The significance of the episodic nature of atmospheric deposition to Low Nutrient Low Chlorophyll regions

1 Laboratoire d'Océanographie de Villefranche (LOV), CNRS-Université Paris 6, France
2 Laboratoire de Physique des Océans Institut Européen de la Mer, Centre IRD de Bretagne, Plouzané, France
3 Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, USA
4 LSCE / IPSL, CNRS/CEA/UVSQ, Gif sur Yvette France
5 National Institute of Water and Atmospheric Research (NIWA), Greta Point, Kilbirnie, Wellington, New Zealand
6 Department of Chemistry, University of Otago, Dunedin, New Zealand
7 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, USA
8 Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
9 Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidad de Vigo, Vigo, Spain
10 Institute of Marine Sciences, METU, Erdemli MERSİN, Turkey
11 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
12 Institut Méditerranéen d’Océanologie (MIO), UMR 7294, Université d’AIX-MARSEILLE - CNRS - IRD, Marseille, FRANCE
13 Israel Oceanographic and Limnological Research (IOLR), National Institute of oceanography, Tel Shikmona, Haifa, Israel
14 Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil, Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, France
15 Environmental Chemical Processes Laboratory, Dept. of Chemistry, University of Crete, Heraklion, Greece
16 Helmholtz-Center for Ocean Research Kiel, GEOMAR, Kiel, Germany
17 Institut de Ciencies del Mar, CMIMA (CSIC), Barcelona, Spain
18 Department of Global Change Research IMEDEA (CSIC-UIB), Instituto Mediterráneo de Estudios Avanzados, Balearic Islands, SPAIN
19 Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
#Now at: GEOMAR, Helmholtz Centre for Ocean Research Kiel
24148 Kiel, Germany
§ Now at: Eurasia Institute of Earth Sciences, Istanbul Technical University, Istanbul, Turkey.
*Correspondence to: guieu@obs-vlfr.fr

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/2014GB004852

©2014 American Geophysical Union. All rights reserved.
Abstract

In the vast Low Nutrient Low-Chlorophyll (LNLC) Ocean, the vertical nutrient supply from the subsurface to the sunlit surface waters is low and atmospheric contribution of nutrients may be one order of magnitude greater over short timescales. The short turnover time of atmospheric Fe and N supply (< 1 month for nitrate) further supports deposition being an important source of nutrients in LNLC regions. Yet, the extent to which atmospheric inputs are impacting biological activity and modifying the carbon balance in oligotrophic environments has not been constrained. Here, we quantify and compare the biogeochemical impacts of atmospheric deposition in LNLC regions using both a compilation of experimental data and model outputs. A metadata-analysis of recently conducted field and laboratory bioassay experiments reveals complex responses, and the overall impact is not a simple “fertilization effect” as observed in HNLC regions. Although phytoplankton growth may be enhanced, increases in bacterial activity and respiration result in weakening of biological carbon sequestration. The application of models using climatological or time-averaged non-synoptic deposition rates produced responses that were generally much lower than observed in the bioassay experiments. We demonstrate that experimental data and model outputs show better agreement on short timescale (days to weeks) when strong synoptic pulse of aerosols deposition, similar in magnitude to those observed in the field and introduced in bioassay experiments, is superimposed over the mean atmospheric deposition fields. These results suggest that atmospheric impacts in LNLC regions have been underestimated by models, at least at daily to weekly timescales, as they typically overlook large synoptic variations in atmospheric deposition and associated nutrient and particle inputs. Inclusion of the large synoptic variability of atmospheric input, and improved representation and parameterization of key processes that respond to atmospheric deposition, is required to better constrain impacts in ocean biogeochemical models. This is critical for understanding and prediction of current and future functioning of LNLC regions and their contribution to the global carbon cycle.
1. Introduction

Oceans influence climate primarily due to their ability to take up and store heat, and their direct and indirect effects on global climate via regulation of atmospheric CO$_2$ and other radiatively active gases [Friedlingstein, P. et al. 2006; Le Quéré, C. et al., 2009, 2013]. Sixty percent of the global oceans, primarily the central ocean gyres, are depleted in the primary macronutrients nitrate and phosphate, and consequently sustain low growth of phytoplankton and other marine organisms (Antoine et al. 1996); yet these “ocean deserts” represent ecosystems occupying a large proportion of Earth’s surface area. These oligotrophic regions are generally characterized by chlorophyll a (Chl a) concentrations < 0.07 mg m$^{-3}$ and co-dominated by small phytoplankton and heterotrophic bacteria [Uitz et al., 2010; Cho and Azam, 1990], and are referred to as Low Nutrient Low Chlorophyll (LNLC) areas (Figure 1a).

Wet and dry atmospheric deposition transport a range of compounds from a variety of natural and anthropogenic land sources to the ocean. The compounds include macro- and micronutrients (N, P, C, Si, Fe, other metals) [Duce et al., 1991] as well as potentially toxic elements (e.g. Cu, Pb) [Paytan et al., 2009; Jordi et al., 2012]. The main natural source of land-derived particles to the open ocean is wind-blown desert dust, which constitutes the primary atmospheric source of iron [Jickells et al., 2005]. Atmospheric nitrogen is mainly derived from anthropogenic combustion or agricultural sources from densely populated regions throughout the world [Duce et al. 2008], while phosphorus originates from both desert dust and anthropogenic sources [Mahowald et al., 2008] (Figure 1b). Atmospheric supply of dissolved constituents to the surface ocean depends on particle concentration and size spectrum, and the solubility of the element-bearing phases in aerosols [Trapp et al., 2010; Baker and Jickells, 2006] which is influenced by atmospheric processing during transport [Krishnamurthy et al., 2009]. For example, the extent to which dust interacts with
anthropogenic acids (H$_2$SO$_4$ and HNO$_3$) during transport increases the solubility of various elements [Desboeufs et al., 2001] resulting in enrichment of nitrogen [Geng et al., 2009], and enhanced supply of potentially bioavailable compounds to the surface ocean. Furthermore, atmospheric deposition supplies N and P in both inorganic and organic forms, which are accessible to both heterotrophic organisms and autotrophic phytoplankton [Cornell, 2011; Kanakidou et al., 2012, Moore et al., 2013]. Deposition is dependent on the distance from source, with sites located between 10 and 1000 km from source areas receiving dust deposition of 1.0 - 50 g m$^{-2}$ yr$^{-1}$, and sites located >1000 km receiving 0.05 - 1.00 g m$^{-2}$ annually, as determined by a compilation of direct measurements of dust deposition (Lawrence and Neff, 2008). According to the authors, this range represents the background rate of dust deposition, such that all sites throughout the world receive, at minimum, this deposition range each year.

The supply of new nutrients to the ocean from external sources such as atmospheric deposition has been extensively addressed in iron-limited High Nutrient-Low Chlorophyll (HNLC) regions [i.e. Boyd et al., 2007], most of which receive low atmospheric inputs at the present time (Figure 1b). However, much less attention has been paid to the importance of atmospheric deposition to LNLC regions. Until recently, models considering atmospheric deposition to the ocean focused primarily on iron and typically regarded deposition as a continuous input, using mean deposition values, often without consideration of the highly episodic nature of such deposition. To our knowledge, only one study has considered the temporal variability of atmospheric deposition [Aumont et al., 2008]. This study was restricted to iron deposition and showed that a significant variability in surface iron concentrations can be generated in high deposition regions, for instance in the subtropical North Atlantic Ocean. For the other nutrients taken independently or altogether, we are not aware of any equivalent studies. Yet it is widely recognized that atmospheric deposition, and
in particular dust deposition, is by nature highly episodic. Indeed, daily dust deposition rates as high as 4 times the monthly mean flux have been measured in the North Atlantic (Moxim et al. 2011). This ‘pulsed character’ is also well identified in the long (since 1965) aerosol sampling series in Barbados (Prospero and Lamb, 2003). The episodic nature of deposition is also reported for the North Pacific where most of the mineral dust input to the ocean typically takes place during 3-5 events in the spring, each of which lasts 1-3 days (Donaghay et al., 1991). Wet deposition is also not continuous as rainfall events vary from small intense storms of a few square kilometers to large frontal systems that stretch for thousands of kilometers, and so wet atmospheric inputs are both episodic and spatially patchy (Uematsu et al., 1985; Donaghay et al., 1991). In the Mediterranean Sea a few intense events provide the majority of the annual deposition (ie Loÿe-Pilot and Martin, 1996, Guerzoni et al., 1999) with measured short (a few hours) event fluxes exceeding 20 g.m⁻² (Bonnet and Guieu, 2006, Guieu et al., 2010a, Ternon et al., 2010). These observations confirm that episodicity is the norm for deposition over the ocean.

How the ocean responds to pulses of deposition, as either transient or long term impacts on diversity of the natural assemblage and/or carbon export, is not obvious from in situ or remote sensing observations reported in the literature. For example, atmospheric dust concentrations measured at the Canary Islands concomitantly with upper water biogeochemistry at the oligotrophic time series station ESTOC (European Station for Time series in the Ocean, Canary Island) over 2-years have shown that higher aerosol concentrations (continuously measured) were not accompanied by higher primary production (derived from Chl a) or export production (Neuer et al., 2004). The authors concluded that phytoplankton production remained unaffected by atmospheric nitrogen supply on annual timescales. In the Mediterranean Sea, Herut et al. (2005), observed a significant dust storm at sea (CYCLOPS cruise), which caused as a sharp reduction in Prochlorococcus abundance.
and a slight increase in Chl a and in bacterial activity. In the Pacific, three Asian dust storms stimulated the growth of Synechococcus but not Prochlorococcus (Chung et al., 2011). Comparing aerosol optical thickness and chlorophyll derived from satellite color during a 4-year period in the Mediterranean Sea, Volpe et al. (2009) concluded that the methodology induces important biases arising from atmospheric correction linked to Saharan aerosols and so this could not be used to test a dust fertilization in oligotrophic systems such as the Mediterranean Sea. Yet, the authors conclude that dust inputs do not play a significant role in the phytoplankton dynamic in the Mediterranean Sea. In some of these studies, the role of grazers is suspected to play an important role in maintaining a low phytoplankton biomass but this has not been confirmed by observation and measurement. In conclusion available data indicates that the oligotrophic ocean exhibits a variety of responses to atmospheric deposition and no simple pattern can be drawn which denote the large variety of oligotrophic systems.

The published results from different models agree that increasing iron supply by atmospheric deposition stimulates marine productivity and export production in HNLC regions [Archer and Johnson, 2000; Moore et al., 2002]. This may potentially increase the LNLC ocean area, due to the resulting reduction in lateral nutrient transport from HNLC regions [Dutkiewicz et al., 2005; Aumont and Bopp, 2006]. Models also agree that an increase in Fe and P deposition to LNLC areas may enhance N₂ fixation in LNLC areas [Moore et al., 2002; Krishnamurthy et al.; 2009, Mahowald et al., 2011], potentially lowering atmospheric pCO₂ [Bopp et al., 2003; Parekh et al., 2006]. In the few modeling studies that have investigated the role of atmospheric deposition as a source of nutrients other than iron, atmospheric inputs of nitrogen were shown to have a very modest effect on marine productivity, export production, or carbon uptake on a global scale yet identified significant effects in LNLC regions [Krishnamurthy et al., 2007, 2009, 2010]. Although phosphorus deposition accounted for
only a very small fraction of export production [Krishnamurthy et al., 2009, 2010] the contribution of atmospheric nitrogen deposition was significant. A further response was a decrease in N\textsubscript{2} fixation in LNLC regions, possibly due to P limitation. To examine the impact of aerosol deposition and its temporal variability in LNLC systems, we first examined the turnover times relative to atmospheric deposition (TTADs) in the surface mixed layer for iron, nitrate and phosphate, to assess the contribution of atmospheric deposition to nutrient stocks in the global surface ocean. We further evaluated the potential impact of new atmospheric nutrient inputs (iron, nitrate, phosphate and) in LNLC regions on primary production, N\textsubscript{2} fixation, surface Chl a concentrations and export production by applying atmospheric deposition to a coupled 3D ocean ecosystem–biogeochemical model. We then compared the model results with a compilation of published experimental responses of natural LNLC seawater to aerosol addition (see ref. in Table 1), to further examine the impacts of episodicity of aerosol deposition.

2.1 Methods

2.1 Turnover times relative to atmospheric deposition (TTADs) for nitrate, phosphate and dissolved iron. The TTAD is defined as the time required to replace the surface mixed layer nutrient inventory solely by atmospheric deposition, and so TTADs (in years) were derived by dividing the vertically averaged nutrient concentrations (moles per cubic meter) in the surface mixed layer by the contribution of atmospheric deposition to the water volume of the mixed layer (moles per cubic meter per unit time) (see Fig.2a). Nitrate and phosphate in the surface mixed layer are obtained from the latest Levitus climatology (World Ocean Atlas 2009, http://www.nodc.noaa.gov/OC5/indprod.html). As a sensitivity analysis, we have alternatively used the CARS2009 climatology (www.cmar.csiro.au/cars) to compute the TTADs. Results are almost identical (see Figure S1). For iron in the surface mixed layer, we used a global compilation of over 13,000 published measurements of dissolved iron.
[Tagliabue et al., 2012]. The mixed layer depth was taken from the latest version of the global climatology [de Boyer Montégut et al., 2004] (http://www.lodyc.jussieu.fr/~cdblod/mld.html), using a density criterion of 0.03 kg m\(^{-3}\). Atmospheric deposition fluxes for nitrogen were based on published emissions and simulations of the historical time period and Representative Concentration Scenarios (RCPs) (van Vuuren et al., 2011; Lamarque et al., 2010; Lamarque et al., 2011). Estimates of P and soluble P are based on (Mahowald et al., 2008), assuming that the combustion P follows the evolution of the black carbon in the same scenarios. Estimates of iron and iron solubility are based on (Mahowald et al., 2009) including combustion iron, which follows the black carbon historical and RCP scenarios. Desert dust evolution is based for the historical time period on paleoclimate reconstructions (Mahowald et al., 2010), with future evolution based on estimates of desert area change in the future (Mahowald, 2007) assuming no carbon dioxide fertilization. All fields have been linearly interpolated to the typical Levitus grid (1°x1° horizontal resolution).

2.2 Contribution of atmospheric deposition to the total supply of nutrient to the surface mixed layer. Vertical dynamic supply of the N, P, and Fe are computed following an approach similar to Fung et al. (2000.) The upwelling rate was taken from the dynamic simulation produced by ORCA2-LIM, which is also used in our biogeochemical model experiments. Entrainment is considered to be zero when the mixed layer is shoaling or when nutrient concentrations just below the mixed layer are lower than in the mixed layer. Otherwise, it is computed as the amount of nutrients in excess of those in the mixed layer that are entrained into the mixed layer when the latter is deepening. Diffusion across the base of the mixed layer is set to 10\(^{-5}\) m\(^{2}\) s\(^{-1}\) (Law et al., 2003; Capone et al., 2005). Nutrients supplied by lateral advection were not considered. Deposition fluxes, nutrient distributions, and the mixed layer depth are identical to those used to compute the turnover time maps.
2.3 Biogeochemical model. The dynamic state of the ocean has been simulated using NEMO in its version 3.2 and in its global configuration ORCA2-LIM [Madec, 2008]. The spatial resolution is about 2° by 2° cos(ϕ) (where ϕ is the latitude) with a focusing to 0.5° of the meridional resolution in the equatorial domain. The model has 30 vertical layers, increasing in thickness from 10 m at the surface to 500 m at 5000 m. The ocean model is driven by climatological atmospheric fields identical to those used in Aumont and Bopp, [2006]. However, the resulting dynamics simulated by the ocean model is different as several new parameterizations and new algorithms have been included in ORCA2-LIM. Ocean biogeochemistry is simulated using PISCES [Aumont and Bopp, 2006] which is forced offline by the 5-days mean ocean physical fields produced by the ocean physical model. Some significant modifications have been added to PISCES [Aumont et al., in prep.]. Nutrients are supplied to the ocean from four different sources: atmospheric dust and N deposition, rivers, sea-ice and sediment mobilization, with river, sea-ice and sediment sources described in Aumont and Bopp, [2006] as modified by Aumont et al., [in prep.]. Atmospheric contributions of nutrients are the same as in Figure 1b. The coupled ocean biogeochemical model is spun up offline for 4000 years, so that a quasi-steady state is reached, with primary production and CO₂ fluxes varying by less than 0.01 GtC yr⁻¹. A brief description of some new parameterizations of PISCES, relative to the previously published version of Aumont and Bopp [2006], is presented in the Supplementary Materials. This description is restricted to the processes that play a key role in this study, including N₂ fixation and size variability of nanophytoplankton. A validation of the model behaviour is also proposed in the Supplementary Materials (Figures S2-S10).

2.4 Sensitivity experiments. Using the quasi-steady state obtained from the spun-up ocean biogeochemical model, two different sets of sensitivity experiments are performed, as summarized in Table 2. In a first set of experiments, climatological monthly-mean
atmospheric depositions of P and Fe and climatological annual-mean atmospheric deposition of N (‘Standard’) are either multiplied by five (‘D’ scenarios) (based on the projection of the deposition fluxes presented on figure 1c: from year 1900 to year 2100, changes in atmospheric deposition have been calculated to vary by a factor of 2 to 5) or set to zero (no ‘D’ scenarios) for each nutrient independently and also for all three nutrients altogether. A total of 8 model runs were performed, 4 for the 'D' scenarios and 4 for the no 'D' scenarios. In each experiment, the model is integrated for 100 years. In a second set of experiments, the model has been integrated for 100 years using standard atmospheric deposition. During the last year (year 100), a strong pulse of dust (1 g m$^{-2}$ d$^{-1}$) and N (2.8 mg N m$^{-2}$ d$^{-1}$) is imposed arbitrarily on the 15th of January or on the 15th of July, everywhere in the LNLC regions (derived from SeaWiFS climatology (1997-2007) with a criteria of Chl a < 0.07 mg.m$^{-3}$, see Figure 1a). Fe and P input are related to dust deposition assuming a mean mass content of 3.5% (Jickells et al., 2005) and 0.07% (Guieu et al., 2002) and a solubility in surface seawater of 2% (Bonnet and Guieu, 2004) and 15% (Ridame and Guieu, 2002) for Fe and P respectively. N deposition is assumed to be fully bioavailable as NO$_3^-$ (a sensitivity study delivering N as ammonia did not produce significantly different results). Thus, the last year is run twice, with one pulse of deposition added to the standard deposition field. The magnitude of the pulse, both for dust and N, has been set to be of the same order of magnitude deposition range of observed episodic pulses (see references in introduction section) which were also used in aerosols/dust addition in bioassay experiments reported in Table 1 (0.1 - 20 g m$^{-2}$ event$^{-1}$). The pulsed model rate (1 g m$^{-2}$ d$^{-1}$) is representative of areas where moderate to strong episodic event are recorded (see Introduction), and represents the upper limit of the background rate of dust deposition (Lawrence and Neff, 2008). Although less measurements are available for nitrogen deposition over the ocean, 2.8 mg N m$^{-2}$ d$^{-1}$ is of the same order of magnitude as the strong deposition events observed at three stations in the North Atlantic.
(Prospero et al, 1996). The mixing of dust with anthropogenic acids such as HNO₃ (see Introduction) between emission and deposition regions will result in dust deposition enriched in nitrogen (Geng et al., 2009) which further confers a pulsed character in the fraction of N deposition associated with dust.

3. Results

3.1 Impacts on biota from field and laboratory experiments: a synthesis.

The dominant impacts of atmospheric deposition on biota in LNLC surface ocean waters are summarized in a compilation of recently conducted dust/aerosol addition bioassay experiments (in situ, in vitro, and mesocosms, see Table 1). Response patterns of changes in standing stocks of organisms, their community structure and metabolic rates, from comparison of aerosols treatments with the respective control incubations, are presented in Figures 2. Most data sets indicate positive responses to aerosol addition, with bacterial production and N₂ fixation showing the strongest responses (average 234% and 193% increase, respectively). A mean 68 % increase in Chl a is seen, however, differential responses among phytoplankton groups are also apparent, with cyanobacteria *Synechococcus* and particularly *Prochlorococcus* show weak responses to aerosol addition and nano- and micro- phytoplankton show a similar increase to that of Chl-a suggesting that these are related and that aerosol deposition may (temporally) support an increase in larger size class phytoplankton. Despite Chl a increase in response to atmospheric deposition events in LNLC waters, the natural tested waters typically remained close to oligotrophic conditions. This may help explain the variable and low response of satellite-derived chlorophyll signals to dust events (Volpe et al., 2009). Changes in standing stocks tend to be smaller than changes in metabolic rates as shown by comparison of Chl a vs primary production, and bacterial abundance vs bacterial respiration. It should be noted that most of the experiment studies presented in this compilation (Table 1) have been performed using desert dust and many of
these have reported the composition of total nutrients content in the dust but few have considered their solubility and hence bioavailability. This is particularly important because desert dust from soils contain very little soluble nitrogen whereas ‘atmospherically processed dust’ is rich in nitrogen. Differences in the source of the material used (e.g. soil vs locally collected aerosols), related composition and solubility may partially explain the observed variability in response.

3.2 Contribution of atmospheric deposition to the nutrient reservoir in the global surface ocean

The mean TTAD in LNLC regions are < 1 month for nitrate; TTAD are orders of magnitude higher for phosphate and ~1 year for the few available iron values (Figure 3a). We note however that nutrient climatologies are poorly constrained in surface waters of LNLC regions (reported concentrations often being set by the detection limits of conventional techniques; see for example Pulido-Villena et al., 2010) leading to possible overestimation of the TTAD in particular for phosphate, as shown by Figure 3a. This identifies the need for more extensive databases for the deposition fluxes and surface nutrient concentrations, this will also allow to provide TTAD seasonal pattern.

The contributions of atmospheric deposition to the total supply of new nutrients to the surface mixed layer (e.g. sum of vertical and atmospheric supplies) for nitrate, phosphate and iron, using both a model and observations are shown in Figure 3b. The calculated contribution are subject to the same shortcomings as the TTAD calculations with respect to the availability of data; however a similar pattern is apparent indicating that atmospheric deposition could account for a significant proportion of the total input of new nutrients in the oligotrophic (LNLC) gyres (>50% for N; 0-20% for P and 10-90% for Fe) when lateral advection is not considered.
3.3 Evidence of impacts on biota in models

The sensitivity of ocean biogeochemistry to atmospheric deposition was investigated through a series of model experiments (Table 2 and Methods). The maximal daily anomaly simulated by the model over the last year (year 100) in response to the different scenarios, was compared to the standard scenario (in which atmospheric deposition is not altered) by statistical analysis. In the first set of model experiments, atmospheric deposition of nitrate, phosphate and iron were varied individually or in combination over a period of 100 years. For all experiments (both 'D' and 'no D' experiments) on a global scale (Figure S11), primary production, export production at 100 m and Chl a did not differ significantly from the standard run (relative change close to 0) and modest for nitrogen fixation (maximum range % change -30+30 %). However when considering only LNLC regions (Figure 4), primary production, export production and N₂ fixation were significantly impacted by atmospheric supply of nutrients (ranging between -40 to +30%), although Chl a remained almost unchanged. Nevertheless, the simulations never reached the magnitude of responses observed in bioassay experiments (Figure 2) and in some cases showed responses of opposite sign, as with N₂ fixation. This inconsistency between experiments and models cannot be explained by differences in temporal frequency of sampling, as we based our model analysis on daily outputs (see Methods), a similar sampling frequency to that of the bioassay experiments (see Table 1). Since the euphotic zone can be significantly deeper than 100 m in these LNLC areas, we also did the analysis for export production at 200m for the 'D' and the 'no D' experiments. Relative changes are almost identical to those computed from export production at 100 m (see Figure S12). We therefore refer to export production at the 100 m horizon in this study.

Results from the pulse experiment in which a strong pulse of dust and nitrogen deposition is imposed on the 15th of January or on the 15th of July, everywhere in the LNLC regions,
similar in magnitude to natural episodic high deposition events and to those used in the aerosols addition experiments (Table 1), was superimposed on the standard climatological atmospheric deposition fields in the LNLC regions (dust = 1 g m\(^{-2}\) d\(^{-1}\) and N = 2.8 mg N m\(^{-2}\) d\(^{-1}\); see Methods and Table 2). These indicate that the projected response to the combined deposition (e.g. present day average deposition fields plus pulse; Figure 5) was typically much larger than in the “D” and no “D” models; the maximum response averaged over the LNLC regions represented a change of 123% for primary production, 154 % for nitrogen fixation and 36 % for chlorophyll concentration. This also showed close agreement with the results of the bioassay experiments (Figure 5 vs Figure 2) for primary production (PP) and N\(_2\) fixation but still underestimated Chl a based biomass growth. It is perhaps intuitive that increasing the intensity of deposition on a short time scale may considerably increase the response. At the same time it is remarkable that those responses are close to the observations from bioassay experiments.

To better characterize the simulated responses to the pulses in our model, we show in Figure 6 the spatial structure of the surface changes induced by the deposition pulse imposed on the 15\(^{th}\) of July (relative to the run without this pulse). A striking characteristic is the large spatial variability of the response, as inferred from the statistical analysis presented in Figure 5. (Figure 6; maximum response >100% for Chl a, > 175% for PP), with more significant response in the oligotrophic gyres of the Pacific, reflecting the diverse local physical and biogeochemical conditions, as is apparent in bioassay experiments conducted at different locations or seasons (Table 1). The increase in PP is accompanied by a similar increase in grazing pressure. Interestingly, the strong pulse imposed in our model experiment is sufficient to trigger a strong increase in PP by small phytoplankton cells, but not by bigger species such as diatoms. Since small phytoplankton are kept in check by (micro-)zooplankton, these
increased growth rates induce higher grazing rates and so do not result in accumulation of phytoplankton biomass, as illustrated by the changes in Chl a (Figure 6a).

Export production at 100 m remained generally unchanged (average 0% change) in these model experiments, despite some regionally significant changes in the South Pacific (Figure 6d). The relatively small response of export production to dust deposition may seem quite surprising, especially considering the increase in primary production and the sizable increase in chlorophyll. In fact, as supported by field and experimental observations reported in this paper (Table 1 and text), this is understandable in LNLC regions, due to the increased bacterial respiration and grazing.

The spatial variability highlighted figure 6 can be explained by the very diverse physical and biogeochemical conditions in LNLC regions. The responses to the pulse occur relatively rapidly and have a limited temporal extent, from a few days to about 2 weeks. They tend to be longer in winter time (in either hemisphere) because of the lower light levels, cooler surface temperature, and deeper mixed-layer (the latter also resulting to lower mean available light for photosynthesis). Despite a generally strong local response, the pulses do not modify the system over the long term due to their short duration. Indeed, a very simple computation, over the mixed layer, assuming for instance a PP increase following a pulse of 100% for 7 days, the annual PP change would be 100% x 7/365 ~ 2%. The model indicates thus that, the "instantaneous" effect of a single pulse is strong but the annual effect is small.

4. Discussion

4.1 Significance of atmospheric nutrients in LNLC regions

Atmospheric deposition supplies most of the new N and Fe to the mixed layer in some LNLC regions, based upon the comparison of atmospheric deposition with vertical supply from subsurface waters in both model data and observations (Figure 3b). In the case of P, the
atmospheric contribution is low and only significant in the North Atlantic subtropical gyre, and the Eastern Mediterranean Sea. However, surface water phosphate concentrations are overestimated in some regions due to lack of measurements, which leads to incorrect estimation of the vertical supply from below. Our analysis is only intended to be qualitative as it suffers from important shortcomings. For example lateral transport of dissolved inorganic and organic nutrients is not accounted for, although several studies have shown that this can be important, especially at the boundaries of the LNLC regions [i.e Williams and Follows, 1998]. Also, the dynamic output from the coarse-resolution model does not resolve mesoscale and submesoscale dynamic processes, which may contribute a significant fraction of the vertical and lateral supply of new nutrients [i.e Williams and Follows, 1998; Pelegri et al., 2006; Lévy, 2008]. Our results are different from those by Krishnamurthy et al. (2010; see their Figure 2), where atmospheric input is compared to the downward export by sinking particles at 103m. Here we compare the atmospheric input of N, P, and Fe to the vertical input of these nutrients into the mixed layer by mixing, entrainment and vertical advection. Both represented ratios do not display the same diagnostic and thus differ. In fact, the vertical supply of nutrients by the ocean dynamics can roughly equal the export at a certain depth only if long time scales are considered, if no nutrients are supplied as dissolved organic materials and if lateral transport is negligible which is barely never the case in the ocean. An additional explanation to the differences with Krishnamurthy et al. (2010) is that our diagnostic is largely based on data whereas they mainly used model outputs. When using our model output to compute the ratio between the nutrient input by atmospheric deposition and the export at 100m (Figure S13), as expected, it looks very similar to figure 2 in Krishnamurthy et al. (2010).
4.2 Variability in biological response to dust addition in LNLC region

The compilation of the experimental results shows a strong variability in the response to aerosol inputs (Figure 2). A similarly high spatial and temporal variability is also simulated by our biogeochemical model (Figures 5 and 6). Such variability is explained in the model by the heterogeneity in the physical, biogeochemical and ecosystem characteristics of the surface ocean. Nevertheless, additional processes that are not represented in models may generate variable responses in experiments and in the field. For example, the composition of aerosol deposition is spatially variable (see Figure 1b), and atmospheric inputs may provide the limiting nutrients to sustain productivity but may have additional stoichiometric effects through variability in N:P and Fe:P ratios [Moore et al., 2013], and also the supply of microbes, other trace metals than iron, toxic elements and other pollutants [i.e., Paytan et al., 2009; Jordi et al., 2012; Després et al., 2012]. The organic nutrient content of atmospheric deposition, for which fewer data exist compared with the inorganic fraction [Kanakidou et al., 2012], may also contribute to the observed variability.

Another cause of the observed variability is related to differences in the natural assemblages of organisms initially present in the bioassay incubation experiments as different LNLC areas do not exhibit the same nutrient limitation or co-limitation (Moore et al., 2013). This has been shown by Giovagnetti et al., (2013) who observed different changes in the composition and structure of the phytoplankton community and physiological state of the communities whether one dust seeding or a succession of dust seedings were performed in large mesocosm experiments. This confirmed that initial seawater conditions (and on-going nutrient availability) are in part controlling the response of the natural assemblage. In areas where elements in atmospheric deposition - such as copper – reach toxic levels, there could be a selective sensitivity to toxins in the deposited material that may cause a shift in species
dominance [Paytan et al., 2009] or even a decline in phytoplankton biomass over large areas of the ocean [Jordi et al., 2012].

A striking result from both the experimental and field observations and the model experiments is the relatively larger changes in metabolic rates compared to changes in standing stocks. This can be attributed to the effect of grazing by zooplankton on phytoplankton and bacteria, which may increase turnover at the expense of stocks and also rapidly propagate responses through the whole food web [Bonnet et al., 2005; Herut et al., 2005; Marañón et al., 2010]. This could result in experimental artifacts in that chlorophyll-\(a\) concentration may increase in experiments where grazers are filtered, but remain unchanged in natural waters. Phosphate addition to surface waters in the Eastern Mediterranean Sea during a Lagrangian experiment caused a negative Chl a response and an increase in abundance of heterotrophs (both bacteria and zooplankton) (Thingstad et al., 2006). Thus, in addition to the role of the grazers, the potential competitive advantage of bacteria may also explain the small increase of Chl a biomass. The larger increase in bacterial production compared to that of primary production indicates the intrinsically faster metabolism of nutrient-limited bacteria [Marañón et al., 2010], and indicates an increase in organic matter remineralization and a corresponding reduction in carbon export.

The large increase in N\(_2\) fixation indicates that diazotrophs may disproportionally benefit from a pulsed increase in dissolved iron and phosphorus, as observed in the eastern tropical North Atlantic (Mills et al., 2004) or alternatively the contribution of other elements by dust, as observed in the Central Mediterranean Sea [Ridame et al., 2011]. As the same dust was used in both experiments, then the apparent discrepancy between their results may reflect differences in the nutrient or biological status of the water at the start of the respective experiments.
4.3 Potential underestimation of atmospheric impacts by models

Experimental studies performed over short time periods, and thus representative of pulsed inputs, have highlighted the important role of atmospheric deposition for LNLC ecosystem functioning and in particular the activity of heterotrophic bacteria and diazotrophs. Biogeochemical modeling allows extrapolation of the impact of atmospheric deposition over larger space and time scales than laboratory/field experiments. In particular, modeling allows investigations into ‘cascading effects’ (or feedbacks) between regions with contrasting responses and temporal shifts in limitation by different nutrients, and so the net impacts on nutrient cycling and carbon export. In the model scenarios using average atmospheric deposition on yearly or monthly time scales (Figure 4 ‘no D scenario’) and also five-fold increases (Figure 4 ‘D scenario’), the simulated responses on all timescales never reach the magnitudes observed in field and laboratory aerosol addition bioassay experiments (Figure 2) and at times, responses were even in an opposite direction, e.g. for N\textsubscript{2} fixation. In addition to highlighting possible problems in model structure or parameterizations (including deficiencies in the modeled dynamics such as the absence of meso- to submesoscale processes), the disagreement between models and observations may be due to feedbacks that operate at large spatial and temporal scales that are considered in models but excluded in short-duration field or laboratory experiments. Another possibility is that models driven by monthly-mean or annual-mean atmospheric deposition fields do not capture the highly episodic nature of atmospheric deposition. Indeed, a better agreement between experimental data and models is obtained when a strong pulse of deposition, similar in magnitude to that observed in episodic deposition events (see ref. in introduction) and simulated during field and laboratory aerosol addition bioassay experiments, was superimposed over the standard climatological atmospheric deposition fields in the LNLC regions (Figure 5). The observed agreement in the responses of primary productivity and N\textsubscript{2} fixation following deposition
events suggests that atmospheric impacts have so far been strongly underestimated by models, at least on synoptic timescales. These results have direct implications for our understanding of productivity in LNLC regions (e.g., dominant role of atmospheric pulse events).

5. Conclusions and recommendations

Our new model analysis suggests that at least some of the discrepancies in the biogeochemical response to atmospheric deposition between published global model studies (which are similar in their setup to our standard and ‘D’/no ‘D’ model experiments) and field and laboratory aerosol addition bioassay experiments may be due to differences in the time-scale and the mode of the atmospheric supply. The field and laboratory experiments document important aspects that may not have been captured properly by models. This stresses the need to improve the representation of key processes brought into play by atmospheric deposition in ocean biogeochemical models. Indeed, experimental studies show that the effects of atmospheric deposition on surface ocean productivity in LNLC areas appear to be more complex than a simple, overall “fertilization effect” of increasing phytoplankton biomass that is typical of HNLC regions. The term ‘fertilization’ is often associated with the \textit{a priori} belief that dust deposition should increase chlorophyll biomass and carbon sequestration (and thus increases atmospheric CO$_2$ drawdown). Recent experimental studies (Marañón et al. 2010, Guieu et al. 2014b) have changed the way we understand dust deposition to the oligotrophic ocean by showing that fertilization predominantly enhances heterotrophic bacterial growth, and thus dust deposition induces the remineralization of DOC, and so reduces atmospheric CO$_2$ drawdown. Consequently it is not surprising that dust deposition is not typically followed by phytoplankton bloom or significant carbon export in LNLC regions. This is apparent even without the consideration of grazing, as demonstrated by the model. Specifically, the strong sensitivity of bacterial
production to aerosol addition, and associated competitive interactions between phytoplankton and heterotrophic bacteria, needs to be better represented in models. Another recommendation is to increase the number of modeled functional groups, given that different phytoplankton groups show differential responses to aerosol addition in incubation experiments (e.g., Paytan et al. 2009; Giovagnetti et al., 2013) (Figure 2). Furthermore, models need to include variable nutrient elemental ratios in atmospheric deposition, in the water column and in organic matter (Krishnamurthy et al. 2010, Moore et al., 2013). Remaining disagreement in the predicted magnitude of responses between the bioassays and pulsed model may be attributed to processes that aren't represented in models. For example, inclusion of relevant processes, such as the impact of aerosol deposition on aggregation and vertical flux may result in an increase in export in pulsed models. Indeed, experiments and observations have previously indicated that atmospheric deposition can enhance export of particulate organic carbon (POC) to the deep ocean in LNLC regions by facilitating aggregation processes and providing ballast (Armstrong et al., 2002; Ternon E. et al. 2010; Bressac et al., 2011; Bressac and Guieu, 2013). This can induce a strong and rapid POC export that is independent of a fertilization effect (Ternon et al., 2010; Bressac and Guieu, 2013; Bressac et al., 2014) that also results in scavenging of trace metals (Wagener et al., 2010; Wuttig et al., 2013; Bressac and Guieu, 2013). In addition, models should be carefully compared to short-duration experiments to test whether they properly represent the key processes brought into play by aerosol addition on all relevant time-scale and modes of addition.

These fundamental differences strongly argue in favor of coordinated efforts between modelers and experimentalists to improve models, controlled experiments and field data, and to test model results in experimental design. In particular, we didn't address in the study the annual effect of a series of pulses: only one pulse was superimposed over the climatological
atmospheric deposition; doing a series of pulses in the model would be the next step, based for example on statistics from atmospheric data collected at e.g. BATS, CVOO and DYFAMED time series.

Improving our knowledge and understanding of the impacts of atmospheric deposition in LNLC regions and their accurate representation in biogeochemical models is critical as climate models predict changes in both the magnitude and distribution of atmospheric nutrient deposition, and in the size and intensity of LNLC regions. Indeed, deposition of iron, nitrogen, phosphorus and organic matter has increased considerably since preindustrial times [Duce et al., 2008; Mahowald et al., 2008; Mahowald et al., 2010], and nitrogen could further slightly increase in the future (Figure 1c). At the same time climate model simulations forced by IPCC-type scenarios and recent satellite observations suggest that anthropogenic global warming may induce an increase in the size of the oligotrophic gyres in all ocean basins [Henson et al., 2010; Steinacher et al., 2010; Polovina et al., 2008] (Figure 7,). In most current models, atmospheric deposition of nutrients is kept constant in time and space over the course of the model simulations, and the modeled changes primarily reflect alterations in ocean physics (enhanced stratification, reduced mixed layer depth, and slowed circulation) that reduce the supply of macronutrient (N and P) from below the thermocline. The combination of changes in atmospheric deposition and expansion of the LNLC areas, and associated decrease in supply from below the mixed layer, could result in a shift in the relative availability of different nutrients increasing the relative importance of the atmospheric inputs for ocean biogeochemistry.

We have considered the impact of short variability in aerosol supply to LNLC regions by comparing the response to pulsed addition of aerosols using two different approaches: model and bioassay experiments. These show similar magnitude responses for a number of parameters that are an order of magnitude greater than mean deposition-based models. This
confirms that the episodic nature of atmospheric deposition needs to be considered to understand and model temporal variability in LNLC productivity. Improved representation of the effects of deposition in models is clearly important, particularly as a) atmospheric deposition and the oligotrophic ocean area will change in the future and b) the episodic nature of atmospheric deposition may have further significant effects that are currently not considered.

Acknowledgments

This article was initiated in Istanbul, Turkey during a 2-day workshop financed by the European CoOperation in Science and Technology (COST) Action 735 ‘Tools for assessing global air-sea fluxes of climate and air pollution relevant gases’. We thank L. Legendre and P. Boyd for insightful comments on an earlier version of this manuscript. We also thank the 2 anonymous reviewers for their helpful review. Model output can be obtained from Olivier Aumont (Olivier.Aumont@ird.fr). The corresponding code can be downloaded from the official NEMO website (http://www.nemo-ocean.eu/).
References

Geng, H., Park, Y., Hwang, H., Kang, S. and C.U. Ro (2009), Elevated nitrogen-containing particles observed in Asian dust aerosol samples collected at the marine boundary layer of the Bohai Sea and the Yellow Sea. Atmospheric Chemistry and Physics, 9: 6933-6947

Guieu, C., Loÿe-Pilot, M.-D., Benyaya, L., and A. Dufour (2010a), Spatial variability of atmospheric fluxes of metals (Al, Fe, Cd, Zn and Pb) and phosphorus over the whole Mediterranean from a one year monitoring experiment: biogeochemical implications, Mar. Chem., 120, 164–178.

Le Quéré, C. and J.C. Neff (2009), The contemporary physical and chemical flux of aeolian dust: A synthesis of direct measurements of dust deposition, Chemical Geology 267:46–63.

Prospero J.M. and P. J. Lamb (2003), African Droughts and Dust Transport to the Caribbean: Climate Change Implications, *Science* 302, 1024 (2003); DOI: 10.1126/science.1089915

Ridame, C. Guieu, C. and S. L’Helguen (2013), Strong stimulation of N\textsubscript{2} fixation to contrasted Saharan dust events in a Low Nutrient-Low Chlorophyll environment: results from dust addition in large mesocosms, Biogeoscience, 10: 7333-7346

Wagener, T., Guieu C. and N.Leblond (2010), Effects of dust deposition on iron cycle in the surface Mediterranean Sea: results from a mesocosm seeding experiment., *Biogeosciences* 7 : 3769-3781.

©2014 American Geophysical Union. All rights reserved.
Table 1. Compilation of experimental studies adding different types of aerosols to surface seawater, with Aerosol type 1: Fine fraction surface soil; Aerosol type 2: Fine fraction surface soil with physico-chemical treatment simulating atmospheric processing; Aerosol type 3: Particulate phase from rain; Aerosol type 4: Dust collection during dust storm; Aerosol type 5: Local aerosol on filters (not restricted to dust); Aerosol type 6: anthropogenic aerosols (urban particulate matter from NIST). Also reported in situ response to dust storm deposition (7).

<table>
<thead>
<tr>
<th>Region</th>
<th>Tested parameters</th>
<th>Physical nature of the experiment</th>
<th>Time scale of the study</th>
<th>Aerosol type</th>
<th>Aerosol type (details)</th>
<th>Amount of aerosol/dust added or final aerosol/dust conc in bottle or simulated flux</th>
<th>Estimated deposition flux (g.m(^{-2})) mimicked in the experiments (*)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Atlantic</td>
<td>Chl a, nano & microphytoplankton, PP</td>
<td>1</td>
<td>6 d</td>
<td>1</td>
<td>Fine fraction of composite Saharan soils collected in Algeria***</td>
<td>1.34 mg.l(^{-1})</td>
<td>13</td>
<td>Blain et al., 2004</td>
</tr>
<tr>
<td>N Atlantic</td>
<td>BA, BP, Chl a, Syn-, Proc-, PP, N2 fix</td>
<td>1</td>
<td>2 d</td>
<td>1, 4</td>
<td>(1) fine fraction (<20 µm) of soils collected in Mali and (2) atmospherically processed dust collected in the Natlantic</td>
<td>2 mg.l(^{-1})</td>
<td>20</td>
<td>Marañón et al., (2010)</td>
</tr>
<tr>
<td>N Atlantic</td>
<td>Chl a, PP, N2 fix</td>
<td>1</td>
<td>2 d</td>
<td>1</td>
<td>Fine fraction of composite Saharan soils collected in Algeria***</td>
<td>0.5-2 mg.l(^{-1})</td>
<td>5-20</td>
<td>Mills et al., 2004</td>
</tr>
<tr>
<td>N Atlantic</td>
<td>Chl a, PP</td>
<td>1</td>
<td>2 d</td>
<td>1, 4</td>
<td>Fine fraction of composite Saharan soils collected in Algeria***</td>
<td>2 mg.l(^{-1})</td>
<td>20</td>
<td>Moore et al. (2006)</td>
</tr>
<tr>
<td>N Atlantic</td>
<td>Chl a</td>
<td>1</td>
<td>2 d</td>
<td>1</td>
<td>Dust collected in Barbados (atmospherically processed)</td>
<td>2 mg.l(^{-1})</td>
<td>20</td>
<td>Achterberg unp. Data</td>
</tr>
<tr>
<td>Sargasso Sea</td>
<td>syn-, proch-, pico-euk,</td>
<td>1</td>
<td>3 d</td>
<td>5</td>
<td>Locally collected aerosols</td>
<td>2-20</td>
<td></td>
<td>Mackey et al., 2012</td>
</tr>
<tr>
<td>Coastal California</td>
<td>Chl a</td>
<td>1</td>
<td>6 d</td>
<td>5</td>
<td>Collected aerosols</td>
<td>1 mg.l(^{-1})</td>
<td>10</td>
<td>Mackey et al., 2010</td>
</tr>
<tr>
<td>Southeast Pacific</td>
<td>syn-, proch-, pico-euk, PP, N2 fix</td>
<td>1</td>
<td>2 d</td>
<td>1</td>
<td>Fine fraction of composite Saharan soils collected in Algeria***</td>
<td>0.25 mg.l(^{-1})</td>
<td>3</td>
<td>Bonnet et al., 2008</td>
</tr>
<tr>
<td>SW Pacific</td>
<td>N2 fix</td>
<td>1, 5</td>
<td>5 d</td>
<td>1, 7</td>
<td>20–25-mm size fraction obtained from sieving surface soils, one from Australia, one from Gobi Desert</td>
<td>0.84 mg.l(^{-1})</td>
<td>8.4</td>
<td>Law et al., 2011</td>
</tr>
<tr>
<td>Location</td>
<td>Parameter(s)</td>
<td>20-25 mm Size Fraction Obtained from Sieving Surface Soils, One from Australia, One from Gobi Desert</td>
<td>0.84 mg.l⁻¹</td>
<td>8.4</td>
<td>Ellwood et al., 2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>--</td>
<td>-------------</td>
<td>-----</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tasman Sea</td>
<td>N2 fix</td>
<td>Aerosol dust collected during dust storm in Brisbane, Australia</td>
<td>0.84 mg.l⁻¹</td>
<td>8.4</td>
<td>Law, unp. Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Sea</td>
<td>N2 fix</td>
<td>Aerosol dust filters</td>
<td>0.71 mg.l⁻¹</td>
<td>7</td>
<td>Foster et al., 2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Sea</td>
<td>Chl a</td>
<td>Aerosol dust collected</td>
<td>0.75 mg.l⁻¹</td>
<td>8</td>
<td>Mackey et al., 2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Sea</td>
<td>Chl, Syn, Proc, pico-euk</td>
<td>Collected dust dry deposition with and without pre-leaching in filtered SSW</td>
<td>0.2-4.9 mg.l⁻¹</td>
<td>2</td>
<td>Herut et al., 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Mediterranean</td>
<td>BA, BP, Chl a, syn-, proch-, PP</td>
<td>Fine fraction of composite Saharan soils collected in Algeria***</td>
<td>1.25-10 mg.l⁻¹</td>
<td>13</td>
<td>Ridame, 2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediterranean Sea</td>
<td>BA, BP</td>
<td>Fine fraction of composite Saharan soils collected in Algeria***</td>
<td>1.1 mg.l⁻¹</td>
<td>11</td>
<td>Ternon et al., 2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediterranean Sea</td>
<td>N2 fix</td>
<td>Fine fraction of composite Saharan soils collected in Algeria***</td>
<td>0.25 mg.l⁻¹</td>
<td>0.1-2.5</td>
<td>Bonnet et al., 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediterranean Sea</td>
<td>BA, Syn-, PP, N2 fix</td>
<td>Particulate phase of rain</td>
<td>50-500 mg.l⁻¹</td>
<td>500-5000</td>
<td>Lekunberri et al., 2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W Mediterranean</td>
<td>Chl a, nano & microplankton, BA, PP</td>
<td>Saharan dust analog*</td>
<td>0.01 mg.l⁻¹</td>
<td>0.1-2.5</td>
<td>Pulido-Villena et al., 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W Mediterranean</td>
<td>BA, syn-, pico & nano-euk</td>
<td>Saharan dust analog*</td>
<td>10 g.m⁻² (seeding over mesocosm)</td>
<td>10</td>
<td>Pulido-Villena et al., 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W Mediterranean</td>
<td>BA, BP, Chl a, pico-euk</td>
<td>Saharan dust analog*</td>
<td>50-500 mg.l⁻¹</td>
<td>500-5000</td>
<td>Pulido-Villena et al., 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W Mediterranean</td>
<td>BA, BR</td>
<td>Saharan dust analog and particulate fraction of a Saharan rain</td>
<td>0.5-2 mg.l⁻¹</td>
<td>5-20</td>
<td>Pulido-Villena et al., 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>Parameter</td>
<td>Volume</td>
<td>Duration</td>
<td>Condition</td>
<td>Dust Type</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W Mediterranean</td>
<td>PP, N₂ fix</td>
<td>3</td>
<td>8 d</td>
<td>2</td>
<td>Saharan dust analog**</td>
<td>Ridame et al., 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W Mediterranean</td>
<td>Chl a</td>
<td>1</td>
<td>8 d</td>
<td>2</td>
<td>Saharan dust analog**</td>
<td>Guieu et al., 2014a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W Mediterranean</td>
<td>BA</td>
<td>3</td>
<td>8 d</td>
<td>2</td>
<td>Saharan dust analog**</td>
<td>Pulido-Villena unp. Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W Mediterranean</td>
<td>BR</td>
<td>3</td>
<td>8 d</td>
<td>2</td>
<td>Saharan dust analog**</td>
<td>Guieu et al., 2014b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W Mediterranean</td>
<td>BR</td>
<td>3</td>
<td>8 d</td>
<td>2</td>
<td>Saharan dust analog**</td>
<td>Guieu et al., 2014b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measured changes in bacteria abundance (BA), bacteria respiration (BR), bacteria production (BP), chlorophyll-a concentration (Chl a), organisms abundance (Syn. = Synechococcus; Proc. = Prochlorococcus; pico & nano-euks = pico- and nano-eukaryotes, nano & microphytoplankton), primary production (PP), nitrogen fixation (N₂ fix). The physical framework of the experiment is reported as follow: 1: bottles with volumes ≤ 4 L; 2: microcosms (volumes > 4 L); 3: mesocosms (> 50 m³) and 4: in situ. Time scale of the studies in days (d). * if an homogeneous dilution of particles in 5-10m surface mixed layer is considered. ** evapocondensed (EC) dust obtained from fine fraction of Saharan soils (Guieu et al., 2010b). *** the same dust was used in those experiments. # these values do not correspond to any published fluxes and have not been taken into account in the calculation of the range of average values (0.1 - 20 g.m⁻²/event) given in the text (see section 2.4).
Table 2. Main characteristics of the model experiments.

<table>
<thead>
<tr>
<th>Model Experiment</th>
<th>Fe and P Deposition</th>
<th>N Deposition</th>
<th>Deposition Pulses</th>
<th>Duration (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Monthly</td>
<td>Annual</td>
<td>None</td>
<td>100</td>
</tr>
<tr>
<td>No 'D'</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>100</td>
</tr>
<tr>
<td>'D'</td>
<td>Monthly, x5</td>
<td>Annual, x5</td>
<td>None</td>
<td>100</td>
</tr>
<tr>
<td>Pulse</td>
<td>Monthly</td>
<td>Annual</td>
<td>1 daily pulse, either on the 15th of January or on the 15th of July</td>
<td>100</td>
</tr>
</tbody>
</table>

Additional experiments, which are not listed in this table have been performed with the model in which N, Fe, and P atmospheric depositions have been modified individually (set to 0 or current average deposition multiplied by 5). More details on the model setup are given in the Methods section. Atmospheric annual deposition is not constant over time as shown in Figure 7a. This was taken into consideration for example in the scenario 'D' where monthly or annual deposition have been multiplied by 5: from year 1900 to year 2100, changes in atmospheric deposition have been calculated to vary by a factor of 2 to 5. The day of the pulse was chosen arbitrarily in January (summer conditions in southern hemisphere) and in July (summer conditions in northern hemisphere).
Figure 1. (a) Location of oligotrophic gyres (blue colour) as derived from SeaWiFS climatology (1997-2007) with a criteria of Chl a < 0.07 mg.m\(^{-3}\); (b) Global atmospheric dissolved fluxes derived from models for iron, phosphate and nitrogen (from Luo et al., 2008, Mahowald et al., 2008), Lamarque et al., 2010. (c) Evolution of simulated deposition of dust (Tg/y) and soluble iron (Gg/y), phosphate (Tg/y), nitrogen (Tg/y) over the period 1850-2100. For DFe and phosphate, dashed lines are deposition from combustion sources. For N deposition, solid lines are total N, dashed lines are NOy, and dotted lines are NHx. Uncertainties for deposition estimates are 40% for past changes, and 100% for future changes. Future estimates are from the four representational concentration pathways (RCPs) scenarios (RCP2.6 blue, RCP4.5 green, RCP6.0 light blue and RCP8.5 red). Estimates based on (Lamarque et al., 2010;Lamarque et al., 2011;Luo et al., 2008;Mahowald et al., 2008;Mahowald et al., 2009;Mahowald et al., 2010;van Vuuren et al., 2011); (see description in methods).
Figure 1. (continued).
Figure 1. (continued).
Figure 2. Box-Whisker plots (box portion = interquartile range (25th to 75th percentile) of the dataset. Horizontal bar within the box = median value. Black square = mean value. Also represented maximum and minimum values) showing the responses of different biological variables to aerosol additions in LNLC waters: synthesized from available data from field and laboratory aerosol addition bioassay experiments and mesocosm experiments (Table 1). The responses are % changes in the aerosol treatment relative to the control after 2-8 days (Table 1), with zero indicating no difference between the aerosol treatment and the control, and a positive response indicating an increase in the parameter in the aerosol treatment relative to the control. Parameters: (BA) Bacteria Abundance, (BR) Bacteria Respiration, (BP) Bacteria Production, (Syn.) Synechococcus abundance, (Proc.) Prochlorococcus abundance, (pico & nano-euks) Nano- and Picoeukaryotes abundance, (nano & microphyto) nano- and microphytoplankton abundance, (Chl a) Chlorophyll-a, (PP) primary production, (N2Fix) nitrogen fixation.
Figure 3. Atmospheric deposition as a source of nutrients to the LNLC ocean (a) Turnover times (years) relative to atmospheric deposition (TTADs) for nitrate (NO$_3$), phosphate (PO$_4$) and dissolved iron (DFe). Areas with low values indicate that atmospheric supply plays an important role in maintaining nutrient concentrations. (b) Contribution of atmospheric deposition to the total vertical supply of nutrient to the surface mixed layer using both a model (NO$_3$, PO$_4$) and observational (DFe) data (see details in Methods section). Areas with high values indicate that atmospheric supply plays an important role in maintaining nutrient concentrations. Black contour: limits of the oligotrophic gyres (see Fig. 1a).
Figure 3. (continued).
Figure 4. Impact of modification of the mean magnitude of atmospheric deposition on primary production (PP), nitrogen fixation (N_2 fix), surface chlorophyll-a (Chla) between surface and 100m and export production at 100 m depth (EP), in LNLC regions as computed with the NEMO-PISCES models. Box-Whisker plots (box portion = interquartile range (25th to 75th percentile) of the dataset. Horizontal bar within the box = median value. Black square = mean value. Also represented maximum and minimum values) showing relative changes (as percentage) with respect to the standard run using standard climatological atmospheric deposition fields (Fig. 1b) described in the Methods and Table 2. These relative changes are computed from the maximum daily response, simulated over the year, following the change in atmospheric deposition (see Methods) and includes changes in all nutrients together (total set of 4 experiments): when zero deposition are considered (No 'D' experiment; upper panel) and when atmospheric deposition has been multiplied by 5 ('D' experiment; lower panel).
Figure 5. Impact of one pulse of dust and N (on the 15th of January or on the 15th of July) superimposed over the standard climatological atmospheric deposition fields, for primary production (PP), nitrogen fixation (N_2 fix), surface chlorophyll a (Chl a) between surface and 100 m and export production at 100 m depth (EP), in LNLC regions computed using the NEMO-PISCES models (Pulse experiments, see Methods and Table 2). Box-Whisker plots (box portion = interquartile range (25th to 75th percentile) of the dataset. Horizontal bar within the box = median value. Black square = mean value. Also represented maximum and minimum values) showing the maximum daily relative change averaged over the LNLC regions (as percentage) relative to the Standard run.
Figure 6. Surface changes (between surface and 100m) induced by the pulse addition applied on the 15th of July (see methods and Table 2). Maximum relative change in a) surface Chl a; b) surface NPP; c) surface Nfix; d) export à 100m; e) Residence time (in days) of the most limiting nutrient. The residence time is defined as the duration of the perturbation of the considered nutrient and f) Maximum relative change in total grazing on phytoplankton.
Figure 7. Evolution of the size of oligotrophic areas over 1850-2100, for the historical period (black) and 4 representational concentration pathways (RCPs) scenarios (RCP2.6 blue, RCP4.5 green, RCP6.0 light blue and RCP8.5 red)).