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Abstract

The composition and abundance of algal pigments provide information on characteris-
tics of a phytoplankton community in respect to its photoacclimation, overall biomass,
and taxonomic composition. Particularly, these pigments play a major role in photopro-
tection and in the light-driven part of photosynthesis. Most phytoplankton pigments can5

be measured by High Performance Liquid Chromatography (HPLC) techniques to fil-
tered water samples. This method, like others when water samples have to be analysed
in the laboratory, is time consuming and therefore only a limited number of data points
can be obtained. In order to receive information on phytoplankton pigment composition
with a higher temporal and spatial resolution, we have developed a method to assess10

pigment concentrations from continuous optical measurements. The method applies
an Empirical Orthogonal Function (EOF) analysis to remote sensing reflectance data
derived from ship-based hyper-spectral underwater radiometric and from multispec-
tral satellite data (using the MERIS Polymer product developed by Steinmetz et al.,
2011) measured in the Eastern Tropical Atlantic. Subsequently we developed statisti-15

cally linear models with measured (collocated) pigment concentrations as the response
variable and EOF loadings as predictor variables. The model results, show that surface
concentrations of a suite of pigments and pigment groups can be well predicted from
the ship-based reflectance measurements, even when only a multi-spectral resolution
is chosen (i.e. eight bands similar to those used by MERIS). Based on the MERIS20

reflectance data, concentrations of total and monovinyl chlorophyll a and the groups
of photoprotective and photosynthetic carotenoids can be predicted with high quality.
The fitted statistical model constructed on the satellite reflectance data as input was
applied to one month of MERIS Polymer data to predict the concentration of those pig-
ment groups for the whole Eastern Tropical Atlantic area. Bootstrapping explorations of25

cross-validation error indicate that the method can produce reliable predictions with rel-
atively small data sets (e.g., <50 collocated values of reflectance and pigment concen-
tration). The method allows for the derivation of time series from continuous reflectance
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data of various pigment groups at various regions, which can be used to study variabil-
ity and change of phytoplankton composition and photo-physiology.

1 Introduction

Optical measurements taken from various platforms have been successfully used to
determine the total chlorophyll a (TChl a) concentration, e.g. see summary by Mc-5

Clain (2009). Those measurements can be taken continuously and, thereby, estimate
TChl a concentration at a much higher temporal and spatial resolution than it is pos-
sible from chemical measurements in the laboratory, e.g., by High Performance Liquid
Chromatography (HPLC) analysis of discrete water samples. Chl a is the major pig-
ment in all phytoplankton species and is often used as an indicator of phytoplankton10

biomass. When pigments are measured by HPLC, TChl a is defined as the sum of
monovinyl Chl a (MVChl a), divinyl Chl a (DVChl a) and chlorophyllide a (which is
mainly formed as artefact of the former two during the extraction process and therefore
included in the calculation). DVChl a exists only in the prokaryotic genus Prochlorococ-
cus. MVChl a is the Chl a pigment for all other phytoplankton (other cyanobacteria and15

eukaryotes). Besides Chl a there are many other pigments in phytoplankton that are
either involved in light harvesting (such as chlorophyll b (Chl b), chlorophyll c (Chl c)
and several carotenoids, called photosynthetic carotenoids (PSC)), or protecting Chl a
and other sensitive pigments from photodamage (photoprotective carotenoids, PPC).
Some pigments, e.g., zeaxanthin (Zea) in cyanobacteria, only occur in certain phy-20

toplankton groups and are used as marker pigments to identify them (e.g., via the
program CHEMTAX developed by Mackey et al., 1996).

When analysing biogeochemical fluxes in the oceans, however, it is inadequate to
consider phytoplankton as a single variable (i.e. TChl a) because various groups have
different roles in the biogeochemical processes (such as carbon fixation and export, ni-25

trogen fixation, and silicon uptake). Their overall biomass and primary production is not
well correlated to their TChl a concentration due to variations in pigment concentration
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in response to several factors (e.g., light, temperature, and nutrients). The knowledge
of the distribution of different phytoplankton pigments gives insight into phytoplankton
composition, overall light absorption, and physiological state.

Several researchers lately have investigated the potential to derive pigments other
than TChl a from continuous optical data which have the potential to deliver a data5

set with much better spatial and temporal coverage than obtained with analysing water
samples. Chase et al. (2013) decomposed a large global data set of hyperspectral par-
ticulate absorption measurements into Gaussian function components and assessed
the magnitude of specific Gaussian functions to the absorption by specific pigments
or pigment groups. The method provided robust results for obtaining concentrations10

of TChl a, TChl b (sum of different types of Chl b), TChl c (sum of different types of
Chl c), PSC, PPC and PE (phycoerythrine). Organelli et al. (2013) used a multivariate
approach applied to fourth derivate spectra of phytoplankton or particulate absorption
(aph and ap, respectively) data to retrieve TChl a, the total concentrations of seven
diagnostic pigments and three phytoplankton size classes. However, ap and aph are in-15

herent optical properties (IOP) which cannot be determined from satellite ocean colour
measurements directly where only after successful atmospheric correction water leav-
ing reflectance (ρw), an apparent optical property (AOP), is derived. ρw is not only
related to phytoplankton absorption and therefore the imprints of different types of pig-
ments, which in addition correlate in most parts of the spectrum among each other, are20

masked not only by scattering and absorption of other water constituents and water
itself but also by changing radiance distribution in response to varying environmental
conditions, e.g., observation geometry, surface waves, atmospheric conditions, etc..

Pan et al. (2010) developed empirical algorithms based on reflectance ratios to ap-
proximate key phytoplankton pigment concentrations. The band ratio algorithms were25

developed from underwater radiometric measurements collocated to pigment data taken
at the US northeast coast and were successful in deriving the concentration of TChl a,
TChl b, TChl c and nine different carotenoids. However, such band ratio algorithms
require a very large data base (>400 collocations with satellite data) from a certain
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region to derive robust results. Pan et al. (2013) later described that the algorithm had
to be adapted by modifying the pigment specific coefficients based on a regional spe-
cific data set.

Craig et al. (2012) developed local models to estimate TChl a and aph at different
wavelengths from hyperspectral in situ measurements of remote sensing reflectance5

(RRS(λ)) in an optically complex water body. The models were based on empirical
orthogonal functions (EOF) analysis of normalized RRS(λ) spectra and subsequently
linear fitting of measured TChl a concentration and aph(λ), respectively, as response
variables to EOF loadings as predictor variables. Taylor et al. (2013) showed that the
method could be used similarly to derive PE concentration from underwater upwelling10

radiance spectra (Lu(λ)) which enabled continuous profile predictions of PE concentra-
tions. The present study aims to use the spectral information contained in reflectance
data to derive the optical signature of different pigments by applying an automatic and
generic technique, and with an additional focus on evaluating performance as a func-
tion of sample size. The EOF analysis is applied to RRS and to ρwN (i.e. normalized15

ρw just above suface) data measured in the field and by satellite sensors, respectively,
in the Atlantic Ocean in order to predict the concentrations of several phytoplankton
pigments and pigment groups. In addition, the application of our statistical method to
study the large scale distribution and photo-physiology of phytoplankton based on var-
ious pigments concentrations is investigated.20

2 Material and methods

Two sets of optical and pigment data from the Atlantic Ocean were used in the analysis.
A first model set-up used a data set which included only optical measurements taken
in situ (as depth profiles) and collocated surface pigment data collected during the
transatlantic RV Polarstern cruises ANT XXIVI/4, ANTXXV/1 and ANTXXVI74. In the25

following, we call this data set “field data set”. For a second data set, the “satellite-based
data set”, we considered water reflectance measurements from the satellite sensor
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MERIS collocated to pigment data from various researchers in the tropical Atlantic
Ocean.

2.1 Field data set

Samples for the field data set were collected during three RV Polarstern cruises: the
expeditions ANTXXIV/4 in April/May 2008 and ANTXXVI/4 in April/May 2010 followed5

a South-to-North transect through the Atlantic Ocean from Punta Arenas (Chile) to
Bremerhaven (Germany); ANTXXV/1 in November 2008 followed a North-to-South
transect through the eastern Atlantic Ocean from Bremerhaven to Cape Town (South
Africa) (see Fig. 1). Sampling was generally conducted at noon local time and involved
CTD casts with water samplers as well as below-water radiance and irradiance and10

above-water irradiance measurements. Water samples from surface water (<10 m) for
pigment analysis and for PE analysis were filtered on GF/F filters and on 0.4 µm poly-
carbonate filters, respectively. Filters were immediately shock-frozen in liquid nitrogen
and stored at −80 ◦C until further analysis at the home laboratories at Alfred-Wegener-
Institute Helmholtz Centre of Polar and Marine Research (AWI).15

2.1.1 Pigment data

The composition of pigments which are soluble in organic solvents was analysed
by HPLC following the method by Barlow et al. (1997) adjusted to our temperature-
controlled instruments as detailed in Taylor et al. (2011). We determined the list of
pigments shown in Table 1 of Taylor et al. (2011) and applied the method by Aiken et20

al. (2009) for quality control of the pigment data. HPLC data for ANTXXV/1 were al-
ready published in Taylor et al. (2011) and are available from PANGAEA (doi.pangaea.
de/10.1594/PANGAEA.819070). The relative concentration of PE was taken from the
data set published for all three cruises in PANGAEA (doi.pangaea.de/10.1594/PANGAEA.
819624) and analysed in Taylor et al. (2013). As outlined in Taylor et al. (2013), the PE25
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concentration is expressed as a relative value, while all other pigments concentrations
are directly measured values.

2.1.2 Reflectance data field data set

We used RRS(λ) data obtained for all three cruises as AOP input data. RRS data of AN-
TXXV/1 were already published in Taylor et al. (2011) and are available from PANGAEA5

(doi.pangaea.de/10.1594/PANGAEA.819506). For the other two cruises we applied the
same technique and instrumentation as in Taylor et al. (2011) to derive the RRS spec-
trum at each station. To test the influence of spectral resolution of AOPs, the hyper-
spectral field RRS(λ) data were reduced to the multispectral bands of MERIS (412,
443, 490, 510, 560, 620, 665 and 681 nm) by taking the integral over all wavebands10

within one band (±10 nm around the center wavelength; except for 681 nm±7.5 nm
was used).

To allow direct comparisons to MERIS normalized water-leaving reflectance, from
the RRS(λ) the water-leaving reflectance, ρw_in situ, was calculated as

ρw_insitu(λ) = π ·RRS(λ). (1)15

ρw_insitu(λ) was then normalized to the sun and sensor position at nadir (ρwN(λ)) accord-
ing to (Barker et al., 2008) using the solar zenith angle at observation and corrections
for the bidirectional structure of the light field (lookup tables for f /Q and R factors) as
provided in Morel and Gentili (1993, 1996) and Morel et al. (1995). The later were only20

available for the first seven wavebands but not for 681 nm.

2.2 Satellite-based data set

A large data set of phytoplankton pigment data has been compiled (for more details
on the data set see Supplement Table S1). The pigment concentrations had been de-
termined from the sea surface (<10 m) with HPLC by several investigators within the25

area of 35◦ N to 10◦ S and 42◦ W to 3◦ E during the MERIS/ENVISAT mission lifetime
2080
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(2002–2012). A large part of those data are publicly available from the SEABASS and
BODC databases. The other part consists of pigment data from the field data set within
this area, including additional data from stations where no radiometric measurements
had been taken, and from four other cruises: pigment data from the RV Maria S. Merian
cruise MSM-18/3 were analysed by AWI as described above in Sect. 2.1.1; those from5

two RV Polarstern cruises (ANTXXIII/1 and ANTXXIV/1) were analysed by HZG follow-
ing Zapata et al. (2000); data of the Bonus Good Hope (BGH) cruise, conducted by the
Laboratoire d’Oceanographie de Villefranche, (LOV), have been acquired as outlined
in Speich et al. (2008) and analysed following the method by Ras et al. (2008).

As AOP input data we used the MERIS Polymer level-2 ρwN(λ) product. The Poly-10

mer algorithm (for details see Steinmetz et al., 2011) provides a powerful atmospheric
correction. It is an iterative spectral matching method over the whole available sensor
spectrum and uses two decoupled models: first, the water reflectance is modelled using
as two parameters the Chl a concentration and the particle backscattering coefficient.
Second, the reflectance of the atmosphere including aerosols and contamination by15

sun-glint is simplified by using an analytical expression, that can account for multiple
interactions between molecular and aerosol scatterings (and glitter) without reference
to a specific aerosol model. Hence, it allows to retrieve large amounts of MERIS ob-
servations in sun-glint, thin clouds or heavy aerosol plumes contaminated conditions
which could not be treated correctly by standard atmospheric correction schemes ex-20

trapolating from the near infra-red. MERIS Polymer products thus improve the spatial
coverage by almost a factor of two and have been proven successful for retrieving
MERIS Ocean Colour products: Polymer was selected as the MERIS processor for at-
mospheric correction in the frame of the Ocean Colour Climate Change Initiative after
an extensive validation and inter-comparison with other atmospheric correction algo-25

rithms in which each algorithm’s uncertainty was assessed (Müller and Krasemann,
2012). However, still uncertainties probably result from the different size of foot-prints
(1 km by 1 km) from the satellite data and about 20 cm by 20 cm sampled area for the
water sample.
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Matchups between pigment data and MERIS Polymer ρwN(λ) and TChl a products
were determined according to the MERMAID data base as 1×1 (within the MERIS
pixel), as 3×3 and 5×5 pixels around the field observation (see Barker et al., 2008). For
the 3×3 and 5×5 MERIS pixel match-ups the mean ρwN(λ) and TChl a concentrations
were calculated. Then the 1×1, mean 3×3 and mean 5×5 MERIS ρwN(λ) matchup5

data were used for deriving predicted (modelled) pigment concentrations, as outlined
in Sect. 2.3. The mean Polymer TChl a data were validated as outlined in Sect. 2.4.

2.3 Statistical methods to retrieve pigment concentrations from reflectance

Different combinations of collocated pigment and AOP data sets were used for the
construction of the statistical models. For the field data set, we used to set-ups of10

RRS(λ) data with collocated surface pigment data: RRS(λ) data in hyperspectral (1 nm
resolved, “hyper_RRS”) and in MERIS band resolution (“band_RRS”). The satellite-
based ρwNdata set (“satellite_ρwN”) was run for the 1×1, the 3×3 and the 5×5 col-
located data sets containing pigments and MERIS Polymer ρwN(λ)data. The following
pigments were included in the construction of all different statistical models (further ex-15

plained below): MVChl a, DVChl a, chlorophyllide a, MChlb, DVChl b, Chl c1/2, (Chl c
type 1 and 2), Chl c3 (Chl c type 3), Hex (19-hexanoyl-fucoxanthin), But (19-butanoyl-
fucoxanthin), Allo (alloxanthin), Diadino (diadinoxanthin), Diato (diatoxanthin), Fuco (fu-
coxanthin), Lut (lutein), Peri (peridinin), Prasino (prasinoxanthin), Viola (violaxanthin),
Zea (zeaxanthin), α-caroten, β-caroten. In addition, the concentrations of different pig-20

ment groups were considered, such as the sum concentration of α- and β-caroten
(Caro), of MVChl a, DVChl a and chlorophyllide a (TChl a), of MVChl b and DVChl b
(TChl b), of all pheopigments (TPheo) and according to Hooker et al. (2005) and Roy
et al. (2011) the photosynthetically active carotenoids (PSC: Fuco, 19BF, 19HF, Peri),
and the photoprotective carotenoids (PPC: Allo, Diadino, Diato, Viola, Lut, Zea, Caro).25

Also PE, although measured by a different technique, was included since it also had
a major impact on the optical Lu(λ) data of the field data set (see Taylor et al., 2013).
Chlorophyllide a, Neo, and PE were only considered in the models using the field data
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set because for some pigment samples of the data set collocated to the satellite data,
these pigments have not been analysed.

2.3.1 Empirical Orthogonal Function analysis

Following Taylor et al. (2013), the spectral data were subjected to an Empirical Orthog-
onal Function (EOF) analysis, also known as “Principal Component Analysis” (PCA),5

in order to reduce the high dimensionality of the data and derive the dominant signals
(“modes”) that best describe variance within the data set. In addition to dimension re-
duction of spectral data, the use of EOF modes in statistical model building also avoids
problems associated with multicollinearity amongst the original predictor variables. All
calculations in the following where done with the statistical computing software “R” (R10

Development Core Team, 2013).
Spectral data were contained in a data matrix X, of dimensions M sample rows by N

reflectance band columns. Spectral samples were collocated to the respective pigment
data set Y, of dimensions M sample rows by N pigment columns. While hyper_RRS
data consisted of 350–700 (N = 351) or 380 to 700 nm (N = 321) bands, band_RRS15

and the satellite_ρwN data consisted of the eight MERIS visual wavebands (N = 8). As
in Taylor et al. (2013), spectral datasets X were standardized for each sample row by
first subtracting the mean spectral value (centering) followed by division by the spectral
standard deviation (scaling), which focused the analysis on the spectral shape rather
than the magnitude. The standardized matrix X was then subjected to Singular Value20

Decomposition (SVD) in order to derive EOF modes:

X = UΣVT , xi j =
∑
k=l ,N

uikσkvkj , (2)

where V is a N×N matrix containing the EOFs (spectral pattern), U is an M×N matrix
containing the principal components (PCs), Σ is an N×N matrix containing the singular25

values on the diagonal, and k is the EOF mode index (length N). Only EOFs≤min(M,
N) will carry information. This notation differs slightly from that presented in Taylor et
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al. (2013), where a covariance matrix of the dataset was subjected to Eigen decompo-
sition with subsequent projection of data onto EOFs to derive PCs. The results of both
approaches are similar, except that PCs U derived via SVD are unitary and Σ contains
standard deviation rather than variance. The SVD method is presented here due to its
more straightforward notation; EOFs and PCs are determined in a single step whereas5

the alternate Eigen decomposition is a three-step calculation.

2.3.2 Log transformed general linear model

A general linear model was used to predict log-transformed pigment concentrations
of each pigment yp based on a subset of PCs, U, as covariates. The linear model
uses log-transformed pigment concentrations. Since only positive, non-zero values are10

permissible with this transformation, a small value was added to all concentrations
(0.00001 mg m−3) to allow for the inclusion of samples where pigment concentrations
were essentially zero or below the detection limit. A truncated subset of PCs was used
as defined by the magnitude of their standard deviation. PCs with standard deviations
of ≤0.0001 times the standard deviation of the first component were omitted. The15

resulting multiple regression had the form:

log(yp) = a+b1u1 +b2u2 + · · ·++bnun, (3)

where log(yp) is the natural log-transformed concentration of pigment p, e1,2,...nu1,2,...n
are the leading n PC scores from U, a is the intercept, and b1,2,...nb1,2,...n are the re-20

gression coefficients. A bidirectional stepwise routine was used to search for smaller
multiple regression models based on fewer predictor terms. Best linear models were
selected through minimization of the Akaike information criterion (AIC). Once the best
linear model was determined, the relative importance of included terms was defined by
the change in AIC (∆AIC) following each term’s removal.25

Since the range of concentration varies a lot among the different pigments, we calcu-
lated mainly relative error statistics. According to the GlobColour full validation report
(ACRI, 2007), the coefficient of determination (R2), the slope (S) and intercept (I) of the
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linear regression based on the log-scaled predicted (log(yp)) versus the log-scaled ob-
served (log(yo)) pigment concentration data, and the root mean square error (RMSE),
the mean percent difference (MPD), the percent bias (PB) and the median percent
difference (MDPD) for the non-log transformed data were determined. The following
equations for these statistics have been used:5

R2 = 1−

N∑
i=1

[
log(ypi )− log(yoi )

]2

N∑
i=1

[
log(yoi )− log

(
y−

o

)]2
, (4)

with y−
o as the mean value of the observed specific pigment concentration and i iden-

tifying the specific sample pair.

RMSE =

√√√√ 1
N

N∑
i=1

(
ypi − yoi

)2
(5)10

MPD =
100
N

N∑
i=1

∣∣(ypi − yoi
)∣∣/(y

oi ) [%] (6)

PB =
100
N

N∑
i=1

(
ypi − yoi

)
/(y

oi ) [%] (7)

MDPD = Median of
[∣∣(ypi − yoi

)∣∣/(y
oi ) · 100

]
i = 1,N [%] . (8)

2.3.3 Model prediction error15

In addition to the statistics performed for each pigment linear model (Sect. 2.3.2), we
performed a cross validation of the linear model fitting in order to better test the robust-
ness of the models’ prediction error. Data was split into two groups: the first part of the
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data was used for model fitting, while the second part was used for prediction valida-
tion. According to Craig et al. (2012), we assessed the number of observations required
to achieve adequate predictions by the pigment linear models using the variable jack-
knife procedure of Wu (1986). So the data splitting for the cross validation procedure
was varied as follows, with n = total number of samples, tp=number of training points5

and vp=number of points used for validation:

tp = n ·d , with d = 0.1, 0.15, 0.2, . . . , 0.9 (9)

vp = n (1−d ). (10)

Since the number of permutations for data splitting definitely is restricted by com-10

puting time, the procedure was run for 500 permutations, similar to what was recom-
mended by Craig et al. (2012). Such a high number of permutations rules out that the
model error is assessed based on a spatially or temporally biased data set.

Each cross validation procedure was as follows:

1. For 500 permutations, do steps 2–9.15

2. Randomly select n ·d of collocated samples to include in training sets Xtrain and
Ytrain for spectra and pigment data, respectively. Remaining n(1−d ) of samples
are allocated to the validation sets Xvalid and Yvalid.

3. Standardize Xtrain and perform EOF following Eq. (2) to obtain Utrain, Σtrain, and
Vtrain.20

4. For each pigment concentration yvalid
p of Yvalid do steps 5–9.

5. Fit linear model to log-transformed pigment concentrations using selected Utrain

as in Eq. (3).

log
(
y train

p

)
= a+b1u

train
1 +b2u

train
2 + · · ·++bnu

train
n (11)

25
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6. Perform bidirectional stepwise search for smaller linear model.

7. Standardize validation set and project Xvalid onto the EOFs Vtrain and the inverse

of singular values Σtrain−1

to derive their PCs Uvalid:

Uvalid = Xvalid ·Vtrain ·Σtrain−1

log
(
yvalid

p

)
= a+b1u

valid
1 +b2u

valid
2 + · · ·++bnu

valid
n (12)5

8. Record pairs of observed and predicted validation pigment concentrations yo and
yvalid

p in a new object for all permutations for later calculation of prediction error.

For each permutation the R2 based on the log-scaled predicted (log
(
yvalid

p

)
) versus

the log-scaled measured (log(yp)) were derived and finally over all permutations the10

mean value, R2cv, was calculated. Prediction error was described in terms of absolute

squared difference and relative difference, (yvalid
p − yo)

2
and (yvalid

p −yo)/yo, respectively.
Mean and median relative difference (MPDcv and MDPDcv, respectively) and the root
mean square absolute difference (RMSEcv) over all permutation were determined, as
follows:15

MPDcv =
1
N

N∑
i=1

[
(yvalid

p − yo)/yo

]
(13)

RMSEcv =

√√√√ 1
N

N∑
i=1

[
yvalid

p − yo

]2
(14)

MDPDcv = medianvalueof

ypred
i ,p − yvalid

i ,p

yvalid
i ,p

·100

 , i = 1,N[%]. (15)
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2.3.4 Pigment concentration predictions with MERIS reflectance data

In order to predict pigment concentration from MERIS ρwN(λ) data where we did not
have corresponding pigment measurements, we projected standardized MERIS ρwN(λ)
data onto the EOF loading (V) to derive their principal components (U), which were
subsequently used for the prediction with the fitted linear model (as in Sect. 2.3.3,5

step7, Eq. 12).

2.4 Validation of MERIS Polymer products with in-situ data

MERIS 1×1 pixel matchup data and mean values of 3×3 and 5×5 pixel matchups
were validated with the in situ TChl a data of the satellite-based data set. The R2, PB,
MPD and the RMSE between the two collocated data sets were calculated, as outlined10

in the GlobColour full validation report (ACRI, 2007) and used to determine pigment
prediction full fit statistics (see Sect. 2.3.2).

3 Results and discussion

3.1 Characteristics of input data sets

Figure 1 presents the distribution of collocated pigment and reflectance measurements15

for both data sets which were used as input for the EOF analysis. The field data set with
53 collocations has been obtained in two seasons, spring and fall, in 2008 and 2010,
while the satellite-based data set consisted of 155, 150 and 135 collocated samples
from 2002 to 2012 for the 5×5, 3×3 and 1×1 pixel collocation, respectively, cover-
ing all months except January, March and December. Fig. 2 shows the original and20

standardized spectra of the field and satellite-based data sets. Considering the con-
version between RRS(λ) to ρwN(λ) data by a factor of π, magnitude and shape of the
original and standardized spectra are similar for the band resolved data sets, except
that the standardized satellite_ρwN data set contains only one spectrum with maximum
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reflectance in the green, at 560 nm, while the standardized field data set contains four
spectra with maxima at 510 nm.

The composition and range of pigments is as well similar for both data sets (as
detailed in Supplement Table S2). However, for all pigments (except for Fuco for which
it is equal, and for Zea for which it is vice versa) the collocations to the field data set5

contain higher maxima and minima than the collocations to the satellite-based data set.
The higher concentration of total pigments in the field data set may explain the small
differences in the shape of the reflectance spectra of the two (field versus satellite-
based) data sets. However, DVChl b, MVChl b, TChl b, Allo, Diato, Lut, Neo, Peri,
Viola, Pras, Chlorophyllide a and TPheo had values of 0 mg m−3 in more than 20 % of10

all stations in both data sets. Also Chl c3 had a concentration of 0 mg m−3 in one sample
collocated to the field and in over 30 % of samples collocated to the satellite-based data
set. Several pigments had occasionally (<10 %) concentrations of 0 mg m−3 in samples
collocated to the satellite-based data set: Caro, Chl c1/2, 19BF, 19HF, Zea, DVChl a,
Diadino and Fuco, the later three also for the field data sets. All other pigments not15

listed here reached in all samples concentrations higher than 0 mg m−3.

3.2 EOF analysis – shape of modes and relevance for predictions

The decomposition of the standardized spectra by EOF analysis returned nine signifi-
cant modes (EOF-1 to EOF-9) for the hyper_RRS and seven significant modes for the
band_RRS and satellite_ρwN data sets (the first four modes are presented in Fig. 3)20

given our inclusion criterion based on the explained standard deviation relative to EOF-
1 (see Sect. 2.3.2). For all data sets, the first three included modes explain over 99.8 %
of the variance for all three data sets and EOF-1 explains already between 94.5 and
96 % of the variance (Table 1).

The shapes of the first three EOF modes are very similar among all three reflectance25

data sets. They are nearly identical for the band_RRS and the satellite_ρwN data sets,
but show smoother shapes and peaks for hyper_RRS for the first two modes. Still one
has to bear in mind that although the RAMSES measurements deliver 1 nm resolved
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data, the real spectral resolution of the sensors is 3.3 nm. the hyper_RRS data. Be-
cause of the limited number of wavelengths for the two multispectral data sets, starting
from EOF-3 their peaks are clearly shifted (peak at 412 and 443 nm for EOF-3 and
EOF-4, respectively) as compared to hyper_RRS (peak at 360 and 410 nm for EOF-3
and EOF-4, respectively) where the narrow spectral resolution allows for more pre-5

cision in identifying spectral regions of higher variance. For EOF-4, the satellite_ρwN
mode is much flatter beyond 500 nm and shows no trough between 600 and 650 nm as
opposed to the EOF-4 for the two other data sets. No much similarity is seen among
the EOF-5 of the different spectra data sets, while for EOF-6 the two field data sets
are similar in the overall shape and peak positions which are in contrast shifted to-10

wards longer wavelengths for the satellite data set. EOF-7 and EOF-8 show very simi-
lar shapes for hyper_RRS and deviate from EOF-7 of the band data sets, while EOF-9
from hyper_RRS looks much more like the later ones.

The EOF analyses deliver modes of oscillation which can be interpreted as imprints
of changes in the optical properties of water constituents in the water column: Com-15

pared to the shape of spectra obtained in case-2 waters by Lubac and Loisel (2007)
and Craig et al. (2012) only our reflectance spectra taken in high TChl a waters with
mineral fraction (identified as cluster V for the ANTXXV/1 data in Taylor et al., 2011)
correspond to part of the spectra presented in those studies (e.g. class 5 in Lubac and
Loisel 2007). While all our other spectra (typical case-1-water) are not contained in the20

data set of those studies. This explains the minor differences in the shape and loading
of EOFs between their and our data set. In the following we focus the discussion on
our hyper_RRS data set results since also the Craig et al. (2012) study was based on
hyper-spectral RRS data.

Our first three EOF modes more or less correspond to the ones derived for the hy-25

perspectral case-2 reflectance data set of Craig et al. (2012). As pointed in their study,
EOF-1 is likely the signature of bulk oscillations in phytoplankton biomass concentra-
tion. However, our EOF-1 already explains much more of the variance as compared to
Craig et al. (2012) where it only accounted for 72.4 % and showed much more structure
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and a weaker exponential decrease from 400 to 550 nm. This indicates that in our open
ocean data set, the change in total attenuation is the main difference among the dif-
ferent sampled stations, which is mainly reflecting the attenuation as affected by the
total pigment concentration. Our data set was largely composed of samples from wa-
ters with lower TChl a concentration, ranging from 0.005 to 3.553 mg m−3, while in the5

study of Craig et al. (2012) it ranged from 0.584 to 18.020 mg m−3. EOF-2 superficially
resembles the oscillation in the amplitude of RRS which also is affected by overall
changes in the total absorption over broad band structures. It is strongly decreasing
from 350 to 510 nm and again increasing above 570 nm, which is connected to total
pigment and water absorption, respectively. There is a peak around 683 nm which can10

be linked to MVChl a and DVChl a fluorescence. While this peak is present in EOF-1
and EOF-2 in the Craig et al. (2012) data set, it is only apparent in EOF-2 of our data
set probably because of the lower TChl a concentrations.

EOF-3 of our data set as compared to the one of Craig et al. (2012) shows a much
steeper decrease with wavelength in the blue spectral range. These changes may re-15

flect concomitant changes of absorption by chlorophyll and non-algal particles which
are expected to be co-varying and of much lower concentration in our case-1-waters,
as the scattering by other particles than phytoplankton was much higher in the case-
2-water of Craig et al. (2012) leading to a less steep slope of this EOF mode. EOF-4
appears different in the relation of the three peaks. Similar as for EOF-2 and EOF-3,20

these differences are caused by the different composition and overall loading of water
constituents of our and their sampled stations. All higher EOF were not presented in
Craig et al. (2012) because they were not used to predict TChl a from RRS data, as it
was the case for our TChl a (and MVChl a) linear model predictions (Sect. 3.3.3). EOF
modes higher than four were probably reflecting imprints of specific pigment groups or25

pigments, as indicated by the results of the ∆AIC values and further pointed out in the
end of the next section (Sect. 3.3.3).

2091

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/11/2073/2014/osd-11-2073-2014-print.pdf
http://www.ocean-sci-discuss.net/11/2073/2014/osd-11-2073-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
11, 2073–2117, 2014

Predicting different
pigments from
remote sensing

reflectances

A. Bracher et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3.3 Pigment prediction by linear models

3.3.1 Field data set linear models

All pigments which were apparent in all samples of the field data set were well pre-
dicted by linear models based on hyperspectral (hyper_RRS) or the reduced eight band
(band_RRS) resolution. Correlations between predicted and observed pigment con-5

centrations were based on a significance level of p < 0.0001 and cross validation statis-
tics reached reasonable quality with R2cv ≥ 0.5, MDPDcv≤45 % and MPDcv≤60 %
(Table 2a, upper part). For some pigments (TChl a, MVChl a, Hex, PSC) EOFs based
on 380 to 700 nm produced much better linear model results using hyper_RRS data
than based on 350 to 700 nm. Plots of observed versus predicted values for the full10

data set of pigments TChl a, PSC, PPC, Hex and Zea are shown in Fig. 4. Lower qual-
ity for one statistical parameter for both linear models was reached for Zea (R2cv 0.31
and 0.27), But (MPDcv 81 and 95 %) and for two parameters for PE (MDPDcv 65 and
67 %, MPDcv 139 and 156 %).

For all other pigments, predictions were of low quality (results not shown), demon-15

strating that the linear model approach does not produce robust predictions as soon
as a pigment is not present (i.e., 0 mg m−3) in every sample. The replacement of con-
centration of 0 mg m−3 with 0.00001 mg m−3 for specific pigments did not enable robust
linear model construction and produced large errors, especially for the cross validation
statistical parameters. We re-ran the predictions for specific pigments where only a few20

samples (<10 %) had concentrations of 0 mg m−3, as it was the case for DVChl a, Fuco,
Diadino and Chl c3 (see Supplement Table S2). In those specific linear model runs we
only included as input data the data points where the specific pigment concentrations
were >0 mg m−3. The resulting predictions (Table 2a, lower part, and for DVChl a see
full-fit results in Fig. 4d) from using the adjusted input data for those pigments show ro-25

bust and significant cross validation results within the same quality range as for the pig-
ments which were detected in all data. No robust predictions were obtained for all other
pigments which reached in less than 80 % of all samples concentrations >0 mg m−3,
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even when in the specific linear model runs we only included as input data the data
points with specific pigment concentrations >0 mg m−3 (results not shown).

Cross validation results of well predicted pigments (Table 2a) show that, especially
regarding the R2cv and RMSEcv values, the hyper_RRS based linear models per-
form either slightly better (PPC, PSC, Chl c1/2, But, Chl c3) or much better (TChl a,5

MVChl a, Hex, Zea, Caro, PE, DVChl a, Diadino, Fuco) than reducing the data set to
eight wavelengths (band_RRS data set). Especially, RMSEcv is much lower for pig-
ment predictions where RMSEcv reaches high values (>0.10 mg m−3), i.e., for TChl a,
Fuco, MVChl a, PE, Diadino, and Hex. Considering the MDPDcv and MPDcv values
it is less clear for MVChl a, Chl c1/2, TChl a and PSC predictions. For the later the10

multispectral resolution seems to be sufficient to obtain similar robust linear models.
TChl a (MVChl a in line with that) and PSC are dominating the overall phytoplankton
pigment composition and absorption. TChl a has been shown to be well retrieved by
band-ratio algorithms for the main phytoplankton biomass indicator (e.g. see Brewin
et al., 2014). For pigments which are very similar in their spectral range, such as But,15

Hex and Fuco, the hyperspectral resolution of the linear models provides much more
robust pigment predictions (Table 2a). The hyper_RRS linear models also produced
better predictions for DVChl a, Zea, Diadino and PPC where the specific linear models
require more than the first seven EOF modes (see Sect. 3.3.3). These are not available
using the multispectral resolution of RRS data.20

3.3.2 Satellite-based data set linear models

Results for the models predicting pigment concentration from the satellite-based data
set were very similar when using 1×1, 3×3 or 5×5 collocated MERIS ρwN data. De-
viations were within 1 to 3 % for all statistical parameters. R2cv values were best in all
cases for well predicted pigment concentrations in the 1×1 collocations, while MPDcv25

was best in the 3×3 collocations. For simplicity, in the following we are presenting and
discussing the results of the 1×1 collocated reflectance data only.
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In line with field data linear model results, pigment groups and pigments which
reached in every sample concentrations >0 mg m−3 (MVChl a, TChl a, PSC and PPC;
the full-fit linear model results are shown in Fig. 5a–c) were well predicted with simi-
lar cross validation statistics values using the satellite_ρwN data set (Table 2b, upper
part). Also good predictions for some pigments (DVChl a, Zea, Diadino, Hex, But, Fuco5

and Chl c1/2) could be obtained by re-running the linear model analysis by excluding

collocations with respective pigment concentrations of 0 mg m−3 (Table 2b, lower part).
For DVChl a, Hex and Zea exemplarily results of the full-fit linear model are shown
in Fig. 5d–f, respectively. Though, some of these pigments show only medium quality
for one cross validation statistical parameter (lower R2cv for DVChl a and Zea, higher10

MPDcv for Fuco, Chl c1/2 and Diadino). Similar to the field data linear models, no ro-
bust predictions were obtained for all other pigments which reached in less than 80 %
of all samples concentrations >0 mg m−3, even when only data points with specific
pigment concentrations >0 mg m−3 were included (results not shown).

3.3.3 EOF modes relevant for pigment predictions15

Results of the ∆AIC showing the significance of each EOF mode for the main pigment
prediction linear models are presented in Table 3. For the hyper_RRS data set, the
prediction linear models used EOF-2 and EOF-3 for all pigments. EOF-2 was the most
relevant in the respective models for all pigment prediction, except for Zea and DVChl a
were EOF-3 was the most important and closely followed by several other EOF modes.20

For all other well-predicted pigments, EOF-3 followed EOF-2 by importance, except for
Chl c3 (EOF-4) and for PE (EOF-1). Besides PE, EOF-1 only was used (with medium
importance) for But, DVChl a and Zea linear models.

As discussed Sect. 3.2, EOF-2 is reflecting the optical imprint of all phytoplankton
pigments. The high ∆AIC value of EOF-2 for most pigments’ linear models is prob-25

ably caused by that the concentration of these specific pigments and most phyto-
plankton groups increase when TChl a increases. In contrast to that, cyanobacteria
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and especially its subgroup Prochlorococcus, containing the marker pigments Zea and
DVChl a, respectively, are the most abundant phytoplankton under low TChl a con-
centrations. This has been manifested in the abundance-based algorithms to retrieve
picoplankton from TChl a data (Uitz et al., 2006; Hirata et al., 2011). This may explain
why predictions of those marker pigments by our linear models show lower ∆AIC for5

EOF-2 and require several different EOF modes in their linear models.
For DVChl a all nine EOF-9 and for Zea EOF-1 to EOF-4 and EOF-5 to EOF-8

were incorporated in their respective linear model. As in Craig et al. (2012), EOF-2 to
EOF-4 were relevant for our hyper_RRS based TChl a and MVChl a predictions. EOF
models developed by Taylor et al. (2013) to predict PE concentrations based on Lu10

data required the first four EOF modes, while our PE prediction based on RRS data
required the first three EOFs only. For all other pigments, also the higher EOFs were
necessary for robust predictions.

Similarly to the hyper_RRS linear models, the two multispectral linear models also
showed EOF-2 to be the most important predictor for specific pigment models, ex-15

cept for DVChl a (both models) and Zea (only band_RRS). However, compared to the
hyper_RRS linear models, much more EOF modes from the multispectral data were
needed for all specific pigment models.

3.4 Number of data points to construct robust models

Our presented linear models to predict specific pigment or pigment group concentration20

are calibrated for an ocean colour data set of a specific region with coincident pigment
measurements. Results of the variable jack-knife procedure indicate that the selection
of minimal training points to set up a robust linear model for predictions varies among
pigments and pigment groups and also among all three statistical parameters: the ratio
of R2cv to R2 (R2cv/R2), the ratio of MPDcv to MPD (MPDcv/MPD) and RMSEcv,25

shown exemplarily for predicting TChl a, PSC, PPC and PE in Fig. 6. While R2/R2cv
(Fig. 6a, d) already drops below 0.8 and then decreases exponentially for PPC with
each step diminishing the number of training points below 50 for all linear models, for
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all other pigment predictions this is the case when it drops below 30 data points and
even 15 data point for the hyper_RRS PE linear model. The slope of increase in RM-
SEcv (Fig. 6c, f) varies among pigments and linear models. It is especially high for
band_RRS TChl a and satellite_ρwN PSC predictions (<45 and <70 training points,
respectively). For the other predictions, RMSEcv indicate that more than 40 and 505

training points are required for the field and satellite-based data linear models, re-
spectively. MPDcv/MPD below 1.4 indicating robust fits considering this criterion only
are obtained for all pigments above 40 training points for the satellite_ρwN (Fig. 6e)
and above 30 for the hyper_RRS data sets (Fig. 6b). Generally, we observe that the
band_RRS as compared to the hyper_RRS linear model results deteriorate faster with10

a decreasing number of samples used for training, especially for TChl a and PE. For
the set-up of linear models at least 45 to 50 training data points are required, while
for some pigments (e.g. TChl a) using the hyper_RRS data as input only 25 training
data points are necessary. Based on the results we are confident that for both, the
field and the satellite-based, data sets our number of data points used for linear model15

construction and cross validation, chosen for results presented in Sect. 3.3, had been
adequate for robust predictions. The number of collocated PE samples seems to have
been too small, especially for the multispectral resolution, for predicting robust PE con-
centrations.

3.5 Comparison to other approaches deriving pigment concentration20

Our hyper_RRS TChl a linear model results (R2 = 0.82, RMSE=0.30, R2cv= 0.77,
RMSEcv=0.41; Fig. 4 and Table 2) are comparable to results by Craig et al. (2012;
R2 = 0.84, RMSE=0.30, R2cv= 0.76, RMSEcv=0.21). Even though Craig et al. (2012)
used measurements only from one location and sampled about weekly throughout one
year, while our field data set was from a much larger region (covering 95◦ in latitudes25

and 85◦ in longitude) and sampled at two seasons in 2008 and 2010 only. In their study
the same linear model set-up was used with collocated in situ reflectance and TChl a
data sampled at Compass Buoy Station in the Bedford Basin near Halifax as input
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data. The number of collocations used for training to obtain robust results for TChl a
predictions was also similar for both studies, with more than 25 recommended for our
hyper_RRS linear model and more than 15 for the Craig et al. (2012) linear model.

Chase et al. (2013) used Gaussian functions to derive different chlorophylls, PSC
and PPC concentrations from a large global data set of hyperspectral particulate ab-5

sorption measurements. Their validation results showed MDPD values between pre-
dicted and observed concentrations of 30–36, 40–53, 49 and 51 % for TChl a, Chl_c,
PSC and PPC, respectively. Our three linear models show similar (TChl a 27–32 %) or
even much better MDPDcv values (Chl c1/2: 33–41 %, PSC: 32–42 %, PPC: 25–27 %)
which indicates that our method produces robust results, also considering the fact that10

we use a more indirect measure of pigments, an AOP (reflectance), as opposed to the
IOPs used in their study.

Pan et al. (2010) developed pigment specific band-ratio algorithms with collocated
in situ RRS(λ) and pigment measurements from the United States northeast coast.
Those algorithms are based on deriving pigment specific coefficients for third order15

polynomial functions using the band ratio of either 490 to 550 nm or 490 to 670 nm (for
SeaWiFS; for MODIS changed accordingly to MODIS bands 488 and 547 nm). Vali-
dation of results with collocated satellite (SeaWiFS and MODIS) reflectance data and
pigment concentrations showed very good quality (MPD, RMSE and R2 range from 36
to 48 %, 0.23 to 0.29 and 0.65 to 0.90, respectively, for SeaWiFS, with similar results20

for MODIS) for several pigments, among them TChl a, TChl c, Caro, Fuco, Diadino and
Zea. This method was modified to the Northern South China Sea accordingly using
globally derived relationships and locally identified links between pigment concentra-
tion and sea surface temperature (Pan et al., 2013). They obtained similar validation
results as in Pan et al. (2011). Compared to our linear model results the quality to pre-25

dict pigment concentration is of similar quality: while our results for MPDcv and R2cv
are slightly worse (42 to 50 % and 0.61 to 0.80, respectively), our results for RMSEcv
(0.06 to 0.18 mg m−3, except for TChl a 0.41 mg m−3) are much better.
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PE is not too well predicted by both our linear models based on the field data set.
Still hyper_RRS linear model cross validation measures are much better than the PE
band_RRS linear model. In Taylor et al. (2013), PE concentrations were predicted from
the same underwater light measurements but using Lu instead of RRS data. Their pig-
ment data included besides surface samples also samples taken from deeper depths.5

No cross validation was performed within their study. Our results for R2cv (0.69) are
even better than their results for using the data from all three cruises for predictions
(R2 of 0.58). The data set of Taylor et al. (2013) was nearly three times larger than our
field data set and a log-link Generalized Linear Model (GLM) was used instead of a
log-transformed linear model. For the later we tested both settings for our pigment lin-10

ear models. Cross validation results were similar for PE using the log-link GLM instead
of log-transformed linear model, but worse with GLM for the other pigment predictions.

As for TChl a predictions from the satellite_ρwN linear model, validation results of the
MERIS Polymer TChl a product considering collocations with in situ TChl a from the
satellite-based data set showed marginal differences for the 1×1, 3×3 or 5×5 MERIS15

pixel collocations (Table 4, upper panel). The TChl a Polymer product obtained 3 %
higher MPD, similar R2 and PB, and an about one third lower RMSE values than the
TChl a linear model predictions. In the global validation by Brewin et al. (2014) among
various TChl a satellite products the OC4V6 (Ocean-Chlorophyll-4 algorithm version 6,
O’Reilly et al., 2000) was selected as the best TChl a algorithm. This algorithm is used20

to produce the MERIS Polymer TChl a from atmospheric corrected MERIS Polymer
data. Global validation by Brewin et al. (2014), with 1039 collocations and retrieving
TChl a directly from in situ ρwN(λ) data, showed for OC4V6 R2 of 0.87 and RMSE
of 0.29. We conclude that both MERIS Polymer TChl a products, level-2 and linear
model, although they are retrieved from satellite data and not in situ ρwN data, show25

high quality within the eastern Atlantic Ocean.
All together the comparison to other methods retrieving pigment concentrations from

reflectance data shows that our method based on a linear model using EOFs from
reflectance data gives robust results for pigment groups and pigments which are always
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present in the region investigated. The advantage of our linear models, either set-up
with reflectance data measured directly in the ocean water or obtained from a satellite
ocean colour sensor, is that we can obtain robust results for other pigment groups
and some specific pigments as well. For the Eastern Tropical Atlantic Ocean data set,
these additional pigments (other than TChl a) include PPC, PSC, DVChl a and MChl a.5

To some extent we can claim that even more pigments can be predicted when the
linear model runs are adjusted to a data set which only incorporates samples from a
region where the specific pigment is measured in every sample. Generally, we can also
see from the field data linear models, that using a coherent in situ data set where all
pigments have been measured by the same method and instrumentation will provide10

a wider range of pigment predictions because also the pigment data, used for linear
model fitting and validation, have a more homogeneous error. An advantage of our
linear method to pigment specific band algorithms is that we require a much smaller
data set for establishing the prediction (about 50 as opposed to several hundreds) of
collocated pigment and reflectance data.15

3.6 Application of linear model to study large scale pigment distributions

For demonstrating the application of our linear model, we used the satellite_ρwN spe-
cific pigment’s full-fit models for TChl a, MVChl a, PSC and PPC and run these specific
models using November 2008 MERIS Polymer ρwN level-2 data to retrieve those pig-
ments for an example time period on a larger spatial scale. By subtracting the MVChl a20

value from TChl a we also derived concentrations of DVChl a. Figure 7 shows the
monthly averages for those various pigment groups and pigments. Also the MERIS
Polymer TChl a concentration for the same time and region is shown.

The distribution of TChl a from the EOF model prediction or from the Polymer al-
gorithm are very similar ranging from 0.00003 to 7.52 mg TChl am−3. For this partic-25

ular month, the total biomass of phytoplankton shows a strong phytoplankton bloom
(>2 mg m−3) at the Mauritanian Upwelling spread in two parts, 19–24◦ N and 14–7◦ N,
and high values (>0.5 mg m−3) at all coastal areas of the African continent. Enhanced
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TChl a concentrations >0.3 mg m−3 are also spreading into the open ocean especially
at 5–20◦ N and 30–40◦ W, along the 0◦ latitude across from Africa to South America,
and South of this at 3–10◦ S from 3◦ E to about 25◦ W. MVChl a follows more or less
the TChl a distribution, however only at the northern bloom it reaches the magnitude
indicated by the TChl a values. The deviation between TChl a and MVChl a is obvious5

in the distribution of DVChl a which indicates that at the northern part of the Maurita-
nian Upwelling bloom Prochlorococcus (the only phytoplankton genus which contains
DVChl a) seems to have contributed to this bloom by only a very minor fraction (few
percent), while elsewhere it presents a substantial background of about 30 % of all
phytoplankton.10

Our predicted PPC concentrations show values in the same range as TChl a at the
oligotrophic areas and about 50 % in the enhanced TChl a areas and the southern part
of the bloom. As for DVChl a, in the northern part of the bloom PPC concentrations are
significantly lower and only contribute to less than 10 % to the total pigment concen-
trations. PSC concentration in the oligotrophic and enhanced TChl a areas are much15

lower than PPC or even DVChl a concentrations, but reflect more or less on the large
scale the TChl a distribution. Within the northern part of the Mauritanian upwelling
PSC concentrations reach even values as high as for TChl a, while concentrations at
the bloom further south contribute only to less than 10 % of the total pigment concen-
trations. In Taylor et al. (2011) the analysis of pigment and additional microscopic data20

clearly showed very high concentrations of Fuco, a main pigment of PSC, and a high
dominance of diatoms within water samples at the Northern bloom collected at the
same time period.

From our results, we can conclude, that the Northern phytoplankton bloom at the
Mauritanian upwelling seems to have been freshly growing with very high photosyn-25

thetic activity while for most of the other areas a lot of the energy build up via pho-
tosynthesis was used for photo-protection. We have no information on photodegrada-
tion since no significant prediction linear model could be developed for pheopigments.
These pigments had only been identified in less than 60 % of all samples collocated to

2100

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/11/2073/2014/osd-11-2073-2014-print.pdf
http://www.ocean-sci-discuss.net/11/2073/2014/osd-11-2073-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
11, 2073–2117, 2014

Predicting different
pigments from
remote sensing

reflectances

A. Bracher et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the field and satellite-based data sets and the results show that this pigment group was
not well predicted by the linear model. Based on the biogeography of Longhurst (2006),
the oligotrophic areas on our maps fall into the North Atlantic Subtropical Gyre Province
East at >25◦ N (the border between the two is the subtropical convergence) and the
North Atlantic Tropical Gyre Province at 25◦ N to about 12◦ N. At the eastern corner5

towards the coast of these provinces, the Canary Coastal Province (CNRY), concen-
trations of all predicted pigments and pigment groups may have been increased due to
eddy-driven processes increasing the supply of nutrients. In Taylor et al. (2011), the two
blooms analysed by field samples at CNRY have been identified to cluster differently
due to their pigment composition. The northern “fresh” bloom with low photo-inhibition,10

high dominance of phytoplankton, and strong photosynthetic efficiency was related to
a major upwelling focusing in the area south of Cape Blanc (Western Sahara) off the
coast of Mauretania. DVChl a was absent in this bloom which is in line with our results
obtained from the linear model. The Southern part of the CNRY bloom was placed
within the African dust veil where mineral rich dust fertilizes the ocean. Clearly in the15

Northern bloom stations the spectral shape and absolute values of particulate non-
phytoplankton absorption spectra, presented in Taylor et al. (2011) which were coincid-
ing with the pigment data used in our study, indicated that mineral particles absorption
was very high.

4 Conclusions20

We present robust predictions of concentrations of various pigments and pigment
groups from linear models based on fitting empirical orthogonal function on a set of re-
flectance data to collocated pigment concentrations. Spectral shapes of the reflectance
spectra from the Eastern Atlantic and of their derived EOF modes reflect typical case-1
water characteristics. In our study, it was shown that not only hyper-spectral under-25

water radiometric measurements enable reliable predictions of concentration of nine
different pigments/pigment groups (TChl a, PPC, PSC, MVChl a, Chl c1/2, But, Hex,
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Zea, Caro, PE), but also multi-spectral reflectance data from field or satellite (MERIS
Polymer) data which are collocated to pigment data can be used to establish predictive
linear models based on EOFs. A limitation for all predictions is that only pigments can
be predicted which have been identified in every collocated sample and that adding a
small value (0.0001 mg m−3) was not an appropriate solution to this problem.5

The method proves for the first time to be applicable for predicting concentrations of
not only TChl a and PE, but also of other pigments and pigment groups with weaker
peculiar imprints on the underwater light field. Statistical resampling used for cross-
validation indicates that predictions were robust (R2cv ≥ 0.5, MDPDcv ≤ 44 % and
MPDcv≤ 60 %) for all pigments (except for PE, Zea and 19BF, which deviated for one10

of these measures) and pigment groups. Hyperspectral linear models proved to be al-
ready stable with less collocated samples for most pigment or pigment groups used
for training (n > 30 to 40) than linear models based on multispectral reflectance data
(n > 50). The linear models using MERIS Polymer reflectance data as input were ap-
plied to one month of satellite data to predict the concentrations of TChl a, PSC, PPC,15

MVChl a and DVChl a for the whole Eastern Tropical Atlantic. For the first time a con-
sistent picture of several phytoplankton pigments indicating group specific behaviour
and photo-physiology on larger spatial scale for this area were shown.

Our presented linear models are generic and can be applied to even a small, con-
sistent collocated reflectance and pigment data set to enable various specific pigment20

predictions from continuous optical measurements. The optical data can be obtained
from radiometric measurements based on various platforms (buoys, gliders, floats or
satellite). On a global scale, TChl a, PSC and PPC are persistently predicted accu-
rately, while other pigments may be better predicted on smaller spatial scales. Highly
temporally resolved time series data, which depending on the platform even may be25

of good spatial coverage, can be used to study variability and change of overall phy-
toplankton and photo-physiological response to environmental variables. While we es-
tablished the linear models for prediction of various pigments in typical case-1 waters,
the method should be tested in the future for its applicability in case-2 waters as well.
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Table 1. Percent of total variance explained (expl. variation) by the significant EOFs derived
from field RRS spectra in hyper- (hyper_RRS) and multi- (band_RRS) spectral resolution and
from satellite_ρwN (from MERIS Polymer) using the 1×1 pixel collocation criterion.

% expl. variation EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7 EOF-8 EOF-9

hyper_RRS 95.0 4.1 0.7 0.1 <0.1 <0.1 <0.1 <0.1 <0.1
band_RRS 94.5 5.0 0.4 <0.1 <0.1 <0.1 <0.1
satellite_ρwN 95.9 3.8 0.1 <0.1 <0.1 <0.1 <0.1
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Table 2. Statistics of linear models using EOF modes based on (a) field RRS data in hyper-
(hyper; normally 350–700 nm – if * then 380–700 nm) and multi (band)-spectral resolution and
(b) the satellite_ρwN (from MERIS Polymer) using the 1×1 pixel collocation criterion data set.
Cross validation results are presented with 500 permutations for data splitting into 80 % of
the data used for training and 20 % for validation. Only well retrieved pigment prediction results,
with correlations being highly significant at p < 0.0001, are given. Abbreviations of pigments are
explained in Sect. 2.3.1. Pigments listed in the upper part of each table show high quality results
using the entire data set. In the lower part of each table (listed under “>0 mg m−3”) models are
based only on the data set of collocated RRS samples where the respective pigment reached
concentrations above 0 mg m−3. Bold: here band-model performs better than hyper-model. Italic
signifies only medium quality as specified in the text.

(a) MDPDcv MPDcv RMSEcv R2cv
band/hyper N band hyper band hyper band hyper band hyper

TChl a* 53 28 32 42 43 0.68 0.41 0.72 0.77
PSC* 53 32 34 51 53 0.33 0.32 0.75 0.75
PPC 53 27 27 48 45 0.21 0.18 0.52 0.52
MVChl a* 53 31 34 45 44 0.62 0.35 0.77 0.79
Chl c1/2* 53 34 36 48 49 0.08 0.08 0.79 0.80
But 53 44 43 95 81 0.05 0.04 0.50 0.52
Hex* 53 37 36 57 53 0.19 0.13 0.64 0.70
Zea 53 31 28 45 42 0.05 0.05 0.28 0.31
Caroten 53 34 34 55 50 0.17 0.06 0.55 0.61
PE* 53 67 65 156 139 0.23 0.14 0.65 0.69

>0 mg m−3:

DVChl a 49 26 24 45 39 0.06 0.06 0.59 0.65
Chl c3* 52 38 37 61 58 0.08 0.07 0.71 0.72
Fuco* 52 42 39 87 73 0.61 0.18 0.65 0.65
Diadino 52 33 33 59 53 0.25 0.08 0.57 0.65

(b) satellite_ρwN N MDPDcv MPDcv RMSEcv R2cv

TChl a 135 31 47 0.39 0.67
MVChl a 135 39 55 0.35 0.71
PSC 135 42 59 0.25 0.73
PPC 135 25 36 0.09 0.54

>0 mg m−3:

DVChl a 120 41 60 0.03 0.25
Chl c1/2 127 41 89 0.06 0.64
X19_But 126 39 55 0.03 0.74
X19_Hex 128 40 55 0.07 0.71
Fuco 128 40 65 0.43 0.71
Zea 134 27 45 0.05 0.42
Diad 129 44 94 0.13 0.56
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Table 3. ∆AIC for the robust pigment predictions of the pigment groups TChl a, PSC, PPC
and the pigments MVChl a, Zea, and DVChl a by the EOF models based on field RRS in
(a) hyper- (hyper_RRS) and (b) multi- (band_RRS) spectral resolution and c) the satellite_ρwN
(from MERIS Polymer) using the 1×1 pixel collocation criterion. The pigments listed under
“no 0 mg m−3” were predicted using a reduced data set where the respective pigment reached
concentrations above 0 mg m−3. Bold highlights the EOF mode with the highest ∆AIC.

(a) hyper_RRS EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7 EOF-8 EOF-9

TChl a 80 16 16
PSC 78 9 8 4
PPC 36 34 1 2 1
MVChl a 88 16 11
Zea 5 6 21 10 7 1 5
no 0 mg m−3:
DVChl a 7 10 21 21 1 20 9 4 7

(b) band_RRS EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7

TChl a 86 10 15 3 1
PSC 80 5 5 6
PPC 42 21 9 1
MVChl a 90 10 9 1
Zea 2 5 6 10 4 7 0.3
no 0 mg m−3:
DVChl a 12 17 20 23

(c) satellite_ρwN EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7

TChl a 6 144 0.3 0.4
PSC 6 158 14
PPC 4 47 1 1 6
MVChl a 4 148 4
no 0 mg m−3:
Zea 13 31 3 1 14 9
DVChl a 12 24 33 4
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Table 4. TChl a validation statistics for MERIS Polymer TChl a (left panel) and TChl a obtained
from full fit linear model on satellite_ρwN (from MERIS Polymer data; EOF full-fit model; right
panel) with different collocation criteria (either 1×1 or the mean of 3×3 or 5×5 pixel values)
for the MERIS Polymer data compared to the in situ (from HPLC) value. Bold highlights that
TChl a validation results for MERIS Polymer are better than EOF model predictions.

MERIS Polymer EOF full-fit model
collocation N R2 RMSE PB MPD R2 RMSE PB MPD

1×1 pixel 135 0.74 0.21 6 39 0.73 0.32 10 37
3×3 pixel 150 0.75 0.20 10 40 0.74 0.33 10 36
5×5 pixel 155 0.74 0.20 11 40 0.74 0.32 10 36
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Figure 1. Position of pigment samples used in this study. Red: field data set, black: samples
which are only collocated to satellite-based but not to field reflectance data, circles: samples
which are only collocated to field but not to satellite-based reflectance data. Stars, diamonds
and squares show collocations to MERIS Polymer data based on the 1×1, 3×3 and 5×5 pixel
criteria, respectively.
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Figure 2. (a)–(c) Original (in sr−1) and (d)–(f) standardized (subtracted mean) reflectance spec-
tra of hyper_RRS (a) and (d), band_RRS (b) and (e) and satellite_ρwN (from MERIS Polymer)
data within the 1×1 pixel collocation box (c) and (f).
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Figure 3. First four EOF modes (EOF-1 to EOF-4) derived from field RRS data set in hyper-
spectral resolution (hyper_RRS, solid lines) and in multispectral band resolution (band_RRS,
dashed lines) and from using satellite_ρwN (from MERIS Polymer) data within the 1×1 pixel
collocation box.
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Figure 4. Examples of pigment group’s (a) TChl a, (b) PSC, (c) PPC) and specific pigment’s
(d) DVChl a, (e) Hex, (f) Zea) concentrations measured by HPLC (obs.) versus predicted (pred.)
from a pigment or pigment group specific linear model based on EOF modes using field RRS
data in hyper-spectral resolution (hyper_RRS). For DVChl a the model data set was reduced
by excluding collocated samples where DVChl a had concentrations of 0 mg m−3.
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Figure 5. Examples of pigment group’s (a) TChl a, (b) PSC, (c) PPC) and specific pigment’s
(d) DVChl a, (e) Hex, (f) Zea) concentrations measured by HPLC (obs.) versus predicted (pred.)
from a pigment or pigment group specific linear model based on EOF modes using satellite_ρwN
(from MERIS Polymer) data within the 1×1 pixel collocation box. For DVChl a, Hex and Zea
the model data set was reduced by excluding collocated samples where DVChl a had concen-
trations of 0 mg m−3.
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Figure 6. The ratio of R2cv to R2 (a) and (d), of MRDcv to MRD (MRDcv/MRD, (b) and e) and
RMSEcv (c) and (f) as a function of number of training points (tp) for the linear models. Shown
are results for specific models for TChl a, PSC, PPC and PE using reflectance data (a) to (c):
from the field in hyperspectral (hyper_RRS, solid lines) and multispectral band (band_RRS,
dotted lines) resolution and (d) to (f): from satellite MERIS Polymer within the 1×1 pixel collo-
cation box (satellite_ρwN). The number of total samples points were n = 53 for hyper_RRS and
band_RRS, and n = 135 for satellite_ρwN. Cross validation were done based on 500 permuta-
tions using tp for training and as number of validation points (vp): vp= n−tp.
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Figure 7. Monthly mean concentrations (gridded in 0.25◦ lat/lon boxes) for Nov 2008 of
(a) TChl a of the MERIS Polymer algorithm (TChl a MERIS Polymer) and predicted (b) TChl a,
(c) MVChl a, (d) DVChl a, (e) PSC, and (f) PPC by the LM based on the full fit of satellite ρ+wN
data within the 1×1 pixel collocation box and the EOFs of this month’s MERIS Polymer ρ+wN
data.
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