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1 INTRODUCTION 

Thomas Opel 

 

This report summarizes the field work and first results of the joint Russian-German 

expedition Lena 2012. This expedition was the 15th expedition to the Lena River Delta and 

the surrounding Laptev Sea region since 1998 and was an expression of the vital Russian 

German science cooperation between several Russian and German research institutions. 

During the expedition the long-term investigations of permafrost and the periglacial 

environment at and around Samoylov Island in the Central Lena River Delta had been 

continued. Consequently, the Samoylov Research Station was the logistical and scientific 

base for the main part of the expedition (Figure 1-1). Additionally, a small field camp was 

established at Muostakh Island in the Buor Khaya Gulf east of the Lena Delta, the second 

study region during the expedition (Figure 1-1). 

 

 

Figure 1-1 Overview map with the two main study regions: (1) The central Lena River Delta and (2) 

Muostakh Island. Map compiled by Frank Günther. 
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The expedition focused on the following research topics:  

• Heat and water budgets of permafrost landscapes 

• Observations of carbon cycle and hydrological fluxes 

• Airborne measurements of energy and carbon fluxes 

• Studies of soil, water, carbon and microbiology 

• Hydrological and geochemical conditions of the Lena River Delta 

• Modern environmental dynamics of aquatic ecosystems and vegetation 

• Paleoclimate, permafrost and environmental dynamics since the Late Pleistocene 

• Coastal erosion of permafrost coasts 

 

The scientific work during the expedition Lena 2012 was carried out by 31 participants 

from 13 German and Russian research institutions (Table 2-1, Table 2-2, Figure 2-1, 

Figure 2-2, Figure 2-3, Figure 2-4). The expedition took place in the period July 04 to 

September 05, 2012. 

 

The expedition Lena 2012 was coordinated by Prof. Dr. H.-W. Hubberten (AWI, Potsdam), 
Prof. Dr. D. Yu. Bolshiyanov (AARI, St. Petersburg) and Dr. M.N. Grigoriev (PIY, Yakutsk). 

 

This report contains short contributions of the participants. The authors are responsible for 
content and correctness. 

 

Acknowledgements 

The success of the expedition “Lena 2012” would not have been possible without the 
support by several Russian, Yakutian, and German institutions and authorities. 

In particular, we would like to express our appreciation to the Lena Delta Reserve and the 
Tiksi Hydrobase, especially to A. Gukov and D. Melnichenko. 
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2 EXPEDITION ITINERARY AND PARTICIPANTS 

 

Table 2-1 List of participants  

Name Email Institute Time Field site 

Abramova, Ekaterina abramova-katya@mail.ru LDR 04.07.-05.09. LD 

Bobrova, Olga helga.castor@gmail.com USP 31.07.-05.09. LD 

Boike, Julia julia.boike@awi.de AWI P 31.07.-22.08. LD 

Bolshiyanov, Dmitry bolshiyanov@aari.nw.ru AARI 15.08.-05.09. LD 

Chetverova, Antonina antoshka4@mail.ru USP 31.07.-05.09. LD 

Dereviagin, Alexander dereviag@gmail.com MSU 31.07.-28.08. MUO 

Dubinenkov, Ivan ivan.dubinenkov@awi.de AWI B 31.07.-05.09. MUO, LD 

Evgrafova, Svetlana esj@yandex.ru SIF 31.07.-05.09. LD 

Fülöp, Reka rfueloep@uni-koeln.de UC 31.07.-22.08. LD 

Grigoriev, Mikhail grigoriev@mpi.ysn.ru PIY several LD, MUO 

Heikenfeld, Max max.heikenfeld@awi.de AWI P 04.07.-05.09. LD 

Helbig, Manuel manuel.helbig@yahoo.com UHH 04.07.-01.08. LD 

Kutzbach, Lars lars.kutzbach@zmaw.de UHH 31.07.-22.08. LD 

Langer, Moritz moritz.langer@awi.de AWI P 04.07.-01.08. LD 

Larmanou, Eric eric.larmanou@gfz-potsdam.de GFZ 31.07.-22.08. LD 

Makarov, Alexander makarov@aari.nw.ru AARI 04.07.-05.09 LD 

Meyer, Hanno hanno.meyer@awi.de AWI P 31.07.-28.08. MUO 

Münchberger, Wiebke w.muenchberger@yahoo.de UHH 31.07.-05.09. LD 

Opel, Thomas thomas.opel@awi.de AWI P 31.07.-05.09. MUO, LD 

Osudar, Roman roman.osudar@awi.de AWI P 04.07.-01.08. LD 

Runkle, Benjamin benjamin.runkle@zmaw.de UHH 04.07.-05.09. LD 

Sabrekov, Alexander misternickel@mail.ru MSU 04.07.-01.08. LD 

Sachs, Torsten torsten.sachs@gfz-potsdam.de GFZ 31.07.-22.08. LD 

Schneider, Waldemar waldemar.schneider@awi.de AWI P 04.07.-05.09. LD 

Soloviev, Grigoriy greansa@gmail.com HSP 31.07.-05.09. LD 

Stoof, Günter guenter.stoof@awi.de AWI P 04.07.-05.09. LD 

Spiridonova, Irina spirdirina@mail.ru NEFU 04.07.-01.08. LD 

Titova, Darya tit-dacha@yandex.ru USP 04.07.-01.08. LD 

Wischnewski, Karoline karoline.wischnewski@gmail.com AWI P 04.07.-05.09. LD 

Yakshina, Irina i_yakshina@rambler.ru LDR 31.07.-28.08. MUO 

Zibulski, Romy romy.zibulski@awi.de AWI P 04.07.-01.08. LD 
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Table 2-2 Institutions of the participants 

Abbreviation Institution 

AARI 

 

Arctic and Antarctic Research Institute, Bering St. 38, 199397 St. 
Petersburg, Russia 

AWI B 
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 
Department of Ecological Chemistry, Am Handelshafen 12, 27570 
Bremerhaven, Germany 

AWI P 
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 
Deparmtne of Periglacial Research, Telegrafenberg A43, 14473 Potsdam, 
Germany 

GFZ 
Helmholtz Centre Potsdam – GFZ German Research Centre for 
Geosciences, Telegrafenberg, 14473 Potsdam, Germany 

HSP 
Herzen State Pedagogical University of Russia, Kazanskaya (Plekhanova) 
St. 6, 191186 St. Petersburg, Russian Federation 

LDR 
Lena Delta Reserve, Academician Fyodorov St. 28, 678400 Tiksi, Russian 
Federation 

MSU 
Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 
Moscow, Russian Federation 

NEFU 
Northeastern Federal University in Yakutsk, Belinskiy str, 58, 677980, 
Yakutsk, Russian Federation 

PIY 
Melnikov Permafrost Institute, Siberian Branch of Russian Academy of 
Science, Merzlotnaya St. 36, 677010 Yakutsk, Russian Federation 

SIF 
Sukachev Institute of Forest, Siberian Branch of Russian Academy of 
Sciences, Akademgorodok, 660036 Krasnojarsk, Russian Federation 

UC 
University of Cologne, Institute of Geology and Mineralogy, Zülpicher Str. 
49a, 50674 Cologne, Germany 

UHH 
University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 
Hamburg, Germany 

USP 
Saint Petersburg State University, Institute of Earth Science, Department of 
Land Hydrology. Vasilievskij Island, 10th line, 199178 St. Petersburg, 
Russian Federation 

 

Table 2-3 Field sites 

Abbreviation Field Site 

LD Lena Delta, based on Samoylov Island 

MUO Muostakh Island 
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Figure 2-1 Team Lena Delta, 13.07.2012 

 

 

Figure 2-2 Team Lena Delta, 21.08.2012 
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Figure 2-3 Team Lena Delta, 30.08.2012 

 

 

Figure 2-4 Team Muostakh Island, 27.08.2012 
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3 STUDIES IN THE LENA DELTA 

 

 

Figure 3-1 Overview map of the central Lena River Delta with the main study sites Samoylov 
Island and Kurungnakh Island. Background: RapidEye satellite image acquired on 27 July 2014, 
kindly provided by BlackBridge and German Aerospace Center (DLR) through RapidEye Science 
Archive. Map compiled by Frank Günther. 
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3.1 HEAT AND WATER BUDGET OF PERMAFROST 
LANDSCAPES ON SPATIAL AND TEMPORAL SCALES - 
INSTRUMENTATION OF A NEW LONG-TERM PERMAFROST 
SOIL THERMAL SITE 

Julia Boike, Karoline Wischnewski, Max Heikenfeld, Moritz Langer, Wiebke 

Müncheberger, Steffen Frey, Christian Juncher Jørgensen, and Lars Kutzbach 

 

Fieldwork period:  July 04 to September 03, 2012; Samoylov Island 

 

3.1.1 Introduction 

Monitoring of climate, active layer and permafrost thermal regime has been ongoing on 

the island of Samoylov since 1998 (Boike et al., 2013). In August 2012, a new long term 

permafrost monitoring site was established potentially replacing the old site that has been 

operating since 2002. The new site was chosen in close proximity to the eddy covariance 

site in the center part of the island (Figure 3-2, Figure 3-3). Two sub-sites were chosen in 

close proximity, but with strong hydrologic gradients (wet center, dry rim) (Figure 3-4). 

 

3.1.2 Methods 

Two soil pits were excavated: one in the wet polygonal center and the other one in the 

drier rim. Prior to the installation in the wet polygonal center, the water was removed using 

a pump. Excavation was done between 9-13 August, 2012 using a spade (thawed soil) 

and a gas-powered hammer for the frozen soil (down to 1 m depth). Care was taken to 

remove the soil layer by layer and to refill this material after instrumentation to its original 

state. The soil profile was described and classified according to the World Reference 

Base for Soil Recourses (FAO, 2007). Thawed and frozen samples were taken of the soil 

profile for later analysis of soil texture, density and for extraction of water samples. 

Sensors for measuring soil temperature, volumetric moisture content, soil thermal 

properties and heat flux were placed in the undisturbed soil face in the subsurface, and 

depths were recorded. For the installation in the frozen ground, a powered drill was used 

to create access holes. After installation, the original soil was carefully filled back, and the 

surface was reconstructed using the organic surface layer. All cables were put underneath 

the ground to minimize the impact of animals and other disturbances. After the installation 

was completed, the polygon center was irrigated to reestablish the original water level. 
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Figure 3-2 Top: The new soil site in August 2012 before instrumentation of sensors. The yellow 

band stretching across the polygon indicates where the profiles were installed and vegetation was 

recorded. Bottom: View of instrumented polygonal site in August 2013. 
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A figure of the installed sensors, as well as a complete list of all climate and soil sensors 

can be seen in Figure 3-5 and Table 3-1. 

 

 

Figure 3-3 Aerial view of the new soil site (person with yellow jacket for scale) during installation of 
sensors. Picture was taken on August 13, 2012 from the automated camera at 10 m height on the 
nearby eddy flux tower. Also shown is the snow monitoring site (snow pack analyser) on the left. 
Location of new soil site: 72°22.451, 126°29.753. 
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Figure 3-4 Surface topography, water level and location of two profiles of new soil monitoring 

station. 

 

 

Figure 3-5 Installation depths and sensor types for the two instrumented profiles in the center (left) 

and rim (right). Two vertical TDR sensors are installed in wells for monitoring ground water levels. 
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Table 3-1 List of installed sensors in the ground and above the surface. 

 

±
±

±

±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±

±
±

±
±
±
±
±
±

±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±

±
±

±

±



 3.1 Heat and water budget of permafrost landscapes 

14 

3.1.3 Preliminary data 

 

 

 

 

 

Figure 3-6 Data record from the polygon center August 2012 to 2013. From top to bottom: net 

radiation, distance to surface (snow/water), dielectric constant from horizontally installed TDR 

probes above the surface (log scale), water level in ground using well and vertically installed TDR 

probe. 

 

Figure 3-6 shows raw data of net radiation, snow/water height installed over the polygon 

center, as well as the dielectric constant measured above the ground surface at 5 and 20 

cm height (August 2012-August 2013). Due to interruption of the power supply, a large 

data gap exists between November 2012 and April 2013. Net radiation increases mid-April 

with ripening of the snow and subsequent melt. The snow height is measured with a sonic 

sensor, thus only data of distance to the object are collected. The sharp decrease of the 

distance signal in May indicates snow thaw. After the beginning of May, the sonic sensor 

potentially records the height of the water level in the polygon center. This is also 

confirmed by the horizontally installed TDR probes 5 cm height above the ground surface. 
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Both probes (5 and 20 cm height) show an increase in dielectric constant (i.e. snow liquid 

water content) in mid-April, indicating an early snow ripening event. Continuous increase 

of snow liquid water content (probe at 5 cm height) indicates further ripening and ageing 

of the snowpack, with progressing into snow melt the beginning of May (dielectric constant 

changes from < 4 for dry snow to ~ 80 for water). After the melt, water ponds inside the 

polygon, i.e. the water table is at least 5 cm above ground surface. Starting in July, the 

water table slowly drops below the 5 cm TDR probe, indicated by the decreasing dielectric 

constant, reaching air values ~1) in mid-July. Additional measurements of the water level 

height are carried out using a vertical installed TDR probe in a 50 cm deep well installed in 

the subsurface. A continuous decreasing water level after the snowmelt in mid-May and a 

drop of 5 cm in July are confirmed by these measurements. Due to rain fall in August, the 

water level rises again to 5 cm above surface, indicated by both (vertical and horizontal) 

installed TDR sensors. These first results show that TDR is a promising method for the 

longer term monitoring of water levels where freezing/thawing limits the use of 

groundwater pressure sensors in water.  

The preliminary data of the ground thermal processes is shown in Figure 3-7. Sensors 

were installed up to 1 meter depth, thus far below the seasonally thawed active layer. At 

the time of power failure in mid-October, only the ground’s surface down to 25 cm had 

been frozen. The data record starts again in mid April 2013. In mid-April, the soil warms 

and the water content in frozen soil increases, potentially induced by warm days and snow 

warming, ripening and potential thawing processes, as indicated by the increase of snow 

liquid water content (increase of snow dielectric constant, see figure 5). The volumetric 

water content in frozen soil lies below 8 %, which is expected for the silty sand soil. The 

surface of the polygon starts to thaw at the beginning of May after snowmelt. Thawing is 

indicated by passing the 0° C temperature, as well as a sharp increase in volumetric water 

content. For example, the sensor at 14/15 cm soil depth thaws during mid-May, after 

which the temperature variations follow the daily air temperature signal. The volumetric 

water content (~80% at 14 cm depth and ~60% at 44 cm depth) under saturated 

conditions also represents the porosity of the ground, which is expected to be high for the 

peat. Heat flux in the ground was recorded using heat flux plates. Data in 2012 will be 

removed; due to the installation, the ground was still unfrozen at 1 m depth until mid-

October prior to power failure and data loss. In 2013, the ground heat flux at 1 m depth 

(continuously frozen ground) was very small (~10 W/m2) with no daily cycle compared to 

the surface at 13 cm depth. The small but noticeable soil heat input induced by the 

ablation/thawing of the snow cover in mid-April is also visible at 1 meter depth.  
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Figure 3-7 Data record from the sensors installed in the subsurface of the polygon center August 
2012 to 2013. From top to bottom: temperature, volumetric water content, ground heat flux, thermal 
conductivity, heat capacity. 

 

Thermal property sensors were used to monitor soil thermal conductivity and thermal 

capacity in situ. Thermal conductivity values in the frozen soil at 45 and 95 cm depth in 

2013 range between 1.5 to 2 (W/m K) and for the thawed soil at 45 cm depth (peat) 

around 0.7. This is in agreement with the ranges given by previous model estimates from 

various methods. The heat capacity shows a difference between the two soil depths, but 

no seasonal signal. The heat capacity ranges between 2-3 (MJ/m3 K1) at 95 cm depth 

(always frozen) and 5 (MJ/m3 K1) at 45 cm depth in the thawed state. Strong changes in 

the thermal properties occur during the seasonal phase change during summer thaw. 
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Previous estimates for the heat capacity of the wet tundra soil are 3.4±0.5 (thawed) and 

1.8±0.3 (frozen; Boike et al., 2013; Langer et al., 2013). 

 

3.1.4 Soil profile description 

In the polygon centre, the soil was classified as Glacic Cryosol (Eutric, Reductaquic) 

(Table 3-2). It is characterized by water-saturation in the whole soil profile for most of the 

year, which leads to reducing conditions and soil organic matter accumulation. However, 

the gravimetric soil organic carbon contents in all horizons were below 12 %, thus not 

qualifying them as organic material. Below the topsoil Ah horizon, alternating layers of 

organic and mineral materials were found. The edge of an ice-wedge was cut by the left 

part of the soil profile from a depth of 89 cm. 

At the polygon rim, the soil was classified as Turbic Cryosol (Eutric, Reductaquic) (Table 

3-3). It is characterized by irregular horizon and sediment layer boundaries due to 

cryoturbation. Due to its relative higher position in the microtopography, the soil is not 

water-saturated for the whole year. However, reducing conditions were identified below 23 

cm. Like in the soil of the center, alternating layers of organic and mineral materials were 

found below the topsoil Ah horizon. Organic carbon contents in the Ah horizon were lower 

than in the soil of the polygon center; however, a frozen buried peat horizon was found 

below 80 cm.  
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Table 3-2 Soil profile description of the Glacic Cryosol (Eutric, Reductaquic) in the polygon center 

Location: Samoylov Island, Lena River Delta, date of description: 11 August 2012 

Geographic coordinates: 72°22.451 N, 126°29.753 E 

Situation within microrelief: Center of low-center ice wedge polygon (depression) 

Mean annual air temperature: -12,5 °C 

Thaw depth on date of description: 41 cm 

Water level above moss surface before drainage: 3 cm 

Remarks: no signs of cryoturbation, drained during description 

Depth below 
moss surface 

(cm) 
Horizon Description 

0...6 living moss Dark reddish grey (2.5YR 3/1), living to dead moss layer, 
green moss Scorpidium sp., no roots, bulk density very 
low 

6...13 Ah1 Dark reddish grey (2.5 YR 3/1), extremely high content of 
organic matter (15-30%), green moss peat, very many 
roots, Carex root mat, no soil aggregates visible, bulk 
density very low 

13...23 Ah2 Very dark grey (5 YR 3/1), extremely high content of 
organic matter (15-30%), green moss peat, many roots, 
no soil aggregates visible, bulk density very low 

23...41 Arhb/Cr Very dark brown (10 YR 2/2), loam, very high content of 
organic matter (8-15%), alternating layers of green moss 
peat (with loam) and loamy sand, few roots, single corn 
matrix, bulk density very low, alpha-alpha-Dipyridyl 
reaction positive 

41...89 Arhfb/Crf Very dark brown (10 YR 2/2), silt loam, very high content 
of organic matter (8-15%), alternating layers of green 
moss peat (with loam) and silt loam, no roots, frozen, ice-
cemented, alpha-alpha-Dipyridyl reaction positive 

89...110  I + Arhfb/Crf Left side of profile clear ice, probably part of ice-wedge, 
right side as horizon above 

Soil classification 

World Reference Base for Soil Recourses: Glacic Cryosol (Eutric, Reductaquic) 

US Soil Taxonomy: Glacic Aquorthel 

 

  



3.1 Heat and water budget of permafrost landscapes  

19 

Table 3-3 Soil profile description of the Turbic Cryosol (Eutric, Reductaquic) at the polygon rim 

Location: Samoylov Island, Lena River Delta, date of description: 11 August 2012 

Geographic coordinates: 72°22.451 N, 126°29.753 E 

Situation within microrelief: Summit of elevated rim of low-center ice wedge polygon 

Mean annual air temperature: -12,5 °C 

Thaw depth on date of description: 30 cm 

Water level above moss surface before drainage: -30 cm 

Remarks: Irregular horizon and sediment layer boundaries due to cryoturbation 

Depth below 
moss surface 

(cm) 
Horizon Description 

0...3 living moss Very dark grey (5YR 3/1), living moss layer, green moss 
Hylocomium sp., no roots, bulk density very low 

3...8 Ah1 Very dark grey (5 YR 3/1), sandy loam, very high content 
of organic matter (8-15%), many roots, bulk density very 
low 

8...13 Ah2 Very dark grey (5 YR 3/1), loam, high content of organic 
matter (5-8%), many roots, bulk density very low 

13...26 Ahlb@/Cl@ Dark reddish-grey and brown (2.5 YR 3/1 and 7.5 YR 
3/1), silt loam, very high content of organic matter (8-
15%), alternating layers of green moss peat and mineral 
material, bulk density very low, alpha-alpha-Dipyridyl 
reaction negative 

26...30 Arhb@/Cr Dark reddish-grey (2.5 YR 3/1), silt loam, extremely high 
content of organic matter (15-30%), alternating layers of 
green moss peat and mineral material, few roots, bulk 
density very low, alpha-alpha-Dipyridyl reaction positive 

30...80 Arhfb@/Crf@ black (10YR 2/1), silt loam, very high content of organic 
matter (8-15%), no roots, frozen, ice-cemented 

80 105  Hrfb@1 black (10YR 2/1), organic material (>30% organic 
matter), silt loam (Ut4), no roots, ice-cemented 

Soil classification 

World Reference Base for Soil Recourses: Turbic Cryosol (Eutric, Reductaquic) 

US Soil Taxonomy: Turbic Aquorthel 
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Figure 3-8 Soil profile in the center of the polygon: Glacic Cryosol (Eutric, Reductaquic). Note the 
massive ice in lower left corner at about 1 m depth. 
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Figure 3-9 Fully installed center profile. Frozen ground was encountered at about 41 cm below 

ground surface corresponding to the second TDR sensor (from top down). 
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Figure 3-10 Instrumentation in upper soil of center profile. From left to right: oxygen probes, white 

“box” TDR probes (white boxes),: PT100 temp probes (white cables), heat flux plate. 
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Figure 3-11 Installed rim profile. Thaw depth at about 30 cm (between 2
nd

 and 3
rd

 TDR probe from 

top) 
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3.1.5 Snow monitoring site 

3.1.5.1 Introduction 

The thermal state of permafrost is strongly controlled by the snow cover at the study site 

(e.g. Langer et al., 2013). Due to its low thermal conductivity, the snow cover effectively 

limits the cooling of the ground during the long lasting winter period. This is especially true 

at the study site where a shallow snow cover (of usually less than 0.5 m) exits which 

usually features a distinct layer composition. The characteristics of the snow layers such 

as density, grain size, and grain shape can be strongly different. Often, a layer of depth 

hoar exits at the bottom of the snow cover while the top is mostly characterized by a wind 

compacted ice crust. Especially for a shallow snow cover the effective insulation strongly 

depends on the layer composition and already small changes can strongly affect the 

thermal state of the ground underneath. Hence, knowledge about the snow cover 

characteristics including spatial and temporal variations is essential for investigating the 

thermal dynamics and stability of permafrost. 

In order to ensure a continuous observation of the snow cover and its physical properties 

(density and thermal diffusivity) a comprehensive snow monitoring station was installed 

during the field campaign in 2012. 

 

3.1.5.2 Snow monitoring system 

The snow monitoring station consists of a 15 m aluminium rack which spans across the 

rims of two adjacent ice wedged polygons (Figure 3-12, Figure 3-13). The rack is fixed on 

four steal poles about 1.5 m above the surface. The poles are fixed in the permafrost 

down to a depth of about 1.5 m. This ensures a steady position of the rack despite the 

freeze-thaw dynamics of the active layer. The rack is equipped with four infrared surface 

temperature sensors (2x IRTS-P, 2x SI-111), ten ultrasonic snow depth sensors (SR50A) 

directed towards the ground, and one air temperature sensor (T107). This setup allows to 

detect spatial differences in snow depths due to the polygonal micro topography. In 

addition, two ultrasonic ranging sensors are mounted in horizontal orientation. The 

sensors point against metal targets which are fixed on poles in about 1 m distance to the 

sensors (Figure 3-12). This installation allows to measure lateral movements of the 

ground. Furthermore, a snow pack analyzer (SPA) is installed underneath the rack which 

measures the snow water equivalent (SWE) in different snow depths. The sensor bands 

(wave guides) are located about 10, 20, and 30 cm above the surface. In order to 

measure the temperature gradient within the snow cover 12 thermocouples are installed in 

different depth above the ground at the SPA (Figure 3-13). Moreover, a shallow soil 

temperature profile down to a depth of about 1 m is installed close to the snow monitoring 

systems. 
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Figure 3-12 Schematic overview of the new snow motoring station including the 15 m rack for 
snow depth measurements, the snow pack analyser, and the cover temperature sensors. 

 

 

Figure 3-13 Sensor locations along 15 m rack for snow depth measurements including a profile of 
the surface topography. 
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3.2 SUMMERTIME CARBON-CYCLE AND HYDROLOGICAL FLUX 
OBSERVATIONS, SAMOYLOV ISLAND 

Benjamin R.K. Runkle, Manuel Helbig, Alexander Sabrekov, Wiebke Münchberger, 

and Lars Kutzbach 

 

Fieldwork period:  July 04 to September 03, 2012; Samoylov Island 

 

3.2.1 Objectives 

3.2.1.1 Vertical fluxes 

This research goal was to provide a continuation of long-term eddy covariance (EC) 

measurements of CH4, CO2, H2O and energy exchange from the land surface to the 

atmosphere at Samoylov Island. This work included careful maintenance of long-term 

meteorological and gas flux monitoring instruments. A continuation of this data series is 

important for analyzing the high intra- and inter-annual variability of these fluxes. Only with 

long-term measurements is it possible to give generalized conclusions about the carbon 

balance of this tundra environment as well as climatic influences on the vertical carbon 

fluxes.  

 

3.2.1.2 Lateral fluxes 

Additionally, in this year we installed more durable and permanent weirs on three outflow 

channels from Samoylov’s ice wedge network. These installations provide estimates of 

water discharge. When coupled with water samples to be measured for dissolved organic 

carbon content (DOC), they help provide the lateral flux of carbon from this catchment. 

Water samples have also been analyzed for their stable isotope ratios and nutrient 

contents; together these can be used to test hypotheses regarding hydrological flow 

through this complex landscape. Supporting instrumentation such as radiation sensors 

and soil temperature profiles were installed to provide an understanding of connections 

between thermal thaw and deeper sub-surface flow pathways. 

 

3.2.1.3 Microsite scale fluxes 

To develop a finer understanding of spatial variations in landscape-atmosphere gas 

fluxes, we initiated two surveys at different microsite scales. The first was a closed 

chamber study to provide estimates of CH4 and N2O flux at different micro-topographical 

zones on Samoylov. These measurements were conducted in a set of polygon types, 

along the outflow channel from the ice-wedge network, and in the modern floodplain.  

Second, initial studies on leaf-level photosynthesis were conducted. These measurements 

are supported by studying the leaf area index of Carex aquatilis, the dominant sedge 

species. This research is contextualized by an ecologically-oriented description of the 

vegetation cover. 
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3.2.2 Methods 

3.2.2.1 Vertical fluxes 

We installed several new eddy covariance instruments at the main tower. On arrival, we 

placed an open-path Li-7500A sensor from the SPARC group to measure CO2 and H2O 

concentrations. We also re-installed an open-path Li-7700 sensor to measure CH4 

concentrations.  

 

3.2.2.2 Lateral fluxes 

We installed three weirs to measure discharge from the ice wedge network and an 

adjacent watershed composed more predominantly of intact polygons. These weirs are 

made from steel and are calibrated with a bucket-filling method to test the stage-discharge 

relationship. Grab samples of water for stable isotope analysis from each weir were 

conducted near daily; additional samples from other water bodies were also collected 

sporadically. Samples of soil matric water were also taken in profiles in different polygon 

and microsite locations for measuring stable isotopes and dissolved organic carbon 

concentration.  

 

3.2.2.3 Microsite scale fluxes 

 

Closed chamber study 

The closed chamber measurements were performed using collars with dimensions 50 x 

50 cm at sites. For the first part of the measurement period, syringe samples of gas were 

collected in regular intervals into vials filled with KCl salt solution. For the second part of 

the measurement period, syringe samples were analyzed for their CH4 concentration 

using the gas chromatograph installed at the station. Salted vials were used to store and 

transport duplicate samples for analysis of N2O concentration at Moscow State University. 

 

Photosynthesis of Carex aquatilis and Arctophila fulva 

Leaf-level photosynthesis measurements were performed with the Li-6400 gas analyzer.  

• Light response curves were done with 3 x 5 C. aquatilis samples chosen from wet 

tundra, dry tundra and overgrown water 

• A. fulva light response curves were also done with five samples (only found in 

overgrown land cover class) 

Supplemental information such as leaf nutrient content and green area index were also 

determined.  
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3.2.3 Results 

Summertime exchange of water (Figure 3-14) and carbon (composed of CO2, CH4, and 

DOC; Figure 3-15) on the landscape scale were determined using a mixture of eddy 

covariance and lateral flux measurements. The water budget demonstrates the 

dominance of evaporation on the landscape during this period, though discharge is a non-

negligible component of the balance (approximately 15%). The carbon budget is 

dominated by net uptake of CO2 during this most vegetatively-active period. Fluxes of CH4 

and DOC were considerably lower (each more than one order of magnitude less than the 

other).  

The closed-chamber measurements reveal microsite methane fluxes of similar magnitude 

to those previously reported for polygons on Samoylov (Sachs et al., 2010). They also 

show that saturated sites in the margins of the outflow channel (“TR2”) emit more CH4 

than saturated sites in the center of the outflow channel (TR3, TR4). A brief test of 

measurements from the modern floodplain part of the island demonstrated significantly 

lower fluxes there than in the Holocene polygonal terrace. In this site a vegetated (grassy) 

site emitted more CH4 than an adjacent sandy location.  

The photosynthesis work was organized by the land cover class within which each Carex 

plant was situated. The results of this study (shown in Table 3-4) demonstrate lower 

maximal photosynthetic capacity (Pmax) in wet polygons, lower leaf nitrogen in overgrown 

polygons, and generally low respiration rates (Rd). A. fulva did not have significantly 

different photosynthetic properties from C. aquatilis but did have higher leaf N content. 

 



 3.2 Summertime carbon-cycle and hydrological flux observations 

30 

 

Figure 3-14 Site water fluxes during the summer period, 2012. 

 

Table 3-4 Leaf photosynthesis parameters, classified by land cover type and determined through 
modeling a light response curve to measurements taken on the Li-6400 leaf photosynthesis 
system.  

    mixed samples for each class! 

land cover 
class C. 

aqu 

sample 
size 

Pmax, 

μmol CO2 m-2s-1 

Rd, 

μmol CO2 m-2s-1 

C/N 
ratio 

N content 
(%) 

total phosphorus 
(mg/kg) 

dry 5 7.18 ± 1.04 0.42 ± 0.08 26.87 1.76 2305.93 

wet 5 4.35 ± 2.22 0.47 ± 0.13 27.15 1.76 1062.99 

overgrown 5 6.04 ± 0.80 -0.93 ± 2.50 32.00 1.47 1020.37 

A. fulva 5 4.66 ± 1.72 0.33 ± 0.18 25.73 1.79 6826.33 
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Figure 3-15 Site carbon fluxes during the summer period, 2012. 
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Figure 3-16 CH4 fluxes derived from the closed-chamber experiment, compared to the values of 

Sachs et al. 2010. Poly 1 and 3 are wet polygon centers, polygons 2 and 5 are dryer polygon 

centers. The sites Tr 1-4 are aligned in a transect from driest to wettest along the outflow pathway 

discharging water from the ice flow network. In the lowest panel, two sites on the modern floodplain 

are plotted; one with vegetation and the other with bare sand cover. Note that the y-axis scaling 

changes between plots.  
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3.3 AIRBORNE MEASUREMENTS OF ENERGY AND CARBON 
FLUXES 

Torsten Sachs and Eric Larmanou 

 

Fieldwork period: August 2012; Lena River Delta 

 

3.3.1 Background 

One of the most pressing questions with regard to climate feedback processes in a 

warming Arctic is the regional-scale carbon dioxide (CO2) and methane (CH4) release 

from Arctic permafrost areas. Ground-based eddy covariance (EC) measurements provide 

continuous in-situ observations of the surface-atmosphere exchange of these greenhouse 

gases. However, these observations are still quite rare in the Arctic and site selection is 

usually bound by logistical constraints, among others. Consequently, these observations 

cover only small areas that are not necessarily representative of the region of interest. 

Airborne measurements can overcome this limitation by covering distances of hundreds of 

kilometers over time periods of a few hours. 

 

3.3.2 Objectives 

The objectives of our work were to 

• test the feasibility of deploying the helicopter-carried micrometeorological sensor 

package “Helipod” in the Lena Delta to measure eddy covariance fluxes of latent 

and sensible heat as well as carbon dioxide 

• determine the atmospheric boundary layer (ABL) height at different locations within 

the delta 

• put the continuous but very localized eddy covariance measurements on Samoylov 

Island and Kurungnakh into a regional context 

• study the variability of energy and trace gas fluxes in relation to the different land 

surface and vegetation characteristics in the delta 

 

3.3.3 Methods 

We used the Helipod system owned by the Technische Universität Braunschweig to 

conduct our regional scale flux measurements. Helipod (Figure 3-17) is a 5 m long high 

resolution meteorological measurement system for monitoring turbulence properties of the 

ABL. It was carried by a MI-8 on a 30 m rope at an airspeed of 40 m s-1 and is designed 

for in situ measurements of small scale turbulent fluctuations of wind, temperature, 

humidity, carbon dioxide and the associated turbulent fluxes, as well as the infrared 

surface temperature. Each meteorological variable is measured with two complementary 

sensors, one with a short response time but low absolute accuracy, the other with longer 
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response time but high accuracy and long-term stability. The two datasets are combined 

by complementary filter. 

Helipod is equipped with a five-hole probe, an inertial reference system (IRS) and two 

GPS systems, which are used to determine the static pressure, the true air speed, the 

position, the attitude and finally the wind vector. Temperature is measured with a 

Rosemount resistance thermometer and a fast open wire element. Humidity is measured 

by a Lyman Alpha hygrometer, a capacitive sensor (Humicap) and a dew point mirror. 

CO2 and water vapor are recorded with a fast response open path infrared gas analyzer 

(LI-COR 7500).  

Flight patterns include a wind calibration square after take-off, vertical profiles at the 

beginning and end of each transect to determine the boundary layer height, and long (100 

km) low altitude transects for flux measurements. 

 

3.3.4 Preliminary Results 

We were able to conduct two flights on 9 August and 15 August totaling 4.5 hours of 

measurements and four vertical profiles. The first transect was flown in NW direction from 

Samoylov across the third terrace towards the coast. Weather conditions were fair and all 

systems worked well. The second transect was flown in NNW direction across the first 

and second terrace. Weather conditions were not favorable and preliminary results 

suggest that a thin boundary layer and occasional rain during the transect render data 

analysis and interpretation difficult. In addition, the Helipod GPS antennas were damaged 

during a failed take off and were not adjusted correctly during the flight. Navigation was 

impaired by the helicopter pilots’ lack of a functioning GPS unit. 

 

Table 3-5 Flight catalogue 

Flight leg Start End Turning 

point 

Length 

(km) 

Altitude 

(m) 

T 

(°C) 

Wind 

direction 

CO2 

(ppm) 

20120809 

outbound 12:48 13:33 
72°56'42"N 

123°35'35"E 
109 100 22 220° 370 

20120809 

inbound 
13:46 14:26  109 200 22 220° 370 

20120815 

outbound 12:13 12:59 
73°32'33"N 

125°13'33"E 
134 100 11.5 90° 371 

20120815 

inbound 
13:10 14:07  134 200 10.5 90° 369 
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Figure 3-17 Helipod during first take off on Samoylov Island 

 

 

Figure 3-18 CO2 concentration (ppm) along the first flight track (9 Aug 2012) 
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Figure 3-19 CO2 concentration (ppm) along the second flight track (15 Aug 2012) 

 

 

Figure 3-20 Vertical profiles of potential temperature and CO2 concentration (ppm) near the coast 
on 9 Aug 2012 
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Figure 3-21 Vertical profiles of potential temperature and CO2 concentration (ppm) near Samoylov 
on 9 Aug 2012 
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3.4 DO MICROBES FEED ON OLD CARBON IN PERMAFROST?  

Réka-Hajnalka Fülöp, Silke Höfle, Lukas Wacker, Julia Boike, Lars Kutzbach, and 

Janet Rethemeyer 

 

Fieldwork period:  July to August 2012; Samoylov Island 

 

3.4.1 Objective 

The objective of the field campaign was to continue our investigation on the permafrost 

thawing depth in the Lena Delta, in order to identify and characterise the interactions 

between gas, water, organic material turnover and microbial activity. Our previous work in 

the Lena Delta’s Samoylov Island has focused on determining the composition and age of 

the organic material in the active layer and on potential stabilisation processes preventing 

or reducing microbial degradation (e.g., Höfle et al., 2013). During the 2012 field season 

we collected several soil gas samples from different parts of the polygonal tundra (i.e. 

polygon rim, center and also from cracks between polygons). The main goal of the field 

campaign was to sample CO2 and CH4 released from the soil for 14C AMS determinations 

using molecular sieves without trapping substantial unwanted contaminants. The sampled 

gases are currently separated and their 14C ages are determined so that we are able to 

establish whether CH4 and CO2 are released from microbial degradation of relatively fresh 

or old organic matter sources in the permafrost soil. In parallel work, we have also 

collected water samples that will be analyzed in the recently established 14C-dating 

laboratory of the University of Cologne (Rethemeyer et al., 2013) with the aim of 

investigating the origin and transport of soil water in permafrost soil. 

 

3.4.2 Methods 

Soil gases were allowed to accumulate under self-made soil respiration chambers, from 

where these were transferred using diaphragm pumps to two different zeolite traps 

connected together using quick couplings. Two different types of zeolites were used, 

which were heated at 500°C for 1 hour before usage and flushed with helium gas to 

protect them from atmospheric exposure. The collected gas samples were shipped back 

to Cologne and the gases were desorbed from the molecular sieves following specialized 

procedures and will be sent to ETH-Zürich for AMS gas measurements. 

Water samples were collected in septum caped bottles containing saturated salty solution 

to prevent bacterial growth using a gastight syringe. These samples are aimed at dating 

primary the dissolved inorganic carbon. 

 

3.4.3 Preliminary results 

Only two soil gas samples had been completely processed and analyzed to date. The two 

samples, collected from both a polygon rim and a polygon center, yielded different 14C 

ages for CO2 and CH4 gases. The trapped CO2 had 14C ages of around 19,000 years BP, 
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whereas the CH4 separated from the same samples yielded ages only around 2,500 and 

500 years BP, respectively. The age difference – if contamination can be excluded in on-

going analyses – suggests that CO2 and CH4 are released from different depths or from 

different substrates. 
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3.5 SOIL HETEROTROPHIC MICROBIAL BIOMASS AND 
POTENTIAL BASAL RESPIRATION RATE OF A TYPICAL ICE-
WEDGE POLYGON OF SAMOYLOV ISLAND 

Svetlana Evgrafova 

 

Fieldwork period:  August 2012; Samoylov Island 

 

Soil sampling was done at August 10, from active layer of rim and center of ice-wedge 

polygon of Samoylov Island. Heterotrophic microbial biomass (MB) was measured by 

addition into substrate excess of D(+)glucose and (NH4)2SO4. CO2 released during first 

two hours was converting to microbial carbon: µg CO2 – C g soil-1 h-1 (Anderson and 

Domch, 1978; Sparling, 1995). Basal soil respiration rate was estimated from CO2 

emission from soil samples incubated at 23ºС and ambient moisture content during 80 

hours (incubation experiment). In addition, organic carbon and nitrogen content in soil 

samples was determined (Figure 3-22).  

Soil MB both polygon rim and polygon center strong positively correlated with Corg content 

(r = 0.81). Within active layer profiles, a distribution of MB differed between polygon rim 

and polygon center. The main pool of MB content in organic layers and above permafrost 

table in polygon rim was observed. MB distribution within polygon center soil profile was 

nearly uniform (Figure 3-23).  

In incubation experiment, all soil samples placed in a temperature exceeded ambient into 

1.2-20 times showed exponential basal heterotrophic respiration (HR) rate (Figure 3-23). 

Initial HR rate depended on MB content in soil (r=0.95 for polygon rim active layer profile 

and r=0.99 for polygon center samples after 8 hours of incubation). During incubation 

period significance of initial microbial pool declined whereas Corg content and C/N ratio in 

soil showed increase in correlations with HR rate. Besides after 80 hours of incubation 

Corg content was more significant for polygon rim samples HR (r=0.95) than C/N ratio 

(r=0.87), whereas for polygon center samples HR C/N ratio was more important 

(rCorg=0.93; rC/N=0.86).  

Thus, aboriginal heterotrophic microorganisms of permafrost soil of Samoylov Island are 

psychro-tolerant. To predict their ability to fully organic matter decomposing in case of 

temperature increasing longer incubation experiments are needed. 
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Figure 3-22 Vertical profiles of temperature measured at soil sampling (a, d), organic carbon (b, e), 
and C/N ratios (c, f) of active layer of ice-wedge polygon 
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Figure 3-23 Basal respiration rate measured at 23ºС and microbial biomass (MB) of active layer of 
ice-wedge polygon. 
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3.6 METHANE DISTRIBUTION AND METHANE OXIDATION (MOX) 
RATES IN THE WATER BODIES OF SAMOYLOV ISLAND AND 
IN THE LENA RIVER 

Roman Osudar 

 

Fieldwork period: July 10 to July 30, 2012; Samoylov Island 

 

3.6.1 Objectives 

Great amounts of methane, a very potent greenhouse gas, are produced via anaerobic 

decomposition of organic carbon in permafrost-affected soils and aquatic sediments of the 

Lena Delta area, Northeast Siberia. With predicted global climate change permafrost 

thaws and more methane will escape to the atmosphere through soils and water bodies. 

Methanotrophic bacteria can act as counterpart of these processes and as important sink 

of methane in these ecosystems.  

The main objective of this research is to investigate the distribution of methane and to 

determine methane oxidation (MOX) rates in lakes and streams of the Lena Delta and in 

the Lena River itself as well as to analyze the physico-chemical parameters which can 

affect methanotrophy in changing environments (suspended particulate matter, light, 

salinity). 

 

3.6.2 Methods 

The water samples were collected from the five lakes along the coastline of Samoylov 

Island, streams, which connected these lakes with the Lena River and from the river itself 

(Figure 3-24). Additionally water samples were collected along the Bykovsky Channel, 

one of the largest Lena River channels (Figure 3-25). Then the samples were processed 

and incubated under different conditions for the further methane concentration and MOX 

rate measurements, which took place in the Institute of Microbiology, Moscow, Russia. 

Methane concentrations were determined using gas chromatography, methane oxidation 

rates were counted following radiotracer (tritiated methane) technique using liquid 

scintillation counter.  
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Figure 3-24 Sampling sites, Samoylov Island. 

 

 

Figure 3-25 Sampling sites, transect Bykovsky Channel. 
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3.6.3 Preliminary results 

Investigation revealed that methane concentrations in lakes and streams varied from 

relatively low (200 nM) to extremely high (20 µM). MOX rates varied from 0.2 to 360 nM/h 

in lakes and from 0.6 to 480 nM/h in streams. Methane concentrations along the lake-river 

systems indicated a terrestric input of methane into the river. MOX rates were also 

decreasing towards the river showing positive correlation with methane concentrations. 

Turbidity (suspended particulate matter) and salinity but not light influenced the MOX 

rates. Salt concentration of 1 g/L decreased MOX rate on 70%, at the same time salt 

concentration of 30 g/L did not inhibit methane oxidation completely. Methane 

concentration in the Lena River was significantly changing during the whole period of 

measuring and varied from 0.3 to 0.75 µM. No daily regularity was detected. 
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3.7 HYDROLOGICAL AND GEOCHEMICAL STUDIES IN THE 
LENA RIVER DELTA  

Antonina Chetverova and Olga Bobrova  

 

Fieldwork period:  August 2012; Lena River Delta 

 

3.7.1 Introduction 

Hydrological and geochemical investigations took place on Samoylov Island and on other 

small islands around and on big and small channels of the Delta in August 2012.  

The main objective of the expedition study is prolongation of annual (from 2003 y.) 

hydrological and geochemical regime observation of water objects of the Lena River 

Delta. There are big and small channels, lakes of the 1st and 3rd terraces of the Delta. The 

special part of the work has concerned of carbon cycle elements study. Hydrological work 

was organized in different parts of the Delta such as the area adjacent to the Head of the 

Delta: Samoylov Island, Kurungkakh Island and some other islands around, gauging lines 

of the big channels and some of the small channels; Olenekskaya channel; and the mouth 

part of Olenekskaya channel.    

The program included following types of work: 

Hydrology:  

• Water level and temperature measurements on Olenekskaya channel (from 

Samoylov Island) and on the Fish lake (Samoylov Island);  

• Morphometric characteristics and water velocity measurements on the big 

channels and then water discharge calculation; 

• Hydrological measurements in the tidal (wind-surges) zone – a mouth of 

Olenekskaya channel.  

Geochemistry (Sampling): 

• Water sampling for main and trace elements and nutrients contents, TOC & DOC 

content on big and small channels and on lakes of the Delta; 

• Suspended particular matter (SPM) sampling for turbidity determination and 

following geochemistry analyzes (main, trace and organic elements) on big and 

small channels of the Delta;   

• Bottom sediments sampling and sediment cores taking from lakes of the Delta. 

Special measurements for Carbon cycle components study (Fish Lake drainage 

area): 

• Active layer depth;  

• Active layer humidity;  

• Air samples for CO2 emission determination; 

• Pore water sample from drainage of the Fish Lake for nutrients, TOC & DOC 

content. 
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3.7.2 Methods 

Hydrology 

Hydrological measurements (water level, water discharge) occurred on standard water 

gauging lines on big channels of the Delta using methods of field measurements 

described in Fedorova et al., 2013. Along and on the mouth of Olenekskaya channel 

measurements were supported by the group of geomorphologists.  

Water level measurements were organized on Olenekskaya channel on Samoylov Island 

for recalculation of water discharges measured on different dates. Water level gauging 

post near Samoylov Island consisted of 4 measuring marked piles due to high differences 

in values of water level during the period from August 4 to September 1. Relative marker 

with “0” m of a ground level on the island have been used for binding of piles to one level. 

Water level and water temperature were measured 2 times per day (8 am and 8 pm) 

according to Roshydromet rules.  

Water level and water temperature measurements were also organized on the Fish Lake 

on Samoylov Island. The top of the pile was used as marker of “0” m. 

Water level and water temperature in outlet of Olenekskaya channel were measured 

every hour during all the day on August 20 to find out tidal cyclicity. 

Echo sounder Garmin 421s and GPS Garmin GPSmap 76CSx were used for depth profile 

measurements. Water velocity was measured using CTD probe (FSI) on several points 

and on several depths (Fedorova et al., 2013). 

Geochemistry 

Geochemical work during expedition consisted of sampling and water conductivity 

measurements by portable sensor. Water samples for main and trace elements were 

collected in 60 ml plastic bottles pre-cleaned by nitric acid (a.g.) (1:1 diluted HNO3) and 

the samples held in cool. Water samples for nutrients were collected in pre-cleaned by 

pure water 40 ml plastic bottles and frozen. Suspended particular matter were collected to 

prepared filters (paper filters, GF/F and PC) using for following lab analysis of turbidity, 

contents of organic and mineral elements correspondingly. Bottom sediments and cores 

were taken using UVITECH sampling tube and frozen. All samples were transported to St. 

Petersburg for processing in OSL laboratory (Fedorova et al., 2013). 

Carbon cycle 

To study the formation of carbon sinks of arctic water objects drainage areas and carbon 

cycle measurements were carried out on the drainage of Fish Lake (N 72°22’23,5” E 

122°29’9,9”) of Samoylov Island. The following samples were taken to study the 

components of the carbon cycle: pore water (from a depth of seasonal thawing) for 

analysis of DOC and TOC content for the calculation of carbon sinks to the lake; surface 

samples from the Fish Lake for DOC and TOC content; air samples to calculate CO2 

emissions. Measurements of DOC concentration were made in the pore water of active 

layer at 21 points in the drainage (catchment) area of the lake. The depth and humidity of 

active layer were also measured in the same points. The points were selected in different 

parts of the polygons to account for the heterogeneity of the landscape in the catchment 

area. Samples were taken at a depth of seasonal thawing using a special device, which is 
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a thin metal tube with holes at the bottom and a valve at the top. Samples were collected 

in 120 ml plastic bottles and stored at a 0°C till the analysis. Muddy samples were filtered 

before analysis.  

Samples were analyzed in the field using a Spectrolyser probe. The measure is based on 

the water absorption of radiation at wavelengths from 220 to 790 nm at 2.5 nm intervals. 

The soil moisture was measured at the same points where the samples were collected for 

DOC to calculate the income of DOC to the Fish Lake from the catchment area with 

groundwater flow. The Some samples were transported to Saint-Petersburg for analysis of 

permanganate oxidation (PO). 

 

3.7.3 Results 

3.7.3.1 Hydrology 

Water level 

Water level of Olenekskaya channel on the gauging post near Samoylov Island increased 

gradually two times for the period until August 13 and from August 25 that is probably 

connected to precipitations. From August 13 to August 25 water level is dropped down 

which is more typical for this period. Water temperature declined slightly during the period 

(Figure 3-26). 

 

 

Figure 3-26 Water level and temperature of Olenekskaya channel (Samoylov Island) in August 
2012.  

 

Water level and temperature in the outlet of Olenekskaya channel characterized by 

semidiurnal fluctuations and changed simultaneously on sinusoidal way due to tidal 

influenced regime of channel mouths (Figure 3-27). 
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Figure 3-27 Water level of Olenekskaya channel (mouth) on daily station August 20, 2012. 

 

Water discharges 

Measurements were organized on 12 profiles, including big channels around the delta 

head: Main channel, Trophimovskaya, Bykovskaya, Olenekskaya, Tumaskaya and 

Bulkurskaya channels; and along the Olenekskaya channel and on small channels: 

Krekhskaya, Arynskaya, Angardam (Table 3-6). The values of water discharges will be 

adapted afterwards using binding to one date and to one water level.  

 

Table 3-6 Water discharges and profile areas of the Lena River Delta channels, August 2012. * 
High probability of errors during measurements 

№ Channel name Date 
Channel 

profile area, 
m3 

Water 
discharge, 

m3/sec 
Comments 

1 Main channel 14.08. 31,563 24,865 Near Tit-Ary isl. 

2 Bykovskaya 15.08. 6,107*
 

2,948*
 Standart water gauging line 

(SWGL) 

3 Trophimovskaya 24.08. 23,067 14,839 SWGL 

4 Main channel 29.08. 33,993 25,380 
SWGL, 4.7 km from Stolb 

isl. 

5 Olenekskaya 25.08. 3,041 1,439 SWGL 

6 Tumatskaya 26.08. 4,316 610 SWGL 

7 Olenekskaya 23.08. 2,500 1,609 Near Gusinka riv. 

8 Angardam 23.08. 5,026 726 
In 2 km from Olenekskaya 
ch. 
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9 Olenekskaya 23.08. 1917 460 Near Nagym vil. 

10 Krestyakhskaya 22.08 3,086 849 Near Olenekskaya ch. 

11 Olenekskaya 20.08.  Figure 3-28  Figure 3-28 
Daily station near 
Petrushka isl.  

12 Bulkurskaya 25.08. 2,474.1 0 
2 km downstrea from 
Olenekskaya channel 

 

Water discharge and water velocity rates during „daily-station“ (20.08.2012) in the mouth 

of Olenekskaya channel is demonstrated on Figure 3-28. The graph demonstrates that 

water discharges strongly depends on water velocity. The reason is inhibition of river 

water masses by sea backwaters. However inflow of salt water at the site was not 

observed, that can be seen in the values of conductivity whose were 54-58 ppm during all 

measured period.   

 

 

Figure 3-28 Water discharge and water velocity of Olenekskaya channel (mouth) during “daily-
station”, August 20, 2012.  

 

3.7.3.2 Geochemistry  

Water, SPM and bottom sediment samples were taken from all the big and some small 

channels and from 22 lakes of the Delta. Some data measured by portable sensors in a 

field are presented in Table 3-7. 
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Table 3-7 Table of samples, August 2012. 

№ Water object Coordinates Date 
Water 

(planned 
analysis) 

SPM 
(sample 

type) 

Bottom 
sediment 

Condu
ctivity, 
ppm 

Water 
temp, 

°С 

1 
Main channel 
(Tit-Ary isl) 

72°0'9.19" 
127°4'20.20" 

14.08. 
Main + trace 
elements, 
nutrients 

Paper 
filter, 
GF/F, 
PC 

- - 14.5 

2 Bykovskaya 
72°24’28,0” 
126°54’47,9” 

15.08. 
Main + trace 
elements, 
nutrients 

Paper 
filter, 
GF/F, 
PC 

- - - 

3 
Trophimovska
ya 

72°25'36.96" 
126°37'58.7" 

24.08. 
 

Main + trace 
elements, 
nutrients, 
isotopes 

Paper 
filter, 
GF/F, 
PC 

Upper 
layer 

- - 

4 Main channel 
72°22'13.98" 
126°43'48.3" 

29.08. 
 

Main + trace 
elements, 
nutrients, 
isotopes 

Paper 
filter, 
GF/F, 
PC 

- - - 

5 Olenekskaya 
72°17’46,1” 
126°05’40,0” 

25.08. 
 

Main + trace 
elements, 
nutrients, 
isotopes 

Paper 
filter, 
GF/F, 
PC 

Upper 
layer 

- - 

6 Tumatskaya 
72°25’06,4” 

126°27’23,6” 

26.08. 
 

Main + trace 
elements, 
nutrients, 
isotopes 

Paper 
filter, 
GF/F, 
PC 

Upper 
layer 

- - 

7 Olenekskaya 
72°30’20,9” 
125°17’10,4” 

23.08. 
 

Main + trace 
elements, 
nutrients, 
isotopes 

Paper 
filter, 
GF/F, 
PC 

Upper 
layer 

- - 

8 Angardam 
72°45’25,4” 
123°38’54,1” 

23.08. 
 

Main + trace 
elements, 
nutrients, 
isotopes 

Paper 
filter, 
GF/F, 
PC 

Upper 
layer 

- - 

9 Olenekskaya 
72°46’35,3” 
123°42’18,0” 

23.08. 
 

Main + trace 
elements, 
nutrients, 
isotopes 

Paper 
filter, 
GF/F, 
PC 

- 53 - 

10 
Krestyakhskay
a 

72°51’14,6” 
123°25’37,6” 

22.08. 

Main + trace 
elements, 
nutrients, 
isotopes 

Paper 
filter, 
GF/F, 
PC 

Upper 
layer 

56 - 

11 Olenekskaya 
73°00’00,0” 
122°30’25,0” 

20.08. 

Main + trace 
elements, 
nutrients, 
isotopes 

Paper 
filter, 
GF/F, 
PC 

Upper 
layer 

54-58 11.7 

12 Bulkurskaya 
72°13’57,7” 
126°06’18,5” 

07.08. 

Main + trace 
elements, 
nutrients, 
isotopes 

Paper 
filter, 
GF/F, 
PC 

Upper 
layer 

62 12.2 

13 
Lake 1  
(Samoylov isl.) 

72°23'13.32" 
126°28'55.73" 

04.08.
, 
27.08. 

Main + trace 
elements, 
nutrients 

- - 110 - 

14 
Lake 2  
(Samoylov isl.) 

72°22'11.9" 
126°31'00.8" 

4.08., 
27.08. 

Main + trace 
elements, 
nutrients 

- - 
63 
49 

- 
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15 Lake 3  
(Samoylov isl.) 

72°22'05.4" 
126°29'14.4" 

4.08., 
27.08. 

Main + trace 
elements, 
nutrients 

- - 39 
40 - 

16 Lake 4 
(Samoylov isl.) 

72°22'05.3“ 
126°29'57.3“ 

4.08., 
27.08. 

Main + trace 
elements, 
nutrients 

- - 48 
38 - 

17 Lake 5  
(Samoylov isl.) 

72°22'06.0“ 
126°30'19.0“ 

4.08., 
27.08. 

Main + trace 
elements, 
nutrients 

- - 53 
42 - 

18 Lake 6  
(Samoylov isl.) 

72°22'07.9“ 
126°29'36.1“ 

4.08., 
27.08. 

Main + trace 
elements, 
nutrients 

- - 48 
49 - 

19 Lake 7  
(Samoylov isl.) 

72°22'23.5“ 
126°29'10.0“ 

4.08., 
27.08. 

Main + trace 
elements, 
nutrients 

- - 39 - 

20 Lake 8 
(Samoylov isl.) 

72°23'03.3“ 
126°30'01.8“ 

4.08., 
27.08. 

Main + trace 
elements, 
nutrients 

- - 35 - 

21 Lake 9  
(Samoylov isl.) 

72°22'38.1“ 
126°30'03.1“ 

4.08., 
27.08. 

Main + trace 
elements, 
nutrients 

- - 28 
28 - 

22 Lake 10 
(Samoylov isl.) 

72°23'04.2“ 
126°29'33.8“ 

4.08., 
27.08. 

Main + trace 
elements, 
nutrients 

- - 28 - 

23 Lake 11 
(Samoylov isl.) 

72°22'27.2“ 
126°31'09.9“ 

4.08., 
27.08. 

Main + trace 
elements, 
nutrients 

- - 24 
25 - 

24 Lake 12 
(Samoylov isl.) 

72°22’28.6” 
126°30’48.1” 

4.08., 
27.08. 

Main + trace 
elements, 
nutrients 

- - 28 
20 - 

25 Lake 13 
(Petrushka isl.) 

72°53'24.60“ 
122°43'45.90“ 20.08. 

Main + trace 
elements, 
nutrients 

- - - - 

26 Lake 14  
(Matvey isl.) 

72°26'45.96“ 
126°25'08.16“ 28.08. 

Main + trace 
elements, 
nutrients 

 - 33  

27 Lake 15  
(Matvey isl.) 

72°26'35.15“ 
126°27'50.07“ 28.08. 

Main + trace 
elements, 
nutrients 

- Upper 
layer 107 - 

28 Lake 16  
(Belir isl.) 

72°17'58.98“ 
126°27'56.05“ 13.08. 

Main + trace 
elements, 
nutrients 

- A core 46 13.2 

29 Lake 17  
(Belir isl.) 

72°17'54.47“  
126°27'04.14“ 13.08. 

Main + trace 
elements, 
nutrients 

- А core 48 12.4 

30 Small channel 
near Belir isl. 

72°18'15.52“ 
126°27'16.50“ 13.08. 

Main + trace 
elements, 
nutrients 
 

-  53 - 

31 Stream 1 
(Kurungnakh) 

72°17.601’ 
126°04.258’ 

08.08. 
 

Main + trace 
elements, 
nutrients, 
isotopes 

- Upper 
layer 285 - 

32 Stream 2 
(Kurungnakh) 

72°18'8.75“ 
126°15'34.68“ 

08.08. 
 

Main + trace 
elements, 
nutrients, 
isotopes 

- Upper 
layer 227 - 

33 
Small channel 
near 
Bulkurskaya 

72°11'48.17“ 
126°03'15.36“ 07.08. 

Main + trace 
elements, 
nutrients 

- - 80 10.6 
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3.7.3.3 Carbon сycle components (Changes of the components of the carbon cycle on 
the watershed of the Fish Lake) 

The depth of the active layer was between 20 and 60 cm: 20-30 cm on the rim of polygons 

and 30-60 cm in the center of polygons and near the lake. During the month when the 

measurements were made, the depth increased to 10-15%. 

Soil moisture values were 28-72%. The wettest - 60-72% part was in the center of 

polygons and in whole polygons located in the lower part of the catchment near the lake. 

The mean concentration of DOC for the catchment was 25 mg/l. DOC in pore water was 

from 8 to 51 mg/l depending on location. The highest DOC values were obtained in the 

dry center of polygons, which can be explained by the accumulation of DOC in those 

spots. DOC concentration in the water objects (polygonal ponds, Fish Lake) and in delta 

channels was 5-7 mg/l. Thaw depth, soil moisture of the active layer and the values of 

DOC concentration in pore water allow calculating the income of DOC to the lake during 

one month. Considering the water runoff from the catchment of Fish Lake is 32 m3 per day 

(Ogorodnikova, 2011), the DOC runoff to the lake is about 800 g per day (Bobrova et al., 

2013)  

The drainage area of the Fish Lake is 1.52 sq.km, thus preliminary flow rate for the Lena 

River delta (800/1.52 = 493 g/km2*day) could be evaluated. The values of the 

permanganate oxidation was 15-22 mg/l for the delta channels and the lakes on Samoylov 

Island (including Fish Lake) and 45-48 mg/l for the pore water on Fish Lake catchment 

ch. 

34 Stream 3 
72°22'45.08“ 
126°24'04.16“ 

28.08. 
Main + trace 
elements, 
nutrients 

- - 162 - 

35 Stream 4 
72°18'02.74“  
126°34'38.97“ 

29.08. 
Main + trace 
elements, 
nutrients 

- - - - 

36 Lake 18 
72°18'39.55“ 
126°35'13.58“ 

29.08. 
Main + trace 
elements, 
nutrients 

- - - - 

37 Lake 19 
72°17'54.47"  
126°35'11.10" 

29.08. 
Main + trace 
elements, 
nutrients 

- - - - 

38 Lake 20 
72°16'06.91"  
126°27'48.63" 

29.08. 
Main + trace 
elements, 
nutrients 

- - - - 

39 Lake 21 
72°11'33.81"  
126°01'55.23" 

07.08. 
Main + trace 
elements, 
nutrients 

- - 16 13 

40 Lake 22 
72°11'31.92"  
126°02'58.27" 

07.08. 
Main + trace 
elements, 
nutrients 

- - 53 13 

41 
Oxbow lake on  
Tit-Ary isl. 

71°59'58.50" 
127°00'11.77" 

14.08. 
Main + trace 
elements, 
nutrients 

- - - - 

42 
Thermokarst 
lake on Tit-Ary 

71°59'37.87" 
127°00'37.72" 

14.08. 
Main + trace 
elements, 
nutrients 

- - - - 
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that is higher than the values for the Lena River (5-20 mg/l for August) published in 

Hydrological Yearbook (1960-1975).  

 

 

Figure 3-29 Sampling points and transects on the watershed of the Fish Lake 

 

During August 2012 there were very small changes in the water level in the Fish Lake 

(Figure 3-30). The level was decreasing slowly and total decrease was 3.5 cm. These 

measurements could be used for the evaluation of water and carbon balance in the Fish 

Lake and on its drainage area as they reflect the changes of water volume in the lake 

during the period.  
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Figure 3-30 Changes of the water level and temperature in Fish Lake 
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3.8 BIOLOGICAL INVESTIGATIONS IN SUMMER 2012 

Ekaterina Abramova and Grigoriy Soloviev 

 

Fieldwork period:  July 11 to August 31, 2012; Samoylov Island, Tit-Ary Island 

 

3.8.1 Objectives 

Different lakes and ponds are a typical feature of northern ecosystems of Eastern Siberia. 

Undoubtedly, the numerous lakes play a significant role in the delta ecosystem provided 

crucial feeding conditions for the different aquatic organisms and enormous breeding 

populations of water birds. It is considered that these high Arctic water pools are 

commonly inhabited by only a few species of rotifers, cladocerans and copepods which 

narrowly specialized to the harsh environment (Morison et al., 2000).  

During the last decade (2000-2011) 127 zooplankton taxa from Rotifera and Arthropoda 

phylum were determined in the oxbow lakes, thermokarst lakes, small thermokarst ponds 

(polygons) and flood-land water bodies on Samoylov Island, south area of the Lena Delta. 

The number of zooplankton collections and the amount of data considerably increased 

during last two decades in the Lena Delta in comparison to those of other areas of similar 

latitude in Russia. As a result, several crustacean species were recorded for the Lena 

Delta region in the first time; two calanoid copepods among them: Eurytemora foveola and 

Eurytemora arctica are the new species for Eurasian pelagic fauna. The data obtained 

demonstrate rather high species diversity, abundance and biomass of zooplankton in the 

tundra waters despite of the short ice-free season, low temperatures, low nutrient and 

food levels 

The present investigation is a continuation of monitoring studies of the different freshwater 

ecosystems in the Lena Delta and contribution to the pelagic fauna investigations of the 

northern Siberia areas. The main goals of our research in summer 2012 were: 

1. The detailed analysis of the modern species composition and distribution of 

zooplankton in the southern part of the Delta;  

2. Zoogeographical and taxonomical study of the rare pelagic crustaceans inhabiting 

various reservoirs on Samoylov Island; 

3. The observation of the seasonal/interannual variations in the population structure, 

abundance and biomass of the common zooplankton species in the small thermokarst 

ponds (polygons) which are the most numerous ponds in the area of our investigation; 

4. The estimation of the river water influence upon lakes pelagic fauna formation in the 

Lena Delta. 
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3.8.2 Methods 

75 quantitative zooplankton samples were collected from eleven different water bodies 

during summer expedition in July-August 2012 on Samoylov Island and four samples from 

oxbow lakes were obtained on Tit-Ary Island. 

Zooplankton collections from the all big thermokarst and oxbow (Banja I-III) lakes were 

made by dipping small plankton net (diameter 20 and 25 cm, mesh size 100μ) in the 

deepest part of the lakes from the rubber boat or by tossing net attached to a line out into 

a lake and then pulling the net slowly to the shore. Both vertical and horizontal samplings 

were done. The zooplankton from four polygons were collected by filtering 50 or 100 liters 

of water through plankton net (20 cm diameter, mesh size 100 and 200 μ) or by vertical 

drawing of net from the bottom to the surface in the middle part of polygon. Samples were 

preserved with 4% neutral formalin or 70% alcohol. Period of sampling have been 

changed from 3 days in the polygons to 10 days from another lakes.  

Zooplankton samples processing and detailed taxonomic investigations were carried out 

using binoculars Olympus SZX9 and BX60 with Analyzing system and drawing 

attachment U-DA. The whole sample or its part was studied in the Bogorov’s camera and 

the abundance of organisms was calculated. We determined species, sex and moulting 

stages. Naupliar stages of Cyclopida and Calanoida were counted separately, but without 

species identification. 

For the estimation of Chl”a” concentration one liter of water was taken from the surface, 

filtered through glass microfibre filters (GFF) and frozen at -20°C for preservation. Chl”a” 

samples were analyzed on SPECORD 200 spectrometer and TD-700 fluorimeter in the 

Russian-German Otto Schmidt Laboratory for polar and marine research (OSL, AARI, St. 

Petersburg, Russia). In addition to the plankton sampling, pH and water temperature 

measurements were made. 

 

3.8.3 Preliminary results 

There are well-manifested differences in zooplankton community structure of different 

water basins depending on hydrological and hydrochemical regime.  

The zooplankton species composition was clearly dominated by Rotifera and Copepoda in 

the big thermokarst lakes situated on the first terrace of Samoylov Island. Eurytopic 

Keratella quadrata, Keratella cochlearis and Kellicottia longispina were numerous among 

rotifers during period of our investigation in summer 2012. Several copepods: 

Acantocyclops vernalis and Cyclops abissorum were abundant in July and Eudiaptomus 

graciloides with Heterocope borealis dominated among copepods in August in 

zooplankton community.  

Different from the thermokarst lakes species diversity was recognized in the oxbow Banja 

lakes, where Rotifera constituted up to more than 60% of the total species richness. The 

representatives from genus: Polyarthra, Keratella, Synchaeta, Filinia, Trichocerca, 

Euchlanis and Asplanchna prevailed numerically in pelagic fauna of these lakes. In June 

Cyclops kolensis, C. abyssorum, Diacyclops bicuspidatus and different juvenile stages of 

2-3 Calanoida species were very abundant. In August Keratella quadrata dominated 
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quantitatively among Rotifera with abundance reached up 12.5 thousands ind./m3 and 

three calanoid copepods: Limnocalanus johanseni, Eurytemora foveola and E. bilobata 

with total abundance around 10 thousands ind./m3.  

According to the species diversity Rotatoria and Copepoda constitute the dominant 

groups in the zooplankton associations of polygons in our material. However in term of 

abundance and biomass the Copepoda and Cladocera apparently predominate among 

other zooplankton taxa in the small thermokarst ponds. Despite high species diversity, 

Rotifera usually represent by singular individuals and do not contribute significantly to 

plankton societies of polygons. 

The analysis of zooplankton total abundance and relative abundance of common species 

revealed a large contrast in the development of processes in the two neighboring 

polygons in the second half of August. In one of the polygons the average zooplankton 

abundance consisted of 11 thousands ind./m3. Adult stages of Leptodiaptomus 

angustilobus dominated in that time (Figure 3-31).The absolute abundance maximums 

(44.5 thousands ind./m3) was fixed at 16th of August in this polygon.  
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Figure 3-31 The relative abundance of the common zooplankton species in the polygon I. 

 

Different situation was observed in the second polygon where highest zooplankton 

abundance was less than 100 ind./m3 and average abundance consisted of 70 ind./m3. 

Juvenile stages of Cyclopoida previled numerically in this water body in the second half of 

August.  

We found very low chlorophyll “a” concentrations in the polygons indicating a low level of 

primary production in summer 2012. Average chlorophyll “a” concentration in July-August 

of 2012 in the polygons was 0.5 mg/ m3 with maximum in the middle July 1.04 mg, which 

is more than four times less than in oxbow lakes (4.4 mg/ m3).  
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3.9 BOTANICAL STUDIES IN POLYGONAL STRUCTURES 

Romy Zibulski 

 

Fieldwork period:  July 2012; Samoylov Island 

 

3.9.1 Introduction 

It is known that the recent warming is abetted by the disposal of greenhouse gases like 

methane, carbon dioxide or water vapour since the age of industry. The resulting 

continuous global warming and changes in the length of seasons favours i.e. thawing of 

permafrost and the decomposition of frozen biomass due to subsequently microbial 

activity (e.g. Koven et al., 2011). The loss of decomposition products like carbon dioxide 

or methane gives a positive feedback to global warming. For a better understanding of 

these cycles a distinct knowledge about biomass composition and the processes within 

these cycles are crucial. Of particular importance to carbon dioxide emissions are small 

ponds (Abnizova et al., 2012) which are a typical component of the arctic polygonal tundra 

(Minke et al., 2007). Often, these small ponds or water bodies are the inner part of low-

centred polygons and show an advanced stage of polygonal succession (Meyer, 2003). 

These polygonal structures contain more than 15% of the world’s soil carbon (Post et al., 

1982) by only covering 3% of the terrestrial arctic area. Thus the aspect of increasing soil 

thawing, decomposition of soil carbon and subsequent emission to the atmosphere is 

important. Microbial organisms play significant roles in this system. Especially 

methanotrophic bacteria show considerable activity in polygonal ponds. They use the 

ascending methane from the thawing ground and metabolize it to carbon dioxide. The 

symbiotic relationship with mosses (Moss-associated methane oxidation – MAMO) buffers 

the methane and carbon emissions (Liebner et al., 2011), because mosses incorporate 

the metabolized CO2 partially to build up their own biomass. Yet, the uptake depends on 

the moss species (70% of CO2 assimilation capacity for Scorpidium scorpioides (Liebner 

et al., 2011), only 15% for Sphagnum cuspidatum (Raghoebarsing et al., 2005)). Thus it 

seems to be important which vascular plants and cryptogame species occur in polygons, 

respectively. Further the individual polygon divisions of dry to wet terrestrial or freshwater 

sub-biotopes are mainly formed by abiotic parameters from which the obvious botanical 

inventory is dependent. They gather the wide spectrum of tundra habitats. 
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Figure 3-32 Aerial Image of Samoylov Island (Boike et al., 2012). Samoylov is divided in the recent 

flood plain in the East and a Late-Holocene river Terrace in the western part. The two investigated 

polygons are located on the Late-Holocene river terrace nearby the Fish Lake (P1) and the Banja 

Lake (P2). 

 

3.9.2 Study sites – Polygons 

The Island Samoylov in the Lena Delta is well-suited for investigations in polygon mires as 

about 12 % of the Island are covered by open-water polygons or small lakes (Sachs et al., 

2008). But there is a geomorphical dichotomy on the Island (Figure 3-32). It is divided into 

the sandy flood plain on the Westside without polygonal mires and the eastern part with 

different types of polygons and thermokarst lakes on peaty sediments at the higher 

elevated Late-Holocene river terrace (Boike et al., 2013; Kutzbach, 2006). High and low-

centred polygons occur in the North of the eastern part; towards the South typical low-

centred polygons with different water levels become dominate. Derived from development 

stages by Meyer (2003) the low-centred polygons could be classified into four types 

(Figure 3-33) without relating to successional stages: with 1.) a deep intrapolygonal pond 

(water level of 0.3 to 1.3 m depth), 2.) a shallow intrapolygonal pond (max. 0.3 m water 

depth). The two other types which do not have a water-filled centre are: 3.) the boggy low 
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centred polygon (with only high moisture in the centre) and directly on the southern coast 

4.) the leaked low-centred polygons which erode along with the coastline. Here, the 

eroded type provides an insight into the development of polygons on Samoylov. They 

have a peat body nearly 8 to 9 m thick, with a sandy, washed out layer at 3 m depth, 

which is only few decametre in size. But these interruptions are distributed over the whole 

island in different depths, thus it is rather a local flooding depending from the surface 

properties of the Island, than a regional event like a prolonged flood (personal 

communication with H. Meyer, AWI). It has not yet been clarified, whether the 

development of Island polygons started at the same time and polygon types are at 

different stages due to local disturbances or the development started at different times 

and these four types are caused, for instance, by local soil properties, terrain, time of 

origin or the position on the Island. 

 

 

Figure 3-33 The four types of low-centred-polygons on Samoylov Island. Two types with a water-

filled, centred pond, differentiated in a deep (1) or a shallow type (2) and furthermore two types 

which are only boggy in the centre with a thick moss mat (3) or which have a leaked centre as a 

result of coast erosion (4). 

 

On this expedition we were concentrating on low-centred polygons with intrapolygonal 

ponds of the two different water level types. The deep water type (P1, Figure 3-34) was 

found in the North of Fish Lake (Figure 3-32). The maximum water depth was reached 

0.68 m in the middle of the pond. The ground was moss-covered and the water surface 

was free of any vegetation. At the transition between the intrapolygonal pond and the 

elevated sites the cover of vascular plants started and proceeded up to the dry rim. The 

second low-centred polygon (P2, Figure 3-35) nearby Banja Lake had a shallow 

intrapolygonal pond (size: metre by metre) with a maximum water depth of 0.19 m. The 

surface of the water body was always covered by vascular plants or mosses.  
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Figure 3-34 The low-centred polygon P1 in the North of the Fish Lake has a deep intrapolygonal 

pond without a thawed layer below the central pond, whereas the rim has a thaw layer which was 

up to 10 cm thick. The thickest thaw layer was measured in the transition zone between the pond 

and the rim sites (~50 cm). The pond was vegetated by submerged living moss species like 

Scorpidium scorpioides and Calliergon giganteum. The rim was dominated by vascular plants with 

a thick moss layer. 

 

3.9.3 Investigations in low-centred polygons 

Polygons were overlaid by a grid from rim to the opposite rim and the same for the 

perpendicular. We used tapelines and cords to form the grid with precise metre by metre 

plots for our investigations. Thereby the following dimensions resulted: P1 with 17 by 19 m 

and P2 with 19 by 27 m. 

Before estimating the vegetation pattern plot by plot, the first abiotic parameters like 

surface elevation, water level and the current thaw depth were surveyed with a water level 

gauge from a reference point and a measuring rod. This procedure was not necessary for 

P2, because the polygon is annually studied for these parameters and a 12 year long 

record already exists. Subsequently we start to estimate the coverage for vascular plants 

and cryptogams after the Braun-Blanquet scale (1964) modified by Reichelt and 

Wilmanns (1973). We studied P1 completely, whereas in view of the short time remaining, 

it was not possible to survey every plot in P2. Thus we utilised a chess pattern for the 

section from row 6 to 27 (investigated plots at P2: 301 instead of 513). We define one 

representative transect in our polygons in order to take sediment samples in form of a 

monolith (length depends on the current thaw depth) from the rim, the transition and the 

pond (with exception of the P1 pond site, as the permafrost table was directly situated 
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below the water body). These samples were taken with a saw, wrapped with cling film and 

placed in our cold store until the transport to Germany. Plants for the herbarium and 

surface water samples from the pond were taken for further analyses. 

 

 

Figure 3-35 The shallow low-centred polygon P2 in the North of the Banja Lake. It does not have 

an open water surface. Vascular plants and bryophytes covered the pond completely. The thaw 

layer was similar over the complete polygon (~45 cm) with exception of higher elevated rim sites. 

 

3.9.4 Outlook 
The sediment samples will be used for analysis and measurements such as grain size, 

CNS, stable isotopes of carbon and nitrogen, macrofossils (vascular plants/bryophytes), 

pollen grain or diatom analysis. Additionally to the sedimentological parameters, we want 

to measure the pH, HCO3
-, anions, cations, and TOC contents of the surface water 

samples. 
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3.10 SPORE-POLLEN STUDIES 

Daria Titova 

 

Fieldwork period:  July 04 to July 29, 2012; Samoylov Island, Kurungnakh Island, Stolb 

Island, and Amerika-Khaya Island 

 

3.10.1 Objectives 

Main objectives during this expedition for me were: 

• The description of modern vegetation. 

• The creation of a herbarium. 

• Taking photographs of plants for the Lena River Delta region. 

• The selection of air samples. 

 

3.10.2 Methods 

• Pollen and plants sampling 

• Working with the pollen trap 

 

3.10.3 Preliminary results 

During this work 8 plots (1 m x 1 m) were described, which were located in different parts 

of Samoylov Island, Kurungnakh Island, Stolb Island and Amerika-Khaya Island. Surface 

samples were selected from these plots to study the sub-fossil spore-pollen spectra. The 

corresponding modern vegetation was described and photographed (n = 1,400). 

To assess the quantitative and qualitative composition of the pollen rain in the Lena River 

Delta region, a pollen trap was placed at different relief levels. During eight days samples 

of the air were taken. The tubes were changed every twelve hours, hence, as a result, 16 

samples of air were obtained. 
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3.11 GROUND ICE STUDIES ON SAMOYLOV ISLAND 

Thomas Opel 

 

Fieldwork period:  August 28 to August 31, 2012; Samoylov Island 

 

3.11.1 Background, objectives and methods 

The ice-rich permafrost deposits of Northeast Siberia are characterized by different types 

of ground ice. Among them, ice wedges are the most abundant type and form by the 

periodic repetition of wintertime frost cracking and subsequent crack-filling by snowmelt in 

spring. Consequently, the oxygen and hydrogen isotopic composition of the wedge-

forming ice veins can be related to winter precipitation and, therefore, to winter 

temperatures during the time of their formation. Organic remains of ice wedges can be 

dated by the 14C method. In the last years progress has been made in ice-wedge-based 

paleoclimate reconstruction and it has been show that ice wedges have the potential to 

provide up to centennial-scale climate information for the Late Glacial as well as Late 

Holocene periods in Alaska (Barrow) and Northeast Siberia (Dmitry Laptev Strait), 

respectively (Meyer et al., 2010; Opel et al., 2011). 

The main objectives of the fieldwork conducted on Samoylov Island were: 

1. to collect new ice-wedge samples for a) the reconstruction of the regional Mid to 

Late Holocene climate history and b) to provide sample material for new analysis 

approaches such as physical properties of wedge ice (e.g. structures, 

crystallography, air bubbles), analysis of air bubbles, 14C dating of dissolved 

organic carbon or of air bubbles, analysis of cosmogenic nuclides. 

2. To study and sample other types of ground ice (e.g. texture ice or massive ice) for 

the reconstruction of ground ice genesis. 

After surveying the coastal bluffs of Samoylov Island, two outcrops were selected to be 

studied. After describing, photographing and sketching ice wedges and massive ice were 

sampled by chain saw. Texture ice was sampled by hammer and axe. All samples were 

transported in frozen state to Germany for further subsampling and analysis. 

 

3.11.2 Ice wedge LD12-IW1 (N 72°22’11.2”, E 126°31’6.7”) 

Ice wedge LD12-IW 1 belongs to the Holocene terrace of the Lena River and was 

sampled at the southeast coast of Samoylov Island. It was cut perpendicular to its long 

axis (along its growth direction) and its exposed vertical extension was 2.6 m (1.0-3.6 m 

b.s.) and up to 2 m wide (Figure 3-36). The lowermost part was buried. The ice wedge 

was characterized by marked shoulders in two height levels (1.5 m b.s. and 2.5 m b.s.) 

and a distinct evidence for ice wedge rejuvenation. The recent “ice wedge head” was 

overtowering the older part by about 0.5 m. 

The surrounding sediments consisted of grey-yellowish silty sand at the bottom (below 3.2 

m b.s.) covered by a thick organic-rich unit consisting of peaty silt and silty peat layers, 
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characterized by distinct amounts of sand (3.2-0 m b.s.) and different cryostructures. The 

active layer thickness was about 0.7 m. 

The wedge ice was milky-white and very rich in elongated, vertically oriented air bubbles 

(up to 1 mm in diameter, up to 1 cm long). Sediment and organic content was low to 

medium. Single ice veins were very good visible and 2 mm to 2 cm wide. Also dilatation 

cracks from horizontal to vertical directions were observed. 

Samples were taken by chain saw. Six blocks were cut in three height levels: 3.3 m b.s. 

(block 1), 2.6 m b.s. (blocks 2, 3) and 2 m b.s. (blocks 4 -6). 

About 2 m beside the ice wedge also a vertical profile of texture ice (ice layers, pore ice) 

was sampled with 17 samples in a resolution of 5-20 cm from 3.6 to 0.8 m b.s. 

 

 

Figure 3-36 Ice wedge LD12-IW1. 

 

3.11.3 Massive ice LD12-MI and LD12-IW2 (N 72° 22‘ 6.6“, E 126° 30‘ 55.6“) 

Massive ice LD12-MI was sampled at the river cliff of the southeast coast of Samoylov 

island. It was about 3.5 m wide and about 1 m thick with a hill slope of about 45° (Figure 

3-37). Below the massive ice, separated by an ice and organic-rich sandy-silt layer with an 
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irregular reticulate cryostructure the top of an older truncated ice wedge was exposed. 

Deeper parts of massive ice and ice wedge were buried. 

The massive ice was covered by partly by yellowish sand and by brown sandy-silty peat 

(about 70 cm thick). The active layer depth was 50 cm. 

The massive ice could be divided roughly in three parts: 1. milky-white bubble-rich ice at 

the top and left side, 2. relative clear to clear ice with only little bubbles below and at the 

right side (partly with vertically elongated bubbles up to several cm long and diameters of 

up to 3 mm), and 3. a bubble-rich central part with a transition from milky-white to 

yellowish-brown to reddish ice at the bottom. The whole ice body was characterized by 

several cracks. It was probably formed by the complete freezing of standing water, likely a 

polygon pond. 

A vertical profile across the massive ice was taken by chain saw in a resolution of about 

10 cm. Additionally, a block was cut from the ice wedge. 

 

 

Figure 3-37 Massive Ice LD12-MI and ice wedge LD12-IW2. 
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4 STUDIES ON MUOSTAKH ISLAND 

 

 

Figure 4-1 Aerial view of Muostakh Island from the Northeast. 
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4.1 SCIENTIFIC BACKGROUND, OBJECTIVES AND METHODS 

Hanno Meyer 

 

The ice-rich permafrost deposits on Muostakh Island are characterized by a peculiar 

sedimentological sequence including different types of ground ice. Muostakh Island is 

subject to heavy coastal erosion with high rates of up to 25 m/year (at the northern tip). 

Another key observation suggests changes in sediment supply to have major impact on 

the distribution and shape of ground ice and organic matter in the section.  

The island has been visited by AWI scientists before: first for a day of reconnaissance in 

2002 and again during the LD 2011 campaign. During both previous expeditions, lack of 

time or difficult outcrop conditions did not permit to sample the complete sedimentary 

sequence nor all types of ground ice. This is especially true for the middle part of the 

section, which has been barely accessible. Hence, the main objective of this campaign 

was to carry out detailed cryolithological and sedimentological field work i.e. sample ice 

wedges, segregated ice and sediments on Muostakh Island complementing the published 

data from Schirrmeister et al. (2011) and observations from 2011 (Opel and Wetterich, 

2013) as well as the work of Russian colleagues (see chapter 4.2). 

Ice wedges as the most abundant type of ground ice on Muostakh Island are climate 

archives and one key object of this field campaign. They are formed by repetitive frost-

cracking events in winter and subsequent filling of frost cracks with snow meltwater in 

spring. As a consequence, we are able to use oxygen and hydrogen isotope information 

of ice wedges as proxies for winter temperatures during the time of their formation. The 

latter period is defined by radiocarbon dating of organic matter either directly enclosed in 

ice wedges or from the sedimentary sequence. 

Hence, one focus was to retrieve ice-wedge based recent, Holocene (see chapter 4.4) 

and Late Pleistocene (see chapter 4.5) climate information from permafrost deposits on 

Muostakh Island and, thus, adding a new cryolithological dataset to the regional 

paleoenvironmental picture. A second focus was set on completing the sediment profile 

(see chapter 4.3), which up to now enclosed only the lower section (about 8-10 m) of the 

complete permafrost sequence (Schirrmeister et al., 2011). The ice-wedge and sediment 

study sites are displayed in Figure 4-2.  

Furthermore, recent precipitation and surface waters (small streams, ponds) were 

sampled to get a broader picture of the hydrological situation of Muostakh Island. 

Sedimentological and paleo-ecological work is encompassed by a detailed classification 

of the local soil and vegetation situation (see chapter 4.6) as well as studies on the quality 

of dissolved organic matter (DOM) stored in frozen deposits and transported by melt water 

streams to the ocean (see chapter 4.7). 

Based on previous work in 2011 (Günther et al., 2013), a tacheometric coastline survey in 

the northern part of Muostakh Island was carried out for studies of coastal erosion (see 

chapter 4.8). 
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Figure 4-2 Overview map of the northern part of Muostakh Island with ice-wedge and sediment 
study sites. Background: Pansharpened GeoEye satellite image, acquired on 7 September 2012. 
Map compiled by Frank Günther. 
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Methods for cryolithological and hydrological studies 

Ice wedges were studied according to their best exposure perpendicular to the frost 

cracking direction, were described, photographed and drawn. Ice-wedge samples were 

taken using a STIHL chain saw in horizontal profiles either by cutting thin slices of about 

1.5 cm width every 10 cm, or by cutting ice blocks (about 25x15x15 cm) for detailed 

analyses. Additionally, recent ice wedges assemblages were sampled as being indicative 

for modern ice wedge growth conditions. Both ice slices and the ice blocks were stored in 

a freezer in the camp, and then transported in the frozen state back to Germany, where 

they will be further processed in a cold laboratory. In total, we studied and sampled 9 

older ice wedges (4 Holocene, 5 Pleistocene) and 2 recent ice wedges.  

Surface water and precipitation (as well as a few melted ground ice) samples were stored 

in 30 ml PE bottles, which were completely filled and tightly closed to avoid evaporation 

for stable isotope analyses. For hydrochemical laboratory analyses, meltwater from 

selected samples was filtered using a cellulose-acetate filtration set (pore size 0.45 μm) 

and collected in 8 ml HDPE-flasks for anion analyses by ion chromatography, and in 15 ml 

PP-tubes for element (cation) analyses by ICP-OES. Samples for cation analyses were 

acidified to pH 2 with 50 μl HNO3. We determined electrical conductivity (EC) of the 

hydrochemistry samples with a WTW LF 340 conductometer, and pH by a WTW LF 340 

pH meter. 

Additionally, fresh precipitation (N=6) and surface water samples (N=20) were collected 

on Muostakh Island for stable isotopes and hydrochemistry and stored as described 

above. 
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4.2 HISTORY OF INVESTIGATIONS AND GENERAL 
GEOGRAPHICAL AND GEOLOGICAL CHARACTERISTICS 

Alexander Dereviagin 

 

“Muostakh” is translated from Yakutian language as “with mammoth tusk”. This is most 

likely because of the specific island form that looks like mammoth tusk as well as of 

numerous findings of mammoth bones including tusks at the islands coast. At this moment 

this small island has a length of about 7 km and a width of not more than 400-500 m and 

continues to destroy actively. Muostakh Island is located at a distance of about 25 km 

from the mainland in the Buor Khaya Bay. It is defined as the southeastern continuation of 

the Bykovsky Peninsula and is located about of 15 km apart from the cape Muostakh at 

Bykovsky Peninsula.  

Since 1936 the island is of geographical and geological interest (Gusev, 1936). In 1936 

meteorological observations were started in the Polar Station Muostakh located at the 

southern end of the island. The Polar Station was closed in 1991. The intensive 

geocryological investigations of the island (including permafrost drilling transects in the 

shallow strait between the island and Bykovsky Peninsula) started in 1962 by scientists 

from Yakutian Permafrost Institute and Moscow State University (Danilova, 1965, 1966; 

Katasonov, 1965; Solomatin, 1965; Maslov, 1965; Grigoriev, 1966; Molochushkin, 1969; 

1970; 1973; Ivanov and Katasonova, 1978; Romanov and Kunitsky, 1985; Kunitsky, 1989; 

Grigoriev, 1993; Nakayama and Akiyama, 1994; Slagoda, 2004). These investigations 

showed that Muostakh Island is the continuation of Bykovsky Peninsula and that the Ice 

Complex continues under the sea level to a depth of about 10 m. In 2002, Muostakh 

Island was shortly visited by a Russian-German ship expedition in the frame of the 

System Laptev Sea project. First data on the isotopic composition of Late Pleistocene ice 

wedges as well as new 14C data of sediments were obtained (Table 4-1; Schirrmeister et 

al., 2003; Schirrmeister et al., 2011). In 2011, a Russian-German expedition has 

continued field investigations at Muostakh Island. Investigations included geophysical and 

tacheometric survey of coast line, study of Holocene ice wedges isotopic composition for 

reconstructing the regional Late Holocene climate (Opel and Wetterich, 2013). 

 

Table 4-1 Radiocarbon age determinations of Muostakh Island sections. 

Lab. no. 

Height 

[m asl] 

Sample 

Description 

Radiocarbon Ages 

[years BP] Reference 

PI-1190 20 Peat 4900 ± 300 Schirrmeister et al., 2003 

PI-1189 7.5 Peat 42500 ± 5400 Schirrmeister et al., 2003 

KIA 25718 0.5 Plant remains 39110 +2220/-1740 Schirrmeister et al., 2011 

KIA 25720 1.0 Twigs 46780  +1270/1-100 Schirrmeister et al., 2011 
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KIA 25719 2.0 Twigs, moss 42800  +980/-870 Schirrmeister et al., 2011 

KIA 25721 5.0 Plant remains 38620  +1310/-1120 Schirrmeister et al., 2011 

KIA 25722 7.5 Carex, eriophorum 40340  +820/-740 Schirrmeister et al., 2011 

KIA 25723 9.7 Twigs 19560  ± 80 Schirrmeister et al., 2011 

 

The island mainly consists of Ice Complex deposits which are well exposed at the 

Northeast and East Coasts from the sea level up to the islands surface at about of 18-20 

m a.s.l. The heights of the island smoothly decrease to the southern part to 5-10 m a.s.l. 

The surface (the top) of the island is flat with a well pronounced polygonal net and 

numerous small ponds (diameter of about 1-7 m and depth not more than 0.3-0.4 m). 

There are alas remains in the middle part of the island (around the camp). In the Northern 

part there is field of peat mounds (heights of 0.5-0.8 m). The steep slopes of island are 

characterized by numerous baydzherakhs and ovrags with small brooks. Around the 

island there is a narrow (10-50 m) sand beach with numerous wood remains.  

The climate of the region is characterized by long severe winters and short rainy and cold 

summers. The available meteorological data covers the period from 1936 to 1985 (Table 

4-2). The mean annual air temperature in this period is -13.1°C. Maximum (-10.6°C) was 

in 1943, minimum was in 1979 (-16.1°C). The warm period (with daily air temperature > 

0°C starts in the first decade of June (4-5 of June) and finished in the second (or third) 

decade of September. 

 

Table 4-2 Mean monthly air temperature (°C). 

I II III IV V VI VII VIII IX X XI XII Year 

-30.5 -30.3 -26.3 -18.6 -7.1 0.8 3.9 6.3 2.5 -8.7 -21.8 -27.6 -13.1 

 

There are about 240 mm of annual precipitation; more than 60% is precipitated in 

summer. Snow begins to accumulate in the end of September and reaches a maximum 

depth (25-30 cm) in spring.  

The mean annual ground temperature is about -9°C (Kunitsky, 1989). Mean thickness of 

active layer is about 50 cm (Molochushkin, 1969).  
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4.3 STRATIGRAPHIC AND SEDIMENTOLOGICAL STUDIES 

Hanno Meyer, Thomas Opel and Alexander Dereviagin 

 

Fieldwork period:  August 07 to August 26, 2012; Muostakh Island 

 

The small island Muostakh Island is boomerang-shaped and reaches about 7.5 km in the 

N-S extension and up to 500 m in E-W direction. Muostakh Island is dominated by Middle 

to Late Weichselian Ice Complex sequences characterized by large syngenetic ice 

wedges. These are partly covered by Holocene boggy deposits, i.e. patchy peat pockets 

often enclosing smaller ice wedges.  

After a detailed survey of the coastal cliffs on Muostakh Island, we selected 2 key 

sections, where the complete sedimentological and cryolithological inventory was visible 

and started to describe these outcrops in detail. An about 50 m wide and 20 m high 

exposure (key section 2) at the northern tip of Muostakh Island (Figure 4-2) has been 

selected and is exemplarily displayed in Figure 4-3 and Figure 4-4. 

The section comprised older, likely Pleistocene very ice-rich Ice Complex sediments: 

mostly silty sands intercalated by several thin peat layers enclosing the oldest generation 

of ground ice (below 8 m a.s.l.) on Muostakh Island covered by an about 1 m thick peat 

layer which can be found in all outcrops. Here ice wedges may reach up to 4-5 m in width. 

The top of this unit shows indications of a heavy erosional event, likely of alluvial origin. 

The discordance is detectable over several km. 

Between ca. 8-9 m and ca. 15-17 m a.s.l., a far less ice-rich middle unit characterized by 

coarser grained sandy to gravelly material (often gravel layers) with low organic matter 

content is found, assumed to be of Late Pleistocene age. This unit is characterized by a 

second generation of smaller (1-3 m wide) ice wedges. Both, sediments and ice wedges 

indicate that the energetic level is higher than in the lower unit with more transport energy 

needed to accumulate these sediments. Hence, we assume that less time was necessary 

to deposit these about 8-9 m of sediments and, as a consequence of higher accumulation 

rates, ice wedges had less time of stable surfaces to develop and are, thus, smaller in 

width.  

The top of the section (upper 4-5 m) characterized by patchy peat pockets reaching about 

ten meters in horizontal extension. These organic-rich and ice-rich silty sands often show 

signs of thermal denudation of the underlying sediments and are likely related to small 

lakes and ponds. These deposits enclose smaller ice wedges (less than 1 m wide), but 

may also comprise larger ice wedges of 3-5 m width, which may extend several meters 

downward into the older sediments. 
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Figure 4-3 Key section 2. Note: the photo has been taken in a slightly different position than the 
drawing of the general stratigraphic and cryolithological profile (Figure 4-4). 

 

 

Figure 4-4 Key section 2 with general stratigraphic and cryolithological profile. (1) Pleistocene ice 
wedges (first generation) 3-5 m width, (2) Pleistocene ice wedges (second generation) 1-3 m width, 
(3) Holocene ice wedges, variable in width, (4) prominent peat layer, up to 1 m thick, ca. 8 m a.s.l., 
(5) to (7) peat layers, 0.5m thick. Compiled by Christoph Manthey. 

 

We tried to sample the complete sedimentary sequence including the different peat layers 
as important datable horizons for stratigraphy as well as to access ice wedges of all three 
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generations. For sediment sampling, three profiles were sampled (in the vicinity of IW8), 

starting from the bottom (profile 1), to the middle part (profile 2) and then sampled from 

the top of the section downward (profile 3) in order to get overlap with profile 2. In total, 24 

samples (SS01 to SS24) have been retrieved covering the complete sedimentary 

sequence from 4 m a.s.l. to the top of the section at 20 m a.s.l. (Figure 4-6). 

These samples have been complemented by a 1.13 m long sediment core (Core 1, Figure 

4-2) taken with a Kovacs corer in a Holocene peat mound to gather more detailed 

information about the Holocene and recent peat accumulation. These peat mounds are 

widely distributed at the surface in the northern part of Muostakh Island (Figure 4-5) and 

are likely related to surface subsidence due to intense thawing of ground ice.  

 

 

Figure 4-5 Peat mounds in the northern part of Muostakh Island. 
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Figure 4-6 General stratigraphic scheme of the sampled sedimentary sequence including the three 
sampled profiles and sample positions (red dots) of samples MUO12-SS01 to -SS24. Compiled by 
Christoph Manthey. 
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4.4 STUDIES OF HOLOCENE ICE WEDGES 

Thomas Opel, Hanno Meyer, and Alexander Dereviagin 

 

Fieldwork period: August 07 to August 26, 2012; Muostakh Island 

 

4.4.1 Ice wedge MUO12-IW1 (N 71°36’29.8”, E 129°57’40.5”) 

Ice wedge MUO12-IW1 was an up to 1 m wide ice wedge at the top of Ice Complex (about 

19 to 20 m a.s.l.). It was cut almost perpendicular to its long axis (= along its growth 

direction) and its exposed vertical extension was about 1.3 m (Figure 4-7). 

 

 

Figure 4-7 Ice wedge MUO12-IW1. 
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The ice wedge was covered by an active layer of about 60 cm, consisting of 20 cm brown 

peat-like organics (grass, roots) on top and 40 cm gray soil penetrated by roots. The ice 

wedge was surrounded by gray to brown sandy silt with singular gravels, characterized by 

a (fine-) lens like reticulated cryostructure, probably Ice Complex sediments. About 1 m 

northwest of the ice wedge an up to 1 m thick peat mound only slightly elevated over the 

surface was found, probably developed on top of the polygon pond filling sediments.  

The wedge ice was milky-white and very rich of small vertically oriented air bubbles. Most 

of them were smaller than 1 mm but some up to 5 mm long. Clear structures as e.g. single 

ice veins were not detectable. The content of organic or mineral inclusions was very low. 

The rightmost part of the ice wedge consisted of clear, darker schlieren ice of up to 10 cm 

width. 

We sampled the ice wedge by cutting blocks. One horizontal profile of 80 cm consisting of 

three blocks (1-3) was cut 50 cm below the ice-wedge surface. The right block also 

contained some schlieren ice. Additionally we took one block (4) from the lowest part of 

the ice wedge about 1.20 m below the ice-wedge surface. 

 

4.4.2 Ice wedge MUO12-IW4 (N 71°36’21.9”, E 129°58’5.7”) 

Ice wedge MUO12-IW4 consisted of at least two ice-wedge generations at the top of the 

Ice Complex (about 19 to 20 m a.s.l.). The younger (Holocene) was about 40 cm wide and 

elevated the older (Holocene or Pleistocene?) part at its left side by about 50 cm (Figure 

4-8). On top of this younger generation also some recent ice veins were exposed (width 

about 3 cm) elevating this wedge generation by about 20 cm and reaching the permafrost 

surface. In total, the ice wedge was about 2.3 m wide and the vertical wedge extension 

exposed in the outcrop was about 1.3 m. The younger ice-wedge generation was cut in an 

angle of about 45°. 

The younger ice wedge generation was covered by about 50 cm of sediments. The 

uppermost 15 to 20 cm consisted of vegetation cover and brown peat-like organics 

underlain by brownish grey soil penetrated by roots. The active-layer depth was 25 to 30 

cm. The sediments overlaying and surrounding the older ice-wedge generation consisted 

of gray, brownish sandy silt with some gravel similar and to the typical Ice Complex 

sediments. They were characterized by a lens-like to net-like reticulate cryostructure. Only 

in the uppermost frozen part also layered structures with up to 3 cm thick ice bands were 

detectable. 

The white, milky ice of the younger generation was rich in small (<2 mm), non-oriented 

bubbles. Single ice veins were clearly detectable with thicknesses up to 1 cm. The content 

in organic material and sediment was low. The clearer, white ice of the older generation 

contained larger oriented bubbles up to 1 cm long. Single ice veins were only partly 

detectable and up to 1 cm thick. The sediment content was medium and the organic 

matter content also low. 

We sampled this ice wedge by cutting blocks in three different height levels. One block 

(RIW) was taken containing the recent ice veins on top of the younger ice-wedge 

generation. Two blocks (1-2) were taken about 30 cm below the ice-wedge top containing 

a complete profile of the younger ice-wedge generation and adjacent sediments. Another 
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four blocks (3-6) were cut 0.8 m below the ice-wedge top, two of them (3-4) close to the 

younger ice-wedge generation and two (5-6) in the older outer part. 

About 0.5 m southeast of the ice wedge we sampled also a vertical profile of texture ice: 

Two samples with layered cryostructure: 45 cm and 55 cm below surface and four 

samples with reticulate cryostructure: 72 cm, 82 cm, 98 cm, 102 cm below surface. 

About 2.5 m southeast of the ice wedge we also cut a block of refrozen water from a 

deepened polygon crack. Single layers representing different freezing steps were clearly 

distinguishable. 

 

 

Figure 4-8 Ice wedge MUO12-IW4 and frozen water in a polygon crack. 
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4.4.3 Ice wedge MUO12-IW6 (N 71°36’39.4”, E 129°57’1.3”) 

Ice wedge MUO12-IW6 was an about 3 m wide ice wedge at the top of the Ice Complex in 

an altitude of about 20 m a.s.l. It was cut almost perpendicular to its long axis and the 

exposed vertical extension was 1.2 m (0.9 to 2.1 m b.s.). The ice wedge was 

characterized by twinned head: a 30 cm high and 10 to 20 cm ice-veins assemblage 

representing the youngest, i.e. recent growth stage of this ice wedge (Figure 4-9). 

The active-layer thickness was 25 cm and the unfrozen material consisted mostly of 

brown peat-like organics. Below the active layer, single ice bands were detectable. The 

ice wedge enclosing sediments were gray silty clays with peat nests and a reticulate 

cryostructure, except for the upper right part of the ice wedge that showed signs of 

thawing (due to the development of a polygonal pond). Consequently, here the sediments 

consisted of Holocene polygon sediments: brownish gray peaty silts with a massive 

cryostructure. 

The milky white wedge ice was very rich in small (mostly < 1 mm), partly oriented air 

bubbles. It exhibited very clear structures. Single ice veins (2 to 5 mm) were detectable as 

well as dilatation cracks (2 to 5 mm) cross-cutting them. Interestingly also these dilatation 

cracks were characterized by air bubbles. The content in organics and sediments was 

low.  

We took samples in three levels. First the twinned head of the ice wedge (80 cm b.s., 

block 1), second a horizontal profile of blocks and slices (1.2 m b.s., blocks 2-5, slices 

101-107) and third a complete horizontal profile in blocks (1.7 m b.s., blocks 6-18). 

 

 

Figure 4-9 Ice wedge MUO12-IW6. 
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4.5 STUDIES OF LATE PLEISTOCENE ICE WEDGES 

Hanno Meyer, Alexander Dereviagin, and Thomas Opel 

 

Fieldwork period: August 07 to August 26, 2012; Muostakh Island 

 

4.5.1 Ice wedge MUO12-IW2 (N 71°36’28.2”, E 129°57’45.7”) 

Ice wedge MUO12-IW2 is an up to 2.3 m wide ice wedge visible from about 5 m (at about 

15 m a.s.l.) to about 9.5 m (about 10.5 m a.s.l.) below the top of section. The vertical 

extension is more than 5 m widening upwards from 1.1 m to 2.3 m. It is cut almost along 

its growth direction and has been sampled in three profiles (lower: ~9.2 m b.s., middle: 

~7.2 m b.s., upper: ~5 m b.s.). IW2 is considered as an ice wedge of the second oldest 

generation. 

 

 

Figure 4-10 Ice wedge MUO12-IW2 with sampling strategy. 

 

Since the ice wedge has been covered by debris, the upper contact was not visible. IW2 is 

embedded in greyish to brownish sandy silt with some coarser sandy interbeds, 
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characterized by a lens-like reticulated to massive cryostructure and relatively low ice 

content. The wedge ice is transparent greyish and very rich in small gas bubbles, 

generally < 1mm in diameter and partly elongated to 3 mm. Clear structures as e.g. single 

ice veins of about 2 mm were detected but are often hardly visible. Both, contents of 

organic or mineral (mostly sandy) inclusions, are low. The middle part of the ice wedge 

consisted of an about 50 cm wide meltwater channel. 

We sampled the ice wedge IW2 by chain saw either by cutting defined ground ice blocks 

or slices in 10 cm intervals from left to right (Figure 4-10). The lower horizontal profile of 

1.1 m width (~9.2 m b.s.) was sampled in blocks (samples 1 to 5). The middle profile of 

1.6 m width (~7.2 m b.s.) was sampled in slices (samples 101-120) and one block (6) was 

taken above the profile for analyses needing more sample material. The upper horizontal 

profile of 2.3 m width (~5 m b.s.) was sampled in slices (121-149) and two blocks (7 and 

8) were taken at the right side underneath the profile. 

 

4.5.2 Ice wedge MUO12-IW5 (N 71°36’21.7”, E 129°58’06.9”) 

Ice wedge MUO12-IW5 is about 3.5 m wide and extends more than 9 m in vertical 

direction (from about 20 to 11 m a.s.l.) As IW2, IW5 is considered as an ice wedge of the 

second oldest generation but has been sampled in a higher level as IW2. MUO12-IW5 

consists at least of two ice-wedge generations: an older generation (second ice wedge 

generation; as IW2) reaching about 3.5 m of width and thinning downwards to about 1.5 m 

width at 11 m a.s.l. There, IW5 penetrates an older about 5 m wide ice wedge from the 

top. A younger ice wedge generation of up to 1 m wide buried ice wedges enters the 

larger part of IW5 from the top. MUO12-IW5 is embedded in grayish-brownish silty sand 

with lens-like to layered cryostructure with a high content of organic matter.  

We sampled IW5 by cutting ice slices in two different height levels (Figure 4-11). Both 

profiles have been sampled in 10 cm intervals from left to right; the first profile at about 16 

m a.s.l. (4 m b.s., samples 1 to 35), whereas the upper profile is a buried part of a younger 

ice-wedge generation was sampled at 17.5 m a.s.l. (2.5 m b.s., samples 36 to 46). The 

lower and upper profiles were about 3 m and 0.9 m wide, respectively. The lower 

sampling profile was sampled in an angle of about 45°, whereas the upper ice wedge 

generation was sampled along the growth direction. 

The upper profile (younger generation) of MUO12-IW5 consists of colourless to grayish 

ice. The ground ice displays very clear vertical structures such as small, elongated gas 

bubbles of 1 mm in diameter, but reaching up to 5 mm in length. Single ice veins were 

hardly recognizable. This part of IW5 has very low sediment and low to middle content in 

organic matter dispersed in the ice. The lower profile of MUO12-IW5 is composed of 

grayish ice with very many small spherical gas bubbles. The sediment inclusions in the ice 

are more frequent that in the upper profile with coarse-grained sandy particles, but organic 

content is lower. Here, single ice veins of 3-4 mm in width are clearly visible. 
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Figure 4-11 Ice wedge MUO12-IW5. 

 

4.5.3 Ice wedge MUO12-IW7 (N 71°36’40.9”, E 129°56’59.7”) 

Ice wedge MUO12-IW7 was an about 5 m wide Ice Complex ice wedge at the bottom part 

of the outcrop sampled in an altitude of about 3 to 4 m a.s.l. This is the lowest profile and 

likely the oldest ice wedge transect sampled during this field campaign (first ice wedge 

generation). The ice wedge is embedded in very ice-rich grayish-brownish silty sand with 

lens-like to layered cryostructure with several distinct peat horizons: at ca. 4 m a.s.l., a 

0.2-0.3 m thick organic layer as well as at 8 to 9 m a.s.l., an about 1 m thick peat horizon. 

Hence, the vertical extension of the ice wedge was about 8 to 9 m. Above the upper peat, 

the ice wedge thins considerably and reaches less than 2 m width (second ice wedge 

generation).  

The ice wedge has been sampled in two horizontal profiles in 10 cm intervals from right to 

left at 3 m and 4 m a.s.l (Figure 4-12). The 1st profile (right side, 3 m a.s.l.) is about 3.4 m 

wide (samples 1 to 33) and displays a change in the cracking direction. The rightmost 1.3 

m are cut only a few degrees to the growth direction likely connected with a smaller ice 

wedge entering IW7 from the side. In contrast, the left 3.7 m of IW7 were cut almost 

perpendicular to its long axis including the central part of IW7 sampled in profile 1 and the 

complete 2nd profile (left side, 4 m a.s.l.). The Profile 2 is about 2 m wide (samples 34 to 

48) and extends the profile 1 to the left. It had to be sampled 1 m above profile due to 

muddy outcrop conditions. 

The turbid yellowish-greyish wedge ice at the left side of IW7 was rich in very small 

(mostly < 0.1 mm) air bubbles. It is characterized by very clear structures such as single 
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ice veins of 5-6 mm width. The sediment content in the wedge ice is low and organic 

matter was low to middle. At the right side the ice is more transparent and rather grey in 

colour, with more spherical bubbles reaching up to 1 mm.  

 

 

Figure 4-12 Ice wedge MUO12-IW7. 

 

4.5.4 Ice wedges MUO12-IW8 and -IW9 (N 71°36’38.9”, E 129°57’10.9”) 

Ice wedge MUO12-IW8 is an about 5 m wide Ice Complex ice wedge visible in the outcrop 

between 4 and 9 m a.s.l. and was sampled in an altitude of about 7.5 m a.s.l (Figure 

4-13). This is the second oldest ice wedge transect sampled during this field campaign 

(first ice wedge generation). 

The ice wedge is surrounded by ice-rich grayish-brownish, sometimes greenish sandy silt 

with lens-like to layered cryostructure. The contact of the ice wedge to the lateral deposits 

is often unclear. These are interrupted by several distinct peat horizons. (1) a 0.1-0.2 m 

thick organic layer at ca. 5 m a.s.l., (2) an about 0.5 m thick peat horizon at 8 to 8.5 m 

a.s.l. and (3) an a 0.1-0.2 m thick organic layer at ca. 10 m a.s.l., thus 1 m above the top 

of IW8. Between the peat at 10 m a.s.l. and the top of IW8, more coarse-grained, sandy to 

gravelly material has been deposited (sediment sample SS-7). The ice wedge has been 

sampled from left to right in a horizontal profile in 10 cm intervals (samples 1 to 38). IW8 

was cut perpendicular to its long axis.  

The wedge ice of IW8 is similar to that of IW7 with turbid yellowish-greyish colour and rich 

in spherical bubbles reaching up to 1 mm. It exhibits very clear structures such as single 

ice veins of 5-6 mm width. The content in sediments and organic matter in wedge ice is 

low to middle.  
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Figure 4-13 Ice wedge MUO12-IW8 and sampling transect. The surrounding sediments have been 

sampled (SS-5 to SS-10). 

 

A second ice wedge IW9 has been sampled closed to IW8 (not displayed in Figure 4-13). 
IW9 is a 5 cm wide ice wedge, which has been sampled by hammer and axe at about 6.0 
m (sample 9-1) and 6.5 (sample 9-2) m a.s.l. 

 

 



 4.6 Studies of soils and flora 

92 

4.6 STUDIES OF SOILS AND FLORA OF MUOSTAKH ISLAND 

Irina Yakshina 

 

Fieldwork period:  August 07 to August 26, 2012; Muostakh Island 

 

During the 2012 field season, the research was focussed on Muostakh Island in the Buor 

Khaya Gulf. This research seeks to characterize the soil cover, flora and vegetation of the 

island, which is located in an ecological subzone of typical tundras. 

Seventeen basic soil profiles were described, including full geobotanical descriptions of 

each pit. Soil pits were excavated and prepared following generally accepted methods 

(see e.g. Desyatkin et al., 2009, Afanasjeva et al., 1979). Fifty soil samples were taken 

from the pits for standard chemical analysis (Table 4-3). The samples will be processed in 

Germany. Based on the results of this work, a soil map of the study area is in preparation.  

For classifying soils we used the classification of Yelovskaya (1987). 

The main soil types and subtypes of the island are: 

   Section: Gley 

  Order: Humus-Gley 

 Type: Permafrost Turfness-Gley 

Subtype: Permafrost Turfness-Gley Typical    TG 

 

 Type: Permafrost Peat-Gley 

Subtype: Permafrost Peat-Gley      PG 

Subtype: Permafrost Peatish-Gley      PshG 

 

In addition to soil and geobotanical research, the following work was made: 

1.  Measurement of thaw depth (active layer depth) – 335 points along whole island 

from N to S. The highest thaw depth was found in sands without vegetation cover 

(more than 100 cm), and the lowest depth was in peat under sphagnum (about 20 

cm). 

2.  Photographing panoramas of shore scarps around the whole island – 315 

panoramas with 7 or more frames each one, about 13.5 km. 

3.  Drawing up list of vascular plants of the Island. 

4.  Making photo herbarium. 

5.  Bird watching. 
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Expected outcome  

 

1. Classification and systematic description of the types of Muostakh Island soils.  

2. Characteristics of the chemical composition of investigated soils. 

3. Mapping of soil cover of Muostakh Island. 

4. Drawing up more complete list of vascular plants of the Island. 

 

Table 4-3 List of soil samples 

№ # cut Coordinates, Sample Depth, cm 

(T = peat) 
°N °E 

1 01Mou09.08.2012 71°33,658 130°01,452 4-10 

2    11-21 

3    23-33 

4    40-50 

5    60-64 

6 02Mou09.08.2012 71°34,059 130°01,304 5-12 

7    13-21 

8    23-32 

9 03Mou11.08.2012 71°34,332 130°00,930 10-20T 

10 04Mou11.08.2012 71°34,658 130°00,864 5-15T 

11 05Mou11.08.2012 5 m W of 04Mou 1-5 

12    6-12 

13    14-24 

14    30-40 

15    50-60 

16 06Mou11.08.2012 71°35,134 130°00,153 3-10T 

17    12-22 
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 07Mou11.08.2012 71°35,164 130°00,119 without samples 

18 08Mou12.08.2012 71°35,282 130°00,032 5-13T 

19    14-24T 

20    30-40T 

21 09Mou12.08.2012 7 m N of 08Muo 5-15 

22    20-30 

23    40-50 

24    65-75 

25 10Mou12.08.2012 71°35,458 129°59,484 3-8 

26    8-12 

27    12-20 

28    25-35 

29 11Mou17.08.2012 71°36,674 129°56,646 1-6T 

30    20-30 

31    45-55 

32 12Mou17.08.2012 71°36,398 129°57,741 8-18T 

33    25-35T 

34 13Mou17.08.2012 71°36,184 129°58,055 4-14 

35    17-27 

36    45-55 

37    60-70 

38 14Mou17.08.2012 71°35,967 129°58,268 5-15 

39    30-40 

40    60-70 

41    100-110T 
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42 15Mou17.08.2012 71°35,705 129°58,831 8-18 

43    30-40 

44 16Mou20.08.2012 71°35,619 129°59,189 7-15T 

45    20-30 

46    47-57 

47 17Mou23.08.2012 71°35,541 129°59,225 2-12T 

48    20-30 

49    40-50 

50    60-70 
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4.7 STUDIES OF DISSOLVED ORGANIC MATTER 

Ivan Dubinenkov 

 

Fieldwork period:  August 07 to August 26, 2012; Muostakh Island 

 

4.7.1 Introduction 

Muostakh Island is formed by the organic-rich Ice Complex. Organic carbon pool stored in 

the Ice Complex (coastal and inland) is estimated to contain ~400 Pg of carbon (Zimov et 

al., 2006, Tarnocai et al., 2009) worldwide. This pool is approximately half of the terrestrial 

organic carbon (~1000 Pg C) pool stored in the permafrost in tundra and taiga (Tarnocai 

et al., 2009). Organic-rich permafrost is one of the major and vulnerable (Engelhaupt, 

2008) sources of organic matter (OM) in the Arctic. The degradation and mobilization of 

this carbon pool will have critical implications for primary production and carbon cycling in 

the Arctic and in the Arctic Ocean Basin interior (Schuur et al., 2008, Frey and 

McClelland, 2009). Studies on dissolved organic matter (DOM) as the most mobile phase 

of organic matter are of great importance, especially in application to climate change 

studies and vulnerable ecosystems. DOM is a complex mixture of organic compounds of 

different nature and plays an important role in a wide range of biogeochemical processes. 

Although there were several attempts to estimate the quantity of permafrost OM, there is 

still the gap in the quality of DOM studies in the Arctic ecosystems. 

The aim of this research was the identification of trends in molecular composition 

(signatures) of emitted DOM and DOM stored in the Ice Complex and the correlation of 

these trends with other biogeochemical parameters. Objectives of this research were the 

comparison of two permafrost degradation processes in view of DOM chemistry: intensive 

(coastal erosion and formation of mud streams) degradation and degradation stabilized by 

several factors (e.g. vegetation cover). Also one of the objectives of research was to 

understand OM conservation and mineralization processes on a long time scale 

(thousands of years) – by sampling sediment samples in different depths and further 

correlations of molecular information of OM with the age of organic matter. Previously was 

demonstrated that DOM molecular composition achieved by Fourier Transform Ion 

Cyclotron Resonance Mass Spectrometry (FT ICR MS) can carry degradation state and 

age information (Flerus et al., 2011). 

Advanced understanding of the chemical composition of Ice Complex DOM will noticeably 

broaden knowledge and understanding of Ice Complex formation, evolution of OM in Ice 

Complex and possible future climatic changes due to degradation of this carbon source.  

 

4.7.2 Methodology 

Sample preparation and extraction were provided in the field lab which was constructed in 

the camp on Muostakh Island. Water sources of Muostakh Island were sampled for DOC 

analysis and nutrients. Water was passed through pre-combusted 0.45µm GF/F filters, 

placed to the vials and frozen for further transportation. For solid phase extraction (SPE) 
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of DOM we used PPL sorbent pre-packed cartridges as described in (Dittmar et al., 2008). 

Filtered water was acidified and passed through the columns, enriched with DOM 

cartridges and then stored at -20°C in the dark. Sediment and soil samples were placed to 

coolers directly after sampling and then transported to the field lab freezer. Elution, further 

analysis of DOM and sediment material processing will be provided in the labs of AWI 

Bremerhaven after freight arrival. 

 

 

Figure 4-14 Sampling points on Muostakh Island. Different DOM sources indicated are with colors 
according to the legend. 

 

4.7.3 Expected results 

During the field campaign different OM sources of Muostakh Island and surrounding 

waters of the Buor-Khaya Bay were sampled including melt water creeks, wetlands, and 

coastal waters around the island, soil pore water and thawed permafrost mud streams. 

Sediments and soil were sampled in the exposures on the north-east side of the Island. 

Additionally, also DOM from the Lena River main channels, Samoylov Island creeks and 

lakes was sampled for previous data set extension (expeditions of 2009 and 2010). 70 

SPE DOM samples were prepared. 100 samples were prepared for DOC and nutrients 

analyses. 28 sediment and 12 active layer soil samples were sampled. 

Figure 4-14 shows sampling points on Muostakh Island. The north-east side of the island 

is highly affected by the wave action and coastal erosion processes occur there. The 

south-west side of the Island is not highly affected by the wave action and the coast is 

stabilized by vegetation cover which causes the formation of melt water creek valleys. For 

further understanding and comparison of these two processes DOM was sampled in the 

different locations and origins of the Island as indicated on the map.  
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After the transportation of samples to Germany we plan to analyze DOM samples by a 

range of chemical techniques including DOC analysis, total nitrogen, nutrients and FT ICR 

MS with its extremely detailed molecular information. General characterization of samples 

and detailed sampling site descriptions (in cooperation with Hanno Meyer, Thomas Opel 

and Alexander Dereviagin) are of great importance here because we plan to find which 

environmental factors act as drivers and control the molecular composition of organic 

matter.  
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4.8 REPEATED TACHEOMETRIC SURVEY OF ICE COMPLEX 
COAST 

Thomas Opel, Hanno Meyer, Mikhail Grigoriev, and Frank Günther 

 

Fieldwork period: August 07 to August 26, 2012; Muostakh Island 

 

Muostakh features constant high coastal retreat rates and serves as a natural laboratory 

for studying the processes driving erosion along ice-rich permafrost coasts in the Arctic. In 

order to continue the regular stationary monitoring time series on Muostakh by Grigoriev 

et al. (2009), on-site measurements were conducted at the northern cape of the island. As 

a backup for this time-series, new reference points were marked next to the northern cape 

and measured within a tacheometric survey. The survey has been carried out not only in 

the area around the northern tip, but also along the cliff top of the northeast-facing coast. 

The aim of the survey was the collection of topographic reference measurements and 

ground truth data for remote sensing applications and especially the repeat measurement 

of a survey campaign that was done in August 2011 by Günther et al. (2013) along the 

coasts on Muostakh consisting of Ice Complex deposits. The exact time span of one year 

between the two surveys provides a new benchmark of current coastal erosion. This 

snapshot in time will serve as basis for validation of seasonal and inter-annual thermo-

denudation rates along the cliff top line obtained from dense time series of very high-

resolution satellite imagery. 

We used a ZEISS ELTA C30 tacheometer for distance and height measurements with a 

work setup similar to Günther et al. (2013). In order to perform stationing and orientation 

of the instrument, we used the existing marked backside points on the edoma upland and 

the associated local coordinate system that was established in 2011. From three different 

instrument positions (Table 4-4), we measured 689 points in total at both, the western and 

eastern coast around the northern cape of Muostakh Island, but in particular along the cliff 

top line of the east-facing coast, which is equivalent to 3,460 m of coastline respectively 

almost a quarter of the islands perimeter (Figure 4-15). Since thermo-abrasion at the cliff 

bottom of the northwestern coast seemed to have been reactivated during the last years, 

we concentrated cliff bottom reference measurements on this coastline section. 

Frequently overhanging blocks of ground ice and frozen sediment in combination with 

thermo-niches made it almost impossible to perform cliff bottom measurements also along 

the east-facing coast.  
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Table 4-4 Summary of topographic survey on Muostakh Island divided into campaigns of different 
tacheometer stations. 

Date 
№ of backside points 

used for stationing 
№ of measurement 

points 
xy stationing accuracy 

[m] 

10.08.2012 5 233 0.015 

17.08.1012 3 253 0.14 

24.08.2012 3 203 0.16 

 

 

Figure 4-15 Map of the northern half of Muostakh showing tacheometry set-up of August 2012 and 
point measurements. Background: Pansharpened GeoEye satellite image, acquired on 7 
September 2012. 
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In order to ensure comparability of the 2011 and 2012 surveys and because of the 

irregular shape of the cliff top line, point measurements were made on average at a dense 

interval every 8.5 m. Using all backside points of the repeat survey, the transformation of 

the entire point cloud from a local to UTM 52N coordinate system was done with an 

RMSE of 1.43 m. Subsequent digitization of the August 2012 cliff top line along the east-

facing coast and calculation of the eroded area compared to the previous survey in 

August 2011, revealed 7,293 m² of areal land loss along the cliff top of about 2.8 km 

coastline length during the 2011-2012 period. Dividing the coast into 50m long segments, 

this was equivalent to an average thermo-denudation rate of -2.7 ±1.9 m a-1, while for 

example the northern cape changed its position by -39 m during the observation period. 

However, when examined over a single 50 m segment, during 2011 to 2012 the northern 

cape retreated at -12 m a-1 (Figure 4-16). 

 

 

Figure 4-16 Map detail of the northern cape area on Muostakh Island showing tacheometry set-up 

of 2012 and digitized cliff top lines of August 2011 and August 2012. Thermo-denudation within six 

50 m coastline segments along this 300 m section was -7.2 m a
-1

 on average. Background: 

Pansharpened GeoEye satellite image, acquired 13 July 2010. 
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