Retrospect on the tsunami simulation efforts for the German-Indonesian Tsunami Early Warning System

Natalja Rakowsky, Alexey Androsov, Annika Fuchs, Sven Harig, Antonia Immerz, Jörn Behrens*, Wolfgang Hiller, Sergey Danilov, Jens Schröter
Alfred Wegener Institute, Bremerhaven
* KlimaCampus, University of Hamburg, Germany

EGU General Assembly 2014
29 April - 2 May 2014
Vienna, Austria
Outline

- GITEWS overview
- Evolution of TsunAWI and the scenario repository
- Focus: dataproducts
- Focus: scenario selection
- Focus: inundation sensitivity study
GITEWS Timeline

German-Indonesian Tsunami Early Warning System

2005-2011 GITEWS project funded by BMBF

Nov. 2008 Inauguration of the tsunami early warning system in Jakarta

Sep. 2010 Evaluation by international experts

March 2011 Transfer of Ownership to Indonesia

In a nutshell

- Non-linear SWE (sibling of full ocean model FESOM),
- Unstructured $P_1 - P_1^{NC}$ finite element grid, $\Delta x \leq \min \left(c_t \sqrt{gh}, c_g \frac{h}{\nabla h} \right)$
- Initial conditions: Okada parameters, source model, land slide model
- Leap-frog time stepping
- Modules for tides, non-hydrostatic pressure
- Fortran90, OpenMP, netcdf
- Visualization with Matlab, OpenDX, GIS
- Scripts for batch and post processing, shapefile output
TsunAWI scenario repository
Scenarios 2007-2010

model physics linear shallow water

source model by GFZ: RuptGen 1.0, 1900 sources
336 epicenters, Mw=7.5, 7.7, **8.0**, 8.2, **8.5**, 8.7, **9.0**

bathymetry GEBCO 1’, accurate datasets for coastal regions
TsunAWI scenario repository
Scenarios 2007-2010 → since 2011

model physics linear shallow water
→ nonlin. advection added, Smagorinsky viscosity, improved inundation scheme

source model by GFZ: RuptGen 1.0, 1900 sources
336 epicenters, Mw=7.5, 7.7, **8.0**, 8.2, **8.5**, 8.7, **9.0**
→ RuptGen 2.1, 3470 sources
528 epicenters, Mw=7.2, 7.4, 7.6, . . . , 8.8, 9.0

bathymetry GEBCO 1’, accurate datasets for coastal regions
→ GEBCO 30” instead of GEBCO 1’

technical improvements
→ faster calculation, reduced scenario file size
TsunAWI scenario repository
Model domain for scenarios 2011
TsunAWI scenario repository
Model domain for scenarios 2011 and extension 2013
TsunAWI scenario repository

Scenarios Comparison

<table>
<thead>
<tr>
<th></th>
<th>Scenarios 2011</th>
<th>Extension 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>#scenarios</td>
<td>3450</td>
<td>New, East: 1100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace: 1100</td>
</tr>
<tr>
<td>magnitudes</td>
<td>7.2, 7.4, ..., 8.8, 9.0</td>
<td></td>
</tr>
<tr>
<td>#grid nodes</td>
<td>2.3 Mio</td>
<td>15 Mio</td>
</tr>
<tr>
<td>reduced</td>
<td>1.1 Mio</td>
<td>7.5 Mio</td>
</tr>
<tr>
<td>resolution</td>
<td>50m - 150m - 15km</td>
<td></td>
</tr>
<tr>
<td>model time</td>
<td>3 h</td>
<td>12 h</td>
</tr>
<tr>
<td>compute time</td>
<td>0:45 h</td>
<td>15 h</td>
</tr>
<tr>
<td></td>
<td>2 × 8 Core</td>
<td>1 × 8 Core</td>
</tr>
<tr>
<td></td>
<td>Xeon Nehalem</td>
<td>Xeon Westmere</td>
</tr>
<tr>
<td>file size</td>
<td>1.1GB</td>
<td>22GB → 500MB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>without timesteps</td>
</tr>
</tbody>
</table>
Scenario data products

ETA isochrones and maximum amplitude

Example: Magnitude 9.0 in the Eastern Sunda Arc
Scenario data products

Coastal forecast points

Example: Magnitude 9.0 in the Eastern Sunda Arc, zoom to Lembar, Eastern Lombok

- Maximum SSH and ETA at 134,000 coastal forecast points
- Time series at tide gauge locations
Scenario selection algorithm
Uncertainty reduction with multiple sensors

Regard each sensor type with its characteristics in mind!

- Epicenter and magnitude are derived from multiple sensor data by approved SeisComP3.

- Reliable GPS data comes fast, too. But little experience so far, limited number of stations.

- Tide gauges hard to use for early warning in a fully automated algorithm.
Scenario selection algorithm

Uncertainty reduction with multiple sensors

Regard each sensor type with its characteristics in mind!

- Epicenter and magnitude are derived from multiple sensor data by approved SeisComP3.
 → Use epicenter and magnitude to pre-select scenarios.

- Reliable GPS data comes fast, too. But little experience so far, limited number of stations.
 → Refine scenario selection by comparing GPS measurement and scenario data.

- Tide gauges hard to use for early warning in a fully automated algorithm.
 → Very valuable for all-clear and hind-casts.
Scenario selection algorithm

1. Step: Seismic pre-selection

Magnitude uncertainty:

\[M - 0.5; M + 0.3 \],

\[M_w + 0.2 \] for momentum tensor Magnitude

Epicenter uncertainty:

Ellipse parallel to the trench

\[r_L = 10^{0.5[M+0.3]} - 1.8 \text{ km}, \]

\[r_W = \frac{1}{2} r_L. \]
Scenario selection algorithm

2. Step: Refine selection with GPS data

- e.g., Benkgulu Sept. 2007

USGS Finite Fault: Tsunami source NW of the epicenter. Measured GPS-dislocations strong in the NW, but not SE.

GPS matching would reject all scenarios in the SE, and some very strong scenarios in the NW.
Inundation simulation
Sensitivity study on topography data

Three groups AIFDR, ITB, AWI,
Three models ANUGA, TUNAMI-N3, TsunAWI,
Three regions Padang (Sumatra), Maumere (Flores), Palu (Sulawesi)
One conclusion **High quality topography data is crucial!**

- Free SRTM data (90m horizontal resolution, \(<16m\) vertical accuracy) only for rough estimates,
- Intermap (5m; 0.7m) and LiDar (1m; 0.15m) comparable for shallow water models,
- Results more sensitive to varying data sets than to varying resolution.
Inundation simulation

Sensitivity study on topography data

Example: synthetic scenario for Maumere, Flores

Resolution: 2m

Data: LiDAR DSM
Data: SRTM90

Data: LiDAR DTM
Data: DSM

Data: DTM
Outline

- GITEWS overview
- Evolution of TsunAWI and the scenario repository
- Focus: dataproducts
- Focus: scenario selection
- Focus: inundation sensitivity study

Thank You, Terima Kasih!

Poster: B238