Cyanobacteria in Scandinavian coastal waters — A potential source for biofuels and fatty acids?

Franciska S. Steinhoff a,b,c,⁎, Maria Karlberg a,1, Martin Graevec, Angela Wulffa

⁎ Corresponding author at: Norwegian University of Science and Technology (NTNU), Industrial Ecology Programme and Department of Energy and Process Engineering, Sem Sælands vei 7, NO 7491 Trondheim, Norway.
E-mail address: franciska.steinhoff@ntnu.no (F.S. Steinhoff).

1 Both authors contributed equally.

Abstract

Since land-based biofuel production competes with conventional food production, a water-based biomass and biofuel production from cyanobacteria offers large potential. This study investigates the application potential of cyanobacteria for fuel production and by-products by mimicking nutrient depleted environmental conditions. Three Baltic cyanobacteria strains (Aphanizomenon flos-aquae, Dolichospermum lemmermannii and Nodularia spumigena) were inoculated in full nutrient levels, as well as phosphorus and nitrogen depleted medium, before being monitored for 14 days. For screening reasons, multiple parameters such as fatty acids, photosynthetic pigments including phycobilins, biovolume, photosynthetic activity, inorganic nutrients, particulate organic carbon, nitrogen and phosphorus were investigated every seven days. We observed a strong negative relationship between lipid content, growth and nutrient availability, resulting in high lipid and pigment production in combination with a limited growth rate in nutrient depleted treatments. Our results suggest that cultivation and harvest of bloom-forming cyanobacteria for fuel and by-product production are feasible in Scandinavia, but strongly depends on the desired compounds and biomass. Each cyanobacteria species originally has a species-specific chemical fingerprint that may be modified by rearing conditions and harvesting period to meet the needs of the consumer. This leads to important conclusions regarding future culturing conditions and biomass production of the desired compounds.

1. Introduction

The interest and the demand of biofuels derived from water-living organisms skyrocketed during the last decade. Since land-based biofuel production competes with conventional food production, a water-based biomass and biofuel production offers a large potential. However, the idea of using aquatic primary producers, e.g., algae, for production of various bio-chemicals such as lipids and antimicrobial substances, is not new. After the end of World War II, several working groups around the globe studied the “scientific and economic feasibility of the commercial production of algae in mass cultures” [1–4].

1.1. Biofuels

For the production of biodiesel, biomethane, bioethanol and biohydrogen, many potential biofuel sources have been identified so far (e.g. corn, switchgrass, sugarcane, wheat). Aquatic primary producers are known to have better solar-to-biomass energy conversion efficiencies (~2–10%) than current biofuels from land-based plants (~0.2–2% [5]) and therefore become increasingly more and more attractive as biofuel precursors [6]. Biodiesel production from microalgae via transesterification is regarded as one of the most efficient ways of generating biofuels and is to present knowledge the “only current renewable source of oil [lipids] that could meet the global demand for transport fuels” [7,8].

Although many lobbying groups have been established to govern green energy, such as the European Algae Biomass Association (EABA) or the Carbon Trust in the UK, the total energy content in biodiesel and bioethanol is still less than 1% of the world’s energy consumption [9]. Consequently, the perseverative questions remain: Are these biofuels suitable for mass production? Can we grow, harvest and extract the required products in an appropriate and efficient way, considering both economic and sustainable factors? What are the impacts on the ecosystems now and in the future?

Cyanobacteria, sometimes called blue-green algae, have the advantage of carrying characteristics from both algae and bacteria. Their ability to perform photosynthesis is based on their association with algae, while the fixation of atmospheric nitrogen by several cyanobacteria species indicates their bacterial roots. Filamentous cyanobacteria are known to form massive blooms in the Baltic Proper during summer, resulting in greenish carpets of biomass in the upper water layer. The
three dominating species are *Aphanizomenon sp.*, *Dolichospermum sp.* and *Nodularia spumigena*. Regional and global climate change, as well as human-induced nutrient over-enrichment, may lead to an increase in growth rates, biomass and oxygen depletion. This could alter food webs and ecosystem structures [10,11] as well as harm tourism industries in the Baltic Sea [12]. To turn the threat [13] into gain, further research related to the application and harvest of cyanobacteria, as precursors for fuel production and by-products, is pressing [14].

Since some cyanobacteria species represent the only phototrophs capable of fixing atmospheric nitrogen, they prosper in low ratios of nitrogen/phosphorus supply. However, nutrient ratios and availabilities influence cell contents. In order to obtain optimal culture conditions, maximum biomass, or maximum output of certain lipids or by-products, nutrient availabilities have to be determined and carefully considered. In contrast to many other prokaryotes, cyanobacteria have a direct correlation between growth and secondary metabolite production [15–17]. Various types of chemical compounds and toxins are produced by cyanobacteria; Nagle et al. [18] classified 424 marine cyanobacterial natural products (Marin Lit database [16]) resulting in 40.2% lipopeptides (amino-acid derived fragment linked to a fatty-acid derived portion [19]), 9.4% amides, 5.6% with pure amino acid composition, 4.2% fatty acids (FA), 4.2% macrolides and 36.4% others (lactones, indoles, esters, pyrroles and undefined substances). Biological activities of the compounds were reported to be anticarcinogenic, cytotoxic, antibiotic, antifungal, and antiviral and some had either other or no activities [16]. Because polyunsaturated Ω-3 fatty acids have proven health benefits, demand for them is rising. Presently, these compounds are commonly extracted from natural fish and krill populations, pressing the global fish stocks. Accordingly, the search and the market for alternative sources are speeding up [20]. Cyanobacteria are known to be a source of several fuel types. Hydrogen, for example, can be produced by many strains, ethanol is produced from their carbohydrates, biogas (methane) via anaerobic digestion of their biomass, photanol, short-chained alcohols produced by combining phototrophy and chemotrophy in genetically engineered cyanobacteria [21] and diesel from their FA and hydrocarbons [22]. The demand for present and new industrial applications of cyanobacteria has set the frame for this study.

In this study we investigated three bloom-forming cyanobacteria strains of the Baltic Sea. Our aim was to study: 1) whether their FA content is suitable for a potential biofuel production; 2) whether nutrient enrichment and depletion under simulated natural radiation conditions can change and enrich total FA content or FA composition and 3) whether these cyanobacteria contain promising marine products, such as lipopeptidic compounds, of importance for future industrial use.

2. Material and methods

For the experiments, cultures of the Kalmar Algal Collection (KAC, Linnaeus University, Kalmar, Sweden) isolated from the Baltic Proper were used. The three cyanobacterial strains *Aphanizomenon flos-aquae* Ralfs ex Bornet & Flahault (KAC 15), *Dolichospermum lemmermannii* (P. Richter) Wacklin, Hoffmann et Komárek (syn: Anabaena lemmermannii; KAC 16) and *N. spumigena* Mertens (KAC 12) were inoculated for two weeks at full nutrient levels (f/2 according to [23]) and salinity 7 to obtain desired biovolumes. The cultures were aerated and grown at ~450 μmol photons m⁻² s⁻¹ photosynthetically active radiation (PAR 400–700 nm) similar to expected natural radiation intensities in the upper water layer of the Baltic Proper during summer. PAR was provided by six fluorescent tubes (Oslram L 36W/72-965 Biolux, Osram, München, Germany) and logged continuously during the course of the experiment.

Before the start of the experiment, the number of cells L⁻¹ and the biovolume in mm³ L⁻¹ were analyzed and adjusted to obtain comparable biovolumes [24] for all three species. Control samples for all parameters (FA, photosynthetic pigments including phycobilin pigments, biovolume, photosynthetic activity, inorganic nutrients, particulate organic carbon (POC), particulate organic nitrogen (PON) as well as particulate organic phosphorous (POP)) were taken in five replicates. Each bottle containing one cyanobacteria species was then divided into three additional bottles, before adding nutrient solutions (Table 1), creating three different nutrient treatments: 1. Nitrogen depletion (−N treatment, f/2 medium without NO₃⁻), 2. Phosphorus depletion (−P treatment, f/2 medium without PO₄⁻³) and 3. Full nutrient levels (f/2 treatment, f/2 medium). Nutrient samples were also taken in five replicates for each nutrient treatment and for each species. After this, 180 mL of the respective cyanobacteria and nutrient solutions were distributed into 250 mL Nunc-bottles (NUNC, Numbrecht, Germany). The bottles were subsequently placed in a thermoconstant room at 17 °C for two weeks. Nutrients were added after seven days to assure nutrient availabilities comparable to the initial values (Table 1) throughout the experimental period. Sampling of all parameters was done initially (Day 0) and repeated after 7 and 14 days (Day 7 and Day 14).

2.1. Fatty acid analysis

For each treatment, 20 mL from each of the five replicates was prepared for FA analysis by filtration on precombusted GF/C Filters (Whatman, Maidstone, UK), covered with dichloromethane/methanol (2:1 v/v, Merck, Darmstadt, Germany), frozen in liquid nitrogen and
stорох при температуре 80 °С до экстракции. Для экстракции, фильтры были подвергнуты ультразвуковой очистке в среде дихлорэтана:методол (2:1, v/v) согласно методу, предложенному Фолч [25]. Этот метод был усовершенствован, введя концентрацию масс-спектрометрии (GC-MS) в качестве стандарта.
number of cells and heterocysts were counted in 30 random filaments from each sample.

2.4. Photosynthetic activity

To measure the maximum photosynthetic activity of PSII in the cyanobacteria, the \(F_v/F_m \) yield was measured [32] with a Pulse Amplitude Modulation (PAM) fluorometer (WATER-PAM, Walz GmbH, Effeltrich, Germany) in all treatments at each sampling day. \(F_v/F_m \) is calculated according to \((F_m - F_o)/F_m = F_v/F_m \), where \(F_m \) is the maximum fluorescent yield and \(F_o \) the fluorescent yield before the light pulse in a dark-adapted state. The measurements were obtained in the emitter-detector unit of the CUVETTE version, with red LED light (650–730 nm) optimized for cyanobacteria (WATER-ED 8, 487, Walz GmbH, Effeltrich, Germany) and equipped with a stirring device (WATER-S, Walz GmbH, Effeltrich, Germany) to homogenize the sample prior to measurement [33]. For effective quantum yield measurement, 3 mL of each sample was transferred to the quartz cuvette, kept dark for 3 min and stirred 10 s before a light pulse of 600 ms was applied.

2.5. POC, PON & POP analyses

For each treatment, 20 mL from each of the five replicates was filtered onto precombusted (400 °C for 4 h) 25 mm GF/C filters (Whatman, Maidstone, UK) for POC/PON and additional 20 mL for POP analysis. Filters for POP were washed prior to filtering with 0.1 M HCl and rinsed with Milli-Q. All filters were then frozen at −20 °C and freeze-dried for 36 h (Heto Power Dry PL3000, Thermo Scientific, Waltham, USA). POP samples were analyzed within six months [34] at Tvärminne Zoological Station, University of Helsinki, Finland. For POC/PON analysis, filters were ground into fine powder (MM301, Retsch, Haan, Germany) and analyzed in an elemental analyzer (EA 1108 CHNS-O, Fisons Instruments, Ipswich, UK) applying 2,5-bis-[5-tert-butyl-benzoxazol-2-yl]-thiophen as a standard. Dry weight calculations were set as 1:1.5.[35] POC/PON and POP measurements were performed by the Swedish Meteorological and Hydrological Institute (SMHI, Göteborg, Sweden).

2.6. Nutrient analysis

For each treatment, 10 mL from each of the five replicates was filtered (Filtropur, Sarstedt, Numbrecht, Germany) and stored at −80 °C until analysis of inorganic nitrite, nitrate, phosphate and silicate. The nutrient analysis, based on colorimetric methods [35], was performed by the Swedish Meteorological and Hydrological Institute (SMHI, Göteborg, Sweden).

2.7. Statistics

Data was analyzed by one-way ANOVA and Tukey’s Post-Hoc test, using SPSS software (PASW Statistics ver. 20, IBM, Armonk, USA) for each sampling day, with either species or nutrient treatment as factor. Homogeneity was tested with Cochran’s test and, where needed, data was transformed according to Underwood [36]. Significant differences were set as \(p < 0.0005 \) after Bonferroni correction [37].
3. Results and discussion

For screening reasons, we have obtained multiple parameters during the experiment. Based on the direction of the present publication, we decided to show information only relevant to potential future applications. More detailed information can be accessed in the supplementary material provided.

3.1. Total and single fatty acids

Total lipid content rather than profile is often the main important factor for industrial applications such as biofuel production (biomass to fuel) [38,39]. At Day 0 of our study, average total fatty acid (TFA) content per biovolume was lowest, but not statistically different (Table A.1) in *A. flos-aquae* (9.1 μg mm⁻³), almost double in *D. lemmermannii* (14.7 μg mm⁻³) and largest in *N. spumigena* (71.9 μg mm⁻³) (Table 2). Due to optimum lipid composition and content being seldom related to optimal industrial biomass production [40], we modeled both natural as well as assuming optimal nutrient conditions (f/2) to get indications about industrial harvest and production under natural seasonal conditions. According to our obtained FA profiles (Table 2) and [41], all three species investigated can be classified as type 4, based on the assumption that cyanobacteria can be classified into four groups in terms of their FA composition [42]. Group 4 is characterized by the presence of the FA 18:1, 18:2, 18:3_α−linolenic acid), 18:3_γ−linolenic acid) and 18:4 which relative proportions can be affected by growth conditions. The FA 16:1 is present in low levels [41]. The most promising of the three species investigated for biofuel production according to the TFA content was *D. lemmermannii*, reaching average maximum TFA values (Table 2) after 7 days in the P depleted treatment (427.0 μg mm⁻³). Maximum TFA of *A. flos-aquae* was obtained after 14 days within the N depleted treatment (119.4 μg mm⁻³). *N. spumigena* had highest TFA initially. However, the TFA was statistically significantly higher after 14 days in the f/2 treatment and lowest under N depletion for *N. spumigena* (Table A.1). The enhanced FA production under nutrient depletion could be explained by the need for carbon storage under suboptimal conditions, as observed also by Siron et al. [43] and Malzahn et al. [44]. This may prove advantageous for industrial FA production.

In contrast to biofuel production, single FA are used in the food and pharmaceutical industry due to their inter alia antioxidant, anti-inflammatory and anti-microbial activities [45]. The FA 14:0, 15:0, 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), the FA 16:1(n-7), 18:1(n-7), 18:1(n-9), 18:2(n-6), 18:3(n-3), 18:4(n-3), 20:3(n-3), 20:4(n-3), 20:4(n-6), 20:5(n-3), 22:5(n-3) and 22:6(n-3) as polyunsaturated FA (PUFA). Of the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 14:0, 15:0, 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the FA 16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as saturated FA (SAFA), 16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsaturated FA (MUFA), and the
before the experiment started, but vary up to four fold within MUFA and PUFA. Additionally, Li et al. [49] observed 3-hydroxy FA 12:0 and 15:1 in *A. flos-aquae* and 15:1 in *Anabaena affinis*; these FA could not be identified in our analysis but seem to be of less taxonomic value [50]. As earlier studies indicate, e.g., [51], the morphological distinction of *Anabaena* (Dolichospermum) and *Aphanizomenon* is difficult. FA results from the present study (Table 2) and those obtained in Li et al. [52] suggest that FA seem to be more sensitive to environmental parameters than anticipated, leading to consequences in the FA use as characteristic markers. Consequently, ratios between MUFA, PUFA and SAFA seem to be highly variable for different cyanobacterial species [48], but appear rather constant within certain species under comparable environmental conditions [53].

The amount of 18:1(n-7) in *D. lemmermannii* and *A. flos-aquae* throughout the treatments is far higher compared to *N. spumigena*. The latter shows, in contrast, higher values of 18:1(n-9). Due to 18:1(n-7) being more related to bacterial metabolism [54,55], one could suspect that *D. lemmermannii* and *A. flos-aquae* are more bacterial related species, while *N. spumigena* is a more autotrophic species, exhibiting an algal related biosynthesis. Although the FA-signal from heterotrophic bacteria, commonly associated with the cyanobacteria, might not be strong enough, interference thereof cannot be fully excluded.

3.1.2. Treatment effect on FA

Nutrient starvation and high radiation regimes for a limited period are known to increase the lipid yield in outdoor algal cultures [56]. In our study, ratios of SAFA/MUFA + PUFA (Table 2) in *D. lemmermannii* under f/2 and N depletion and in *A. flos-aquae* under N depletion are comparable to ratios obtained by Galhano et al. [48].

As previously mentioned, there is a strong negative relationship between lipid content, growth and nutrient availability [57] leading to important conclusions for future culturing conditions and biomass production of the desired species. The results of the present study and of De Figueiredo et al. [58] show decreasing growth rates in *Aphanizomenon* strains under P depletion and varying responses to N depletion, which point to the carbon storage hypothesis of Siron et al. [43] and Malzahn et al. [44]. Recent results [59] highlight the physiological response cascade of cyanobacteria to N starvation occurring at different time scales, ranging from an immediate response to a long term scaled reaction. This might indicate a connection between results obtained in the present study of *A. flos-aquae* after 7 and 14 days and transcriptome regulation of cyanobacteria.

3.2. Pigments

It is known that increased lipid content reduces other valuable compounds in the biomass, suggesting that, "the high lipid containing algae may not necessarily be the most favorable candidate organisms" [9]. Cyanobacterial pigments are characterized by high diversity and richness, which could revolutionize the industrial use of color in the near future [60].

For total carotenoids, at Day 0 *D. lemmermannii* already had statistically significantly higher total pigment content than both *A. flos-aquae* and *N. spumigena* (Table 3, Table A.1). This observation continued after Day 7 and Day 14 in both N and P depleted treatments. Phycobiliproteins in particular are used as fluorescent tracers and natural dyes in the food and cosmetic industries [61,62]. Regarding phycobiliprotein content, *D. lemmermannii* would be an excellent candidate with contents up to 19% of dry weight [63]. Within the carotenoid subgroup of xanthophyll, the present cyanobacteria (Table 3) comprise canthaxanthin, β-cryptoxanthin (except *N. spumigena*), echinenone,
myxoxanthophyll and oxyxanthanthin (except N. spumigena). In addition, N. spumigena contains the species-specific xanthophyll 4-keto-
myxoxanthophyll [64]. It is known that carotenoids are especially af-
fected by radiation intensity and quality [28,64,65], nitrogen source and concentration [28], species and strain type [64] as well as growth
stage [28,66]. In this study, carotenoids in D. lemmermannii were posi-
tively affected by P depletion, A. flos-aquae by N depletion and under
full nutrients, while N. spumigena showed no response to the applied
treatments (Table 3). In particular, the zeaxanthin concentration in
D. lemmermannii increased in P depletion at Day 14. Zeaxanthin is a
radiation protective pigment and in the low biovolume concentration
(P depletion) this pigment could protect the cells from excess radiation.
In addition, N. spumigena and D. lemmermannii (former Anabaena) are
reported to contain UV absorbing pigments porphyra 334 and shinorine
[67–70].
Phycocyanin levels in mg mm$^{-3}$ were not significantly different
between any of the species or treatments, nor between phycocyanin
levels, biovolume or cell concentration (data not shown). We hypothesize
that the method used [29] was not optimal for extraction of phycocyanins
in these species. A new extraction method [71] has, in a later pilot study
(Karberg et al., unpublished), been proven to better extract phycobilins
in N. spumigena (21.3 SD8.5 mg mm$^{-3}$ compared to 7.6 SD2.5). The
extraction efficiency of this new method in D. lemmermannii and A. flos-
aque is yet to be performed.

3.3. Biovolume and growth

At Day 7 N. spumigena had statistically significantly higher
biovolume than both A. flos-aquae and D. lemmermannii in full f/2
medium and N depletion, but not under P depletion. This trend contin-
ued at Day 14 and then also under P depletion (Fig. 1, Table A.1). The
higher biovolume for N. spumigena, compared to A. flos-aquae and
D. lemmermannii in all treatments on both Day 7 and Day 14, may also
be due to N. spumigena high irradiance tolerance [64,72,73]. During
the summer-blooms in the Baltic Sea, N. spumigena is distributed in
the top 5 m of the water column, Anabaena sp. (Dolichospermum sp.)
down to 10 m depth and Aphanozomenon sp. equally distributed be-
tween 0 and 20 m throughout the water column [74]. The comparably
high radiation intensities in this study may therefore have favored
N. spumigena over the other two species. However, the F_v/F_m showed
only a possible photoinhibition in A. flos-aquae and D. lemmermannii
after 14 days under P depletion, with yields of 0.08 (SD0.01) and 0.08
(SD0.01) respectively, compared to 0.27 (SD0.02) for N. spumigena
(Table A.2). Potential photoinhibition can occur when the biovolume is
low and all cells are exposed to high irradiances with no chance of
self-shading. The lower F_v/F_m in P depleted treatments could have
been a result of this effect. However, since all three species showed
lower F_v/F_m under P depletion, regardless of biovolume, it is more likely
that P depletion has a strong negative effect on F_v/F_m for these nitrogen
fixating species, as phosphorus is also the limiting nutrient during
bloom conditions in the Baltic Sea [75,76]. After 14 days there was no
statistical difference in biovolume between the nutrient treatments for
either A. flos-aquae or N. spumigena (Fig. 1, Table A.1), but the negative
effect of the P depleted treatment, seen by the low F_v/F_m, was significant
for the biovolume of D. lemmermannii.

N. spumigena had continuously positive specific growth rate in all
treatments throughout the experiment (data not shown). N. spumigena
generally has higher specific growth rate than A. flos-aquae [73], Wulff
et al., unpublished). This may be a competitive advantage, allowing
N. spumigena to reach and maintain high biovolume and cell concentra-
tion during the bloom. A. flos-aquae exists as vegetative cells in filament-
s in the water column throughout the year [77], meaning it has an advan-
tage when light and temperature reaches optimal levels in early summer
and need not only germinate from akinetes, as D. lemmermannii and
N. spumigena do. Although the specific growth rate for A. flos-aquae was
negative between Day 0 and Day 7 in all treatments, it is positive
between Day 7 and Day 14. This indicates a longer acclimatization time
for A. flos-aquae and it would have been interesting to continue the
experiment (compare e.g., [59,78], Wulff et al., unpublished).
D. lemmermannii had negative specific growth rate in all treatments
throughout the experiment. Since the cyanobacteria strains were reared
at similar radiation conditions and in full nutrient medium, the negative
growth rate results cannot be linked to non-adaptation towards the light
regime, temperature or medium. In contrast, Moreno et al. [63] observed
production rates for D. lemmermannii (former Anabaena) of up to 24
g DW m$^{-2}$ per day under N depleted outdoor conditions; the highest
reported growth rate under manipulated experimental outdoor conditions.
Our study obtained up to 93.7 mg DW L$^{-1}$ in N. spumigena,
61.0 mg DW L$^{-1}$ in A. flos-aquae and 54.3 mg DW L$^{-1}$ in
D. lemmermannii (Tables A.1 and A.3), which is comparable to the studies
of Reichert et al. [79] with Spirulina cultures.

Overall, in all treatments and on both Day 7 and Day 14, N. spumigena
had statistically significantly higher biovolume and specific growth rate
than both A. flos-aquae and D. lemmermannii, but not TFA per biovolume
(Table A.1). Highest values of TFA per biovolume were observed in
D. lemmermannii after 7 days in the P depleted treatment (Table 2).
Increased concentration of FA under nutrient stress is common for many
microalgal genera and species, e.g., [80,81] and references therein. For
D. lemmermannii, the biovolume L$^{-1}$ after 7 days under P depletion was
very low. Therefore the TFA L$^{-1}$ was highest after 7 days in the N deplet-
ted treatment (~16 mg L$^{-1}$) compared to A. flos-aquae and N. spumigena
and the other treatments. A. flos-aquae had highest TFA L$^{-1}$ after 7 days
in f/2 (~6 mg L$^{-1}$) while N. spumigena reached highest TFA L$^{-1}$ in f/2
after 14 days (14 mg L$^{-1}$). Naturally, these values cannot be compared
to genetically modified Synechocystis sp. with a maximum TFA of
197 mg L$^{-1}$ [82]. Consequently, one has to distinguish between the use
of biomass for fuels and the use of lipids, derived from biological organ-
isms, to obtain the maximum output with a certain species.

3.4. POC, PON & POP to FA ratios with applications for energy yield

We can support the hypothesis that nutrient deficient cyanobacteria
and microalgae are favorable food for higher trophic levels regarding
their FA profiles. This finding is of special interest to applications such
as the recently introduced and seminal multi-trophic aquacultures,
co-culturing and interaction of species with benefits for both the envi-
ronment and economy.

Earlier studies have shown (summarized in [83]) that phytoplank-
ton stoichiometry is most variable at low growth rates, with PON:POP
ratios ranging from 5 to 1000 and POC:POP from 60 to 1200. In Fig. 2,

<table>
<thead>
<tr>
<th>Desired parameter/compound</th>
<th>Species with highest values in desired parameter/compound</th>
<th>Potentially best “harvesting” period for desired parameter/compound</th>
<th>Nutrient conditions with highest results of desired parameter/compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biovolume</td>
<td>N. spumigena</td>
<td>8–14 days</td>
<td>– N (– P, f/2)</td>
</tr>
<tr>
<td>FA/biovolume</td>
<td>D. lemmermannii</td>
<td>1–7 days</td>
<td>– P</td>
</tr>
<tr>
<td>FA/L</td>
<td>D. lemmermannii</td>
<td>1–7 days</td>
<td>– N</td>
</tr>
<tr>
<td>Pigments/biovolume</td>
<td>A. flos-aquae</td>
<td>1–7 days</td>
<td>f/2</td>
</tr>
<tr>
<td>Pigments/L</td>
<td>A. flos-aquae</td>
<td>1–7 days</td>
<td>f/2</td>
</tr>
</tbody>
</table>
ratios of POC:PON, ranging from 5.2 to 8.5, PON:POP (5.7 to 237.4) and POC:POP (30.4 to 1454.4) are shown for all three cyanobacteria species and all treatments over the experimental period. According to Goldman et al. [84], culturing phytoplankton under N depletion results in PON:POP ratios of less than 10:1, while under P depletion, ratios of more than 30:1 occur. In our study, POC, PON and POP differed slightly initially due to species-specific compositions, with D. lemmermannii having statistically lowest POC and PON values and A. flos-aquae highest (Table A.1, Table A.4). The wide range of POC, PON and POP might be related to low growth rates with respect to observations in phytoplankton, matching nutrient input ratios at low growth rates [83].

Consumers in higher trophic levels are often constrained with respect to their body C:N:P ratios while the actual primary production reflects the nutrient ratios of the surrounding environment [85]. The body C:N:P is therefore influenced by the food quality constraints on growth/reproduction, resource competition, trophic efficiency and nutrient recycling [86]. Effects of nutrient depletion and/or full nutrient treatments on stoichiometry (Table 2) and FA profiles were observed in cyanobacteria (present study) and in the cryptophyte Rhodomonas salina [87]. For industrial applications culturing and/or harvesting cyanobacteria, it is of high relevance to consider these stoichiometry effects. For example, D. lemmermannii contained the most FA under P depletion, while the most TFAs were produced under N depletion in A. flos-aquae. Likewise, R. salina [77] has shown significant differences between nutrient treatments, with generally higher TFA and higher unsaturated FA contents (e.g., Ω-3 and Ω-6 FA) in nutrient depleted treatments.

3.5. Inorganic nutrients

In Table 1, the initial nutrient treatments for the different experimental scenarios with the three different species are presented. Nutrient conditions remained stable due to the addition of treatment-specific nutrients, on Day 7, to all experimental bottles. Under natural bloom conditions, the elemental content of phytoplankton can reflect the ratio of N:P supply, while the chemico-physical context or the presence or absence of N-fixing organisms can modify this expectation [88]. Since nutrient depleted treatments mimic reasonably natural conditions before, during and after a summer bloom of the three dominant N-fixing cyanobacteria species, with low values of both N and P, the results obtained can be used to optimize nutrient conditions within laboratory or seasonal in-situ harvest, dependent on desired parameter or compound.

3.6. Costs, feasibility and other issues

Although the presented results sound promising, we have to keep in mind that mass cyanobacteria production is not simply extrapolating controlled laboratory experiments to large scale outdoor production systems [89]. There is an urgent need to develop a detailed and feasible procedure for the production of biochemically active compounds and secondary metabolites of cyanobacteria [15] in cooperation with the industry. As scientists, we can only give advice and point out knowledge gaps; the technical challenges are a different kettle of fish. The obtained results might be of interest to an endless group of buyers, such as the food additive and pharmaceutical industry, with low values of both N and P, the results obtained can be used to optimize nutrient conditions within laboratory or seasonal in-situ harvest, dependent on desired parameter or compound.

Our experiment suggests laboratory rearing, as well as harvest of algal biomass under natural conditions, every few days or on a daily basis, depending on their growth rates within favorable nutrient and temperature conditions (compare [96,97]). Since the nutrient depleted treatment worked best, it would lower the costs of the culture medium in bioreactors.

4. Concluding remarks

From the initial results of this pilot experiment, we can draw the following conclusions. The choice of species strongly depends on the desired compounds. Each species originally has a species dependent chemical fingerprint that may be modified by the culture conditions and harvesting period to meet the needs of the consumer. The conclusions presented in Table 4 only indicate that the investigated cyanobacteria could be of interest for biofuel and secondary metabolites, in addition to already existing genetically modified cyanobacteria as well as other biofuels. Further research needs to be carried out in terms of technological feasibility on large scales, outdoor bioreactors, natural occurrences, impact on ecosystems and toxicity issues.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.algal.2014.05.005.

Acknowledgments

The authors would thank Monica Appelgren and Mats Råntfors for their technical help, Jaana Koistinen at Tvärminne Zoological Station, University of Helsinki for POP analysis, Lucy Tripp for language advice, the Alfred-Wegener Institute for Polar and Marine Research in Bremerhaven, the Swedish Institute and the University of Gothenburg. This study is supported by a guest scholarship of the Swedish Institute (00185/2010) and the University of Gothenburg. The funding source did not have a role in the data collection, analysis and interpretation nor in the writing of the present publication.

References

P. Hunter, The tide turns towards microalgae. Current research aims to produce traditional biofuels from algae, but their potential to generate sustainable energy might be even greater and more ‘natural’, EMBO Rep. 11 (2010) 583–586.

