

Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Germany



## Automated microstructure characterization along deep ice cores using sublimation etching

Tobias Binder, Ilka Weikusat, Johannes Freitag, Christoph S. Garbe, Dietmar Wagenbach, Sepp Kipfstuhl

5<sup>th</sup> International Conference on Recrystallization & Grain Growth

Sydney, 06/05/2013



Unique densification/deformation experiment

NEEM (2537.6 m)

- Important climate archive
- Deep ice cores drilled in Greenland and Antarctica (cold, dry)
- Homologous temperature > 0.8

#### Ice microstructure in ice sheets

- In nature: hexagonal structure (Ih)
- Optical anisotropy → Polarisation microscopy
- Mechanical anisotropy (2 slip systems)  $\rightarrow$  High local stresses
- Changing combination of ReX processes with depth, on which scale?





## Sublimation groove images

- SEM, EBSD are too slow for quasi-continuous analysis
- Preparation of thin sections for polarization microscopy even time-consuming
- Reflection microscopy of sublimation grooves by "Large Area Scanning (LASM)







#### Images

Six consecutive 6 cm x 9 cm sections

Steps of 20 m

Total: 800 images

10-15 µm wide grain boundaries

#### Low-angle lattice distortions



 Subgrains in ice: regions with misorientation smaller 5°

 In LASM: high sensitivity, automatic extraction of GBs/sGBs

## Matching FA/LASM

 Combination of both imaging techniques yields additional information.





#### **Characteristics of LASM images**



- Smaller grains extracted
- High-angle boundaries appear darker than low-angle boundaries

#### Parameterization, e.g. mean grain size



- Diverse parameterization of grains and grain boundaries
- Up to now: No standard parameterization for texture established in glaciology (different image types)
- Problem with mean grain size: How many small grains are considered?
- Where does grain growth stop?
  - Climate transitions

## Variability in grain size

- On mm scale ("cloudy bands")
- On cm scale (within a section)
- On m scale (not observed before)
- On km scale (through ice sheet)







### Grain shape



- Strong influence of high-pressurized air bubbles on grain shape
- Increasing flattening
- Reduction in strain energy between 100 m and 250 m?

### Reduction in surface energy

 Just below firn-ice transition (pore closeoff)

During air bubble – clathrate hydrate transition



### Driving forces on grain boundaries

Equilibrium assumed

- Highly curved grain boundaries are generated by: migration recrystallization or sub-GB pinning
- → Integrated curvature is lower estimate for dislocation density





Interdisciplinary Center for Scientific Computing





- Quasi-continous microstructure analysis along deep ice core has become possible using sublimation groove images
- Automatic extraction of the grain boundary network
- Variability of grain size and grain shape found on different scales
- Comparison between different definitions of lower cut-off in grain size

### **Further information**

- S. Kipfstuhl, I. Hamann, A. Lambrecht, J. Freitag, S.H. Faria, D. Grigoriev, N. Azuma Microstructure mapping: a new method for imaging deformation-induced microstructural features of ice on grain scale, 2006, Journal of Glaciology 178: 398-406
- T. Binder, C.S. Garbe, D. Wagenbach, J. Freitag, S. Kipfstuhl Extraction and parameterization of grain boundary networks in glacier ice, using a dedicated method of automatic image analysis, 2013, Journal of Microscopy 250 (2): 130-141
- Visit **ice-image.org** to download software

# Thanks for your attention!