Changes of sea ice drift and deformation in the Weddell Sea

Sandra Schwegmann¹, R. Timmermann¹, R. Gerdes^{1,3}, P. Lemke^{1,2}

¹Alfred Wegener Institute for Polar and Marine Research ²University of Bremen ³Jacobs University

niversität Bremen

Outline

Introduction

Sea ice drift Sea ice growth

Conclusion Further needs

Introduction

- Polar Pathfinder sea ice motion vectors
- 25 km x 25 km grid
- Cross correlation method
- Interpolation onto grid cell with SIC \geq 50%
- Monthly mean when ≥ 20 OI vectors available

Sensor	Operation time	Temporal coverage
Scanning Multi-channel Microwave Radiometer (SMMR)	Oct 1978 – Aug 1987	every other day
Special Sensor Microwave/Imager (SSM/I)	Jul 1987 – Dec 2006	every day
Advanced Very High Resolution Radiometer (AVHRR)	Jul 1981 – Dec 2000	4 satellite passages each day
Fowler (2003), Data from NSIDC		

Accuracy of drift data

- High data coverage since 1987
- Satellite and in situ data correlate well
- Summer months: lower data coverage/ correlation

Sea ice drift variability

- Decrease in sea ice drift velocities in the western Weddell Sea
- Increased sea ice drift in the eastern Weddell Sea

Correlation wind/drift

- Correlation coefficients of up to 0.7 in the central and marginal sea ice zone for zonal and meridional components
- Correlation of magnitudes does not exceed coefficients of 0.5
- Generally low correlation near the coasts

Wind variability

Data source: NCEP Reanalysis (Kalnay, 1996)

- Western Weddell Sea exhibits
 - increasing westerlies in the north
 - increasing offshore winds
- Trends in wind field are opposed to trends in sea ice drift

Divergence

- Tendency to reduced divergence in most parts of the Weddell Sea
- Redistribution of sea ice from the west to the east

Sea ice volume

- Thermodynamical sea ice growth
 - increases in Ronne polynya
 - decreases in north-westernWeddell Sea

- Dynamical sea ice growth
 - increases in the south
 - western Weddell Sea

Conclusions

- Reasonable data quality since 1988
 - before 1988: low data coverage
 - since 1988: validation with buoy data possible
- Decrease of sea ice drift in the west certainly by increased deformation
- Higher ice production in Ronne polynya consistent with
 - increased off-shore wind
 - increased sea ice drift

Needs

•

- Sea ice thickness measurements
 - Frequent large-scale measurements from e.g. satellites
 - > in situ measurements for validation and case studies
- Updated large-scale sea ice drift product
- Ongoing *in situ* sea ice drift data, especially in arrays of at least 3 buoys

The Finite Element Sea ice-Ocean Model

Sea ice volume

- Increase of modeled sea ice thickness by few cm per decade
- Overall increasing sea ice volume
- Highest trends occur in summer and fall
- High interannual variability

