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Abstract. Accurate geoids are expected to improve our knowlegde of the dynamic

sea surface height (SSH) as a mirror of the dynamic state of the oceans. The dedicated

geoid mission GOCE is expected to be lauched in 2004. It will lead to a highly accurate

geoid model with a resolution of degree and order 200. We examine the impact of

this mission on the assessment of large scale oceanic mass and heat transports via its

expected error characteristics. We do so applying a linear box inverse model and a

non-linear section inverse model to hydrographic data and to (synthetic) sea surface

height data. The results are compared to those obtained when substituting the error

estimates of the GRACE mission and the present day geoid EGM96.

For the box inverse model, we find an average reduction in transport uncertainties

in Experiment A (which includes model error at the level of sea surface height

variability) of about 9% for GRACE geoid error covariances and about 17% for GOCE

over the “hydrography only” solution. In both GRACE and GOCE these average

percentage improvements are significantly increased when the SSH variability signal

is excluded (Experiment B) to 42% for GRACE and 47% for GOCE. We expect a

greater improvement in the accuracy of ocean transports from GOCE when WOCE

hydrographic data are used to enclose numerous, smaller box regions.

The a priori assumptions of the non-linear model about the ocean circulation are

much more conservative than for the box model. As a consequence, the uncertainties of

large scale transports are much bigger than for the linear model. On the other hand,

since this model builds on small scale balances, it can resolve small scale features of the

flow field better. SSH data with GRACE geoid error covariances reduce the uncertainties
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on the average by 29%, with GOCE geoid error covariances by 37%. Exclusion of the

SSH variability changes (Experiment B) these numbers by less than 5% points.

Summarizing our results and those of Part I, III and IV of this study we conclude

that the GRACE mission reduces the marine geoid uncertainties such that altimetry

becomes useful for the study of the steady state ocean circulation. The GOCE mission

will improve the accuracy of the circulation estimates even further on the large scales

and introduce higher accuracy on shorter wavelenths as well. Furthermore, it will enable

us to study individual ocean currents.
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1. Introduction

Estimating the mean ocean circulation is one of the major tasks of phys-

ical oceanography. Wunsch [1978], and many latter studies [e.g. Fu, 1986;

Roemmich and McCallister , 1989; Rintoul , 1991; Macdonald , 1998; Sloyan and Rintoul ,

2001b] provide one approach to determine the mean steady-state circulation. This

method uses in-situ measurements along hydrographic sections and employs inverse

techniques to obtain an estimate of the large scale flow through those sections. Mean

ocean circulation is understood as the average over a long period, i.e. associated with

the lowest frequencies. The inverse model then determines a steady state, or stationary,

solution which serves as an approximation of the mean flow.

The underdetermination of the linear system used in the oceanographic inverse

problem can be reduced by the addition of further independent information. This

independent information could be derived from direct ocean measurements including

current moorings, Lagrangian floats, tracers and satellite derived sea-surface height

measurements. Of all the sources of additional information sea-surface height

measurements provide potentially the best resolution and coverage for all ocean regions.

With the advent of altimetric data of extraordinary accuracy and precision from the

TOPEX/Poseidon or ERS2 mission these measurements are at hand. To this date

this information has mostly been used in studies of the time-dependent phenomena

in the ocean, e.g. tides [Le Provost et al., 1998; Egbert , 1997], where the absolute sea

surface height is not needed. For the use of satellite altimetry data in the steady-state
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ocean problem, one has to reference the altimetric height to a marine geoid in order

to determine the mean dynamic sea-surface height. The uncertainties associated with

the marine geoid exceed those of the altimetry by an order of magnitude rendering the

mean sea-surface height very noisy.

While the present geoid accuracies limit the use of satellite altimetry on the

determination the mean ocean circulation, two dedicated satellite missions, which

will determine an accurate geoid, are now funded or proposed: Gravity Recovery and

Climate Experiment GRACE and; Gravity field and steady-state Ocean Circulation

GOCE. Of these two gravity missions GRACE will fly in 2001 and GOCE will fly in 2004

[Balmino et al., 1998]. Given that, in the near future, we will have marine geoid models

with finer resolution and increased accuracy it is appropriate at this time to again

address some of the issues raised by previous studies (e.g. Wunsch and Gaposchkin

[1980]; Ganachaud et al. [1997]). The new geoid models will in particular extend the

range of wavelength with sufficient accuracy to be useful for ocean inverse models.

We will study specifically, how this increase in spectral resolution will influence the

sea-surface height information in theb context of determination of the steady-state

ocean circulation. The work presented here is the second in a series of four articles

which studies these questions from different perspectives. Part II evaluates the impact

of improved geoid models on the accuracy of ocean mass and heat transport estimates

determined from two inverse models. The impact of the geoid is described by its error

covariance matrix.

The first model is a linear “box” inverse model similar to that used in
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Ganachaud et al. [1997]. It differs by the description of diapycnal fluxes which are

modelled expicitely here. Other differences to Ganachaud et al. [1997] concern the

solution technique. We interpolate the model to the data and use sea surface height

instead of sea surface slope as observation. A truncated singular value decomposition is

performed for the matrix inversion. Furthermore we use EGM96 geoid [Lemoine et al.,

1998] as the state-of-the-art geoid model. For this geoid and that of the GRACE mission

we extend the expansion in spherical harmonics from degree and order 25 to degree and

order 70. The GOCE geoid model is expanded to degree and order 200.

The box inverse model is applied to the Southern Ocean. Nine high quality

hydrographic sections are used to subdivide the Southern Ocean into six regions

or “boxes”. Simple dynamics and conservation principles allow us to determine an

absolute circulation that is consistent with hydrography and water mass analysis. A

first set of experiments with the EGM96 geoid exhibits results that are inconsistent

with known properties of the large scale circulation. A similar result was reported by

Dobrindt and Schröter [2001] who found a southward transport of bottom water in the

South Atlantic when combining EGM96 geoid and Topex/Poseidon altimetry with a

steady state ocean circulation inverse model.

We suspect this results from an under-estimation of the error covariance associated

with EGM96. For this reason we will not use the EGM96 geoid model in our calculations,

but only its error statistics. Thus, sea surface height (SSH) data to be assimilated in

our study are not taken from altimetry but are derived from the inverse model. For the

“box” inverse model the SSH data are taken from a previously calculated solution that
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is based on hydrographic measurements. Consequently, the surface height is perfectly

compatible with the model and the inverse solution does not change by adding the

SSH “data”. However, the different error estimates for the additional SSH information

change the error estimates of the property transports of the inverse model.

The second inverse model is non-linear. Here we use output of an eddy resolving

(1/3◦) primitive equation general circulation model of the FLAME (Family of Linked

Atlantic Model Experiments) group [Redler et al., 1998]). In this case SSH “data” and

its error characteristics does change the inverse solution, but we do not have to rely on

an inaccurate geoid either. The inverse model models the FLAME “reality” as it would

model the real ocean for real measurements.

In both of these inverse models rigorous error analysis is applied to calculate the

error covariance matrix of the oceanic mass and heat transports and its dependence on

different geoid error estimates. For both models the error covariance of the EGM96,

and proposed GRACE and GOCE geoid missions are used. Two sets of experiments are

reported. In experiment A we make a very conservative assumption about the error of

the inverse models, while in experiment B rather optimistic error levels are assumed.

The paper has the following structure. Firstly we describe how the error covariance

of each geoid model is determined for the hydrographic sections. This is similar for both

inverse models. The assessment of the different geoid models on the accuracy of mass

and heat transport estimates for each inverse model are then described. Finally, the

impact shown in both inverse model applications are drawn together in the discussion

and compared to other studies.
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2. SSH Covariances

The two inverse models we use calculate the most probable solution of a set of

dynamical and conservation equations and a set of observations with their statistical

error descriptions. In order to combine measurements of different type correctly, these

measurements have to be weighted with their respective inverse of the corresponding

data error covariance and summed up to form a norm or so-called “cost function” J .

In this task we study the impact of different a priori assumptions about the geoid

model error, thus its covariance matrix. Three covariances are available: EGM96

[Lemoine et al., 1998] to degree and order L = 70; and one estimate each of the geoid

covariances for the future mission GRACE; and GOCE (Sneeuw, pers. com.). The

latter two are available to degree and order L = 150 and L = 300, respectively, where

they intersect the Kaula curve for the signal variance and where the signal-to-noise ratio

becomes 1. However, we chose lower L’s, namely 70 for GRACE and 200 for GOCE.

These choices correspond to the wavelengths 570 km and 200 km respectively, which

the geoid missions are designed to resolve. A cutoff at a low degree and order has

also been used by Ganachaud et al. [1997] in the same context. Strictly speaking, we

are trying to estimate the impact of improved geoid information on the determination

of oceanic transports in the same way as it is done in the three dimensional inverse

model of the Atlantic Ocean of LeGrand [2001]. If we wish to consider how much the

flow field of a two dimensional section inverse model or a box-inverse model can be

constrained an expansion of the error covariance matrix to higher degree and order
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would be appropriate.

Since the sea surface height (SSH) signal ζ = h −N is the difference between the

altimetric measurement h and the reference geoid N , we consider two error contributions

to the overall covariance of the signal, the geoid error covariance CN and a covariance

due to measurement errors Ch. The actual sea surface height is not in steady state but

it is assumed to fluctuate about a mean state with covariance Cfluc. As both models

used in this task are steady state models this covariance must be treated as an error

about the steady state. Furthermore we assume an uncorrelated measurement error

χ. Finally we have to consider the covariance Cm of the so called ”model error” or

”misrepresentation error”, i.e. the principle inability of the model to repoduce the

measurement. Therefore we arrive at the covariance to be considered for the signal ζ

Cζ = CN + Cm + Cfluc + χ = CN + Cm + Ch, (1)

where the uncorrelated χ is taken to be the estimated error to a mean sea surface

height obtained by optimal mapping of a multi-year, multi-satellite data set (LeTraon,

pers. com.). Cfluc is the error covariance introduced by the time dependence of SSH

when it is compared to the surface height of the stationary model. As pointed out by

Ganachaud et al. [1997], its specification is a large task and they derive an upper bound

for their equivalent error matrix Rtt from the slope spectrum of the surface variability.

In a similar approach we calculate the covariance of SSH between TOPEX/Poseidon

cross-over points from a five year series (R. Coleman, pers. com.). The model error

covariance Cm is very small as the model has no difficulty of producing sea surface
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height profiles of any shape. In the following we neglect Cm in comparison with the

larger contributions CN and Ch.

The covariance on the model grid is derived by linear interpolation. We obtain a

full matrix that is governed predominantly by the seasonal cycle and to a smaller extent

by eddy variability. Note that errors in the altimetric signal due to instrument noise,

insufficient removal of barotropic signals (tides, waves, etc.), and erroneous correction

terms (ionosphere, wet and dry troposphere, etc.) are all included in this matrix.

We now make the conservative assumption that the error due to time dependence

Cfluc is given by this variability (Experiment A). Part of the same error is included in

the error variance χ which describes how accurate we can estimate a mean sea level

in the presence of noise and variability. In a second experiment (B) we optimistically

assume all errors are fully accounted for by χ and set Cfluc to zero.

In practice the two contributions to ζ have different resolutions. For the geoid

this resolution is represented as the maximum degree and order L used and for h it

is the resolution of the measurement device. We assume, that the geoid resolution is

the limiting factor. For this reason before adding the different covariances, one has to

remove all small scales from the altimeter covariance that are not resolved by the geoid.

We achieve this synchronization of resolution by applying the same linear low-pass

filter as Ganachaud et al. [1997]. Let φ(x) be a function to be filtered, and fk(y, x) the

low-pass filter, then

φ(x) =

∫
fk(y, x)φ(y)dy (2)
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will not contain wave numbers larger than k. In our discrete system we evaluate (2)

using the trapezoidal rule. The equation can then be rewritten in matrix form as:

φ = F T
k φ. (3)

The covariance matrices can be filtered in the same manner:

C(x, x′) =

∫ ∫
fk(y, x)C(y, y′)fk(y′, x′)dydy′, (4)

and in matrix notation:

C = F T
k CFk. (5)

Figure 1.

Figure 1 shows the total altimeter covariance Ch = Cfluc + χ along a hydrographic

section across the North Atlantic along 24◦N which will be studied below. Also shown

is Ch filtered according to (5) for different cutoff wavelengths corresponding to the

different geoid models used. Figure 2.

Figure 3.

Figure 4.

Figures 2 and 3 depict the corresponding error covariance matrices CN and Cζ .

Figure 4 shows the square roots of the diagonal elements of the same matrices and the

contributions CN , Cfluc, and χh.

In order to compare altimeter data with prior knowledge from hydrography we have

to weight the data by its inverse covariance matrix. However, because all small scales

have been removed, the finite sea surface height covariance is rank deficient on a small

scale grid. For that reason we diagonalise it and keep only the non-zero eigenvalues of

the following expansion: If vk are the eigenvectors and σ2
k the corresponding eigenvalues
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of Cζ, we define the weighting matrix Wζ as a pseudo-inverse of Cζ :

Wζ =

kmax∑
k=kmin

vkσ
−2
k vTk , (6)

where kmin and kmax identify the smallest and largest eigenvalue kept in the expansion.

The effect of this procedure becomes apparent when one examines the cost function

term for sea surface height (see also equations 13 and 17).

Jζ =
1

2
(ζ − ζ∗)TWζ(ζ − ζ∗)

=
1

2

kmax∑
k=kmin

(
ζk − ζ∗k
σk

)2 (7)

with ζk = vTk · ζ and ζ∗k = vTk · ζ∗ being the coefficients of the expansion of the modeled

sea surface height ζ and sea surface height data ζ∗, respectively, into the eigenvectors

of Cζ . Thus, only the “eigenshapes” of the covariance matrix that are distinguishable

from numerical noise are fitted. Figure 5 shows the SSH that is actually “seen” by the

model, that is its representation by the eigenvectors of the covariance matrix

ζ(r) =
kmax∑
k=kmin

ζkvk. (8)

Also shown are the misfits ζ∗ − ζ(r). For EGM96 and GRACE this representation can

describe the large structures of the data, while for GOCE it also resolves the finer scales

at the western end of the section (Figure 5). Figure 5.

In both inverse models, the model SSH ζ is diagnosed from the geostrophic surface

velocity by integration

ζ(x) =

∫ x

0

f

g
v(x′, z = 0)dx′ (9)
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where v(x′, z = 0) is the surface velocity normal to the section, f the coriolis parameter

and g the acceleration due to gravity.

The calculation of the weighting matrix Wζ which was presented above for the

section at 24◦N is repeated separately for all nine sections of the box-inverse model.

This way we arrive at a total weighting matrix for SSH which is block diagonal, i.e. small

correlations which exist between the different sections are neglected in our calculations.

3. Sensitivity analysis using a linear box inverse model of the

Southern Ocean

3.1. Inverse Model

3.1.1. Inverse model description A box inverse model, following that of

Wunsch [1978], is designed. Mass, heat and salt are conserved in all layers. Two novel

additions to the inverse model used in this study are the inclusion of independent

diapycnal flux unknowns for each property and the explicit inclusion of air-sea fluxes

of heat, freshwater, momentum (wind), and the water mass transformation they drive

[Sloyan, 1997; Sloyan and Rintoul , 2001a].

The inclusion of independent diapycnal fluxes for each property represents the net

diapycnal flux which results from all mixing processes that act to transfer mass, heat

or salt between water masses in the ocean interior Sloyan and Rintoul [2001a]. (Here

“interior” is taken to mean the entire ocean beneath the sea surface. Diapycnal fluxes

across isopycnals outcropping in the surface mixed layer, for example, are included
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in the interior diapycnal fluxes). These mixing processes include advection, diffusion,

cabelling and eddy fluxes.

Exchange of heat and freshwater with the atmosphere results in net buoyancy

forces which can transfer fluid from one density layer to another Walin [1982]. To date,

inverse methods have not explicitly included these effects on the mass, heat or salt

conservation equations. Inverse models usually either down-weight the conservation

requirement in layers that outcrop and interact with the overlying atmosphere, or

only consider conservation below the thermocline Metzl et al. [1990]; Rintoul [1991];

Macdonald [1998]; Ganachaud and Wunsch [2000]. Rather than discard the information

contained in the conservation constraints for outcropping layers, it is desirable to include

the effects of air-sea interaction explicitly. This is particularly so at high latitudes,

where many layers outcrop. More importantly, the diapycnal fluxes driven by air-sea

interaction are a fundamental part of the three-dimensional circulation of the ocean. An

inverse model which seeks to determine this circulation should include these processes

in a physically-consistent manner.

The effect of air-sea fluxes of heat, freshwater and momentum can be included

explicitly in the model following the strategy of Walin [1982]; Tziperman [1988];

Schmitt et al. [1989] and Speer and Tziperman [1992]. The data sets used to calculate

the air-sea fluxes contain errors, including errors in the bulk formulae used and a lack

of oceanographic and meteorological observations, especially at high latitudes and

over subtropical regions away from commercial shipping routes [Speer and Tziperman,

1992; Barnier et al., 1995]. As a result, we treat these climatologies as an initial guess
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in the inverse model, and use the inverse solution to determine corrections to the

climatological data sets which make them consistent with the hydrographic data and

the model physics. A complete description of the method, the derived corrections to the

air-sea fluxes, and the water mass formation driven by the air-sea fluxes can be found in

Sloyan and Rintoul [2001a, b].

The conservation equation, for a layer bounded by neutral density surfaces hm and

hm+1, including the diapycnal flux unknowns for each property and the air-sea flux

driven transformations, has the form:

M∑
j=1

[
∆xj

∫ hm+1

hm

Cj(vr + vref)jdz + EjCj

]

+(wcAC)m − (wcAC)m+1

+(Fc + F ∗
c )m − (Fc + F ∗

c )m+1 = 0.

(10)

Here ∆xj is the station spacing at pair j, Cj is the property value per unit mass at

this pair. The geostrophic shear velocity vrj is determined from the hydrographic data,

EjCj is the Ekman property flux at pair j and Fc is the total flux across an outcropping

isopycnal driven by buoyancy forcing.

The resulting system of conservation equations can be written in matrix form as

Ab + n = d (11)

A is a matrix whose elements are the area × property concentration C at each station

pair in each layer, and for each layer interface; d is the property divergence in each

layer due to relative (∆xj × Cjvrj) and Ekman (EjCj) fluxes, and b is the vector of

unknowns which consist of the reference level velocities vrefj , the diapycnal property
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fluxes (wc = wm,wh, ws) and corrections to the air-sea climatologies F ∗
c . n is the model

noise. In this linear system generally the unknowns outnumber the equations leading to

an underdetermined problem with an infinite number of solutions. Here we overcome

this underdetermination by seeking a Gauss-Markov [Wunsch, 1996] estimate of the

solution to (11):

b = CbbA
T (ACbbA

T + Cnn)−1d (12)

where the noise Cnn is the a priori covariance of the model and Cbb the a priori

covariance of the solution. b and n are assumed to be uncorrelated (see e.g. Wunsch

[1996] for a discussion of a Gauss-Markov estimate). The Gauss-Markov estimate

minimizes the variance of both the model noise n and the solution b which is equivalent

to a maximum likelyhood estimate or to minimizing the following cost function

J =
1

2
nTC−1

nnn +
1

2
bTC−1

bbb. (13)

The posterior error covariance or uncertainty of the solution estimate b about its true

values is

P = Cbb − CbbA
T (ACbbA

T + Cnn)−1ACbb. (14)

It is independent of the value of the divergences d or the solution b (12). Instead it it

fully given by the specification of the model in matrix form (11) and by the prior error

covariances Cnn and Cbb. Variances of different fluxes φ reported below are directly

calculated from P. For this we expand φ in a Taylor series
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φ = φ0 +
δφ

δb
b = φ0 + L̂b (15)

where L̂ is a linear operator (in case of a scalar observable φ it is a vector, l̂). This

operator describes the sensitivity of φ to variations in b. For a linear model higher order

terms in (15) are zero. As the box model is based on the balance of fluxes l̂ is easily

calculated from matrix A. The variance σ2
φ is then given by

σ2
φ =< φ− φ0, φ− φ0 >=< l̂b, l̂b >= l̂TPl̂ (16)

where the brackets <,> denote the expectation operator.

3.1.2. Hydrographic data, domain and a priori constraints Nine

hydrographic sections are used to define six “boxes” in the southern hemisphere oceans,

as shown in figure 6. The sections used are recent (1984-1994) high quality hydrographic

sections, apart from the I18 section, which was occupied in 1976 (Table 1). The

sections across the Pacific, in Drake Passage and south of Australia are part of the

WOCE data set. Twenty three layers are chosen to span the water masses in the

model domain. The layers are defined by neutral density surfaces calculated using the

Jackett and McDougall [1997] algorithm. Figure 6.

Table 1.Across the zonal sections (SAVE2, SAVE4, I18, I32 and P32) the initial reference

level is the boundary between the northward flowing Antarctic Bottom Water (AABW)

and southward flowing North Atlantic Deep Water (NADW), Indian Deep Water

(IDW) and Pacific Deep Water (PDW). In the Argentine basin of SAVE4 and the three
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Southern Ocean choke point sections (DP, SA and SR3) the initial reference level is

taken to be the deepest common depth at each station pair.

Following Rintoul [1991] model mass uncertainties is given as 0(1-2)Sv, temperature

and salt uncertainties are given as a function of layer temperature and salt (anomaly).

Therefore, the temperature uncertainty are largest in the surface layers and decrease

with depth, while the salt uncertainly is a function its anomaly from the mean salt

content. Diapycnal uncertainties are 0(10−5ms−1) for outcropping neutral surface,

0(10−7ms−1) for interior surfaces and 0(10−6ms−1) for undercropping neutral surfaces.

The initial air-sea fluxes are given an uncertainty of approximately 50%. Ganachaud

[2000] used an eddy-permitting ocean general circulation model of the North Atlantic to

estimate (mass) errors that could be applicable to inverse methods. This study suggests

the mass error applied in our model may be somewhat optimistic.

Table 2 contains information on the a priori constraints applied to the inverse

model. Table 2.

3.2. General Circulation - a five layer description

A description of the net meridional and zonal fluxes (Table 3) is given below. This

is provided to familiarize the reader with the gross circulation features of the model. The

reader is referred to Sloyan and Rintoul (2001a and 2001b) for a thorough description

of the Southern Ocean circulation of the model. The errors provided for the Southern

Ocean ”box” inverse model represent the formal errors of the inverse method - the error

associated with determining the reference velocity, and diapycnal fluxes. These formal
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errors do not take into account errors due to the asynoptic data, solution sensitivity

to the first guess and ocean variability. As the formal errors do not include these

other error sources they are unlikely to reflect the true uncertainty in the estimates.

In recognition of the inadequacy of the formal error bars, Macdonald and Wunsch

[1996] and Macdonald [1998], for example, chose to increase the uncertainty of all their

heat flux estimates by a somewhat arbitrary ±0.25 PW (based on Holfort [1994] error

analysis in the South Atlantic). They believed this value more accurately accounted for

the effect of (the unmeasured) oceanic variability. The value used is much larger than

the formal error bar provided by the inverse method. Here we have chosen to present

the estimates with the formal error bars, so that it is clear what the error bars represent.

If a good estimate exists of the uncertainty introduced by error sources not included in

the formal error bars (e.g. Holfort’s value of 0.25 PW for the South Atlantic), this value

should be added to the error bars shown here. Table 3.

Subtropical Atlantic Across the Atlantic there is a small net southward

flux of mass and salt which corresponds to the leakage of Pacific water through

Bering Strait and into the North Atlantic Ocean (Table 3). Southward flow North

Atlantic Deep Water is balanced by northward thermocline and intermediate water

and Antarctic bottom water. The −18 ± 4×106 m3s−1 1 overturning agrees well with

previous estimates [Dickson and Brown, 1994; Rintoul , 1991; McCartney , 1993]. In this

study the overturning is closed by a northward flux of upper waters, predominantly

11 Sv = 1 Sverdrup = 106m3s−1.
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by intermediate water. Other authors divide the northward return equally between

thermocline and intermediate water [Macdonald , 1998].

The balance of the deep Atlantic overturning circulation by upper waters results in

a northward heat flux across the Atlantic which in this study we estimate as 0.37 ± 0.05

PW at SAVE4 and 0.49 ± 0.06 PW at SAVE2. The norhward heat flux at SAVE4

is smaller than recent estimates of 0.49 ± 0.25 PW at 27◦S by Macdonald [1998] and

0.5±0.1 PW at 30◦-40◦S of Saunders and King [1995].

Subtropical Indian In the Indian Ocean there is a southward mass flux at 18◦S

and 32◦S of 7.40 ± 4×106 m3s−1 and 8.14 ± 4×106 m3s−1 , respectively (Table 3). The

increase in mass flux between I18 and I32 is not significant and in the limits of the a

priori model noise of O(1 Sv).

In this model the Mozambique channel between 13◦S and 26◦S is closed.

Stramma and Lutjeharms [1997] find a southward transport of 5 Sv in the Mozambique

channel and a southward transport of 35 Sv east of Madagascar. Sætre and da Silva

[1984] suggest that the Mozambique Current is, if at all, only a minor tributary of the

Agulhas current. They even question the concept of a continuous Mozambique current.

Macdonald [1998] resolves the Mozambique channel in her global inverse model and

finds no significant flow in the channel. More recently Ganachaud and Wunsch [2000]

estimate a southward transport of 14± 6 Sv across the southern end of the Mozambique

channel. Fu [1986] estimates a southward transport of 6 Sv in the Mozambique channel.

Although the closure of the Mozambique channel is an undesirable feature of this model,

zero mass transport is consistent with previous transport estimates.
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The size of the Indonesian Throughflow is not constrained by the inverse model.

The southward mass flux through the Indian Ocean in this model is within reasonable

agreement of all previous estimates of the size of the Indonesian Throughflow including

the more recent results of Gordon et al. (1999).

The model exhibits a deep overturning circulation which is weaker than that

presented by Toole and Warren [1993], but stronger than Robbins and Toole [1997]

and Macdonald [1998]. The overturning circulation is contained to below 1500 dbars

resulting in a southward heat flux of −0.79 ± 0.14 PW at 32◦S. At the same section

Macdonald [1998] estimates −1.30 ± 0.28 PW, and Toole and Warren [1993] estimate a

southward flux of −1.67 PW.

Subtropical Pacific Across 32◦S in the Pacific Ocean there is a net northward

transport of 7.31± 3×106 m3s−1 . This results from a net northward flux of thermocline

layers, while the strong northward flow of lower deep and bottom water is balanced by

southward flow of upper deep water.

The heat flux across 32◦S of 0.36 ± 0.13 PW is larger than Macdonald [1998]’s heat

flux estimates of −0.04 ± 0.32 PW at 28◦S and 0.26 ± 0.28 PW at 43◦S.

Southern Ocean In the Southern Ocean the Antarctic Circumpolar Current

(ACC) dominates the three meridional sections with an eastward mass flux of

137.5 ± 7×106 m3s−1 at Drake Passage, 138.5 ± 7×106 m3s−1 south of Africa and

146.7 ± 7×106 m3s−1 south of Australia (Table 3). These transports are approximately

5×106 m3s−1 smaller than the corresponding estimates of Macdonald [1998]. The

differences arise because at Drake Passage, Macdonald [1998] places a transport
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contraint on the ACC. In this model no transport constraint is placed on the ACC.

The property divergences between the choke point sections result from imports or

exports across the three southern subtropical sections and changes to the water layer

composition between the choke point sections. The largest divergences occur between

south of Africa and south of Australia. The increases in eastward property fluxes south

of Australia result from the inclusion of Indonesian Throughflow water in the Indian

sector and their eastward transport with the ACC.

3.3. Impact of Geoid on accuracy of ocean transports

The summary of the circulation presented above shows that the net transports

are generally consistent with our current understanding of the circulation of the

Southern Ocean. In the following this solution is denoted NOSSH. We now focus on the

improvement in the accuracy of those transports that may result from the inclusion of

sea surface height (SSH) data derived from satellite altimeters. We assess this impact

through three different SSH error covariances. The different error covariance result from

the use of the EGM96, and proposed GRACE and GOCE geoid error covariances. Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

As explained in Section 2, the total SSH error covariance is the sum of the geoid

error covariance and the error covariance due to measurement error and fluctuations

of the SSH about the mean ocean state. In this study the measurement error is

taken from the estimated error to a mean sea surface height (LeTraon, pers. com.)

and the fluctuation error covariance is estimated from a five year time series of

TOPEX/POSEIDON cross-over data (Coleman, pers com). In this section we show
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results for each geoid error covariance (EGM96, GRACE and GOCE, also used to denote

the corresponding result) in two experiments. In experiment A we include the variability

of the signal Cfluc in the SSH error covariance. The second case, experiment B, the

variability signal is assumed to be zero and removed from the SSH error covariance.

Fig. 7 and Fig. 8 show that there is a steady improvement in the accuracy of the

integrated mass and heat transports of EGM96 over NOSSH, GRACE over EGM96, and

GOCE over GRACE for experiment A. The average percentage improvement, for most

sections, for each geoid model over the NOSSH solution for mass and heat is: EGM96

5% and 3%; GRACE 9% and 9% and GOCE 18% and 15%, respectively. The increase in

the accuracy at the South Atlantic section (SAVE 4) is limited for all geoids. The South

Atlantic is relatively well constrained by a priori information (Table 2) and therefore

the inclusion of extra information via the altimeter sea surface height constraint has

a smaller impact on the uncertainty of the transports at this section. A comparison

between Fig. 7 and Fig. 9 and, Fig. 8 and Fig. 10 shows that removal of the sea surface

height variability from the SSH covariance results in a dramatic improvement in the

accuracy of both GOCE and GRACE.

The similar error reduction for the integrated basin-scale property transports

between GRACE and GOCE suggests that both geoids have a similar skill in reducing

the uncertainty associated with the large-scale ocean transports.

This study is particularly interested in the improved accuracy of small scale oceanic

features. Of primary interest are strong currents and their associated transports. The

analysis made above for basin-scale transports is repeated for four strong currents in the



24

Southern Ocean. Fig. 11 and Fig. 12 shows the increase in accuracy of the mass and

heat transports associated with selected currents in the southern oceans: the Malvinas

and Agulhas currents, the East Australian Current (EAC) and the Sub-Antarctic Front

(SAF). Again there is a dramatic increase in the accuracy of the mass transports

associated with these currents from experiment A to experiment B. The Malvinas and

Agulhas currents, which are relatively wide, show the greatest improvement. Also

of significance is the improvement in the Malvinas current for GRACE and GOCE

geoid models even though this current has addition a priori information from current

moorings. The smaller scale SAF show the greatest difference between the accuracy of

GRACE and GOCE (experiment B) reflecting the smaller scale resolution of GOCE.

4. Sensitivity analysis using a non-linear section inverse model

for the Atlantic Ocean

4.1. Pseudo-Data

Due to absence of a high precision geoid to which actual altimetric sea surface height

data can be referenced, we choose an artificial data set complete with temperature,

salinity, 3-D velocities, and sea surface height on a regular grid. The data set was

obtained from the FLAME (Family of Linked Atlantic Model Experiments) 1/3◦ North

Atlantic Model (NAM) [Redler et al., 1998]. This general circulation model (GCM)

is spun up from initial conditions based on 1/4◦ horizontal resolution annual mean

potential temperature and salinity fields [Boyer and Levitus , 1997] for a period of 10
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years with a surface forcing derived from Barnier et al. [1995]. The data set contains

snapshots of the model at time intervals of three days. For our purposes the model

output is considered as “reality”. This is very convenient since in contrast to the real

ocean this “model reality” is very well sampled. Therefore, we can compare the results

of the inverse model, which is an estimate of the flow field, to the flow field of the

FLAME “model reality”. The degree of resemblance of the FLAME model output to

the real Atlantic Ocean is rather good to our belief but will not be discussed here. Figure 13.

Figure 14.From this data set we extract a synoptic snapshot at 24◦30’N, approximately

along the cruise path of the WOCE Section A5 (see figure 13). This provides us with

hydrography and sea surface height data that are consistent within the dynamics of

the FLAME model. The FLAME data are interpolated to the grid of the inverse

model. After interpolation the instantaneous net volume transport through the section

for the snapshot is φV = 0.06 Sv, the one year mean φV = 0.28 ± 3.31 Sv, the

instantaneous heat transport relative to 0◦C is φH = 0.58 PW and its one year mean

value φH = 0.61 ± 0.12 PW. The uncertainties of the mean transports are estimated

from the standard deviation of the one year record. Figure 14 shows the temporal

average of the spatial power spectrum of the one year SSH record and the same for the

vertically integrated mass and heat transports, the quantities of interest in this study.

It can be seen that most of all three signals consists of wavelengths that can be resolved

by the GOCE mission (up to approximately 200 km), and that GRACE (smallest

wavelengths resolved are approximately 500 km) is insufficient to resolve important

parts of the spectrum.
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4.2. Inverse Scheme

4.2.1. Description of the model We use a nonlinear model based on the

finite difference inverse model described in Nechaev and Yaremchuk [1995] and further

developed in Yaremchuk et al. [1998]. Following the standard “assimilation philosophy”,

we consider all the data as a kind of spatio-temporal sample of a “random” ensemble

of the ocean states. Treating the large-scale steady state of the model ocean as an

average over this ensemble it is possible to find an approximation to this mean under

the assumption that the prior probability distribution is Gaussian. In addition to

that, a number of conservation laws and dynamical relationships must be satisfied.

These include geostrophy, hydrostatics and a non-linear equation of state for sea water.

Furthermore the linearized potential vorticity balance and advective property balances

are assumed to be in steady state. Finally an integral kinematic constraint imposes a

net mass transport across the section. The latter three of these constraints are imposed

in a “weak” form, i.e. they are to be satisfied only within certain error bounds defined

by a priori statistical assumptions, whereas geostrophy and the equation of state are

satisfied exactly. The finite difference model is based on three-dimensional grid boxes

in the section plane. On the western end of the section (Gulf Stream region) the along

section spacing of these boxes coincides with the grid size of the FLAME (1/3◦) model;

in the deep sea regions it increases to 1◦. The across section width of the boxes is the

average of the along section width. In the vertical, the vertices of the boxes are also

defined by the uneven GCM grid.
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After specifying the probability distribution and the dynamical constraints, we

invert the data by seeking the most probable state of the North Atlantic on our model

grid under the assumption that the dynamical constraints are satisfied. The numerical

technique for that procedure is well established [e.g. LeDimet and Talagrand , 1986].

The prior probability density function is proportional to exp(−J) where the argument

J has the the form of the following quadratic cost function:

J =
1

2

{∑
m,n

(ÎCm − C∗
m)TWmn(ÎCn − C∗

n)

+ (ζ − ζ∗)TWζ(ζ − ζ∗)

+ (u− u∗)TWu(u− u∗)

+ F T
wWwFw + (Fw)TWwFw + (φV − φ∗

V )TWφV
(φV − φ∗

V )

+
∑
n

[F T
nWFnFn + (ŜFFn)

TDFn(ŜFFn)]

+ (ŜcCn)
TDn(ŜcCn) + (Ŝuu)TDu(Ŝuu)

}

(17)

The first three terms in J attract the solution to the data. C∗
n stands for the measured

values of the nth property component (C1 = temperature, C2 = salinity), ζ∗ identifies

the sea surface height data, and u∗ are measurements of horizontal velocities, where

they are available. Wmn, Wζ , and Wu are the inverse covariance matrices accounting for

the prior statistical structure of the hydrographic properties Cn, the sea surface height ζ

and the horizontal velocity field u. In the case of sea surface height, this matrix contains

among other errors the error structure of the geoid to which real data would have been

referenced (see section 2).
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The remainder of the cost function is aimed at diminishing the “errors” in the

determination of various components of the unknown steady state. Therefore we

assume a priori that all arguments in the last seven quadratic functions are statistically

independent and have zero means. The different contributions describe: uncertainty of

the deviation of the net transport φV normal to the section from the data value φ∗
V ,

uncertainties of the vertical velocity at the bottom Fw and at the surface Fw, deviations

Fn of the property conservation equation from the steady advective balance and finally

variances of the grid-scale components of Cn, Fn and u (smoothness of the fields). The

latter are represented by applying the differential operator Ŝψ := ∂xx + νψ(z)∂zz , where

νψ depends on the field ψ. Following Yaremchuk et al. [1998] we choose weights that

decrease the grid scale variances to 30% of their first guess values.

To find the maximum of the probability distribution we minimize the cost function

J . This optimization problem is solved iteratively using the adjoint method. The

adjoint code necessary for this method was generated by the Tangent and Adjoint Model

Compiler (TAMC ) [Giering , 1997; Giering and Kaminski , 1996].

4.2.2. Prior Covariances/Variances Special attention should be drawn to the

determination of the inverse covariances Wmn, Wζ , Wu, WφV
, Ww, Ww, WFn , Dn, DFn ,

and Du. These quantities define “physically acceptable” deviations of the state vector

components from their steady state geostrophically balanced counterparts. In other

words, both W and D values should be inversely proportional to the squared amplitudes

of the appropriate fields generated by ageostrophic motions and measurement errors. We

assume that these fields all are statistically homogeneous in time and, with the exception
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of Wmn, also in the horizontal. The obvious exception to this is Wζ (see section 2). A

further assumption about the “sub-grid” fields is that they are uncorrelated in space

and time.

In general, estimating the prior inverse covariances has been made in accordance

with the scheme outlined in Yaremchuk et al. [1998], therefore only the major differences

in the approach used here are described. The first difference in formulation is the use of

additional off-diagonal elements in the tracer covariance function Cm,n(z, z
′). We include

vertical cross-correlations, since the vertical spacing of the grid resolves the scales of

mesoscale eddies, which are treated as noise by the assimilation scheme. The second

difference is that these covariance functions were also assumed to be inhomogeneous

along the section in order to account for east-west variations in hydrographic fields.

The covariances have been estimated by a Gaussian-bell-shaped running average over

the along section coordinate of the section. In order to be able to invert the covariance

matrix, an estimate of “ocean noise” according to Bindoff and McDougall [1994] has

been added to the diagonal. The net mass transport weight has been chosen to be

WφV
= 1/10 Sv−2 according to the annual variations of the transport (see section 4.1).

The heat transport is not constrained. The weighting matrix for the sea surface height

data term is described in section 2.

After the careful definition of J the minimization routine M1QN3 of the

MODULOPT library [Gilbert and Lemaréchal , 1989] was applied. The minimizer uses a

Quasi-Newton algorithm with variable storage (BFGS). It searches for the optimal state

in the space of control variables X = {Cn, u(z = −H), Fw, F
w}.
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4.2.3. Posterior variances Variances of all integral quantities shown in tables 4

in section 4.3 were computed through linear transformations of the error covariance

matrix P between the control variables. This covariance matrix can be identified as

the inverse of the Hessian matrix H associated with the assimilation scheme [Thacker ,

1989]. Any observable φ can be approximated by an expansion around the optimal state

of the control variables (15) but now l̂ is non-trivial. Its numerical code can be obtained

from the TAMC [Giering, 1997].

Following the standard approach [Thacker , 1989], we assume that the posterior

statistics are also Gaussian and fluctuations around the optimal state are small in the

sense that the original dynamics are well approximated by the linearized equations.

Then the error variance of φ is then given by

σ2
φ = l̂TH−1 l̂, (18)

which is equivalent to (14). As the number of control variables was fairly large

(of order 104), it is computationally prohibitive to calculate H and especially H−1.

However it is possible to calculate the product of the Hessian matrix H with any vector

[LeDimet and Talagrand , 1986]. This enables us to use a polynomial approximation of

the property ψ = H−1/2 l̂ from which σ2
φ = 〈ψ, ψ〉 can be obtained. This procedure is

described in detail by Yaremchuk and Schröter [1998]. The software was provided by

the authors.
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4.3. Results

Mean climatological surface stresses and their standard deviations are taken from

Trenberth et al. [1990] to calculate the Ekman velocities and Ekman transports using

an Ekman depth of 40 m corresponding to a vertical turbulent diffusion coefficient

of AV = 103cm2/s, likewise the vertical component of the wind stress curl is used to

compute the Ekman pumping into the geostrophic interior of the flow field. Table 4.

All salinity and temperature values of the selected instantaneous subset of the

“data” were used to constrain the model. To simulate the dense sampling of the most

prominent small scale feature of the section, the Gulf Stream through Florida Strait,

nine velocity measurements (three each at three different depth levels) from that region

constrain the flow field even further. For the sea surface height we assumed the two

different situations outlined in Section 2. In experiment A we included the variability of

the signal Cfluc into the SSH error covariance as described in Section 2 to account for the

assumption of stationarity of the system. In the second case we assumed zero variability

as one would have if one had a time stepping model that could resolve the evolution

of the oceanic fields. The optimistic error assumptions of this experiment B mimic

the realistic perspective that by the time the GOCE data will be available, computers

will be much more powerful than today and therefore the by nature computationally

expensive time dependent inverse models will be much more commonly used.

In each experiment, four inverse runs were performed, one with hydrography

data alone, labeled NOSSH, and three runs with sea surface heigh data, one for each
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geoid error covariances, labeled EGM96, GRACE, and GOCE. There is also a further

control run where we assumed “perfect data”, that is the error of the sea surface height

“measurements” are taken to be 1 mm and uncorrelated. From this run the largest

possible impact of SSH data can be estimated.

Table 4 lists the integral mass transport φV and heat transport φH (relative to 0◦C)

through the section for all runs. The content of the table is summarized in Figures 15

and 16. Figures 18 and 19 show the model SSH. Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

The model without assimilation of SSH data (NOSSH) reproduces the FLAME

model reality (reference) to a reasonable extent, however in many details it exhibits

significant differences to FLAME. In general, it tends to broaden the narrow Gulf

Stream. The resulting increase in northward mass transport to 30 Sv is compensated

by a decrease of the northward flow between 282◦ and 285◦E and an increase of the

southward flow further east (figure 17). The inversion does not lead to an improved

error estimate of total mass transport.

In the unrealistic case of “perfect” SSH data the agreement between model solution

and FLAME reference is very good, although the flow field still cannot be reproduced

perfectly. For example, the southward deep flow of the abyssal circulation at 285◦E is too

weak. Obviously, the simple dynamics of the inverse model are only an approximation

to the more complex dynamics of FLAME. Nevertheless, the run PERFECT yields an

upper limit for the possible improvement of the transport estimates. From Table 4

one can see, that even “perfect” data can improve the a priori error estimate of the

total mass transport over that of NOSSH by only 3% while the error reduction for
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the unconstrained heat transport is 75%. The transport errors in the Gulf stream are

reduced only by approximately 50%, since here the flow field is already constrained by

velocity measurements.

When the SSH data is included with the larger error estimates of EGM96, GRACE

and GOCE the error reductions are of course smaller than in the case of “perfect”

data. The comparatively well known total mass transport error cannot be improved

significantly in any run. The error reduction over the NOSSH for the other transports

run are small for EGM96 (between 10% to 20%), considerably larger for GRACE (20%

to 38%) and largest for GOCE (between 30% and 45%). The errors are more reduced

for the total heat transport than for the Gulf Stream mass and heat transports for

the reasons described above. Also the error reduction is, as anticipated, larger for the

smaller a priori error estimates in experiment B (without the variability of the ocean

signal included as an error), but not by very much (less than 10%). The exception in the

GRACE runs can be explained as follows: The model can react nonlinearly to changes in

the cost function, so that in experiment A the solutions obtained for EGM96 and GOCE

are very different compared to that of GRACE. This can be seen from the significantly

different transport values for this run (Table 4) and from the flow field in Figure 17.

There the GRACE solution exhibits a broadened and intensified Gulf Stream, a too

strong northward flow between 282 and 284◦E and a strong southward flow in-between.

Therefore, because the model is non-linear, the posterior error estimates are different

for different solutions.
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5. Discussion

We now compare the results of our two inverse models and those of the Atlantic

inverse of LeGrand [2001]. Our findings from the inverse “box” model (Section 3) and

the section finite difference model (Section 4) show differences in the estimated impact

of the GOCE geoid model. These differences were expected according to the different

concepts of the inverse models. The box inverse model relies on basin scale conservation

of mass and other properties, while the finite difference inverse Atlantic of LeGrand

[2001] and section models are balanced locally on 1◦× 1◦ boxes defined by the model

grid. Thus there is a large difference in the resolution of the box and finite difference

inverse models. The large scale resolution of the inverse box model is accurately

determined by both GRACE and GOCE geoid models, while the smaller resolution of

the finite difference inverse models are able to resolve the different accuracy between

GRACE and GOCE at these small scales.

At present the large “boxes” defined by hydrographic sections, as used in Section 3,

limit the assessment of the improvement in accuracy of ocean transport of GOCE over

GRACE geoid models. This will change with the use of hydrographic sections collected

during WOCE. The use of WOCE data to define ocean regions will result in smaller,

more numerous boxes. The finer resolution of the boxes in a WOCE inverse box model

should show a much greater improvement in the accuracy of ocean transport determined

using GOCE over those provided from GRACE.

The structure of the improved accuracy provided by GOCE is similar in both finite
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difference inverse models of LeGrand [2001] and Section 4 but the magnitude of the

improvement is smaller in the finite difference section model (Section 4). The difference

in the magnitude of the improvement achieved by GRACE is due to differences in the

calculation of the geoid error covariance between Part I and Part II. In LeGrand [2001],

the GRACE error covariance is calculated to degree/order 150 to match the inverse

model’s resolution. On these high degrees GRACE is rather inaccurate. Because the

spherical harmonics are orthogonal only on the sphere, strictly speaking there is alway a

leakage of high degree signal (and error!) to low degrees thus increasing the errors of the

longer wavelengths. The smaller improvement of GOCE over GRACE shown between

the finite difference section inverse over that given in the full Atlantic model reflect

the differences in the implied accuracy of GRACE between this study and LeGrand

[2001]. We would like to stress this difference as it points to a more general problem of

representing the marine geoid and sea-surface height (see, e.g.,Rapp et al. [1996]).

6. Conclusions

We estimate how an accurately known geoid will lead to improvements in error

estimates of large scale oceanic mass and heat transports. This is shown in a box inverse

model that is based on hydrographic measurements and a non-linear inverse model

based on numerical model (FLAME) “data”. In both cases the data are augmented

with satellite altimetry of varying accuracy: that of the present day geoid EGM96; and

estimates of the performances of the GRACE and GOCE missions.

With each inverse model we ran two experiments (Experiment A and B) for each
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geoid model. In experiment A the sea surface height (SSH) or signal ζ error covariance

matrix used is the sum of the geoid model error covariance, cross-correlated sea-surface

height variability and uncorrelated measurement error. In experiment B the variability

signal is removed from the SSH error covariance.

A preliminary experiment with the EGM96 geoid and TOPEX/POSEIDON SSH

data resulted in a South Atlantic circulation that was inconsistent with our knowledge

of the circulation of this ocean. This suggests that present day geodetic information

(i.e. EGM96) does not provide useful information in the determination of large scale

oceanic transports. Ganachaud et al. [1997] arrived at a similar conclusion using the

JGM-3 geoid model.

The second conclusion of this report concerns the improvement in geoid accuracy

by the GRACE and GOCE missions. With the inverse “box” model, we find an average

reduction of transport uncertainties in Experiment A (inclusion of variability signal) of

about 9% for GRACE geoid error covariances and 17% for GOCE over the “hydrography

only” solution. In both GRACE and GOCE these average percentage improvements

are significantly increased when the SSH variability signal is excluded (Experiment B)

to 42% for GRACE and 47% for GOCE. The similar improvement provided from both

GRACE and GOCE is a result of the large scale balance which applies in the inverse box

model. It is expected that a greater improvement in the accuracy of ocean transports

will be provided by GOCE with a box inverse model that uses WOCE hydrographic

sections to enclose smaller ocean regions.

In addition we applied a fully non-linear inverse model to hydrographic data of a
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single section. The a priori assumptions about the ocean circulation of this model are

much more conservative than for the box model. As a consequence, the uncertainties

of large scale transports are much bigger than for the linear model. SSH data with

GRACE geoid error covariances reduce these uncertainties on the average by 29%, with

GOCE geoid error covariances by 37%. Exclusion of the SSH variability changes these

numbers by less than 5 percent points.

The experiments indicate, that new satellite missions that result in high precision,

high resolution geoids will improve estimates of large scale integral properties of the

ocean circulation, and significantly improve estimates of oceanic properties over the

current geoid EGM96. The improvement of GOCE over GRACE is relatively small

for large scale properties but, especially for short scales properties like the transport

through Florida Strait we can infer that GOCE will lead to far better estimates than

GRACE.
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Yaremchuk, M., D. Nechaev, J. Schröter, and E. Fahrbach, A dynamically consistent

analysis of circulation and transports in the southwestern Wedell Sea, Annales

Geophysicae, 16 , 1024–1038, 1998.

Received



44

This manuscript was prepared with AGU’s LATEX macros v5, with the extension

package ‘AGU++’ by P. W. Daly, version 1.6b from 1999/08/19.



45



46

Figure Captions

280
300

320
340

280
300

320
340

0

0.005

0.01

C
h
, unfiltered

[m
2 ]

280
300

320
340

280
300

320
340

0

0.005

0.01

C
h
, filtered, λ

c
 = 570 km

[m
2 ]

280
300

320
340

280
300

320
340

0

0.005

0.01

Longitude [ oE]

C
h
, filtered, λ

c
 = 200 km

Longitude [ oE]

[m
2 ]

Figure 1. Total altimeter covariance Ch = Cfluc+χ, for the North Atlantic hydrographic

section along 24◦N, unfiltered and filtered with two different cutoff wavelengths λc =

570 km and λc = 200 km. The section length is approximately 6600 km. For λc =

200 km, the filter results in only small changes to the covariance matrix Ch.
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Figure 2. Geoid error covariance matrices to the degree and order L for a) EGM96,

b) GRACE, and c) GOCE, for the North Atlantic section along 24◦N.
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Figure 3. SSH error covariance matrices after filtering of all small scales according to

the maximum degree and order used for a) EGM96, b) GRACE, and c) GOCE, for the

North Atlantic section along 24◦N.
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Figure 4. Square roots of the diagonals of the SSH error covariance matrices σζ =

√
diagCN + diagCfluc + diagχ and their three constituents after filtering of the small

scales according to the maximum degree and order used for a) EGM96, b) GRACE, and

c) GOCE, for the North Atlantic section along 24◦N. Note that the geoid contribution

to the error is small for GRACE and GOCE.
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representation and does not constrain the model solution.
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Figure 7. Impact of the different geoid error covariances in Experiment A on the

accuracy of mass transports at selected sections. Upper panel is the mass error (Sv) and

the lower panel is the percentage improvement of each geoid over the NOSSH solution.

(1 Sv = 106 m3s−1)
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Figure 8. Impact of the different geoid error covariances in Experiment A on the

accuracy of heat transports at selected sections. Upper panel is the heat transport error

(PW) and the lower panel is the percentage improvement of each geoid over the NOSSH

solution. (1 PW = 1015 Watts)
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Figure 9. Impact of the different geoid error covariances in Experiment B (no error on

SSH variability) on the accuracy of mass transports at selected sections. Upper panel

is the mass error (Sv) and the lower panel is the percentage improvement of each geoid

over the NOSSH solution.
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Figure 10. Impact of the different geoid error covariances in Experiment B (no error

on SSH variability) on the accuracy of heat transports at selected sections. Upper panel

is the heat transport error (PW) and the lower panel is the percentage improvement of

each geoid over the NOSSH solution.
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Figure 11. Impact of the different geoid models in Experiment A on the accuracy

of mass transports at selected narrow currents of the Southern Ocean. Upper panel is

the mass transport error (Sv) and the lower panel is the percentage improvement of

each geoid model over the NOSSH solution. EAC: East Australian Current, SAF Sub-

Antarctic Front.
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Figure 12. Impact of the different geoid models in Experiment B (no error on SSH

variability)on the accuracy of mass transports at selected narrow currents of the Southern

Ocean. Upper panel is the mass error (Sv) and the lower panel is the percentage im-

provement of each geoid model over the NOSSH solution. EAC: East Australian Current,

SAF Sub-Antarctic Front.
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of the “section” at 24◦30’N.
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Figure 15. Impact of the different geoid models in Experiment A on the accuracy of

the mass and heat transport across 24◦N and the Florida Strait. Upper panel is the mass

(Sv) and heat (PW) error and the lower panel is the percentage improvement of each

geoid model over the NOSSH solution.



61

Total Section Gulf Stream
0

2

4

6

8

10

12
Mass transport error [Sv]

NOSSH
EGM96
GRACE
GOCE

Total Section Gulf Stream
0

5

10

15

20

25

30

35
Relative improvement over NOSSH [%]

Experiment B

EGM96
GRACE
GOCE

Total Section Gulf Stream
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Heat transport error [PW]

NOSSH
EGM96
GRACE
GOCE

Total Section Gulf Stream
0

10

20

30

40

50

60
Relative improvement over NOSSH [%]

Experiment B

EGM96
GRACE
GOCE

Figure 16. Impact of the different geoid models in Experiment B (no error on SSH

variability) on the accuracy of the mass and heat transport across 24◦N and the Florida

Strait. Upper panel is the mass (Sv) and heat (PW) error and the lower panel is the

percentage improvement of each geoid model over the NOSSH solution.
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model runs, for Experiment A, for the western end of the section. Note the stretched

depth coordinate axis.
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Figure 18. SSH of model runs vs. data, Experiment A
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Figure 19. SSH of model runs vs. data, Experiment B (no error on SSH variability)
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Tables

Sections Year

SAVE 2 12◦S (SAVE2) 1988

SAVE 4 30◦S – 47◦S (SAVE4) 1989

Drake Passage (DP) 1990

AJAX-0◦E (SA) 1984

AJAX-Weddell Sea (WS) 1984

Indian 18◦S (I18) 1976

Indian 32◦S (I32) 1987

WOCE-SR3 140◦E (SR3) 1994

WOCE-P6 32◦S (P32) 1992

Table 1. The hydrographic sections (and year) used in this study and abbreviated name

used in the text.
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Table 2. A priori constraints applied to the box-inverse model from

independent ocean estimates. The inverse model conserves mass, heat

and salt in all layers while silica is conserved in each box as a whole .

Constraint

−0.4 ± 2Sv net southward transport at SAVE2

4 ± 2Sv northward bottom water transport in Brazil basin

0 ± 2Sv net transport across Weddell Sea

16 ± 5 Wm−2 heat loss over Weddell Sea

60 ± 5Sv northward Malvinas Current

6 ± 2 Sv northward transport AABW across Argentine basin

11 ± 5 Sv northward transport LCDW/AABW coincident with WOCE PCM-9 (P32)

O(500kmols−1) Silica Conservation all regions
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Section Mass [Sv] Heat [PW]

SAVE2 −0.82 ± 0.39 0.49 ± 0.06

SAVE4 −0.31 ± 1.60 0.37 ± 0.05

DP 137.5 ± 6.6 1.44 ± 0.05

SA 138.5 ± 7.0 1.12 ± 0.09

WS 0.01 ± 0.20 −0.05 ± 0.004

I18 −7.40 ± 4.02 −1.28 ± 0.19

I32 −8.14 ± 3.71 −0.79 ± 0.14

SR3 146.7 ± 7.3 1.72 ± 0.09

P32 7.31 ± 3.20 0.36 ± 0.13

Table 3. Total section property fluxes, heat fluxes are relative to 0◦C.
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Total section

Geoid φV [Sv] φH [PW]

control DATA 0.1 ± 3.2 0.60 ± 0.10

NOSSH 0.1 ± 3.2 0.50 ± 1.1

PERFECT 0.0 ± 3.1 (3%) 0.46 ± 0.27 (75%)

Exp.A EGM96 0.0 ± 3.2 (0%) 0.50 ± 0.91 (17%)

GRACE 0.0 ± 3.2 (0%) 0.88 ± 0.68 (38%)

GOCE 0.0 ± 3.2 (0%) 0.48 ± 0.66 (40%)

Exp.B EGM96 0.0 ± 3.2 (0%) 0.50 ± 0.88 (20%)

GRACE 0.0 ± 3.2 (0%) 0.60 ± 0.69 (37%)

GOCE 0.0 ± 3.2 (0%) 0.47 ± 0.61 (45%)

“Gulf Stream”

Geoid φV [Sv] φH [PW]

control DATA 26.0 ± 2.9 1.90 ± 0.20

NOSSH 30 ± 11 2.25 ± 0.80

PERFECT 25.3 ± 5.5 (50%) 1.85 ± 0.37 (54%)

Exp.A EGM96 26 ± 10 (9%) 1.96 ± 0.70 (13%)

GRACE 28.2 ± 8.3 (25%) 2.10 ± 0.57 (29%)

GOCE 24.8 ± 7.8 (29%) 1.84 ± 0.51 (36%)

Exp.B EGM96 26 ± 10 (9%) 1.97 ± 0.69 (14%)

GRACE 27.3 ± 8.8 (20%) 2.03 ± 0.60 (25%)


	Introduction
	SSH Covariances
	Sensitivity analysis using a linear box inverse model of the Southern Ocean
	Inverse Model
	Inverse model description
	Hydrographic data, domain and a priori constraints

	General Circulation - a five layer description
	Impact of Geoid on accuracy of ocean transports

	Sensitivity analysis using a non-linear section inverse model for the Atlantic Ocean
	Pseudo-Data
	Inverse Scheme
	Description of the model
	Prior Covariances/Variances
	Posterior variances

	Results

	Discussion
	Conclusions

