
ANGELIKA BRANDT1*, SASKIA BRIX2, CHRISTOPH HELD3 and TERUE CRISTINA KIHARA4

1Zoological Institute and Zoological Museum, Biocenter Grindel, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
2Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), c/o Biocenter Grindel, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
3Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, D-27568 Bremerhaven, Germany
4Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, D-26382 Wilhelmshaven, Germany

Received 10 January 2014; revised 23 May 2014; accepted for publication 4 June 2014

During DIVA-3, the third expedition of the DIVA project (Latitudinal gradients of deep-sea biodiversity in the Atlantic Ocean), 45 specimens of Serolidae were obtained from the Argentine Basin, at a depth of about 4600 m. These were a new species of *Glabroserolis* and *Atlantoserolis vemae* (Menzies, 1962). Besides the description of *Glabroserolis occidentalis* sp. nov., *Glabroserolis specialis* Menzies, 1962 is redescribed on the basis of the type material. *Atlantoserolis vemae* is redescribed using the type material, North Atlantic specimens, and the new South Atlantic material. Morphological differences between specimens of *A. vemae* from the North and South Atlantic could not be identified. The molecular data suggest that *A. vemae* from the Argentine Basin comprises two deeply divergent clades, which may represent reproductively isolated, sympatric species.

INTRODUCTION

Within the suborder Sphaeromatidea Wägele, 1989, the Serolidae Dana, 1853 currently comprises 109 species from 22 genera (Poore & Bruce, 2012). Serolidae were first investigated from Subantarctic and Antarctic localities of the South Atlantic Ocean by Sheppard (1933), on the basis of the genus *Serolis* Leach, 1818. Since then, Serolidae have been considered to occur mainly in the southern hemisphere, being particularly rich in species in the Southern Ocean, Australia, and New Zealand (Harrison & Poore, 1984; Poore 1985, 1987, 1990; Poore & Brandt, 1997; Brandt, 2009; Bruce, 2009; Poore & Storey, 2009; Storey & Poore, 2009). Bruce (2009) noted that only five species are known from the northern hemisphere. Two of these are the deep-sea species: *Atlantoserolis vemae* (Menzies, 1962) and *Atlantoserolis agassizi* (George, 1986). Today, Serolidae are known also from Chile and along the eastern coast of South and North America, up to North Carolina

*Corresponding author. E-mail: abrandt@uni-hamburg.de
It has been assumed that the deep-sea species are evolutionarily derived from shallow-water ancestors, as most of the deep-sea species have vestigial eyes or lack eyes completely (Brandt, 1991, 1992), and show three centres of radiation (South America, Antarctic, and Australia) after the break-up of Gondwana (Wägele, 1994). Blind deep-sea serolids occur along the South American coast. From there, northward migration probably took place into the north-western Atlantic, and eastwards into the South Pacific (Wägele, 1994). Held (2000) used molecular phylogenetics in order to understand the biogeography of the Serolidae. His data show that the Antarctic species form a monophyletic group, which probably derived from ancestors in South America.

Atlantoserolis, Caecoserolis, and Glabroserolis form a monophyletic group (Wägele, 1994), to which Bruce (2009) added Myopiarolis. Atlantoserolis (Cals, 1982) was first mentioned by Cals (1982), but without designation of the type species. Brandt (1991) used the name, and Wägele (1994) stated that the erection of the genus was justified and designated A. vema as the type species. The genus comprises four species, A. vema, A. agassizi, Atlantoserolis menziesi (Hessler, 1970), and Atlantoserolis venusta (Moreira, 1977), and can be distinguished from the other deep-sea genera by having four pairs of separate coxae and a reduced uropod encased in the margin of the pleotelson (Cals, 1982; Poore, 1985). Glabroserolis Menzies 1962 has uniramous uropods and no separate coxae, broad antennae and a quadrate maxilliped palp article 2 (Menzies, 1962). Poore (1985) questions the validity of the genus, as none of the characters listed above is unique. Until now, Glabroserolis was monotypic and occurred in the Cape Basin off South Africa. Species of Atlantoserolis were sampled along the South American coast and North America (Fig. 1, map of the Atlantic Ocean).

Biodiversity within the Serolidae may be underestimated. On the one hand, cryptic species were revealed within the Ceratoserolis trilobitoides (Eights, 1833) complex (Held, 2003; Leese & Held, 2008), and Leese et al. (2008) found indications for very limited gene flow between populations of Serolis paradoxa (Fabricius, 1775). On the other hand, long-distance dispersal (island hopping) via rafting has been documented for Septemserolis septemcarinata (Miers, 1881) (Leese, Agrawal & Held, 2010). Recently, Wetzer, Pérez-Losada & Bruce (2013) investigated other species of the Serolidae genetically in order to resolve the phylogenetic relationships of the Sphaeromatidea, but did not include Atlantoserolis and Glabroserolis.

The bathymetric distribution ranges between shallow waters of 1 m depth for Leptoserolis nototropis (Sheppard, 1933) and abyssal depths of 5500 m for A. vema (Menzies, 1962). Compared with many records of species from shelf and bathyal depths, only seven abyssal Serolidae are known from depths below 3500 m (Table 1). The deepest records are known for species of Atlantoserolis and Glabroserolis (the zoogeographic distribution is illustrated in Fig. 1).

Compared with the deep sea of the northern hemisphere (Sanders & Hessler, 1969; Grassle & Maciolek, 1992; Rex et al., 1993; Vinx et al., 1994), studies about the deep-sea benthos of the western South Atlantic are rare (e.g. Rex et al., 2005a, b). Data on the distribution of isopods from the East Atlantic are published from the DIVA-1 and -2 expeditions with RV Meteor, but not a single specimen of Serolidae was found (Fig. 1; Brandt et al., 2005; Kröncke, Reiss & Türkay, 2013; source for unpublished data and individual count of isopod families from DIVA-2 extracted from the Deutsche Zentrum für Marine Biodiversitätsforschung, DZMB, database and Nils Brenke, pers. comm.).

Isopoda are known to be highly diverse in the Argentine Basin, even higher than in the Brazilian Basin (Rex et al., 1993), and south of the Argentine Basin diversity further increases (Brandt et al., 2007), whereas for other taxa like gastropods and bivalves a ‘negative’ latitudinal gradient with decreasing numbers of species seem to be present, similar to that in the northern hemisphere. Recently new material of Atlantoserolis and Glabroserolis has been retrieved from abyssal depths of the Argentine Basin. These specimens from a faunistically little known deep-sea basin have been studied, and the species Glabroserolis occidentalis sp. nov., Glabroserolis specialis Menzies, 1962, and Atlantoserolis vema (Menzies, 1962) are described in the following, in order to improve our understanding of the deep-sea distribution of serolid isopod taxa (Costello, May & Storck, 2013).

MATERIAL AND METHODS

MATERIAL STUDIED FOR COMPARISON

AMNH 12035 Atlantoserolis vema (Menzies, 1962), holotype male.

AMNH 12267 Atlantoserolis vema (Menzies, 1962), paratypes.

USNM 112654 Atlantoserolis vema (Menzies, 1962), 14 individuals from Hessler’s (1969) collection, Woods Hole Oceanographic Institute (WHOI) station 70.

USNM 138717 Atlantoserolis agassizi (George, 1986), holotype.

USNM 125656 Atlantoserolis menziesi Hessler, 1970, holotype male.
Figure 1. Map of the Atlantic Ocean with all records of *Atlantoserolis* and *Glabroserolis*. The rectangle indicates the stations from which we have obtained molecular data. Each white dot from DIVA-1 (indicated by ‘1’ in the circle) represents one epibenthic sledge (EBS) deployment, from DIVA-2 (indicated by ‘2’ in the circle) two EBS deployments, and from DIVA-3 (indicated by ‘3’ in the circle) three EBS deployments/replicates in the same working area.

AMNH 12124 *Glabroserolis specialis* Menzies, 1962, holotype female.

AMNH 12125 *Glabroserolis specialis* Menzies, 1962, paratypes.

MORPHOLOGICAL METHODS

Drawings were made using a Leica DM 2500 compound microscope with a camera lucida. For the terminology of most important setae types, see Hessler (1970) and Riehl & Brandt (2010). Figures were inked manually and/or digitally according to the method described by Coleman (2003). Manually inked plates were digitalized using Adobe PHOTOSHOP CS5. Holotypes were used for habitus drawings. Where available, appendages were dissected from paratypes. Photographs were taken with an Olympus compound microscope (SZX16 OG88361). Staples were assembled using Helicon Fokus (http://www.heliconsoft.com), manipulated and assembled as plates with Adobe PHOTOSHOP CS5.

SEM: HANDLING OF SPECIMENS USED FOR PICTURES

In total, eight *Atlantoserolis* specimens sampled during DIVA-3 at station 533 were used for SEM, as indicated in the descriptions below (Figs 7–28). The specimens were cleaned in an ultrasonic bath for 10 seconds and dehydrated in a series of ethanol concentrations, transferred to 100% acetone, and critical-point dried. After drying they were sputter coated with coal. The specimens were photographed using a Leo 1525 scanning microscope. The resulting digital images were manipulated and assembled as plates with Adobe PHOTOSHOP CS5.

CONFOCAL LASER SCANNING MICROSCOPY (CLSM)

Two adult specimens of *Atlantoserolis* sampled during DIVA-3 at stations 533 and 534 were used for CLSM, as indicated in the descriptions below. Before dissection, a female and a male from the South and the North Atlantic was stained with Congo red and acid fuchsin, using procedures adapted from Michels & Bünztow (2010). The whole specimens were temporarily mounted onto slides with glycerine, and self-adhesive plastic reinforcement rings were used to support the coverslip (Kihara & Da Rocha, 2009). When required, specimens were dissected in glycerine under a Leica MZ12 stereomicroscope. Dissected parts were mounted on slides using glycerine as the mounting medium, and self-adhesive plastic reinforcement rings of appropriate thickness were mounted between the slide and the coverslip, so that the parts were not compressed. The material was examined using a Leica TCS SPV equipped with a Leica DM5000 B upright microscope and three visible-light lasers (DPSS 10 mW 561 nm; HeNe 10 mW 633 nm; Ar 100 mW 458, 476, 488, and 514 nm), combined with the software LAS AF 2.2.1 (Leica Application Suite, Advanced Fluorescence). Different objectives were used, depending on the size of the material scanned (Table 2). Images were obtained using only 561-nm excitation with an acousto-optic tunable filter (AOTF), ranging between 40 and 80%, and an excitation beam splitter TD 488/561/633. A series of stacks were obtained, collecting overlapping optical sections throughout the whole preparation, with an optimal number of sections chosen according to the software. The acquisition resolution was 2048 × 2048 pixels, and the settings applied for the preparations are given in Table 2. Final images were obtained by maximum projection, and CLSM illustrations were composed and adjusted for contrast and brightness using the software Adobe PHOTOSHOP CS4.

MOLECULAR METHODS

DNA extraction of freshly preserved specimens was performed as outlined by Brix, Riehl & Leese (2011). Polymerase chain reaction (PCR) was performed using primer pairs HCO2198/LCO1492, dgHCO/LCO1490, dgHCO/dgLCO, or CrustF/HCO2198 for cytochrome c oxidase subunit I (COI; Folmer et al., 1994; Teske et al., 2006), 16Sar/16Sbr for 16S (Palumbi & Benzie, 1991), and 18A1neu/1155R or 18A1neu/1800neu for 18S (Raupach & Wägele, 2006). Protocols for PCR are listed

<table>
<thead>
<tr>
<th>Genus and Species</th>
<th>Type locality</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brucerolis Poore & Storey, 2009</td>
<td>bromleyana (Suhm, 1874) off New Zealand</td>
<td>3612</td>
</tr>
<tr>
<td>Acutiserolis Brandt, 1988</td>
<td>margaretae (Menzie, 1962C) S. Atlantic</td>
<td>3813</td>
</tr>
<tr>
<td>Brucerolis Poore & Storey, 2009</td>
<td>maryannae (Menzie, 1962C) S. Atlantic</td>
<td>3839</td>
</tr>
<tr>
<td>Acutiserolis Brandt, 1988</td>
<td>neaera (Beddard, 1884) Argentine Basin</td>
<td>1097–3731</td>
</tr>
<tr>
<td>Atlantoserolis Wägele, 1994</td>
<td>venae (Menzie, 1962C) S. Atlantic</td>
<td>4588–5024</td>
</tr>
<tr>
<td>Atlantoserolis Wägele, 1994</td>
<td>agassizi (George, 1986) N. Atlantic</td>
<td>3840–3975</td>
</tr>
</tbody>
</table>

© 2014 The Linnean Society of London, *Zoological Journal of the Linnean Society, 2014*
in Table 4. An aliquot of 2–4 μL of undiluted DNA extraction was stored together with the voucher specimen at −20 °C. Purified PCR products were sent for sequencing to QIAGEN (Germany). All Sanger sequence reads were assembled by name into contigs representing 24 specimens and three genes (Table 3) in CODONCODE ALIGNER 4.1.1. All contigs were aligned and visually inspected for quality, and only double-stranded contigs were considered for final analysis. For every position in the three alignments that was found to differ among the specimens, the raw reads were inspected for plausibility. Segregating nucleotides were retained if both reads supported the novel character states, otherwise the respective International Union of Pure and Applied Chemistry (IUPAC) code was assigned. The three resulting alignments (16S with 20, COI with 18, 18S with 19 specimens) were trimmed to minimize trailing gaps and to ensure the correct reading frame for COI. For the visualization of the barcoding gap analysis, pairwise Kimura two-parameter distance (K2P) matrices were calculated in MESQUITE 2.75 (Maddison & Maddison, 2011) and sorted into bin widths of 0.001 for the mitochondrial genes and 0.0001 for the nuclear 18S gene in MS EXCEL. Networks of haplotypes were constructed using HAPLOVIEWER (http://www.cibiv.at/~greg/haplovieuer), based on an unrooted phylogenetic tree calculated in GENEIOUS 6.1.6 (http://www.geneious.com/), using the HKY85 substitution model with four rate categories and estimating the transition/transversion ratio (Ti/Tv), the proportion of invariable sites and the distribution parameter (γ) from the input alignments. Our preference for low-complexity models of molecular substitution reflects the fact that our aim was reliable estimation of pairwise genetic distances of recently diverged specimens for the purpose of species delimitation, rather than constructing a phylogeny (Lefebure et al., 2006). Simpler models have smaller variance and need less data to converge at meaningful results than more complex, parameter-rich models (Posada & Buckley, 2004). New sequences were deposited in GenBank (accession numbers 16S: KJ950643-KJ950663; 18S: KJ950664-KJ950682; CO1: KJ950683-KJ950701).

ABBREVIATIONS

A1, antennula; A2, antenna; AMNH, American Museum of Natural History; Ip, incisor process; lm, lacinia in Table 4. List of scanned material with information on objectives and confocal laser scanning microscopy (CLSM) settings for *Atlantoserolis vemae* (Menzies, 1962)

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Objective</th>
<th>Detected emission wavelength (nm)</th>
<th>Electronic zoom</th>
<th>Pinhole aperture (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitus, female and male (Figs 17A, B, 19A, B)</td>
<td>PL FLUOTAR 2.5 × 0.07 DRY</td>
<td>573–682</td>
<td>1.0</td>
<td>68.7–75.8</td>
</tr>
<tr>
<td>Habitus, female and male North Atlantic specimens (Figs 23A, B, 25A, B)</td>
<td>PL FLUOTAR 2.5 × 0.07 DRY</td>
<td>573–775</td>
<td>1.0</td>
<td>70.4</td>
</tr>
<tr>
<td>Oral region, female and male (Figs 18A, 20A, B)</td>
<td>HCX PL APO CS 10.0 × 0.40 DRY UV</td>
<td>578–643</td>
<td>1.0</td>
<td>28.2–34.8</td>
</tr>
<tr>
<td>Mouth parts, male (Fig. 20D–G)</td>
<td>HCX PL APO CS 10.0 × 0.40 DRY UV and HCX APO U-V-I 40.0×/0.75 DRY UV</td>
<td>575–775</td>
<td>1.0–2.0</td>
<td>48.1–53.0</td>
</tr>
<tr>
<td>Pereopod I, female and male (Figs 21B, C, 21A, B)</td>
<td>HCX PL APO CS 20.0×/0.70 IMM UV</td>
<td>573–680</td>
<td>1.0</td>
<td>58.5–60.7</td>
</tr>
<tr>
<td>Pereopod I, female and male North Atlantic specimens (Figs 24A, 26A)</td>
<td>HCX PL APO CS 10.0 × 0.40 DRY UV</td>
<td>573–731</td>
<td>1.0</td>
<td>24.8–69.9</td>
</tr>
<tr>
<td>Pereopod I detail, female North Atlantic specimen (Fig. 24B)</td>
<td>HCX PL APO CS 20.0×/0.70 IMM UV</td>
<td>573–731</td>
<td>2.5</td>
<td>43.1</td>
</tr>
<tr>
<td>Pereopod II, male (Fig. 21C, D)</td>
<td>HCX PL APO CS 10.0 × 0.40 DRY UV</td>
<td>573–641</td>
<td>2.0</td>
<td>59.0</td>
</tr>
<tr>
<td>Pereopod II, male North Atlantic specimen (Fig. 26B)</td>
<td>HCX PL APO CS 10.0 × 0.40 DRY UV</td>
<td>578–643</td>
<td>1.5</td>
<td>39.7</td>
</tr>
<tr>
<td>Pleopod II, male (Fig. 21E, E′, E″)</td>
<td>HCX APO U-V-I 40.0×/0.75 DRY UV</td>
<td>575–775</td>
<td>1.0</td>
<td>48.3</td>
</tr>
<tr>
<td>Expedition</td>
<td>Deep-sea basin/station</td>
<td>Taxon (type status)</td>
<td>Seqs</td>
<td>GenBank accession number(s)</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>--------------------</td>
<td>------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae COI</td>
<td>KJ950663</td>
<td>KJ950664</td>
<td>KJ950660</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae 18S</td>
<td>KJ950684</td>
<td>KJ950650</td>
<td>KJ950685</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae 16S</td>
<td>KJ950666</td>
<td>KJ950667</td>
<td>KJ950686</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae COI</td>
<td>KJ950651</td>
<td>KJ950653</td>
<td>KJ950654</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae COI</td>
<td>KJ950668</td>
<td>KJ950669</td>
<td>KJ950670</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae 18S</td>
<td>KJ950687</td>
<td>KJ950688</td>
<td>KJ950689</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae 16S</td>
<td>KJ950672</td>
<td>KJ950673</td>
<td>KJ950674</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae COI</td>
<td>KJ950691</td>
<td>KJ950692</td>
<td>KJ950693</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae 18S</td>
<td>KJ950659</td>
<td>KJ950660</td>
<td>KJ950661</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae 16S</td>
<td>KJ950690</td>
<td>KJ950691</td>
<td>KJ950692</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae 18S</td>
<td>KJ950677</td>
<td>KJ950678</td>
<td>KJ950679</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae 16S</td>
<td>KJ950681</td>
<td>KJ950682</td>
<td>KJ950683</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae COI</td>
<td>KJ950689</td>
<td>KJ950690</td>
<td>KJ950691</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae COI</td>
<td>KJ950683</td>
<td>KJ950684</td>
<td>KJ950685</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae 18S</td>
<td>KJ950674</td>
<td>KJ950675</td>
<td>KJ950676</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae 16S</td>
<td>KJ950687</td>
<td>KJ950688</td>
<td>KJ950689</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae COI</td>
<td>KJ950698</td>
<td>KJ950699</td>
<td>KJ950700</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae 18S</td>
<td>KJ950673</td>
<td>KJ950674</td>
<td>KJ950675</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Glabroserolis occidentalis COI</td>
<td>KJ950701</td>
<td>KJ950702</td>
<td>KJ950703</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae COI</td>
<td>KJ950676</td>
<td>KJ950677</td>
<td>KJ950678</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae 18S</td>
<td>KJ950646</td>
<td>KJ950647</td>
<td>KJ950648</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae 16S</td>
<td>KJ950681</td>
<td>KJ950682</td>
<td>KJ950683</td>
</tr>
<tr>
<td>DIVA-3 ARB/532</td>
<td>Atlantoserolis vemae 16S</td>
<td>KJ950658</td>
<td>KJ950659</td>
<td>KJ950660</td>
</tr>
</tbody>
</table>

Table 3. List of voucher specimens used for the genetic study, located at the Zoological Museum Hamburg (ZMH) or the German Centre of Marine Biodiversity Research (DZMB HH), and all available information.

ARN, Argentine Basin. All other specimens used for species description and comparative specimens are listed in the species descriptions.
mobilis; lMd, left mandible; mp, molar process; Op, operculum; PI–PVII, pereopods I–VII; Pln 1–3, pleonites 1–3; Plp 1–5, pleopods 1–5; Plt, pleotelson; Prn 1–7, pereonites 1–7; rMd, right mandible; Urp, uropods; USNM, United States National Museum of Natural History, Washington; ZMH, Zoological Museum, Hamburg.

RESULTS
TAXONOMY

SPHAEROMATIDEA WÄGELE, 1989
SEROLIDAE DANA, 1983

The most recent family diagnosis is provided in Brandt & Poore (2003).

GENUS GLABROSEROLIS MENZIES, 1962

Type species

Diagnosis

Coxal plates not marked off at any pereonal somites. Uropods uniramous.

Glabroserolis specialis Menzies, 1962 (Figs 2, 6).

Material examined

Holotype: Female, 3.3 mm in length, AMNH 12124, south-east Atlantic at a depth of 4885 m (Menzies, 1962).

Paratypes: AMNH 12125.

REDESCRIPTION OF GLABROSEROLIS SPECIALIS MENZIES, 1962

Holotype: Female (3.3 mm); anterolateral angles of head slightly elongate laterally (Fig. 2); head frontally as wide as mesiolaterally, mediocaudally fused with Prn 1. Eyes absent. Second to sixth Prns with coxal plates not marked off by dorsal sutures, only a faint shallow depression visible (Fig. 2). Posterolateral angles of the coxal plates of Prn 2–6 all reaching slightly further caudally than those of the preceding segments, not increasing in length along Prn 2–6, but with sixth coxal plate longest. Prn 7 partly fused with Prn 6. Pln 1–3 without epimera, surrounded by Prn 6. Pln 1–3 width very slightly increasing, Pln 1–2 length equal. Plt with one semicircularly rounded elevation with two small rounded elevations anterolaterally. Tip of Plt rounded, lateral sides slightly narrowing medially (Fig. 2).

Antennula (A1; Fig. 2) about one-third in width of A2, with three peduncular segments, first one widest and longest, second one almost as long as first one, slightly narrower, and third article narrower and shorter than second. Seven flagellar articles decreasing in length and width towards tip.

A2 (Fig. 2) consisting of five peduncular and nine flagellar articles. First peduncular article very short, quadrangular, covered by antennule in dorsal view; second peduncular article slightly longer than first; third article trapezoidal, slightly wider than second; fourth peduncular article broadest and longest, with several longitudinal rows of groups of simple setae; fifth peduncular article slightly shorter than fourth (0.94) also with groups of setae. All flagellar articles with groups of distolateral simple setae, last article with three setae.

Pereopod I (PI; Fig. 2) stronger than all following pereopods, with long basis, short merus, and ischium and carpus of equal size, propodus broad, subchelate. Basis to merus without any spines or setae, quadrangular carpus with two strong sensory setae. Mediolateral surface of propodus with one long row of setulated sensory setae. Dactylus long and slender, without dactyolar claw.

Pereopod II (PII; Fig. 2c) with long and slender basis; ischium 0.5 times length of basis, without setae; merus 0.65 times length of carpus, merus and carpus with three distodorsal, distally slightly setulated setae;
Figure 2. *Glabroserolis specialis* Menzies, 1962. Holotype female in dorsal view (A); pereopods II–IV (B–E); pereopod VI (F); uropod (G). Scale bars: (A) 1 mm; (B–G) 0.1 mm.
propodus 0.7 times length of carpus (twisted), ventrally with four and distodorsally with two long setae similar in shape to those of merus and carpus. Dactylus 0.7 times as long as propodus, with one setule and a short and small claw.

Pereopod III (PIII; Fig. 2d) with long and slender basis, mediadorsally slightly elevated and equipped with a small plumose seta; ischium 0.5 times length of basis, with two simple setae; merus 0.8 times length of carpus, with three distodorsal, distally slightly setulated setae; carpus about as long as merus, with four distal and three ventral setae distally setulated, propodus 1.1 times length of carpus, ventrally with three, dorsally with one, and distally with six long setae of similar shape as those of merus and carpus. Dactylus 0.7 times length of propodus.

Pereopod IV (PIV; Fig. 2e) with long and slender basis, mediadorsally slightly elevated and equipped with a small plumose seta; ischium 0.4 times length of basis, without setae; merus 0.65 times length of carpus, with three distodorsal, distally slightly setulated setae; carpus about as long as merus, with three distal and three ventral setae distally setulated, propodus 0.95 times length of carpus, with one ventral and five distal long setae of varying lengths, and of similar shape as those of merus and carpus. Dactylus almost as long as propodus (0.9 times length of propodus), with one setule.

Pereopod VI (PVI; Fig. 2f) with long and slender basis, mediadorsally slightly elevated, without setae; ischium 0.5 times length of basis, without setae; merus 0.6 times length of carpus, with three ventral, distally slightly setulated setae; carpus 1.35 times as long as merus, with five distal and two additional ventral setae distally setulated, propodus 0.6 times width and 1.0 times length of carpus, with two ventral and two distal long setae of similar shape as those of merus and carpus. Dactylus 0.7 times length of propodus, with three setules.

Pereopod VII (PVI; Fig. 6) absent.

Uropod (Urp; Fig. 2) with elongate sympodite, only one ramus, 2.2 times length of sympodite, distally slightly acuminating, tip rounded.

Remarks
Glabroserolis was monotypic, it could easily be distinguished from other serolids by the diagnostic genus characters. Differences between G. specialis and G. occidentalis sp. nov. are discussed under the remarks for G. occidentalis sp. nov.

Glabroserolis occidentalis Brandt & Brix sp. nov. (Figs 3–6)

Material examined
Holotype: Female, 4 mm in length (ZMH-K 44083), station 534 (RV Meteor), 16 July 2009, 049°01.54’–049°02.12’W, 36°00.61’–36°00.69’S, depth 4605–4607 m.

Paratypes: Juvenile, 3 mm in length (ZMH K-44084), station 533 (RV Meteor), 15 July 2009, 049°01.96’–049°02.12’W, 36°00.20’–36°00.27’S, depth 4602–4606 m.

Distribution
Argentine Basin, only known from type locality.

Etymology
The epithet ‘occidentalis’ (from the Latin occidens, meaning west) indicates the West Atlantic finding of this new species, in contrast to G. specialis, which was first described from the East Atlantic (Fig. 1).

Description of female holotype (Figs 3–6)
Anterolateral angles of head slightly elongate laterally (Fig. 3); head smooth, frontally slightly wider than medio-caudally and caudally, mediolaterally slightly narrowing, caudolaterally head fused with first Prn. Eyes absent. Prn 2–4 with coxal plates not marked off by dorsal sutures, with only shallow depressions visible. Posterolateral angles of the coxal plates of Prn 2–6 all reaching slightly further caudally than those of the preceding segments, not increasing in length along Prn 2–6, but with sixth coxal plate longest. Prn 7 partly fused with Prn 6. Pln 1–3 without epimera, surrounded by Prn 6. Plns increasing in width, length of all Plns equal (Fig. 3). Plt with one semicircularly rounded elevation, slightly vaulted caudolaterally, protruding in lateral view (Fig. 4) with two small rounded elevations anterolaterally. Tip of Plt rounded, lateral sides slightly narrowing medially (Fig. 3). Ventral view with insertion of pereopods, and shape of labrum and PI.

A1 of holotype female (Fig. 3) with three peduncular segments, first one shorter than second, second one slightly longer but narrower than first, third one as long as first. Seven flagellar articles: first flagellar article broadest, second one longest. Last flagellar article with three simple setae.

A2 of holotype female (Fig. 4d) consisting of five peduncular and nine flagellar articles. First peduncular article very short, almost quadrangular. Second peduncular article slightly longer than third, quadrangular, without setae; third article trapezoidal, with nine distal simple setae; fourth peduncular article a little longer (1.1 times) and broader (1.4 times) than fifth, with several longitudinal rows of groups of two or three simple setae; fifth peduncular article also with groups of setae. All nine flagellar articles with groups of between one and three distolateral simple setae; few aesthetascs.

Pereopod I of holotype female (Fig. 5a) stronger than all following pereopods, with long basis, short merus, and ischium and carpus of equal length, propodus broad, subchelate. Basis to merus without any spines or setae, carpus with two strong sensory setae.
Figure 3. *Glabroserolis occidentalis* Brandt & Brix sp. nov. Holotype female in dorsal (A) and ventral (B) view. Scale bars: 1 mm; detail of pereopod I 0.1 mm.
Figure 4. *Glabroserolis occidentalis* Brandt & Brix sp. nov. Holotype female in lateral view (A); uropod (B); pleopod 1 (C); and antenna (d). Scale bars: (A) 1 mm; (B–D) 0.1 mm.
Figure 5. *Glabroserolis occidentalis* Brandt & Brix *sp. nov.* Holotype female, pereopods I–VI (A–F). Scale bars: 0.1 mm.
Figure 6. *Glabroserolis specialis* Menzies, 1962, holotype in ventral view (A, A'). *Glabroserolis occidentalis* Brandt & Brix sp. nov., holotype in ventral view (B, B'). Paratype of *Glabroserolis occidentalis* Brandt & Brix sp. nov. in ventral view (C, C'). Arrows point to the insertions of pereopod VI.
Mesiolateral surface of propodus with one long distally split and a row of shorter setulated sensory setae (not illustrated). Dactylus long and slender, without dactylar claw.

Pereopod II (PII) of holotype female (Fig. 5b) with long and slender basis, mediadorsally slightly elevated and equipped with a small plumose seta; ischium 0.4 times length of basis, without setae; merus 0.8 times length of ischium, merus with four distal and one ventral distally slightly setulated setae; carpus 1.2 times length of merus, with three ventral, one dorsal, and four distal distally setulated setae; propodus 1.1 times length of carpus, ventrally with two, dorsally with one, and distally with five long setae of similar shape as those of merus and carpus; dactylus very slender, 0.9 times as long as propodus, with one setule and a short, small claw.

Pereopod III (PIII) of holotype female (Fig. 5c) with long and slender basis, mediadorsally slightly elevated; ischium 0.5 times length of basis, with one distal seta (broken); merus 0.7 times length of ischium, with two distodorsal, distally slightly setulated setae; carpus 1.1 times as long as merus, with six ventral and two dorsal setae distally setulated; propodus as long as carpus, ventrally with five, distodorsally with two long setae of similar shape as those of merus and carpus; dactylus 0.8 times as long as propodus.

Pereopod IV (PIV) of holotype female (Fig. 5d) with long and slender basis, mediadorsally slightly elevated and equipped with two small plumose setae; ischium 0.4 times length of basis, without setae; merus 0.6 times length of ischium, with three ventral and one distal seta; carpus 1.3 times as long as merus, with six ventral and two distodorsal setae distally setulated; propodus 0.8 times length of carpus, with three ventral, one distodorsal, and three long distal setae, of varying lengths, and of similar shape as those of merus and carpus; dactylus 0.8 times length of propodus, with one setule and one claw.

Pereopod V (PV) of holotype female (Fig. 5e) with long and slender basis, mediadorsally slightly elevated and equipped with one small plumose seta in distodorsal half of article; ischium 0.4 times length of basis, without setae; merus 0.8 times length of ischium, with three ventral and one distal distally setulated seta; carpus 1.2 times as long as merus, with seven ventral and two distodorsal distally setulated setae; propodus as long as carpus, with seven ventral, one dorsal, and two long distal setae, of similar shape as those of merus and carpus; dactylus 0.8 times length of propodus, with one setule and one claw.

Pereopod VI (PVI) of holotype female (Fig. 5f) with long and slender basis, distally slightly elevated, without setae; ischium 0.4 times length of basis, without setae; merus 1.6 times length of ischium, with three ventral and one distal, distally slightly setulated, setae; carpus 1.6 times as long as merus and as long as ischium, with four dorsal and two ventral distally setulated setae, propodus 0.8 times as long and 0.9 times as wide as carpus, with two ventral, one dorsal, and five distal setulated setae of different lengths; dactylus almost as long as propodus, with one setule and one claw.

Pereopod VII (PVII; Fig. 6) absent.

Pleopod 1 of holotype female (Fig. 3c) with long trapezoidal sympodite, bearing two proximomedial setulated setae with setulated tuft (similar to a brush). Endopodite (with six) and exopodite (with 14) with many long plumose setae of varying lengths, endopodite smaller.

Uropod (Urp) of holotype female (Fig. 3b) with elongate sympodite of quadrangular shape; only one ramus 1.8 times as long and 1.5 times as broad as sympodite, with six lateral plumose setae.

Remarks

Glabroserolis occidentalis Brandt & Brix sp. nov. is the second species of the genus. It has been sampled from the Argentine Basin in the West Atlantic. It differs from G. specialis Menzies, 1962 in the shape of the Plt, which is smooth in G. specialis; however, in G. occidentalis it bears a semicircularly rounded elevation, which is pronounced and slightly vaulted caudomedially, as illustrated in Figure 4a. In both species of Glabroserolis, PVII is not developed (Fig. 6). Menzies (1962) describes G. specialis based on a specimen of 3.3 mm in length, designated as female. We re-examined the holotype and prepared a ventral view (Fig. 6); PVII is missing in G. specialis as well as in the new species G. occidentalis sp. nov. As we have no males or ovigerous females available, it is impossible to describe the missing pereopod as a synapomorphic character of the two species, as we might have immature females to hand. Future sampling of a male or adult (brooding) female will reveal whether this is a synapomorphic character of G. specialis and G. occidentalis sp. nov., or whether both Menzies and ourselves had only immature specimens to hand (Fig. 6). The lack of PVII in adult isopods has already been described for some Anthuroidea (Wolff, 1962; Poore, 1984), and for Stylomesus hexapodus Brökeland & Brandt, 2004, Haplomesus corniculatus Brökeland & Brandt, 2004, Dendromunna mirabile Wolff, 1962, Munella danteci Bonnier, 1896, and Lipomera lamellata Tattersall, 1905.

ATLANTOSEROLIS WÄGELE, 1994

Genus diagnosis (modified after Wägele, 1994)

Body oval, about as wide as long, flattened and without dorsal ornamentation, eyes absent; pereonites with all
segments indicated by entire suture lines, coxal plates large, suture lines between coxal plates 2–5 and tergites dorsally visible, distal margins truncate; last coxal plates framing the narrow epimera of Pln 2 and 3; Plt distally rounded or tapering to apex; Plt 1.15 times as wide as long; PI palm setae comprising one long row of distally bifid sensory setae and one short row of setulated sensory setae, male PI with palm roughly straight at oval propodus; palp of maxilliped of three articles; uropod with one minute ramus and one ramus longer than sympod.

Remarks
As most of the mouthparts of this genus were unknown, a redescription of the type species is valuable and is presented herewith on the basis of Menzies’s type material from the AMNH as well as new material collected during the DIVA-3 expedition.

Type species

Type locality
South Atlantic, Argentine Basin, 4588–5024 m depth.

Composition

Atlantoserolis vemae (Menzies, 1962) (Figs 7–27)

Material examined
Holotype: Male, 4.1 mm in length, AMNH 12035, *A. vemae* (Menzies, 1962), depths of 4588 and 5024 m in the South Atlantic (Menzies, 1962).

Paratypes: Female, 6.0 mm in length, AMNH 12267.

Additional material: Fourteen juveniles of 2.0–3.2 mm in length, 11 males of 4–5 mm in length and 15 females of 4–6 mm in length from station 532 (one female) (ZMH K-44086), 04°00.75′–04°00.89′W, 35°59.16′–35°59.24′S, depth 4605 m; station 533 (four females, three males, two juveniles) (ZMH K-44087), 15 July 2009, 04°01.96′–04°02.12′W, 36°00.20′–36°00.27′S, depth 4602–4606 m; station 534 (nine females, eight males, 12 juveniles) (ZMH K-44088), 16 July 2009, 04°01.54′–04°01.74′W, 36°00.61′–36°00.69′S, depth 4605–4607 m.

USNM 112654, *A. vemae* (Menzies, 1962), redescribed by Hessler based on 14 individuals from Hessler’s (1969) collection, W.H.O.I. station 70, depth 2862–4749 m in the North Atlantic (Hessler, 1967). The body size of *A. vemae* from Hessler’s material varies between 2 mm (stage-1 early manca) and 6.5 mm (copulatory male).

Atlantoserolis vemae (Menzies, 1962) (Figs 7–27)
Figure 6 shows photographs of three specimens of *A. vemae* that are almost the same size: A, type material that was sampled and illustrated by Menzies (1962); B, a specimen of *A. vemae* sampled during the DIVA-3 expedition from station 534 in the Argentine Basin of the South Atlantic (Figs 1, 6b, 10–12); and C, a picture of *A. vemae* from the North Atlantic sampled by Hessler and redescribed as *A. vemae*. The image shows that these specimens look more opaque, because of a thicker cuticle.

Redescription of male holotype (AMNH 12035)
Greatest width of body (between tips of coxae 2; Figs 8, 10, 11, 15, 16, 18, 20, 23, 24, 26) 0.8 times body length (rostrum to end of Plt). Head with broad diverging anterolateral lobes lateral to bases of antennae, almost straight frontally. Eyes and eye sockets absent. Prn 1 with anterolateral margin continuously convex; posterolateral corner not overlapping coax 2, smooth. Prn 2–4 articulating, with coxal plates marked off by dorsal sutures; Prn 5 also with coxal plate, but placed more medially; Prn 5–7 free, medially shorter than Prn 2–4, Prn 5 laterally as broad as Prn 2–4, Prn 6 slightly shorter. Prn 7 without coxal plates. Posterolateral angles of coxal plates 2–6 protruding posterolaterally, coxal plates forming a nearly continuous margin. Last coxal plates framing the narrow epimera of Pln 2 and 3. Plt distally rounded or tapering to apex, Plt 1.15 as wide as long. Ventral coxal plates 2–5 meeting, swollen, and sculptured in midline; sternites 5–7 fused and visible; ventral coxal plates 6 and 7 separated. Pln 1 only visible ventrally. Dorsally, Pln 2 and 3 with narrow epimera of comparable length and width, both reaching 30% of Plt length.

Plt slightly less than a third of length of body, 0.8 times as long as wide, lateral margins slightly rounded, posterior margin acuminating into tip; with obscure mid-dorsal ridge, and almost triangular elevation mediofrontally. Uropods are inserted ventrolaterally at one-third of length.

Antennula (A1; Figs 10, 12, 15, 16, 18, 20) with peduncular article 2 slightly narrower but 1.3 times longer than article 1, article 3 0.9 times shorter than second; flagellum of eight articles; flagellar article 1 longest, slightly less than half length of last peduncle article, with three plumose setae, proximal four
Figure 7. Comparison of three adult male *Atlantoserolis vemae* specimens from three different locations using a compound microscope: A, holotype *A. vemae* AMNH 12035; B, *A. vemae* DZMB HH 14808 from DIVA-3; C, *Atlantoserolis cf. vemae* from Woods Hole Oceanographic Institute station 70, sampled by Hessler in the 1960s in the North Atlantic Ocean.
Figure 8. *Atlantoserolis vemae* Menzies, 1962, AMNH 12035, holotype male in dorsal (A) and ventral (B) views, lateral view (C), detailed ventral view (D) and pereopod I (E, E'). Scale bars: (A–D) 1 mm; (E, E') 0.1 mm.

Figure 9. *Atlantoserolis vemae* Menzies, 1962, AMNH 12035, holotype male: maxilliped (A), with details of palpal tip (A') and distolateral corner of epipodite (A''); uropod (B), with detail of exopod (B'); pereopod II (C), with detail of sensory setae and dactylar tip (C') and distodorsal setae on merus and propodus (C''); pleopod 2 (D), with details of plumose seta (D') and insertion of exopod and endopod on sympod (D''). Scale bars: 0.1 mm.

Figure 10. *Atlantoserolis vemae* Menzies, 1962, DIVA-3 material: dorsal (A) and lateral (B) views of male; pereopod I (C); setal composition of carpus tip of pereopod I (D); ventral view of pereonites (E); lateral view of pereonites (F). Scale bars: (a, b) 1 mm; (C–F) 0.1 mm.

Figure 11. *Atlantoserolis vemae* Menzies, 1962, DIVA-3 material: dorsal (A) and lateral (B) views of female; pereopod I (C); detailed ventral view (D); detailed lateral view (E). Scale bars: (A–B) 1 mm; (C–E) 0.1 mm.

Figure 12. *Atlantoserolis vemae* Menzies, 1962, DIVA-3 material. Antenna mouthparts of female. Maxilliped (A), antenna (B), left mandible (C), enlarged seta of manipular palp (C′), left mandible, ventral view (C″), enlarged incisor and lacinia mobilis of left mandible (C‴), right mandible (D), setal combs of right mandible (D′). Scale bars: 0.1 mm.
Figure 13. *Atlantoserolis vemae* Menzies, 1962, DIVA-3 material. Female pereopods II–VII (A–F), with details of ventral setae on carpus of pereopod II (A‘) and tip of dactylus of pereopod III with dactylar claw (B‘). Scale bars: 0.1 mm.
Figure 14. *Atlantoserolis vema* Menzies, 1962, DIVA-3 material. Pleopods 1–5 (A–E), with detail of plumose seta (C'), and uropod (F), with details of endopodal (F') and exopodal tip (F''). Scale bars: 0.1 mm.
Figure 15. *Atlantoserolis vemae* Menzies, 1962 (DIVA-3) male SEM plate: A, habitus dorsal ZMH K-44076 (scale bar: 1 mm); B, habitus ventral ZMH K-44080 (scale bar: 300 μm); B', detail of antenna, with bunch of setae at shaft densely covered with fringe-like setules; C, detail of pappose setae at mandible palp article 3; D, pereopod I propodus unequally bifid; E, detail of pereopod II carpus inner margin sensilla, pappose setae; F, F' detail of pereopod I carpus inner margin unequally bifid setae with distally setules (scale bars: A' 0.1 mm; A", C–F, 0.01 mm; B', 0.01 mm and 1 μm; F', 2 μm). The habitus in dorsal view (A) shows epizoists (parasites) in the head area and on the uropod.
Figure 16. *Atlantoserolis vemae* Menzies, 1962 (DIVA-3) SEM plate. Female and juvenile habitus: A, female dorsal view ZMH K-44075; B, female ventral view ZMH K-44074; C, juvenile (stage according to Hessler, 1970) dorsal view ZMH K-44079; D, juvenile (stage according to Hessler, 1970?) ventral view ZMH K-44077. Scale bars: A, B, 1 mm; C, D, 200 μm. Ventral view of the female (B) with epizoits, especially on the mouthparts and antennae, as well as on pereonite 5 margin and the left uropod.

Figure 17. Atlantoserolis vemae Menzies, 1962 (DIVA-3) SEM plate. Uropods compared, from male, female, and juvenile. A, left uropod, male ZMH K-44080; B, right uropod, female DZMB HH 10275-1; C, right uropod, juvenile ZMH K-44077; D, detail of exopod, male ZMH K-44080; E, detail of exopod, female ZMH K-44074; F, detail of exopod, juvenile ZMH K-44077. Scale bars: A–C, 100 μm; D, F, 10 μm; E, 30 μm.
Figure 18. *Atlantoserolis vemae* (Menzies, 1962), confocal laser scanning microscopy images. ZMH K-44082, female: A, habitus dorsal; B, habitus ventral. Scale bars: 500 μm.
Figure 19. Atlantoserolis vemae (Menzies, 1962), confocal laser scanning microscopy images. ZMH K-44082, female: A, oral region; B, pereopod I (ventral view); C, pereopod I (dorsal view). Scale bars: A, 100 μm; B, C, 50 μm.
Figure 20. Atlantoserolis vemaee (Menzies, 1962), confocal laser scanning microscopy images. ZMH K-44085, male: A, habitus dorsal; B, habitus ventral. Scale bars: 500 μm.
Figure 21. *Atlantoserolis vemae* (Menzies, 1962), confocal laser scanning microscopy images. ZMH K-44085, male. A, oral region; B, oral region, maxilliped, and labrum dissected; C, md; D, mx1; E, mx; F, mxp (ventral view); G, mxp (dorsal view). Scale bars: A, B, D, 100 μm; C, 75 μm; E, 25 μm; F, G, 50 μm.
Figure 22. *Atlantoserolis vema* (Menzies, 1962), confocal laser scanning microscopy images. ZMH K-44085, male: A, pereopod I (dorsal view); B, pereopod I (ventral view); C, pereopod II (ventral view); D, pereopod II (dorsal view); E, Plpo II, pleopod II; E', middle part of appendix masculina with cuticular openings; E'', distal part of appendix masculina. Scale bars: A–E, 50 μm; E', E'', 25 μm.
Figure 23. *Atlantoserolis vema* (Menzies, 1962), specimens from the North Atlantic collected by R.R. Hessler 1967, 1970) at Woods Hole Oceanographic Institute station 70. Male from dorsal, ventral, and lateral views (A–C), and female from dorsal and ventral views (D, E).
articles without aesthetasc each; articles 3–8 also with few simple setae of varying lengths. A2 (Figs 10, 15, 16, 18, 20) with short first, almost ring-like, peduncular article, second slightly more than twice as long as first, with few lateral short setules, third article slightly shorter than second, almost of triangular shape, with tufts of setae distally, fourth and fifth articles longest, fourth one broadest, both with tufts of setae, fifth 1.2 times as long as fourth; flagellum of nine articles, each with one or a group of distolateral simple setae, second flagellar article with one aesthetasc.

Mandibles (Figs 11, 19, 21) asymmetrical, right lacinia mobilis narrower than on left. Left lacinia mobilis a broad blade (with nine slight cusps indicated at serrated tip), almost as wide as incisor, spine (spine row rudiment) simple and straight. Right lacinia mobilis with four small teeth, spine simple and straight. Mandibular palp second article 1.6 times as long as first, with 16 short setae along distal part of lateral margin in left mandible (15 in right), third article lanceolate, with row of up to 19 setae (Fig. 21), last but one longest.

Maxilla 1 (Figs 12, 21) lateral lobe with 11 strong apical teeth; medial lobe stalked, small, distally rounded, with one short apical seta.

Maxilla 2 (Figs 12, 21) inner lobe with seven or eight simple slender setae and medial setules, median and outer lobes each with two setae.

Maxilliped (Figs 9, 12, 19, 21): coxa and epipod lateral to it separated by suture; basis separated by suture from lateral rounded lamella; basis with facial setae and small setules near mesial face; endite with transverse distal margin bearing two spiniform setae mediodistally, placed on two lobes, medially simple setae and fine, small setules; palp with short, ring-like, first article, second article with five stronger lateromedial setae, long medial setae and four ventral setae, third article with distal tuft of setae.

Pereopod I (PI; Figs 7, 10, 11, 15, 16, 18, 19, 20, 22–27) basis to merus with simple short setae and setules; carpus quadrangular, with two simple and two strong sensory setae mediodistally; propodus long–oval, widest at midlength, curved palm with row of alternating fan-shaped setae and shorter setulated sensory setae, each with apical projection, and submarginal lateral row of short simple setae; dactylus evenly curved and tapering, without claw.

Pereopod II (PII; Figs 9, 10, 15, 16, 18, 20, 22, 23, 24, 26, 27) with basis 1.4 times longer than ischium, few simple short setae and two distomedial plumose setae; ischium with row of ventral simple setae, in distoventral third these are very long; merus about half as long as ischium, with more long ventral setae, carpus as long as ischium, also with ventral simple setae, ischium and carpus with distodorsal strong setae, carpus also with lateral setae; propodus about as long as carpus (0.94), also with ventral and distolateral and distodorsal row of two long setae, distal setae longer than dactylus; dactylus half the length of propodus, almost straight, just surpassing heel of palm, unguis not differentiated, four distal setae, one longer distoventral seta.

Pereopods III–VII (Figs 13, 15, 16, 18, 20, 24, 26) similar, distal articles of posterior limbs longer. Basis, ischium, and merus of similar shape; carpus as long or slightly longer than merus, setose on ventral margin; propodus shorter than carpus, carpus slightly longer than merus, all articles from distal third of ischium to propodus setose on ventral margin, with long setae on palm; dactylus very slender, 0.5 times width and 0.6 times length of propodus, tapering.

Pleopods 1–3 (Figs 9–11, 14–16, 18, 20, 24, 26) peduncle broad, almost triangular, with medial lobe bearing one or two setulate setae; endopod round–oval, with 13–17 marginal plumose setae; exopod long–oval, also surrounded with between five and nine marginal plumose setae. Plp 4 (Fig. 14) exopod operculiform, chitinized, bi-articulate, with lateral row of more than 100 short marginal plumose setae; endopod
smaller, distally with four setae. Plp 5 (Fig. 14) smallest (damaged during dissection), exopod weakly bi-articulate, with two distal plumose setae; endopod (broken off during dissection) almost as long as exopod, without setae.

Uropod (Figs 8–11, 14–18, 20, 23) attached after two-thirds of Plt length, slightly surpassing distal tip, with elongated quadrangular peduncle, bearing few simple setae; rami oval, exopod small, 0.15 times length of endopod, distally rounded, with two setulated setae; endopod twice as long as wide, distally rounded, distally and laterally serrated, with a few small distally setulated setae and small and short simple setae.

Male (only sexually dimorphic characters): Cuticular structures (ornamentation by small scales) more coarse in males than in females, male generally slightly more setose, with more simple short setae on many appendages, although shape and proportions do not differ much unless expressed in the following. Peduncular articles of A1 broader and more robust than in female. Left mandible and PI (Figs 8, 15, 21) similar to female, but PII differs from female (Figs 9, 22, 27), subchelate, with long and slender basis, bearing five dorsal and one ventral simple setae; ischium 0.8 times as long as basis, merus and carpus of equal length, one-third the length of ischium, all three articles with ventral simple setae, long simple setae also distoventrally on ischium, carpus, and propodus; propodus slightly triangular, proximally widest, distally slightly narrowing, with proximoventral strong sensory setae, medio- and distoventrally more slender simple setae, simple setae in ventral distal half long; dactylus fitting between ventral row of setae, reaching tip of propodus protrusion in ventral view, palm of propodus with five long simple setae. Plp 2 (Figs 9, 22) peduncle with more lateral simple setae than in Plp 1, with narrow medial lobe bearing two rather long setulate setae (possibly because of medially protruding appendix masculina); endopod broader than in Plp 1, with four marginal plumose setae, with long apical slender appendix masculina, more than 14 times as long as endopod; exopod larger, broader, also with marginal plumose setae. Uropod (Figs 9, 17) very similar to female, but endopod without serrated margin and without setae.

Distribution
North and South Atlantic (Fig. 1), depth 4588–5024 m.

Remarks
Atlantosolis vemae (Menzies, 1962) can easily be distinguished from A. venusta (Moreira, 1977) by the lack of spines. Its body surface shows some ornamentation, with small scales, whereas in A. venusta a pronounced median carina extends mediocaudally into a pointed tip (the Plt is triangular in shape). Moreover, A. vemae has a broader and laterally more rounded (although caudally slightly acuminating) Plt, which is almost straight and triangular in shape in A. venusta. The body surface of A. agassizi (George, 1986) is also smooth, but the Plt is round–oval in shape and broadly rounded caudally. In A. venusta the uropods are extending the length of the Plt and are superficially uniramous (Moreira, 1977), sympod and endopod are fused, exopod is freely articulated; however, it is obscure and minute, and inserts at one-third the uropodal length from tip. The uropods of A. vemae possess an endopod of one-third the length of sympod, the exopod is small, a sixth of the size of the endopod, almost quadrangular, and bears one distal seta. Atlantosolis agassizi has similar shaped uropods; however, the articles are more robust, the lateral margins of sympodites are serrated and saw-like, and not smooth as in A. vemae, the endopodite bears two distal setae, and the exopod is smaller (0.15 times the endopod), and does not bear any setae. According to Hessler (1970), A. menziesi (Hessler, 1970) can best be distinguished from A. vemae in the shape of the uropods, which are similar in shape to those of A. venusta. In the juvenile specimens, the uropod is more robust, shorter, and possesses an almost saw-like lateral margin. The uropod of A. menziesi is straight compared with that of A. venusta, which is medially and laterally faintly curved. The Plt of A. venusta only bears a medial keel, whereas in A. menziesi it is characterized by a frontomedial distinct triangular elevation, continuing into a keel extending to caudal tip.

Molecular results
The only Glabroserolis specimen (KJ119, DZMB-HH 14823) is genetically distinct compared with the Atlantoserolis material in our study (18S, >3.8% uncorrected pairwise distance; 16S and COI, >20% uncorrected pairwise distance). The distribution of pairwise genetic distances (K2P) within A. vemae followed a pronounced bimodal distribution in all three genes (16S, ≤0.025 and ≥0.047; COI, ≤0.04 and ≥0.089; 18S, ≤0.0007 and ≥0.0046). Using 18 families of Crustacea, Lefebure et al. (2006) reported an intraspecific mean for the COI gene of 0.013 versus 0.154 among closely related but reproductively isolated species, and 0.021 versus 0.037 for the 16S gene (see also Held, 2000). The magnitude and pattern of the genetic differentiation among A. vemae are thus in line with expectations from genetically isolated species in Crustacea (Held, 2003; Held & Wägele, 2005; Lefebure et al., 2006).

Although the magnitude of differentiation between the two groups differs among the genes according to their evolutionary speed, there is no conflict among them,
i.e. the specimens are sorted into genotype groups that are congruent among all three genes. Three juveniles (DZMB IDs-14819/KJ115, 14820/KJ116, 14821/KJ117), one male (DZMB ID-14810/KJ106) of 4 mm in length, and one female (DZMB ID-14826/KJ122) of 4.5 mm in length, obtained at DIVA-3 station 534, clustered together to the exclusion of all other *A. vemae* specimens from the same epibenthic sledge (EBS) deployment (Fig. 28). Because of failures of amplification or because of exclusion during the quality control steps, as described in the Material and methods section, we do not have sequence data for all genes for all specimens; however, the remaining specimens could be placed unequivocally in either of the two genotype groups based on the partial sequence information available (data not shown).

Figure 28. Molecular results for COI, 16S, and 18S: haplotype networks. Circles show the expedition identification number (compare with Table 3).
We observed no frame-shift mutations or occurrence of stop codons in the protein-coding COI gene and no extraneous sequence reads in any of the other genes. Although this observation does not completely rule out pseudogenes or nuclear copies of mitochondrial DNA (numts) as a possible explanation (Buhay, 2009), we are confident that the unexpected genetic diversity is not an artifact, but a real characteristic of the population under study that needs explaining.

DISCUSSION

The morphological differentiation among the Glabroserolis and Atlantoserolis in our study is mirrored in the differentiation of their mitochondrial and nuclear DNA markers. More surprising, however, is the fact that all three markers (16S, COI, and 18S) identify two genetically highly differentiated groups among the Atlantoserolis specimens from DIVA-3 (Fig. 28). Recent studies have shown that the presence or absence of the so-called barcoding gap is sensitive to sampling error, both with respect to the total sample size as well as the geographical coverage of the sampling, compared with the total distribution of the species (Bergsten et al., 2012). Although the total sample size of Atlantoserolis included in our study may be on the high side of what is typically available for epibenthic macrofauna from the deep-sea (Brandt et al., 2007), the fact that most of our samples originate from a narrowly defined geographic area precludes a conclusive statement about the absence of intermediary values of genetic differentiation (i.e. presence of a barcoding gap); however, A. vemae from the North Atlantic (redescribed by Hessler, 1970; Figs 23–27) differs in having a slightly shorter second, compared with first, pleopodal epimer in females, but this is not a character allowing the description of a new species. Unfortunately, because of formalin fixation, no DNA could be extracted from the Hessler material of the USNM. Molecular genetic studies of freshly collected material of A. vemae from this site from the North Atlantic are needed in order to clarify whether the material that Hessler (1970) redescribed is in fact A. vemae, or whether it is a new species.

The magnitude of genetic differentiation, the strictly bimodal distribution of pairwise genetic differentiation values, the agreement among three different genes (nuclear as well as mitochondrial), and the persistence of two distinct gene pools in sympathy are easier to explain assuming the presence of two reproductively isolated species within the DIVA-3 A. vemae specimens, which cannot (yet) be discriminated morphologically, than assuming a single, genetically strongly differentiated species.

The dispersal abilities of deep-sea isopod species might be strongly influenced by geographic barriers and oceanographic conditions (Brix & Svavarsson, 2010), depending on their swimming abilities (Schnurr et al., 2013). It has recently been shown that at least some strictly benthic isopods were capable of long-distance dispersal (Leese et al., 2010; Brix et al., 2011; Riehl & Kaiser, 2012), although they were brooders with limited dispersal abilities. Atlantoserolis vemae was first recorded by Menzies (1962) from the South Atlantic, then by Hessler (1969, 1970) from the North Atlantic. Hessler (1969) included drawings of all developmental stages of a complete growth series and counted the number of each state found at WHOI station no. 70. At present, nominal A. vemae occurs with a pan-Atlantic distribution, but is often absent from samples between the North and the South Atlantic populations (Fig. 1). The geography of the South Atlantic has been reviewed by Wefer et al. (1996). The South Atlantic is fed by water from the North Atlantic at mid-depth ranges, and receives its densest water from the Weddell Sea (Reid, 1996). The Argentine Basin is 6212 m deep and influenced by Antarctic bottom water from the Southern Ocean Weddell Sea, eastwards it is framed by the Mid-Atlantic Ridge (MAR), and westwards by the South American shelf (Reid, 1996). The Rio Grande Rise separates it from the Brazilian Basin in the north, which reaches a maximum depth of 6537 m, and is characterized by soft substrate and a small number of trenches connecting to neighbouring deep-sea basins (Hogg et al., 1996). The circulation in the deep Brazilian Basin has been described by Hogg et al., 1996).

To the south, there is a boundary between the South Atlantic and the Southern Ocean formed by the Drake Passage, with current velocities of the Antarctic Circumpolar Current of up to 130 Sv (Webb, 1996). Most studies, however, focused on large-scale observations of geology and oceanography of the Atlantic Ocean, rather than the biology of species (Wefer et al., 1996; Thistle, 2003); however, if the interaction of water masses and currents allow A. vemae pan-Atlantic dispersal, this would have most likely occurred from the south, supported by the Antarctic bottom water spreading north into the South and North Atlantic (Brandt et al., 2007). We suggest – although we cannot yet prove – that the North Atlantic A. vemae specimens described by Hessler are most probably another species, because of the geographic distance and the reduced gene flow as well as known cryptic speciation within Serolidae (Held, 2003; Leese et al., 2008; but see Leese et al., 2010). Moreover, we already observed differences in the COI gene sequences in the South Atlantic material and the absence of intermediate samples connecting both populations, indicating potential continuing speciation processes. Unfortunately, it was very difficult to identify any morphological differences.
Such problems, however, are also reported for other deep-sea isopod families like Haploniscidae (Brökeland, 2010; Brix et al., 2011) and Desmosomatidae (Brix et al., 2014; Brix, Savarsson & Leese, 2014), which show high intraspecific genetic variability (7.5% in 16S and 12.2% in COI) within one morphospecies. In contrast, another desmosomatid species shows high genetic similarity among specimens from the Brazilian Basin and the Guinea Basin, suggesting continuing gene flow across the Mid-Atlantic Ridge (Brix et al., 2014).

The unusual inheritance of mitochondria can, under certain circumstances, mimic strong genetic differentiation, and can incorrectly lead to the belief in the presence of two or more species when there is really only one. Some bivalve molluscs are known to house co-existing and strongly differentiated mitochondrial genomes in their cells, which are inherited separately in both sexes, a phenomenon called doubly uniparental inheritance (Passamonti & Ghiselli, 2009). Both of the operational taxonomic units (OTUs) of A. vemae that we describe here contain males and females, and are furthermore characterized in an identical composition by the nuclear 18S gene; hence, we can exclude doubly uniparental inheritance as an explanation of our observation.

The co-existence of two genetic clusters (mitochondrial as well as nuclear) in which the levels of differentiation exceed the expectations for intraspecific differentiation is even more surprising considering that in our genetic approach we studied material originating exclusively from a single station (one EBS deployment); however, we were unable to identify diagnostic characters in the morphology of the two OTUs, despite the fact that all specimens were only minimally damaged during DNA extraction and were carefully examined in their morphology. We conclude that the two OTUs therefore either represent a single species, which for unknown reasons is clearly differentiated, or that the two OTUs may be two species, which are genuinely cryptic rather than pseudo-cryptic (Janosik & Halanych, 2010). Although there may be good reasons to flag potentially new species to attract further attention (Wägele, 1994), we do not propose the formal erection of a new species here because it can currently only be reliably identified a posteriori by DNA sequencing.

ACKNOWLEDGEMENTS

We are grateful to the crew of RV Meteor and to all pickers and sorters at sea. The sorting of the DIVA-3 material took place in the laboratories of the DZMB in Hamburg. Thanks go to all technicians who worked on the DZMB HH specimens for providing the data from the sorting process (DZMB database). Maksymilian Prondzynski spent a lot of energy taking the SEM pictures during a practical course in 2011. Karen Jeskulke is thanked for all her efforts in the laboratory of the University of Hamburg. Amy Driskell and Andrea Ormos supported us in the barcoding approach during our working visits at the Smithsonian after the DIVA-3 expedition. Financial support from CeDAMar for the ‘DNA barcoding deep-sea Isopoda’ project is highly appreciated. The curators of the AMNH (Marc Siddal) and USNM (Chad Walter) are thanked for providing type material. We would like to thank Ron Etter and his lab for looking for ethanol-fixed North Atlantic specimens from revisited Hessler stations. Two anonymous referees improved the quality of our article.

REFERENCES

DEEP-SEA SEROLIDAE

Moreira PS. 1977. Crustacea Isopoda collected during the OCS ‘Almirante Saldanha’ cruises in Southern South America, II.