02 11 4.5 6.5 0.12 0.01 0.3 0.9 21
Pr 13-1 1 35 84 8 7 13 St2 LS 7.5YR/4.2 0.3 0.02 13 4.6 2.3 0.13 0.00 0.2 0.6 40
Pr 13-2 2 52 80 8 12 14 St2 SL 7.5YR/4.4 0.4 0.02 18 4.4 2.2 0.02 0.00 0.2 0.5 30
Pr 13-3 3 71 77 10 14 9 St2 SL 7.5YR/5.4 0.2 0.03 14 4.4 3.1 0.06 0.00 0.2 0.6 28
Pr 13-4 4 86 64 10 26 12 Ts4 SCL 7.5YR/4.4 0.3 0.02 11 4.4 6.5 0.08 0.00 0.3 1.2 24
Pr 14-1 1 12 89 8 3 5 Ss S 7.5YR/4.4 0.2 0.01 13 4.5 2.3 0.05 0.00 0.1 0.2 15
Pr 14-2 2 37 85 9 6 2 St2 LS 7.5YR/4.4 0.2 0.01 12 4.4 2.5 0.05 0.00 0.1 0.3 16
Pr 14-3 3 56 78 11 11 6 Sl3 SL 7.5YR/5.6 0.2 0.02 16 4.5 2.0 0.12 0.01 0.2 0.8 59
Pr 14-4 4 82 71 12 17 5 St3 SL 7.5YR/5.6 0.2 0.03 10 4.6 4.7 0.08 0.00 0.2 0.7 22
Pr 15-1 1 14 86 8 6 24 St2 LS 7.5YR/4.2 0.4 0.03 14 4.8 3.0 0.06 0.00 0.3 1.0 43
Pr 15-2 2 34 79 12 9 26 Sl3 LS 7.5YR/4.2 0.5 0.02 15 4.7 3.6 0.06 0.00 0.4 1.2 44
Pr 15-3 3 52 78 11 11 38 Sl3 SL 7.5YR/5.6 0.3 0.03 14 4.8 4.3 0.05 0.00 0.3 0.9 28
Pr 15-4 4 74 66 14 19 38 St3 SL 5YR/4.6 0.4 0.05 14 4.8 6.8 0.06 0.02 0.3 1.1 21
Pr 16-1 1 9 32 18 51 20 Tl C 5YR/(4.4 0.7 0.04 15 5.0 12.6 0.39 0.03 5.0 4.4 78
Pr 16-2 2 29 38 19 43 23 Lts C 5YR/4.6 0.5 0.02 15 5.3 10.6 0.39 0.03 4.6 3.5 81
Pr 16-3 3 44 46 18 37 26 Lts SC 2.5YR/4.6 0.3 0.02 13 5.7 8.5 0.26 0.04 3.8 2.7 79
Pr 16-4 4 60 - - - - Ts2 C 2.5YR/4.6 - - - - - - - - - -
Pr 16-5 5 82 - - - - Tt C 2.5YR/4.6 - - - - - - - - - -

F1-1 1 10 83 11 6 16 Sl2 LS 10YR/3.3 0.5 0.03 21 4.5 8.0 0.09 0.05 2.3 3.3 72
F1-2 2 23 72 15 13 43 Sl4 SL 10YR/5.4 0.5 0.03 19 6.4 0.18 0.02 0.6 1.3 33
F1-3 3 59 36 29 37 34 Lts CL 5YR/4.6 0.3 0.03 13 5.5 12.1 0.10 0.05 1.9 2.8 40
F1-4 4 71 47 23 30 37 Lts SCL 5YR/5.8 0.3 0.03 12 5.4 3.8 0.03 0.01 0.6 1.7 62
F2-1 1 25 76 14 10 12 Sl3 SL 10YR/3.2 0.8 <0.01 22 4.9 6.1 0.09 0.00 0.5 2.0 41
F2-2 2 36 67 12 21 17 St3 SCL 7.5YR/4.4 0.5 0.05 17 4.6 6.2 0.07 0.01 0.7 2.6 56
F2-3 3 58 52 15 33 19 Ts4 SCL 7.5YR/4.6 0.5 0.03 13 4.3 10.4 0.07 0.00 0.7 1.9 26
F2-4 4 77 44 17 39 34 Lts CL 7.5YR/4.6 0.4 0.03 11 4.4 5.5 0.07 0.03 0.8 2.2 56
F2-5 5 84 45 20 35 20 Lts SCL/CL 7.5YR/4.6 0.3 0.02 12 4.5 10.8 0.07 0.00 0.7 2.4 30
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… continued 
 

No. Hor Depth Sand Silt Clay Gravel Text.1 Text.2 Colour Corg N C/N pH CECpot K Na Mg Ca BS
[cm] [%] [%] [%] [%] [-] [-] [-] [%] [%] [%] [-] [cmolc/kg] [cmolc/kg] [cmolc/kg] [cmolc/kg] [cmolc/kg] [%]

F8-1 1 16 85 8 7 22 St2 LS 10YR/4.3 0.7 0.02 25 5.1 5.0 0.07 0.00 0.2 1.1 27
F8-2 2 31 82 9 9 30 St2 LS 10YR/4.4 0.6 0.02 24 4.8 1.6 0.04 0.00 0.2 0.7 59
F8-3 3 54 64 14 22 37 St3 SCL 5YR/4.6 0.4 0.08 18 4.9 3.5 0.13 0.03 0.4 1.0 45
F9-1 1 8 76 13 11 31 Sl3 SL 10YR/3.3 1.6 0.06 20 5.7 4.6 0.12 0.00 0.8 3.5 97
F9-2 2 22 76 12 11 40 Sl3 SL 10YR/4.4 1.1 0.03 18 5.6 3.1 0.11 0.00 0.5 1.9 81
F9-3 3 53 - - - - Sl4 SL 10YR/4.4, 

2.5YR/5.8
- - - - - - - - - -

F9-4 4 67 59 21 20 34 Ls4 SL/SCL 2.5YR/5.8 0.4 0.01 16 5.2 4.2 0.22 0.00 0.7 1.3 54
F19-1 1 13 72 17 11 26 Sl3 SL 10YR/3.2 1.5 0.03 23 5.3 5.4 0.15 0.00 0.7 3.6 83
F19-2 2 25 79 13 8 42 Sl2 LS 10YR/3.3 0.6 0.04 19 5.4 3.7 0.11 0.00 0.8 1.7 70
F19-3 3 - - - - - - - - - - - - - -
F20-1 1 13 79 13 8 24 Sl3 LS 7.5YR/3.2-4.2 1.0 0.03 24 4.9 3.7 0.05 0.00 0.3 2.4 74
F20-2 2 31 72 17 11 28 Sl3 SL 5YR/4.6 0.6 0.02 18 5.4 15.6 0.11 0.00 0.7 1.1 13
F20-3 3 51 68 17 16 36 Sl4 SL 5YR/5.6 0.5 0.02 20 5.6 2.9 0.09 0.00 1.0 0.9 68
F20-4 4 72 33 31 37 20 Lt3 CL 5YR/5.8,5YR/

4.6Mx
0.2 0.02 11 6.0 3.9 0.20 0.00 1.7 1.9 97

F20-5 5 91 34 28 39 16 Lts CL 2.5YR/5.8 0.2 0.03 12 6.0 4.2 0.28 0.01 1.1 2.2 88
F21-1 1 10 75 17 8 22 Sl3 SL 10YR/3.2 1.2 0.03 46 5.7 5.0 0.13 0.03 0.7 3.9 96
F21-2 2 32 78 15 7 33 Sl2 LS 7.5YR/4.4 0.6 0.01 25 5.6 3.1 0.01 0.00 0.2 2.1 74
F21-3 3 72 70 17 13 33 Sl4 SL 7.5YR/4.4 - 0.03 - - - - - - - -
F22-1 1 11 72 15 13 10 Sl4 SL 10YR/3.2 1.3 0.03 25 5.0 3.7 0.07 0.01 0.7 1.9 73
F22-2 2 30 68 14 19 9 St3 SL 5YR/4.4 0.5 0.03 16 4.9 2.7 0.06 0.01 0.7 1.0 66
F22-3 3 73 63 16 21 31 Ls4 SCL 5YR/5.6 0.4 0.02 14 5.4 2.8 0.08 0.01 0.8 0.8 62
F22-4 4 93 43 16 41 12 Lts C 5YR/5.8,2.5Y

R/5.8
0.3 0.04 13 - - - - - - -

E1-0 0 5 74 17 9 38 Sl3 SL - 0.4 0.04 8 5.2 3.8 0.13 0.01 0.8 2.2 81
E1-1 1 10 64 19 17 37 Ls4 SL 7.5YR/3.4 0.4 0.03 8 4.9 3.8 0.07 0.01 0.7 1.3 56
E1-2 2 21 46 24 30 29 Lts SCL 7.5YR/4.4 0.3 0.05 9 5.1 3.6 0.04 0.01 0.7 1.2 54
E1-3 3 47 39 21 40 30 Lts CL 7.5YR/5.6 0.5 0.02 10 4.9 4.3 0.08 0.01 0.9 1.5 59
E1-4 4 89 - - - - Tu2 C 7.5YR/6.6 - - - - - - - - - -
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Table A.11 Questionnaire for the characterisation of agricultural sites (translated from French to 
English).  

Questionnaire – Exhausted agricultural sites (translated from French) 
1. What is your name? Were you born here? If not, from where did you come here and why? 

To which ethnic group do you belong?  
2. Which crops are currently planted on this field?  
3. Which crops have you planted on all your fields this year? Which crops do you normally 

cultivate?  
4. Which crop rotation are you practicing on this field? What did you cultivate one/two years 

before? What will you cultivate the next year, and the year after …? 
5. How many years do you cultivate this field before the fallow period? How long is your fallow 

period? Was this fallow period the same at your fathers/grandfathers time? If not, why?  
6. Do you use fertiliser for this field or one of your fields? If yes, which fertiliser do you use and 

for which crops (mineral fertiliser, organic manure …)?  
7. Which tools do you use to cultivate your fields? Only hoe and axe or something else?  
8. Do you burn your fields regularly? If yes, when do you burn?  
9. What is the soil like at this field? Is it heavy or light, with/without gravels? Is the soil quality 

good or bad? Is the soil exhausted (fatigué)? Which colour has the soil?   
10. What do you think about the rainfall distribution this year? How was it in the last year?  
11. Do you think this area is suitable for agricultural land use? Which position along the hillslope 

do you prefer for agricultural production and for which crops?  
12. Have you been satisfied with the harvest this year?  
13. Do you apply soil conservation measures? If yes, which measures do you apply? 

Table A.12 Location of studied erosion forms in the Upper Ouémé catchment (Date 12.09.-1.10.2005). 
Site x (UTM) y (UTM) Location Position Slope [%] Land use Erosion form Degree
ER1 460921 1030944 Parakou-Banikani Middle slope 3 settlement deep rill, gully Moderate

ER2 458535 1040850 N of Parakou Lower slope 4 former sand 
excavation site

sheet erosion, rills, 
crusts Severe

ER3 458956 1031298 Parakou-Sinahou Upper slope 4 none gully Severe

ER4 341706 1088909 NO of road Copargo-
Kpassabega 4 former sand 

excavation site rills, crusts Severe

ER5 453291 1025283 S of Parakou 3 former sand 
excavation site sheet, rills, crusts Severe

ER6 344620 1080781 Ara catchment (W of 
Djougou), near road Lower slope 6 former sand 

excavation site sheet, rills, crusts Severe

ER7 340512 1067376 SW of Barei Middle slope 3 unpaved road 
(width 5m) rills along path, crusts Severe

ER8 357782 1068455 Serou Middle slope 2 foot path (width 
1m) rills along path Moderate

ER9 365970 1074589 Barienou
Lower slope, 
inland valley 

border

side 
slopes up 

to 10 
none rills along path Moderate

ER10 385448 1009126 Dogué: Lower 
Aguima Lower slope 3 foot path rills along path Severe

ER11 384806 1006241 Dogué: Upper 
Aguima Middle slope 2 unpaved road sheet erosion, eroded 

planting rows Moderate

ER15 369637 1075769 Moné Lower slope 4 none gully Severe
ER16 369661 1075774 Moné Middle slope 4 none rills, crusts Severe
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 Appendix B. Modelling and suspended sediment measurements 

 
 
 
 
 
 
 
 

 
Fig. B.1 Sites of turbidity and discharge measurements: (a) Donga-Pont, (b) Lower Aguima,  
(c) Donga-Kolonkonde, (d) Terou-Igbomakoro (Date: September 2004, 2006). 
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Fig. B.2 Spatial validation: Comparison of measured and simulated weekly discharge at the validation 
outlets. 
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Fig. B.3 Spatial distribution of the mean total discharge in the 
Upper Ouémé catchment for the original model (1998-2005). 

Fig. B.4 Spatial distribution of the mean total discharge in the Upper Ouémé catchment for the land use 
scenarios L1 to L3 and the Lu00 model. 
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Fig. B.5 Mean spatial distribution of water yield for the climate scenarios A1B and B1 for the periods 
2001-2025 and 2026-2050 compared to the original model (1998-2005) and the model with REMO 
data for 1960-2000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. B.6 Mean simulated annual values of rainfall, sediment yield (SY) and water yield (WY) in the 
Donga-Pont subcatchment for the combination of the land use scenarios L1 and L2 with the climate 
change scenarios for the period 2000 to 2030. The presented results are averages of three ensemble 
runs for each climate scenario. 
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Fig. B.7 Mean simulated annual values of rainfall, sediment yield (SY) and water yield (WY) in the 
Terou-Igbomakoro subcatchment for the combination of the land use scenarios L1 and L2 with the 
climate change scenarios for the period 2000 to 2030. The presented results are averages of three 
ensemble runs for each climate scenario. 
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Fig. B.8 Mean spatial distribution of water yield for the combinations of the climate scenarios A1B and 
B1 with the land use scenarios L1-L3 for the period 2001-2030 compared to the Lu00 model (1998-
2005) and the model with REMO data for 1960-2000. 

 
Fig. B.9 Mean spatial distribution of water yield for the land use, climate and combined scenarios 
compared to the Lu00 model (1998-2005) and the model with REMO climate data for 1960-2000. 
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Fig. B.10 Mean spatial distribution of surface runoff for the land use, climate and combined scenarios 
compared to the Lu00 model (1998-2005) and the model with REMO climate data for 1960-2000. 
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Fig. B.11 Sensitivity of mean annual discharge and model efficiency to changes of the parameters 
ESCO and SURLAG (red dot: parameter value and simulated mean discharge for the period 1998-
2001, red line: polynomial regression). 
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Fig. B.12 Sensitivity of mean annual discharge and model efficiency to changes of the parameters 
GWQMN and CH_K2 (red dot: parameter value and simulated mean discharge for the period 1998-
2001, red line: polynomial regression). 
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Fig. B.13 Sensitivity of mean annual sediment yield to changes of the parameters ESCO, SURLAG, 
GWQMN and SOL_AWC (red dot: parameter value and simulated mean discharge for the period 
1998-2001, red line: polynomial regression). 
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Fig. B.14 Confidence interval (90%) for mean daily discharge and sediment yield at the Terou-
Igbomakoro and Donga-Pont outlets. 
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Appendix C. Soil conservation 
 
 
Table C.1 Main finished and ongoing development projects in Benin concerning soil degradation 
(Sources: Singer, 2005; MEHU, 2005; own investigations). 

Project title
Budget 

106 FCFA
Funding 

institutions Period Intervention 
zone Objectives

Projet pour la 
lutte contre le 

feux de brousse
- UNDP, FAO 1986-1990 Boukoumbé Combat of bush fire

PADSA   (Phase 
I) 13 DANIDA, 

Benin 1997-2003
22 communes 
(e.g. Ouenou in 

Ndali)

Development of the agricultural 
sector 

PAGER 6.7 FIDA,DANIDA
, Benin 1997-2004 Whole country Financing of income generating 

activities

PDE 6 BAD, Benin 1998-2002 Northern Benin
Reinforcement of food security 

by the  promotion of 
sustainable animal husbandry

PAZH 1.45 Netherlands, 
Benin 1998-2001 Southern Benin

Elaboration of a strategy for the 
management of the humid 

zones of Benin

AGRE - DANIDA, 
Benin Since 1998 Whole country Management of water 

ressources

UNSO 3.5
FEM,UNDP, 
Worldbank, 

Benin
1989-1999

Forests of Sota, 
Goungoun, 

Goroubi

Carbon sequestration through 
reforestation

PGRN 16

AFD,World-
bank, UNDP, 
GTZ, GEF, 

Benin

1992-1999 Whole country Forest and watershed 
management

PADEL 3.053,862 UNDP,FENU, 
Benin 1995-2001 East Borgou, 

West Atacora
Local development and 

promotion of local collectives

PADSE 5.5 AFD, Benin, 
OPA 1998-2004

Alibori, Borgou 
(e.g.Ouenou), 
Zou/Collines

Soil fertility, agro-forestry, 
integration of agriculture and 

animal husbandry, 
diversification

PPRF - GTZ, Benin 1999-2004 Bassila Forest management and land 
tenure 

PGTRN 11 GTZ, AFD, 
Benin 1999-2005

Mono/Couffo, 
Zou/Colline, 

Atacora/Donga

Land tenure and land-use 
planning, upscaling of 

management activities from 
PGRN

PSSA 1.846,130
FAO, 

Vietnam, 
Benin

1999-2007
Atacora, Zou, 

Atlantique, 
Ouémé, Borgou

Improve alimentation of 
population

PCNCC 290 FEM, Benin 2000-2003 Whole country
Vulnerability and adaptation of 
the socio-economic sectors to 

climate change
Projet Axe Vert 

et plantation 
d’arbres

305 Benin 2000-2003 Urban centres Reforestation of urban centres

PGFTR 41.536 Worldbank, 
FEM, Benin 2000-2006 22 forêts 

classée Forest management

 
 



11.APPENDIX 
 

 

304 

… continued 

Project title
Budget 

106 FCFA
Funding 

institutions Period Intervention 
zone Objectives

PDRT
Worldbank,   

IFAD, BOAD,  
Benin

2001-2008 Whole country Filiere de cassava, sustainable 
agriculture 

PAMF 13.701 BAD, BADEA, 
Benin 2002-2007

Agoua, Wari-
Maro, Monts 

Kouffè
Integrated forest management

PNGE 49.812,6
Benin, local 

partner 
collectives

2002-2008 
(Phase I) Whole country Efficient and sustainable use of 

environmental  ressources

Projet 
d’établissement 
d’un corps de 
jeunes pour 

l’environnement

431,6
Vénézuela, 

UNDP, PAM, 
Benin

2004-2007 Djidja, Ouaké
Generation of employment for 
young people, restauration and 
protection of natural ressources

ProCGRN 7.97

GTZ, KFW, 
Worldbank, 
AFD, BAD, 

Benin

2004-2014
Atacora, Donga, 

Cotonou, 
Atlantique

Sustainable management of 
natural resources in rural area, 

integrates earlier projects: 
PGTRN, PPEFB, PRRF

ANCR 200 FEM, Benin 2005-2007 Whole country Capacity building concerning 
environmental issues

GERBES 7.105,5 Worldbank, 
Benin 2005-2014

Region 
Atchérigb-
Tchaourou

Effective domestic energy use, 
reducing the pressure on 

natural ressources

PAC/MEHU 1.017 Benin, 
partners 2005-2010 Whole country

Capacity building in the 
communes concerning 

environmental management

PAEB Nord DWHH, DED, 
EU 2007-2009 Bassila, Ndali Sustainable agriculture, natural 

ressources management

Millenium 
villages DWHH 2007-2010 Selected 

villages
E.g. agro-forestry, micro 

credits, water sector

FALMP GEF, 
Worldbank 2007-2011

e.g. Parakou, 
Abomey, 

Djougou and 
Natitingou

Upscale community-based 
forest management component 

of PGRN to the remaining 
gazetted forests, forest 

adjacent lands, and four urban 
forest plantations
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Table C.2 Main soil conservation measures in Benin: Effects, advantages and constraints from the Beninese farmer’s point of view. Sources: 1Lal (1990), 
2oral comm. Azontonde, 3oral comm. Loconon, 4UNDP (2002), 5Gandonou (2000), 6FAO (2001a), 7Mulindabigwi (2006), 8Fadohan (2004), 9Donovan and 
Casey (1998), 10 Godjo et al. (2003), 11Floquet et al. (2002), 12 Maliki et al. (2001), 13Gantoli (1997), 14Floquet et al. (2006).  
 

Type of measure Effect Advantages  Constraints Adoption in Benin 
1. Cultural technology & soil tillage 
Field limits (parcelling, 
earth wall, stones, bush); 
discharge barriers on 
pathways 

Reduction of slope length, 
decrease of Qsurf and erosion 

Demarkation of field 
borders 

High labour demand 
installation/maintenance, 
no short-term benefit, no 
significant increase of 
crop yield  

Only widespread in Atacora 
region with steep slopes and 
stony soils 

Tillage against the slope Reduction of slope length, 
decrease of Qsurf and erosion  

Simple and cheap 
measure 

Worse drainage, no 
protection against severe 
storms  

Often on the mid-slope 

Ox-Ploughing Higher infiltration rate2 Reduced labour 
demand 

Most farmers have no 
cattle, animal diseases 

Only common in northern Benin 

2. Plant management 
Early seeding, dense 
seeding, early combat of 
weeds and pest 

Increase in vegetation cover 
and crop biomass reduce Qsurf 
and erosion 

Higher crop yield Labour demand  

Adapted varieties, 
diversification 

 Higher crop yield, 
improved food security 

Lack of access to efficient 
seeds, high labour 
demand 

Diversification widespread 

No bush fire Increase of topsoil Corg and 
vegetation cover result in less 
erosion and better soil nutrient 
status  

Higher crop yield on 
degraded soils 

Traditional burning for 
multiple purposes (e.g. 
hunting, land preparation, 
pest and weed control, 
quick nutrient release) 

Only in areas with high land 
pressure or with additional 
benefit (e.g. honey 
production)3; therefore often 
propagation of early fires 

Mulching top of yam 
mounds 

Lower raindrop impact due to 
increased shear strength1, 
more earthworms due to 
regulated soil temperature7, 
less evaporation losses, better 
infiltration7 

Reduced topsoil loss, 
higher crop yield; simple 
and cheap measure 

 Widespread; if not enough 
biomass cover with soil mottles 
until yam plants long enough to 
enrol the plant around the 
mound top (northern HVO)7 
  

Improved crop rotation 
(groundnut, niebe, 
cowpea) 

Legumes improve soil fertility 
due to N-fixation 

Increased soil fertility, 
partially compensates 
shorter fallow period 

Food preferences Groundnut widespread part of 
the crop cycle in northern 
Benin, cowpea and niebe more 
widespread in southern Benin 
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 Type of measure Effect Advantages  Constraints Adoption in Benin 

Vetiver hedges Strips along contour-lines as 
runoff absorber and to 
encourage sedimentation  

Reduced topsoil loss High labour demand for 
installation, access to 
Vetiver grass 

Only sporadic on steep slopes 
and next to big erosion rills    

Agro-Forestry:  
Gliricidia sepium 

Increase soil fertility due to N-
fixation, reduced erosion due to 
increase of vegetation cover 

Increase of soil fertility,  
option for settled yam 
cropping  reduces 
deforestation, increase 
of crop yield8, drought-
resistant12, suitable as 
fodder12 

High labour demand 
installation/maintenance; 
sophisticated handling of 
seeds2,8, restricts crop 
cycle in growing phase2, 
difficult access to 
seeds/plants12, space 
demand12 

Limited adoption in project 
intervention areas 

Agro-Forestry: 
Leucaena leucophaelia 

Increase soil fertility due to N-
fixation, reduced erosion due to 
increase of vegetation cover 

fire-resistant2, additional 
benefit (fodder, wood), 
increase maize yields2 

High labour demand 
installation/maintenance, 
sometimes reduced crop 
yield due to competition6, 
excessive spreading2, 
needs sufficient P in soil, 
sensible to termite attacks 
and severe disease 
defoliation, poor biomass 
production on low fertility 
and acidic soils9 

Farmers in southern Benin 
prefer Mucuna or Cajanus2; 
Leucaena preferred by herders 
in region Bassila because of 
additional benefit as fodder and 
wood3 

Agro-Forestry: 
Acacia auriculiformis 

As fallow on degraded soils, 
tree harvest after 4-5 years, 
since 3rd year cultivation of 
maize in the litter possible12 

Improves soil properties 
and crop yields after 
fallow, low labour 
demand, valuable as 
fire wood and timber11 

Space demand, farmers 
prefer second crop in the 
south, land tenure, 
shadowing, costs, difficult 
access and transport11 

High adoption rates in southern 
Benin14 

Agro-Forestry: 
Cajanus cajan 

Increase soil fertility due to N-
fixation, reduced erosion due to 
increase of vegetation cover; 

fire- and drought-
resistant2, leaves as 
fodder13, auto-consump-
tion and commerce with 
Cajanus8, suppression 
of weeds like Imperata13 

not as efficient as 
Gliricidia2, high labour 
demand for installation 
and maintenance, 
competition with annual 
crops due to shadowing, 
difficult weeding of young 
plants8, dislikes pH<5 and 
inundations13  

Preferred by farmers in region 
Bassila due to additional 
benefit as food product3 
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Type of measure Effect Advantages  Constraints Adoption in Benin 
Cover crops: 
Mucuna pruriens 

Minimised erosion due to fast 
dense vegetation cover; 
increase soil fertility due to N-
fixation, through shadowing 
protection against weeds 

Very efficient in combat 
of Imperata and 
Striga2,14, farmers can 
produce their own 
seeds2, lower labour-
demand than for Agro-
Forestry, reduces 
labour needed for tilling 
and weeding9 
 

Not fire-resistant2,11, long 
lifecycle 150-200 days2, 
often yield decline except 
for new fertilized maize 
species6, treatment of 
biomass with traditional 
tools difficult and labour 
intensive10, poor growth 
on waterlogged or heavily 
degraded, acid soils11,4 

Above all in South Benin; rarely 
in North Benin due to bush fire, 
shorter rainy period and 
destruction by livestock2, in 
South Benin competition with 
permanent food crop 
cultivation11; promotion in 
region Bassila failed3 

Cover crops: 
Niebe 

Reduced erosion due to 
increase of vegetation cover; 
increase soil fertility due to N-
fixation 

Variety Vohounvo very 
effective; additional 
benefit (food),  lower 
labour-demand than for 
agro-forestry 

Food preferences: Niebe 
only common in some 
regions 

Widespread in Couffo (North 
Mono) and other parts of South 
Benin; as second crop after 
maize or groundnut2 

Improved fallow  Kept trees on fields improve 
physical and chemical soil 
properties 

Fire-wood, easy to 
handle, no competition 
between trees and 
crops9, higher crop yield  

In land-scarce regions too 
space demanding9 
 

 

3. Fertiliser 
Organic fertiliser from 
animal husbandry 

Compensates nutrient loss Increased yields, in 
particular maize 

High labour demand, 
many farmers have no 
cattle, lack of equipment 
for transport/ incorpora-
tion9, poor quality9 

Farmers often allow herders 
grazing after harvest, trade with 
manure uncommon 

Organic fertiliser from 
composting 

Compensates nutrient loss Increased yields, in 
particular maize, cheap 

Labour demand for 
transport too high, little 
big amounts, often poor 
quality9 

Partially in home gardens and 
house maize fields (e.g. in 
Northern Borgou and 
Bokoumbé region5) 

Mineral fertiliser Compensates nutrient loss, 
increases soil fertility 

Increase of crop yield Difficult access, on the 
long run acidification   

 

 




