Impact of Lake-Level and Climate Changes on Microbial Communities in a Terrestrial Permafrost Sequence of the El’gygytgyn Crater, Far East Russian Arctic

Juliane Bischoff,1,2† Kai Mangelsdorf,2 Georg Schwamborn1 and Dirk Wagner3*

1 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Potsdam, Germany
2 GFZ German Research Centre for Geosciences, Section 4.3 Organic Geochemistry, Telegrafenberg, Potsdam, Germany
3 GFZ German Research Centre for Geosciences, Section 4.5 Geomicrobiology, Telegrafenberg, Potsdam, Germany

ABSTRACT

Microbial permafrost communities play an important role in carbon cycling and greenhouse gas fluxes. Despite the importance of these processes, there is a lack of knowledge about how environmental and climatic changes affect the abundance and composition of microorganisms. Here, we investigated the changing distribution of permafrost microorganisms in response to climate and lake-level changes. The permafrost core was drilled at the near shore of Lake El’gygytgyn, Far East Russian Arctic, and a combined microbiological and lipid biomarker approach was applied. The lower part of the permafrost core, deposited under subaquatic conditions, contains only small amounts of microbial signals; total organic carbon (TOC) content is sparse. After exposure of the site to subaerial conditions during the Allerød, the abundance of Bacteria and Archaea started to increase and the lake-level change is especially evidenced by the relative proportion of archaeal biomarkers. This increase is supported by rising bacterial and archaeal 16S ribosomal ribonucleic acid (rRNA) gene copy numbers and significant amounts of TOC during the late Allerød. After a small decrease during the colder Younger Dryas, the TOC content and the microbial signals strongly increase during the Holocene, presumably stimulated by pedogenesis. The occurrence of intact phospholipids indicates the presence of living microorganisms in these deposits. Our data suggest that methane formation is mainly expected for the subaerial interval, especially the Holocene where methanogens were identified by fingerprinting. This study emphasises the role of the uppermost permafrost deposits as a hotspot of carbon cycling in arctic environments, especially in the light of expected future global warming. Copyright © 2014 John Wiley & Sons, Ltd.

KEY WORDS: microorganism; microbial succession; lipid biomarkers; permafrost

INTRODUCTION

Lake El’gygytgyn, a meteor impact crater formed about 3.6 million years ago, is located in the permafrost region of the Far East Russian Arctic. The frozen ground in the permafrost flat surrounding the lake represents an extreme habitat for microbial life. The mean annual air temperature of −10.3 °C is quite low (Nolan and Brigham-Grette, 2007), the slope deposits around the lake largely consist of sand and gravel, and there is little carbon available in the catchment (Schwamborn et al., 2012). Microbiological studies on Lake El’gygytgyn sediments have up to now focused only on lake deposits from the centre of the lake (site 5011–1, Figure 1b). Significant amounts of bacterial and archaeal genes and lipid biomarkers were found in the lake deposits (J. Bischoff et al., manuscript in preparation). Analysing a Middle Pleistocene time interval, this investigation shows that the microbial communities within the lake respond to glacial-interglacial climate variations. Higher numbers of microorganisms occurred during the interglacials, presumably related to an increased carbon availability in the lake (J. Bischoff et al., manuscript in preparation). The present study focuses on microbiological investigations on the terrestrial permafrost surrounding Lake El’gygytgyn, which is representative of the lake catchment area.

As Lake El’gygytgyn formed, its western shore was exposed to significant environmental and climatic changes. During the Middle and Late Pleistocene, the lake levels were higher than today and the modern permafrost margin was inundated several times (Juschus et al., 2011; Schwamborn...
Figure 1 (a) Location of Lake El’gygytgyn in far eastern Russia. (b) Landsat image showing Lake El’gygytgyn and the drilling site 5011–3 on the western shore of the lake. Site 5011–1 marks the drilling site that recovered sediments from the centre of the lake. Figure modified after Schwamborn et al. (2012). This figure is available in colour online at wileyonlinelibrary.com/journal/ppp
et al., 2012). The lake marginal permafrost thawed because of talik inception below the lake water column, and sandy flooding horizons alternated with gravelly layers deposited on the slope (Schwamborn et al., 2012). The last lake-level highstand that flooded the study site (5011–3, Figure 1b) took place during the Allerød, before the shoreline receded during the late Allerød (Schwamborn et al., 2012). Exposed to the atmosphere, the talik area froze over and subaerial alluvial deposits, prograding from the slope, buried the lake deposits in the near-shore area (Mottaghy et al., 2013). Exposed lake shore areas, which currently experience subaerial conditions, can be found mainly north and west of the lake (Figure 1b).

This study uses a combined approach of microbial lipid biomarkers and gene analyses in order to investigate how the abundance and composition of the microbial communities vary with climatic and environmental changes in the lake shore area. Glycerol dialkyl glycerol tetraethers (GDGTs), characteristic biomarkers for Bacteria and Archaea (Weijers et al., 2006), can be considered as fossil markers, because they are already partly degraded due to loss of the headgroups and they are relatively stable outside intact cells (Pease et al., 1998). Studies in Siberian permafrost (Bischoff et al., 2013) and Lake El’gygytgyn sediments (J. Bischoff et al., manuscript in preparation) have shown that GDGTs and gene analyses are suitable approaches to reconstruct the changes in Arctic microbial communities that have occurred in response to climate variabilities in sediments ≤ 480 ka. Thus, by combining biogeochemical and molecular biological methods, this study aims to assess the impact of lake-level and climate changes on microbial communities with a specific focus on methane-producing Archaea (methanogens) in the lake shore area during the Late Pleistocene and Holocene, and to characterise extremophile microorganisms in the near-shore permafrost of Lake El’gygytgyn.

MATERIALS AND METHODS

Study Site

Lake El’gygytgyn (67°27’N, 172°05’E) is located 492 m asl in an impact crater in the Chukotka-Anadyr mountain belt, northeastern Russia (Figure 1a). A meteorite impact 3.6 million years ago (Layer, 2000) excavated a crater about 18 km in diameter that is partially filled with an off-centred lake 12 km in diameter (Figure 1b). Data from an automated meteorological station installed at the southern lake shore near the outflow river in 2000 (Nolan and Brigham-Grette, 2007; Nolan, 2012) show that over the period from 2001 to 2009 the average air temperature was −10.3 °C with extremes from −40 °C to 28 °C. The mean annual liquid precipitation from 2002 to 2007 was 126 mm with extremes from 70 mm in 2002 to 200 mm in 2006 (Nolan, 2012). The site is located in the zone of continuous permafrost and the permafrost is estimated to reach a thickness of up to 350 m (Mottaghy et al., 2013). There is no permafrost below the lake. In 2003, the active layer surrounding the lake was reported to be 0.4 m thick for peaty silts and 0.5–0.8 m thick for sand- and gravel-rich deposits (Schwamborn et al., 2012). The lower part of the core (20.0–8.5 m) was deposited under subaquatic conditions as indicated by hydrochemical changes of the ground ice (Schwamborn et al., 2012). According to an age estimate based on pollen data (Andreev et al., 2012), a sandy bed at the bottom of the core (c. 20–19 m depth) was likely formed during the interglacial Marine Isotope Stage (MIS) 7. No pollen was available from 19 to 9.5 m depth, preventing an age assessment of these deposits. From terrace remnants partly found around the lake and which are 10 m higher than the modern lake level, a relative lake-level highstand is interpreted for MIS 5 (Glushkova and Smirnov, 2007). In our core, distinct lake sediments from that time are presumably eroded by slope processes, whose deposits overlie the site (Schwamborn et al., 2012). The 9.5 to 2.5 m depth interval was assigned to the Allerød because of its pollen assemblage (Andreev et al., 2012). The sandy bed between 9.6 and 9.1 m depth is interpreted as a flooding horizon from a lake-level highstand in the Allerød (Schwamborn et al., 2012). After this highstand, the lake level decreased and the upper part of the core (8.5 to 0 m), assigned to the later Allerød, Younger Dryas and the Holocene, was deposited under subaerial conditions (Schwamborn et al., 2012).

Drilling and Sample Material

From November to December 2008, the El’gygytgyn Drilling Project was conducted within the scope of the International Scientific Continental Drilling Program (ICDP; http://www.icdp-online.org). A 141.5 m long core (5011–3, Figure 1b) of fully frozen deposits was drilled on the western shore of the lake (76°29.1’N, 171°56.7’E) at 500 m asl and 350 m away from the modern lake shore. Further information on the drilling is given by Melles et al. (2011, 2012) and Schwamborn et al. (2012).

During shipping and storage, the core segments remained frozen. The frozen core segments were transferred to the laboratory and cleaned, and then described in detail. Sampling of the uppermost 20 m of the core used in this study was conducted in a climate-controlled laboratory at −12 °C. Samples were taken on average every 0.5 m, or where sediment changes occurred. The core diameter was 11 cm and the sampled sections were 1.5 to 20 cm long. The gross weight of each sample was 2 to 3 kg. Subsamples weighing about 90 g were taken from the undisturbed inner parts of these sections. Samples for biomarker analyses were stored in combusted brown glass jars. Samples for microanalyses were put in sterile 2 mL tubes and kept frozen at −20 °C for subsequent analyses. All reported core depths are the mean field depths of the homogenised sample core section.

Sediment Properties

Total organic carbon (TOC) was measured with a Vario EL III element analyser (Elementar Analysensysteme, Hanau, Germany) using freeze-dried and homogenised
samples (5 mg) that had been treated with HCl (10%) at a temperature of 80 °C to remove carbonate. For further details, see Schwamborn et al. (2012).

Lipid Biomarker Analysis

Freeze-dried and ground samples were extracted using a modified Bligh and Dyer (1959) extraction. For phospholipid quantification, internal phospholipid standards (1-palmitoyl (D31)-2-hydroxy-glycerol-3-phosphatidylcholine and 1, 2-diesteroyl(D70)-glycerol-3-phosphatidylcholine) were added. The obtained sediment extract was separated into fractions of different polarity (low polar lipids, free fatty acids, glycolipids and phospholipids). For details on the sample preparation method, see Zink and Mangelsdorf (2004).

Detection of GDGTs and Archaeol

Tetraether lipids and archaeol in the ‘low polar lipids’ fraction were analysed using a high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry method described in Schouten et al. (2007). Blanks (pre-heated sea sand) were measured regularly and did not contain any GDGTs or archaeol. For details on the applied method, see Bischoff et al. (2013).

Detection of Phospholipid Fatty Acids (PLFAs)

One-third of the phospholipid fraction was used for alkaline hydrolysis to obtain the methylated PLFAs by following the method described by Müller et al. (1990). The trans-esterified (methylated) PLFAs were directly analysed on a gas chromatography-atmospheric pressure chemical ionisation mass spectrometer (DSQ, Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA) coupled with a mass spectrometer (Trace GC Ultra, Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA). For details on the instrument parameters, see Vetter et al. (2011). Blanks did not contain any PLFAs.

Deoxyribonucleic Acid (DNA) Extraction and Amplification

The total genomic DNA was extracted in duplicate 0.75 g samples of terrestrial permafrost deposits using a Power Soil™ DNA Isolation Kit (Mo Bio Laboratories Inc., Carlsbad, California, USA), according to the manufacturer’s protocol with the addition of a beat-beating step to improve the mechanical efficiency of DNA extraction. The methanogenic bacterial small subunit (SSU) ribosomal ribonucleic acid (rRNA) genes were amplified in a nested polymerase chain reaction (PCR) approach using the primer pair ArUn4F and 958 R (DeLong, 1992; Hershberger et al., 1996), followed by a subsequent amplification using GC_0357Fa and 0691 R (Watanabe et al., 2004) following the protocol used in Bischoff et al. (2013). The denaturing gradient gel electrophoresis (DGGE) analyses were conducted as described previously by Ganzert et al. (2007) and selected bands were cut from the gel. After re-amplification, the DNA amplicons were sequenced by GATC Biotech AG (Konstanz, Germany).

Quantitative PCR Analysis of Archaeal and Bacterial SSU rRNA Genes

The SSU rRNA gene copy numbers of Bacteria and Archaea in terrestrial permafrost deposits were determined using a real-time PCR approach. The primer pairs Uni 331 F/797R (Nadkarni et al., 2002) and A 571 F/UA 1406R (Baker et al., 2003) were used to amplify fragments of 466 bp and 687 bp length from the bacterial and archaeal SSU rRNA genes, respectively. Real-time PCR reactions were conducted in analytical triplicates in a Rotor Gene Q (Quiagen, Hilden, Germany) instrument using the Rotor-Gene SYBR Green PCR Kit (Quiagen) and 0.5 mM of each primer. As a template, 3 μl of purified and diluted DNA extract (1:10) was added. Cycling conditions were as follows: initial denaturation at 95 °C for 10 min, 40–50 cycles of denaturation at 95 °C for 20 s, annealing at 57 °C respectively for 20 s, and elongation at 72 °C for 45–90 s. A standard curve was generated using known dilutions (10¹⁻¹⁰⁷ gene copies) of the target fragments amplified from Bacillus subtilis (for Bacteria) and Methanosarcina vacuolata (for Archaea). After each run, melting curve analyses were performed to ensure correct amplification of the target sequence.

Phylogenetic Analysis

The obtained sequence data were checked for quality and length using Sequencher® software (Version 4.7., Gene Codes Inc., Ann Arbor, Michigan, USA); when indicated, sequences were cut or edited. The sequences were aligned with full-length sequences of a sufficient quality provided by the Silva rRNA database project using the online available alignment software (http://www.arb-silva.de; Pruesse et al., 2007). The phylogenetic analysis of partial 16S rRNA gene sequences was performed using the ARB software package (http://www.arb-home.de; Ludwig et al., 2004). The phylogenetic tree (maximum likelihood) was constructed using the ‘pos_var_ssu:ref:archaea’ and ‘termini’ filters provided by ARB. For a better overview, only selected data are shown in the resulting tree.
Distribution of Lipid Biomarkers

GDGTs were detected throughout the entire upper 20 m of the El’gygytgyn terrestrial permafrost sequence (Figure 2b–d). Branched GDGTs, characteristic markers for Bacteria (Weijers et al., 2006), were predominantly found in the uppermost 1.25–0 m of the deposits, with concentrations of up to 316 ng g\(^{-1}\) sediment dw (Figure 2b). Throughout the remaining core, the amount of total branched GDGTs decreased below 10 ng g\(^{-1}\) sediment dw. Isoprenoid GDGTs, characteristic markers for Archaea (Weijers et al., 2006), were less abundant; total amounts ranged from 0 to 2 ng g\(^{-1}\) sediment dw throughout the core (Figure 2c). Highest values were observed in the uppermost layers (1.25–0 m), but also in an interval between 3.4 and 3 m depth with up to 1.5 ng g\(^{-1}\) sediment dw. Below 7.3 m, the concentration of isoprenoid GDGTs decreased to values of 0.1 ng g\(^{-1}\) sediment dw. Archaeol, a characteristic marker for methanogenic Archaea (Pancost et al., 2011), was abundant throughout the uppermost 7 m of the analysed sediments, with concentrations ranging from 0.1 to 10 ng g\(^{-1}\) sediment dw (Figure 2d). The highest amounts of archaeol were detected in intervals from 6.6 to 4.25 m depth. Total amounts of PLFAs, markers for living Bacteria because they rapidly decay after cell death (White et al., 1979), were highest in the uppermost 1.25 m of the permafrost sequence with up to 27 nmol g\(^{-1}\) sediment dw (Figure 2e). Below 3 m depth, the amounts of total PLFA were below the detection limit.

Composition of Archaeol and Isoprenoid GDGTs

Both archaeol and isoprenoid GDGTs increase between 7.3 m depth and the core top, although by differing amounts. Their relative proportion is shown in Figure 3. Sediments from 20 to 8.5 m depth were characterised by a high relative proportion of GDGT-0 (no pentacyclic ring, m/z = 1302); GDGT-0 accounted for about 50 per cent of all detected isoprenoid GDGTs. Additionally, a high proportion of crenarchaeol (m/z = 1292) was found in the same sediment interval, 25 per cent on average. In contrast, archaeol was almost undetectable, except at depths of 18.2, 11.7 and 8.8 m. The composition of isoprenoid GDGTs in the sediment interval from 8.5 to 0 m depth was characterised by an increase in the relative proportion of archaeol, which accounted for an average 80 per cent of the total isoprenoid GDGTs, whereas the proportions of crenarchaeol and GDGT-0 decreased to below 10 per cent. The presence of GDGT-2 (two pentacyclic rings, m/z = 1298) and GDGT-3 (three pentacyclic rings m/z = 1296) was limited to the uppermost 7 m of the core, whereas GDGT-3 was exclusively found in the uppermost layers (1.3 to 0 m depth). GDGT-4 (one pentacyclic ring, m/z = 1300) and GDGT-4 (four pentacyclic rings m/z = 1294) occurred throughout all analysed samples, but their presence as a proportion of all isoprenoid GDGTs was highest in the uppermost 4 to 0 m depth (average 5%) and further downcore in the 18.20 to 13.7 m depth (average 13%).
Quantification of Bacterial and Archaeal Genes

Bacterial and archaeal SSU rRNA gene copy numbers (Figure 2f, g) were highest in the uppermost 2 m, with 4.2×10^7 and 1.2×10^8 copies g$^{-1}$ sediment for bacterial and archaeal genes, respectively. Downcore, these values decreased considerably and no gene copy numbers were calculated for samples below 5.7 m depth for Bacteria and 3.4 m depth for Archaea due to the analytical detection limit.

Analysis of Methanogenic Community Fingerprints

DGGE analyses were conducted to obtain a genetic fingerprint profile of methanogenic Archaea throughout the El’gygytgyn terrestrial permafrost sequence. In total, 45 distinct bands were obtained, indicating microbial community changes with increasing depth (Figure 2h). Overall, the amplification of methanogenic SSU genes was generally limited to the uppermost 1.3 m. Further downcore (from 18.3 to 1.3 m depth), the abundance of microbial DNA decreased strongly and phylogenetic analyses were essentially not possible. The highest variety of bands was detected in surface layers (3–5 bands, 0.2 to 0 m depth). From 0.75 to 0.2 m depth, a lower variety of bands was detected; only one of these bands was distinct. Between 1.0 and 0.85 m depth, no bands were obtained. Between 1.33 and 1.25 m depth up to five bands were detected. Subsequently, only one distinct band was detected at 7.33 m depth and another at 3.98 m depth. No bands occurred below 8 m depth. In total, eight sequences were excluded from further analyses because of insufficient quality or length of the obtained DNA sequence. Successfully sequenced phylotypes (35 sequences) were classified as members of the phylum Crenarchaeota (7) and Euryarchaeota (28). These were assigned to the class Methanosarcinales and Methanomicrobiales (Figure 4).

DISCUSSION

Microbial Communities in Subaquatic Deposits

The deposits of the study site were influenced by alternating subaerial and subaquatic conditions (Schwamborn et al., 2012). The fundamental change in the depositional environment at about 8.5 m depth (Schwamborn et al., 2012) likely forced the microbial communities to react, consistent with the development of unique and diverse microbial communities in both parts of the section. Sediments deposited under subaquatic conditions (20–8.5 m) are generally characterised by low concentrations of branched and isoprenoid GDGTs, indicating a relatively small number of microorganisms in these sediments (Figure 2b, c). The amounts of branched and isoprenoid GDGTs reported for sediments in the centre of Lake El’gygytgyn during previous glacial-interglacial cycles (MIS 13 to 9) were considerably higher, with values from 200 to 3400 ng branched GDGTs and 20 to 870 ng isoprenoid GDGTs g$^{-1}$ sediment dw (J. Bischoff et al., manuscript in preparation).

The low numbers of microbial lipid markers in the subaquatic interval reflect a low abundance of microorganisms during or after the time of deposition. A plausible explanation is likely the low TOC content in these sediments (TOC below the detection limit; Figure 2a), resulting in a lower substrate availability for the indigenous microbial communities. In contrast, the sediments from the centre of the lake (ICDP site 5011–1, Figure 1b) contain higher TOC contents ranging from 0.1 to 3.3 wt per cent and microbial abundances likely driven by an intra-lake production of algal biomass (J. Bischoff et al., manuscript in preparation). The low organic matter deposition might be explained by sedimentary analyses of the subaquatic interval; predominantly coarse-grained materials such as gravel and sand are found there. High-energy conditions typical of a progradational fan delta, with alluvial transport and
slope processes, are, therefore, thought to have prevented the deposition of fine-grained material (clay, organic particles and pollen) (Schwamborn et al., 2012). This scenario would lead to the transport and deposition of finer material, including organic particles, further downslope into the deeper part of the lake. The low availability of organic carbon during the subaquatic interval at the drilling site could explain the low abundance of microbial communities and, therefore, the lack of lipid biomarkers at this site. However, because of the increased transport processes, the removal of DNA or lipid biomarkers cannot be excluded.

Despite the low abundance of isoprenoid microbial lipid markers, the relative proportion of isoprenoid GDGTs relative to archaeol reveals a hint about the archaeal community in the subaquatic interval (Figure 3). Generally, the subaqueatic deposits contain a high proportion of GDGT-0 and crenarchaeol. Archaeol is usually absent. GDGT-0 is a characteristic biomarker for methanogenic Archaea (De Rosa and Gambacorta, 1988), indicating that the limited archaean community found in the subaquatic interval of the analysed core contained a significant proportion of methanogenic Archaea. Methanogenic Archaea were found in the top section of this core, in the sediments from the centre of Lake El’gygytgyn (J. Bischoff et al., manuscript in preparation) and in other cold lakes, such as Lake Fryxell (Karr et al., 2006) and Ace Lake (Coolen et al., 2004) in Antarctica. Furthermore, methanogenic Archaea are described to be able to withstand harsh environmental conditions such as low temperatures and starvation (Morozova and Wagner, 2007; Wagner et al., 2013) and, therefore, are not unexpected for this environment. Despite the occurrence of methanogenic biomarkers, microbiological analyses of methanogenic fingerprints for this interval were not successful and, therefore, a phylogenetic classification was not possible. A further indicative marker for the subaquatic conditions during the time when the lower part of the core was deposited is the high relative proportion of...
In addition to the relatives of sequences isolated from the shore of Lake El’gygytgyn (Figure 4), both genera are known to be prominent in temporarily or permanently cold environments, and new Methanosarcina-related sequences have previously been found in permafrost-affected soils and sediments (Bischoff et al., 2013; Ganzert et al., 2007; Koch et al., 2009) in temperate or permanently cold environments, and new Methanosarcina strains have been isolated (Simankova et al., 2001; Wagner et al., 2013) from Russian Arctic soils. In addition to the relatives of Methanosarcina, a number of sequences isolated from the shore of Lake El’gygytgyn were affiliated to Rice Cluster II belonging to the order Methanomicrobiales (Figure 4). The analyses of the microbial communities within the centre of Lake El’gygytgyn (J. Bischoff et al., manuscript in preparation) show that affiliates of Methanosarcina and Methanomicrobiales (Rice Cluster II) are both abundant in glacial and interglacial sediments in the central lake, which illustrates that transport processes from the lake shore to the lake centre might take place constantly across the climate cycles.

Microbial Communities in Subaerial Deposits

The decrease of the Lake El’gygytgyn water level during the late Allerød exposed the lake margin site on the western shore of the lake to subaerial conditions; similar surface conditions are present today in a channel environment on the delta plain (Schwamborn et al., 2012). Although there is only a slow increase in the abundance of bacterial and archaeal GDGTs that do not occur lower than the 7.5 m depth (Figure 2b, c), the environmental change is better reflected in the change in the relative proportion of isoprenoid GDGTs (Figure 3) versus archaeol, which shows a clear distinction between subaqueatic lake and subaerial terrestrial sediments. In contrast to the subaqueatic interval, archaeol becomes the most prominent isoprenoid compound in the subaerial succession. Archaeol is also considered to be a characteristic lipid marker for methanogenic Archaea (De Rosa and Gambacorta, 1988). However, the relative proportion of GDGT-0 and archaeol differs throughout different methanogenic genera (Koga and Morii, 2006). Therefore, the shift from GDGT-0 to archaeol at the transition from subaqueatic to subaerial conditions might reveal a change in the composition of the methanogenic community in response to the changing lake level. As reported earlier, gene analyses were only possible in the uppermost subaerial layers which contained a high abundance of Methanosarcinaceae and Methanosaetaceae (Figure 4); both genera are known to produce archaeol. In contrast, GDGT-0 is only a minor component in Methanosarcinaceae and Methanosaetaceae and occurs only in some species within Methanococccaceae (Koga et al., 1998). Thus, the gene analysis data coincide with the relatively high proportion of archaeol versus GDGT-0 in the subaerial section. Since DGGE fingerprint analyses were not successful below 8 m depth, no further information on the archaeal community in the subaqueatic section could be obtained.

Methanosarcina-related sequences have previously been found in permafrost-affected soils and sediments (Bischoff et al., 2013; Ganzert et al., 2007; Koch et al., 2009) in temporarily or permanently cold environments, and new Methanosarcina strains have been isolated (Simankova et al., 2001; Wagner et al., 2013) from Russian Arctic soils. In addition to the relatives of Methanosarcina, a number of sequences isolated from the shore of Lake El’gygytgyn were affiliated to Rice Cluster II belonging to the order Methanomicrobiales (Figure 4). The analyses of the microbial communities within the centre of Lake El’gygytgyn (J. Bischoff et al., manuscript in preparation) show that affiliates of Methanosarcina and Methanomicrobiales (Rice Cluster II) are both abundant in glacial and interglacial sediments in the central lake, which illustrates that transport processes from the lake shore to the lake centre might take place constantly across the climate cycles.
consequence of pedogenesis. Thus, past methane formation at the investigated lake shore site is mainly indicated during the subaerial interval, especially during the Holocene, where methanogens could still be identified in the permanently frozen successions. During the subaquatic interval, high-energy conditions together with very low TOC contents might have prevented an abundant microbial community with its intensive methane generation from being established.

CONCLUSION

This paper presents new data on the distribution of bacterial and archaeal communities in frozen deposits from the western shore of Lake El’gygytgyn in the Far East Russian Arctic. During the sedimentation history, the site changed from a lake environment into a fully frozen slope after the lake level receded during the late Allerød. The lake-level retreat caused changes in the microbial community and this is particularly apparent in the relative composition of archaeal lipid biomarkers. After the site was exposed to subaerial conditions, the bacterial and archaeal communities increased and soil formation processes slowly started, especially during the Holocene when microorganisms might be involved in and stimulated by the pedogenetic processes. Methane formation in the past is indicated for the subaerial interval, especially during the Holocene when the presence of methanogens has been clearly established. This is of central importance when considering the prediction that future global warming will be most pronounced in the Arctic and will, in particular, affect the uppermost layers of permafrost.

ACKNOWLEDGEMENTS

This study was supported by the Deutsche Forschungsgemeinschaft in the framework of the priority programme International Continental Scientific Drilling Program (grants to DW (WA 1554/10) and KM (MA 2470/4)). The Lake El’gygytgyn sediments were recovered in the scope of the ICDP project Scientific Drilling at El’gygytgyn Crater Lake in 2008. Funding for this research was provided by the ICDP, the US National Science Foundation, the German Federal Ministry of Education and Research, the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, the Russian Academy of Sciences Far East Branch, the Russian Foundation for Basic Research and the Austrian Federal Ministry of Science and Research. We greatly appreciate the technical assistance and help of Anke Kaminski, Cornelia Karger, Janine Görsch, Patrick Hicker and Frederik Büks (all GFZ), and of Ryan Pereira for his help with the manuscript. Finally, we thank Candace O’Connor for language services and two anonymous reviewers for constructive comments.

REFERENCES

Karr EA, Ng JM, Belchik SM, Sattley WM, Madigan MT, Achenbach LA. 2006. Biodiversity of methanogenic and other Archaea in the permanently frozen Lake Fryxell,

