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Abstract

Particles determine the residence time of manydtisd elements in seawater. Although
a substantial number of field studies were condlutehe framework of major
oceanographic programs as GEOSECS and JGOFS, ldgavdout particle dynamics
is still scarce. Moreover, the particulate traceahleehavior remains largely unknown.
The GEOSECS sampling strategy during the 1970'sded on large sections across
oceanic basins, where particles were collected &ybnane filtration after Niskin bottle
sampling, biasing the sampling towards the smatigda pool. Late in this period, the
first in situ pumps allowing large volume samplingre also developed. During the
1990’s, JGOFS focused on the quantification of‘@xported carbon flux” and its
seasonal variability in representative biogeochahpoovinces of the ocean, mostly
using sediment trap deployments. Although scardedssctrete in time and space, these
pioneering studies allowed an understanding obtsc fate of marine particles. This
understanding improved considerably, especiallynthe analysis of oceanic tracers
such as natural radionuclides allowed the firsingjfiaation of processes such as

dissolved-particle exchange and particle settlielgaities. Because the GEOTRACES
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program emphasizes the importance of collectingradterizing and analyzing marine
particles, this paper reflects our present undedstg of the sources, fate and sinks of

oceanic particles at the early stages of the progra

Introduction

The ocean contains 1.4 x{@ubic meters of water and holds approximatefy etric
tons of solid material in the form of suspendediplas that are present at an average
concentration in the deep sea ranging from 5 tp@@er liter (Breweet al, 1976;

Bishop and Fleisher, 1987; Sherrell and Boyle, J98Rhough not abundant, particles
act as an essential regulator of ocean chemistguse they determine the residence
time of many dissolved elements in seawater (1%47; Turekian, 1977). Vertical and
horizontal distributions of many trace elements & isotopes (TEIS) are clearly
influenced by particle formation, remineralizatiamd transport. Because of their
importance, numerous studies during the past 5&yeeve focused on characterizing
these marine particles. In the 1970’s, the Geocba&micean Sections study (GEOSECS;
Craig and Turekian, 1976) allowed a first descoiptof the particle distribution in the
ocean, and mostly focused on suspended particlesteal by filtration from Niskin-type
bottles. During those times, only a few pioneestglies attempting to characterize and
guantify particle fluxes were conducted (McCave/3;%Honjo, 1976; Shanks and Trent,
1980). Nevertheless, these first results were ualak in that i) they were the first
suggesting that vertical flux is dominated by rarge particles (McCave, 1975) and ii)
they guided the strategy of the Joint Global Odéar Study (JGOFS) program (Fowler
and Knauer, 1986). However, laboratory and fietdht®logies at that time were such
that measurements of TEIs in these particles wgba precision and resolution (spatial
as well as temporal) were difficult.

In the 1990’s, the JGOFS program substantiallygased our understanding of the
standing stock, vertical flux and fate of marinetigées, with the focus largely on carbon
and associated nutrient cycles (Fasteral, 2001). However, because of data scarcity
and the large variability of particle fluxes in Bnand space, the full characterization of
marine particle concentrations, flux, and compositivas a difficult task, and remained
far from being achieved. The JGOFS era also suffemen a lack of methodologies for
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determining TEIls, which are extremely helpful faragtifying specific particle processes
in the water column. Although the analytical pratiscfor assessing some TEIs were
available and applied during some JGOFS reseanjaqps, they did not yet represent
the major research target. As a consequence, dhalglistribution of dissolved and
particulate TEls is poorly known today. Because esdials are powerful tracers of
particle origin and processes (e.g. settling véypcates of dissolution, precipitation,
adsorption, and desorption) and some are essemntiednutrients whose speciation in the
solid and dissolved phases is of prime importancéheir bioavailability, there is an
urgent need to understand the global distributfohEds in the oceanic environment.
Filling this gap by investigating the sources, haetiaand sinks of these TEls is the main

goal of the GEOTRACES programw.geotraces.olgwhich was developed following

the model of its “parent” program GEOSECS but witbre emphasis on the collection,
observation, speciation and analysis of marindgest As we enter the early stages of
the new GEOTRACES era, the present work reviewsinderstanding, informed by
GEOSECS and JGOFS, of the distribution of suspeadddsinking marine particles of
both biogenic and abiogenic origin, as well asrtile of these particles as regulators of
the marine biogeochemical cycles of TEls. In addito Anderson and Hayes’
introduction (this issue), this paper provideshistorical context for this special issue
that proposes to browse the state of the art opoesent knowledge on optically
characterizing (Bosst al, this issue), collecting (McDonnadt al, this issue), analyzing
(Lamet al, this issue) and modelling (Dutayal, this issue; Jackson and Burd, this
issue) marine particles. The issue is concludeddryderson and Marchal's comments
and perspectives.

1- The origin of marine particles

Marine particles have two main origins, as illustthin Figure 1.

Sources external to the marine syst&y means of erosion, continents bring particles
(natural or anthropogenic, mineral or organic) ithte ocean. These are transported via
the atmosphere (winds, rains), rivers (sedimerdeagharge), or by lateral transport from
continental margin sediments. Before extensive dagnthe annual solid flux
discharged by rivers to the oceans was of the @tl#® x 18° g (Peucker-Ehrenbrink,
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2009), which is 50 times the atmospheric flux (8ltdet al, 2005). Other particles are
extraterrestrial, such as micrometeorites (10 @ 1 in size) or cosmic dust that would
represent a flux of between 7 to 14 X #fly to the oceans (Johnson, 2001). Nano-
metric-sized (and highly magnetic) particles wdse aetected in the Greenland and
Antarctic ice caps and are identified as origimafromatmospheric ablation of
meteorites and micrometeorites at high (~100 knitude (Lanciet al, 2004; 2007).
Finally, hydrothermal vents also are a significaxternal” source of particles for the
deep ocean. Particles from hydrothermal vents pitateé within the plume, forming fine
grained sulfide and oxide minerals that may beaibisted over large regions of the deep
ocean (Mottl and McConachy, 1990; Feetyal, 1996; Sherrelet al, 2000; Tagliabuet
al., 2010).

Sources internal to the marine systelrhuge quantity of marine particles is produced by
biological activity. Photoautotrophic plankton iasiéates dissolved species (C, N, P, Si,
trace metals) and uses solar energy to synthesyamic matter, and specific groups,
including microheterotrophs, also secrete skefedets consisting of calcite, aragonite,
opal, or celestite. The annual flux of materiapsoduced represents ~ 60 x-1g/y of
organic carbon (Fashastal.,2001). The magnitude of marine primary productgon
similar to terrestrial primary production, but tstanding stock of fixed organic carbon is
far less in the ocean than in terrestrial systeasylting in much higher turnover rate of
carbon in the ocean. This high turnover rate loasequences for the cycling of TEls
associated with this biogenic material. Other aofutic organisms, such as nitrifiers, use
chemical energy, and are called chemolithotropBicfiith et al, 2012; Honjcet al,
2012). These thrive throughout the oceanic watkmeo and produce new biomass in-
situ. Autotrophic carbon fixation is the point afhrture of the trophic chain whose life
and death cycle generates particles throughouv#ter column. Among the
heterotrophs, microzooplankton species, such asrnioifera, radiolarians, but also
larger multi-cellullar organisms such as salps ptedopods, represent a significant
portion of living biomass (Buitenhuet al, 2013). Although less abundant than
phytoplanktonic organisms, they are important beeanf their role in packaging and
remineralization and for their potential as recosgdence incorporated in ocean

sediments, of past environmental conditions. Intaud diel vertical migration by
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mesozooplankton may represent a significant pathofi@article redistribution in the
mesopelagic zone, between water depths of abounl&@d 1000 m (Steinbery al,
2008). Another source of particles in the uppeteweolumn is through spontaneous
aggregation of Dissolved Organic Matter (DOM) itdoger particles, from the molecular
Size up to a typical size of 4 um, therefore beocgniarticulate Organic Matter (POM).
These particles have been termed microgels (Verd@®). Barium sulfate, and
manganese and iron oxides and hydroxides are atserkto precipitate within the water
column, incorporating other elements in the processcavenging trace elements by
adsorption or other particle surface phenomenasfiaswamet al, 1976a,b; Bishop
and Fleisher, 1987; Dehaies al, 1990; Sherrell and Boyle, 1992; Paytdral, 1993;

van Beeket al, 2007; van Beekt al, 2009).

Marine particles are often divided in 2 differeyppés: small (micron-size) and slowly
sinking particles on one hand and large (> 50-1@®an-size) and rapidly sinking on the
other hand. The cut off is both poorly defined anthewhat arbitrary. However, it
corresponds to 2 modes of marine particle sampliltigation on filters with (sub-)

micron size porosity for the small particles andemion in sediment trap and/or
filtration with large porosity for large particledence, this operational definition is still
used in the GEOTRACES program.

2- Small suspended particles and TEI behavior

2-1 Oceanic distribution of suspended particles

Small particles (0.2-53 pum) constitute the bulkhef particle standing stock in the ocean.
In the upper 1000 m, particles < @ represent on average ~80% of total suspended
particle mass (Bishogt al.,1977; Bishopet al.,1978; Bishoget al.,1980; Bishopet al.,
1985; Bishopet al.,1986; Lam and Bishop, 2007; Bishop and Wood, 2008&ir

amount and their large surface areas propel theswtage players in the solution-solid
exchanges that impact TEI distribution (Krishnaswatral, 1976; Andersoet al,
1983a,b; Bishop and Fleisher, 1987; Sherrell andeBd992; Jeandelt al, 1995; Roy-

Barmanet al, 1996). The vertical distribution of particlescisaracterized by a surface
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maximum sustained by primary production, which dases very quickly in the upper
200 m and exponentially at greater depth (Figuré&ajne regions are also characterized
by strong intermediate(g.,Iberian margin) and/or bottore.@.,western boundary of the
Atlantic basin) nepheloid layers, resulting in e with surface and near-bottom
maxima and a clear-water minimum in the 2000 - 3@0@epth range as illustrated in
Figures 2 and 3 (Brewet al, 1976; Biscaye and Eittreim, 1977).

Particles in the upper 1000 m, especially in opegaa areas, are produced internally in
the marine system and are composed primarily aj@nec materials: particulate organic
matter, CaCg and biogenic silica. Particles in regions withhhexternal inputs, such as
the North Atlantic and the Mediterranean Sea wigirthigh dust deposition and high
sedimentary inputs, have a composition characttizea higher fraction of lithogenic
material —which could reach 70% of the total m&ssy(Barmaret al.,2009)-

particularly at depths where biogenic matter ismgeemineralized (POM) or is
dissolving (biogenic silica or CaGP A relatively high fraction of mineral particlés

also found in benthic nepheloid layers, where s@rfsediment particles that are
relatively poor in biogenic components are resudpdnnto bottom waters (Figure 3;
Gardneret al.,1983).

Before the advent of the GEOTRACES program, fullavaolumn profiles of trace
metal and isotopic composition of suspended pagialere measured in only a few
locations. The trace element composition (includvgvin, Fe, Co, Ni, Cu, Zn, Cd and
Pb) of suspended particles was measured at BATi®iBargasso Sea (Sherrell and
Boyle, 1992), in the North Pacific subtropical gyBrulandet al, 1994), and off Point
Conception (CA) in the Northeast Pacific (Sheretlal, 1998). The acetic acid leachable
and refractory fractions of particulate iron, mamgse, and aluminum have been
measured in the North Pacific (Orians and Bruld®86; Landing and Bruland, 1987).
During the GEOSECS Atlantic cruises in the sevenfidl water column data for a
whole suite of trace and minor elements were obthbyy neutron activation of total
suspended matter (Ba, Ti, Sr, Mn, Mg, Cu, V, Al, Ca, Au, Hg, Cr, Sb, Sc, Fe, Zn, Co;
Peter Brewer, unpublished results). These datawarently being compared to those
obtained as part of the early GEOTRACES cruisesh$uiality controlled data will be
further stored in the GEOTRACES Data Center, utidetabel “historical data”.
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196

197  2-2 Role of suspended patrticles in oceanic process

198

199 Once we understand what drives the dissolved/dallparticulate partitioning of a
200 tracer, this information can then be used in tortrdce oceanic processes. Non-

201 exhaustively, we can cite:

202 - Dissolved and particulafé€’Th and®*'Pa activity distributions provide an efficient tool
203 for estimating apparent particle settling velositeand therefore residence times in the
204  water column (Krishnaswanet al, 1976; Bacon and Anderson, 1982; Baetal,

205 1985; Roy-Barmamt al, 1996). The apparent settling velocity is theefédct of all

206 processes that are described in Figure 4. We adkdge that reducing the patrticle
207 distribution in 2 categories only as representeigure 4 are simplified views of this
208 distribution, driven partly by sampling and anatgtilogistics. However, a two particle
209 class model captures two of the most importaniganprocesses that are of interest here:
210 scavenging and sinking (see also McDongeHl, this issue). The particle residence
211 times deduced from these radionuclide distributicans therefore be applied to other
212 poorly soluble TEls.

213 - AYC,8"%C ands™N distributions allow the identification of terreisi versus marine
214  origin of organic matter, episodes of re-suspensishelf or slope organic matter,
215 penetration of atmospheric nitrogen and carbonaarakidative processes (Willianes
216 al.,, 1992; Mollenhaueet al, 2003; Mollenhaueet al, 2005)

217 - Biologically driven barite precipitation in thersace or sub-surface waters provide a
218 good tool for surface productivity reconstructionthe modern as well as in the past
219 ocean (Dehairst al, 1991; Dehairet al, 1992; Jeandedt al, 2000; Cardinaét al,

220 2001; Jacquest al, 2008; Sternbergt al, 2008; Paytaet al.,1993; van Beek and

221 Reyss, 2001; van Begt al, 2002).

222 - Rare earth elements (REEs) and Nd isotopes tin@cerigin of suspended material as
223 well as dissolved-particle exchanges in the watérman (Jeandett al, 1995;

224 Tachikawaet al, 1999a; Kuset al, 2001).

225 - Manganese and iron are redox sensitive and t#gble when oxidized. In the surface

226 waters, photochemistry can efficiently change thecstion of these tracers and
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therefore their distributions. In the water coluroosprecipitation and/or adsorption of
TEIs on Mn and Fe oxyhydroxides result in removalements such as Co, Cu, Ni, Zn,
Th but also REEs (Andersat al, 1983a, b; Landing and Bruland, 1987; Sherrell and
Boyle, 1992; Moffett and Ho, 1996; Cardiredlal, 2001; Roy-Barmaet al, 2009; Kuss
et al.,1999; Tachikawat al, 1999b).

- Particle formation above submarine hydrothernesits plays an important role in
modifying the gross flux from hydrothermal systetmshe oceans. Approximately 50%
of the dissolved Fe released from a high-tempegateant is predicted to be precipitated
in the form of polymetallic sulfides in buoyant lmgthermal plumes within minutes of
emission from the seafloor (Rudnicki and Elderfjdl@93). The remaining Fe
precipitates more slowly, in the form of Fe-oxyhyxides (Sherrelét al, 2000) which

can significantly impact the scavenging of tracamednts and isotopes (oxyanions, Be, Y,
REE, Th, Pa) from the water column (Michatdal, 1983; Lilleyet al, 1993). This
hydrothermal scavenging can be so pronounced msitich the boundary scavenging
effects seen at high productivity ocean margingif@aet al, 1997). Most prior works
assumed that hydrothermal plume particle formasam inorganic procesBut recent
studies have shown that significant concentratafr@ganic carbon are incorporated into
hydrothermal particles (Bennett al.,2011 Toneret al, 2009) and further that the

formation of these particulate phases may be miallghmediated (Sylvaret al.,2012).

3- The role of sinking particles in TEI cycling

Large particles (> 53 um, under typical methodatabsize fractionation) make up most
of the vertical flux and therefore contribute te gequestration of most elements in the
deep ocean. The size criterion for separating swugmkand sinking particles is more an
operational definition than a biogeochemical omealsand dense patrticles (as fecal
pellets for example) can sink faster than largéyflaggregates (McCave, 1975). Indeed,
in the ocean, particle distribution follows a comtbus spectrum whose sinking rates do
not necessarily increase monotonically with sizeQdnnell and Buesseler, 2010;

McDonnellet al, this issue).
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There are two approaches to sampling sinking pestio study TEI cycling: 1) size-
fractionated filtration, which separates the péatmool into an operationally defined
“suspended” size class (e.g. < 53 um) and a “sgilsize class (e.g. > 53 um), and 2)
direct collection of sinking particles of variouges in sediment traps (Honjo, 1978;
McDonnellet al.,this issue). In the first approach, geochemistdyae the TEI contents
of the different fractions, providing “state variies’ of the systems to the modelers (Lam
et al, this issue; Dutagt al.,2009; Dutayet al., this issue). Despite this crude and
operational separation of the particle pool, thorisotope distribution studies have
nonetheless shown that small and large particlelage with each other throughout the
water column, as well as with the dissolved phagbkis has yielded the conceptual
model for particle dynamics first proposed by Baebal. (1985) and represented in
Figure 4.

In addition to thorium isotopes, measurements efsike-fractionated concentrations of
other TEIs such as manganese, neodymium and baaumalso yielded insights into
particle aggregation and disaggregation proce&ishdp and Fleisher, 1987; Jeandel et
al., 1995; Bishop and Wood, 2008).

In the second approach, sinking particles collett@th sediment traps are analyzed
directly. The majority of sediment trap studiesdniad as their goal a better
understanding of the biological pump. As suchjmeedt trap studies most frequently
report measurements of particulate organic carB@1}) and particle mass, and often
also major particle phases such as Ca®@genic silica, and lithogenic material, but
TEI measurements are much more rare (Brewei, 1980).

Compilations of the major phase composition (POMCG;, biogenic Si, lithogenics) of
sinking particles from bottom-tethered sedimempdrduring the JGOFS era have been
published (Anticet al, 2001; Armstronget al, 2002; Francoigt al, 2002; Klaas and
Archer, 2002; Lutzt al, 2007; Honjcet al, 2008; Honjcet al, 2010) and show a wide
geographic range in the magnitude and efficiendy@C flux to depth. Analysis of a
compilation of >53um POC, CaG@nd biogenic Si concentrations also show wide
geographic and temporal range in the transfer of R2depth (Laret al, 2011).

Several studies have noted correlations betweeftukes of POC and CaG0n deep

sediment traps (> 1000 m) and have sparked numetbas studies as to the processes
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behind this correlation. In contrast, the fractadmet primary production that is
exported from the euphotic zone is often correlatgd the abundance of large
phytoplankton taxa, especially diatoms (Buessé@9]; Buesselezt al, 2007a; Guidet
al., 2009; Honda and Watanabe, 2010), illustrating¢batrols on shallow export flux
may be decoupled from controls on deep POC fluar{€oiset al, 2002; Lomast al,
2010). Several time-series stations such as Bertldatic Time Series Study

(http://bats.bios.edu), Hawaii Ocean Time serieth&Pacific

(http://hahana.soest.hawaii.edu/hot/dogs/interface.html), DYFAMED time series in

the Mediterranean Seht{p://www.eurosites.info/dyfamed.philiquel et al, 2011) and
ESTOC time series north of the Canary Islands (Netual, 1997; Patsclet al, 2002),
as well as dedicated programs such as EUMELI (RBost, 2001), VERTIGO
(Buesseleet al, 2007a; Lamborgt al, 2008), and MedFlux (Leet al, 2009) have also

shown wide ranging temporal variability in partiéiex and composition. Even though

there are relatively few studies that have meastiEdd directly on sinking particles
(Huang and Conte, 2009), the wide geographic amgaeal variability in particle
sinking flux implies that the sinks of particle-ot@e TEIs will experience similar
variability (Antiaet al, 2001; Scholtert al, 2001).

At some of the sites listed above and elsewherés WWEre measured in the trapped
material too. Most of these works used U-Th sdoegconstruct or calibrate POC
fluxes (Cochraret al, 1993; Sariret al, 2000; Roy-Barmaet al, 2005; Stewarét al,
2007; Trullet al, 2008; Cochraet al, 2009; Roy-Barmaset al, 2009). Others used
stable!*C and™N or barite to differentiate biogeochemical cydi@sandekt al, 2000;
Loureyet al, 2004; Casciottet al, 2008), and a few have used REE and radiogenic
isotope data to trace the origin of the particlEsa(dekt al, 1995; Tachikawat al,
1997; Chavagnaet al, 2008). The pioneer VERTEX program allowed inigzdtons of
the major and trace element composition of sinkiagicles from the Pacific (Knauet
al., 1979; Fowleand Knauer1986) but the measurement of contamination-prons TE
in sediment trap samples has only become more comewently (Kuss and Kremling,
1999; Frewet al, 2006; Lamborgpt al, 2008; Bowieet al, 2009; Hoet al, 2010; Hoet

al., 2011). When studying fluxes of trace elementtectéd by sediment traps, one must
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be aware of the tendency for TEIs to dissolve sutpernatant solutions (Kumer al.,
1996).

4- Partition coefficients of trace elements: fromte ocean to the models

The chemical behavior of particle-reactive metalshsas Th, Pa, Nd and other REE is
often characterized by a partition coeffici&qtbetween seawater and marine particles
defined as:

mass of particulate tracer per mass of particles

Kq= maoss of dissolved tracer per volume of seawater

To first order Kq for a given element is expected to depend of tieenecal bulk
composition of the marine particléSeveral approaches have been used to determine the
relationship betweely and particle composition.

For elements having isotopes produgeditusuch as Th and Pa, two methods have been
used: 1) correlation of isotopes produaedituwith the main components of sinking
marine particles collected by sediment traps, grabgpotion experiments using natural or
artificial seawater and particles. Sediment tnaglyses have shown correlations between
radioisotopes and inorganic phases, but fortuitmugelations between components have
produced conflicting interpretations (Chageal, 2002; Luo and Ku, 2004; Roy-Barman
et al, 2005; Roy-Barmaset al, 2009). Some of these fortuitous correlationdabe
avoided by directly studying small filtered pantis| because they dominate the solid
surface area per volume and thus are more likedygsorb tracers from seawater. This
would require that the total mass and the majorpmmants of filtered particles be
determined (Lanet al, this issue). While focus has mainly been on thygact of major
components oKq4 (see references above), minor phases such as desocould play a
significant role in the scavenging of Th (Roy-Bamed al, 2009) and Pa (Anders@t

al., 1983a,b) in deep waters. Sorption experiments saown a relatively low affinity of
Th for inorganic phases and a high affinity foramg compounds (Santsatti al, 2006).

These results are consistent witfih scavenging in shallow waters, but they fail to
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explain the correlations betwe&fiTh and inorganic phases (carbonate, lithogenic or M
oxides, see previous paragraph) observed in setlimagndata.
For elements derived from continental erosion, sasiNeodymium (Nd) or Hafnium
(Hf), with no in situ sources of isotopes, the @yeghic fraction of the elements in
particles can be determined by subtraction of ithe@denic fraction (Kus®t al, 2001,
Garcia-Solsonat al, 2014), chemical leaching or isotopic balancecfillkawaet al,
1999b; Tachikawat al, 2004). These methods do not necessarily giveistens results.
In the case of leaching, the selective dissolutmin authigenic phases, without
contamination from other phases, remains to be dstrated. More importantly, re-
adsorption of leached TEIs to refractory phased,tha incomplete removal of colloidal
materials mobilized during leaching procedures, canfound the interpretation of the
original carrier of TEIs (Lanet al, this issue). Consequently, an approach based on
isotopic mass balance or on the statistical caioglaamong end member particulate
phases is preferred.
Recently, physical separations have brought neuwghis by partially isolating and
enriching some carriers (Kretschnegral, 2010; 2011). The development of the analysis
of individual particles allows the unambiguous det@ation of some carriers (Roy-
Barman, pers. comm.). Particle observation shbaldystematically coupled to particle
analysis (Lanet al, this issue). Besides methodological aspects,aonahtal aspects of
the tracer’s behavior must be addressed:

- Possible disequilibrium between particles andvsger (Coppolaet al, 2006;
Venchiaruttiet al, 2011).

- The role of the colloidal phase for both orgaamcl inorganic compounds.

- The impact of mineralization on the particle casiion andKg.
The present uncertainties on thKg of Pa, Th and Nd have direct impacts on our
understanding of the distribution of these tradershe ocean. For example, several
models “successfully” represent the Nd concentnatiad isotopic composition in the
ocean but in fact use different particle modelsrtiga mineralization or boundary
exchange) andKy (equilibrium versus adsorption-desorption) that adjusted to
eventually match the data (synthesis in Remefeal.,2011,2012 Arsouzeet al, 2009).
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More dissolved and particle data from represergaticeanic regimes are required to

constrain models, one of the main missions of GEATRS.

5- Benthic and Intermediate Nepheloid Layers and tiir impacts on TEI

distribution

Benthic Nepheloid Layers (BNLs) occur wherever twticurrents interact with the
(deep) sea floor (Biscaye and Eittreim, 1977, Ma&zhal, 2001). In the discussion of
the effect of a BNL on the distribution of TEis¢ can distinguish the effects at two
spatial scales: (i) the effects on a local scéte,those related to currents characterized
by high level of eddy kinetic energy and to curseower seamoun{3urnewitschet al,

2008)and (ii) the effects on a larger scale relatelditge-scale abyssal circulation.

5-1 Local re-suspension

The generation of a BNL and the distribution arm Sipectra of particles have been
described by McCave (1984, 1986, 2001). Verticaling in bottom layers was studied
during GEOSECS with?’Rn (Sarmientet al, 1976). The vertical extent of BNLs is
enhanced by the detachment of bottom mixed layarsi(and D'Asaro, 1980). If surface
sediments are in adsorption equilibrium with thédro water, re-suspension need not
change this equilibrium. However, there are caseghich interaction between re-
suspension and bioturbation can change the distribof dissolved components in the
BNL relative to the water layer just above the BN if the tracer decays within the
bioturbated zone, or 2) K4 changes as a result of diagenetic changes (e.@;Mn
enrichment) or particle dynamics like aggregatiesagdgregation (Rutgers van der Loeff
and Boudreau, 1997). There is no indication thatpifrticle concentration has an effect
on theKy in the BNL (Honeymaret al, 1988).

For short-lived radionuclides lik&*Th and®*°Pb, condition (1) above is clearly met.
Profiles of dissolved**Th provide clear evidence for enhanced removaissfaived

TEls from bottom waters in the presence of nephdbyers (Bacon and Rutgers van der
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408 Loeff, 1989). Enhanced removal of particle-reaefNEls near the sea bed has been
409 evident since GEOSECS-era studie$'&b (Craiget al, 1973), and the concept of
410 bottom scavenging has been reintroduced recemthygh the study of°Th (Okuboet
411 al, 2012). However, developing a direct link betwsediment re-suspension and
412 enhanced removal of TEIs near the sea bed willireguint research on particles as well
413 as on the distribution of dissolved TEls.

414

415 5-2 Long-range transport in the BNL

416

417  Strong bottom currents occur along the western thaues of the ocean basins (Warren,
418 1981), and deep wind and buoyancy-driven curramth as the Antarctic Circumpolar
419 Current can reach abyssal depths (e.g. in the [Raksage; Renauwdt al, 2011).

420 Through re-suspension or, rather, selective dapasithese currents can maintain high
421 loads of suspended sediments. In the BNL, partitigg be transported over large

422 distances as shown for clay minerals (Gri#fitral,, 1968; Petschilt al, 1996;

423 Diekmannet al, 2004). This means that particles are not onlisteduted locally

424  (winnowing and focusing) but also transported betwareas with widely different local
425 sediment compositions.

426

427 5-3 TEI fractionation

428

429 The composition of material suspended in the BNdifferent from that in the clear
430 water above it. Grain size fractionation has bezstdbed in detail by the studies of I.
431 McCave (Mc Cave, 2001). The possible effect ofrgsaze fractionation on the isotopic
432 composition of deposited sediments was studiedreys€hmeeet al.(2010; 2011) who
433 found that :

434 « 2%Th, #¥pa and*Be adsorb preferentially onto the smallest gratesi

435 «  2paf*OTh and'°Bef °Th ratios are enhanced in a slowly settling pura op

436 fraction

437 » Settling rate fractionation during sediment focgstauses an increase in the bulk

438 230Th concentration and in tHé&'Paf*°Th ratio.
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5-4 Intermediate Nepheloid Layers

There are many examples of Intermediate Nephelaietts (INLs) caused by the
detachment of a BNL at the shelf break and otheals in slope where internal tidal
energy is focused, followed by offshore advectigtCaveet al, 2001). It would be
important to study the link between the dispersagasticulate (INLs) and dissolved
tracer signals from the shelf (e.g. Fe and Mn s#s'%b removal, Nd isotope
exchange (Sherredit al, 1998; Lacan and Jeandel, 2005; Lam and Bishd}8)20he
particulate signal disappears by sinking and aggesfprmation (Clegg and Whitfield,
1990, 1991; Karakast al, 2006; 2009). The time scale of distribution afsdilved shelf
inputs can be studied with short lived Ra isotogues??®Th.

6- “Historical” understanding of particle dynamics and perspectives

Despite its fundamental role in controlling the he&al composition of the ocean
(Goldberg, 1954; Turekian, 1977) and the differ@aoises conducted in the 70s and 80s,
the “oceanic microcosm of particles’-as christehgd.al (1977) — is far from being
understood yet. In addition, sampling strategiessoentific focus differed between the
GEOSECS and JGOFS programs. GEOSECS carried getdactions across the
oceanic basins, where particles were collected &ybnane filtration after bottle
sampling, biasing the sampling towards the smatigla pool. Analyses mostly

informed us about the distribution of particle centcations (mass/L), their major
element compositions, as well as a few tracerssatetted morphological and qualitative
composition descriptions, thanks to the first Soagiklectron Microscopy (SEM)
analyses. Subsequent box and one-dimensionaicaigimodels described the different
fluxes exchanged in and out the oceanic systenedsas/along the water column. These
pioneering efforts led to the emergence of the &umental notion of “reversible
scavenging” (Breweet al, 1976; Krishnaswan®t al, 1976; Lal, 1980; Nozaleat al,
1981; Bacon and Anderson, 1982; Andersbal, 1983a). They also highlighted the role
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of "particle-rich" continental margins on the disttion of ocean tracers (Anderson and
Henderson, 2003; Jeanclal, 2011).

JGOFS identified representative biogeochemicalipo®s of the ocean, where most of
the work was dedicated to the quantification of‘#aegorted carbon flux” and its
seasonal variability (Fashaahal, 2001). Except for rare studies just prior to J&GOF
that conducted small particle sampling and depldgiedirst in situ pumps allowing
large volume filtration (Krishnaswaret al, 1976; Bacon and Anderson, 1982; Bislebp
al., 1985; Rutgers van der Loeff and Berger, 1993 delet al, 1995; Tachikawat al,
1999b), most of the field work conducted during ¥8Qleployed moored and (or)
drifting sediment traps. TEIs were barely measueedept perhapg$*Th and®*°Th
isotopes, which were recognized as useful for Pl0Cdalibration and quantification.
Resulting models describe the exported carbondhiit was related to the surface
nutrient distribution using 1D and 3D models conglphysics and biology (Bopsgt al,
2002). Most of the particle models developed inl#te 80s and in the 90s are
mechanistic and abiotic (Dutay al, this issue; Burd and Jackson, 2009; Jackson and
Burd, this issue). Early models coupled particlaaiyics to ocean circulation in an
OGCM, although processes describing the partide@bier in such 3D dynamical
models remained one-dimensional (Henderson andriNfaamer, 2002; Gehleet al,
2003; Gehleret al, 2006; Arsouzet al, 2009; Dutayet al, 2009; Rempfeet al, 2011).

Conclusion

At the beginning of the GEOTRACES program, we h@vadmit that our collective
understanding of the processes governing the solpi@rticle exchange has made little
progress in the preceding two decades. Key questamain:

i) What are the affinities of the various TEds the different particulate phases
(Rutgers van der Loeff and Berger, 1993; Chetsa, 2002; Anderson and Henderson,
2003; Geibert and Usbeck, 2004; Luo and Ku, 20@¥-BRarmanet al, 2005; Santschi
et al, 2006; Roy-Barmaet al, 2009)?
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498 i) What is the role of remineralization in theesopelagic zone (Dehaies al, 1995;
499 Dehairset al, 1997; Frewet al, 2006; Boyd and Trull, 2007; Buesseétral, 2007b;

500 Dehairset al, 2008)?

501 i) What is the impact of sediment diagenesidlmecomposition of resuspended

502 particles and on their ability to scavenge addalorEls, despite having previously

503 equilibrated with dissolved species in the watdurwm (Kretschmeet al, 2010;

504 Kretschmeret al, 2011)?

505 iv) What are the roles of the BNLs and INLs oa boundary scavenging and boundary
506 exchange processes (Baatral, 1988; Roy-Barmaset al, 2005; Roy-Barmaet al,

507 2009)?

508 v) What is the importance of other surface procefike chemoautotrophy as a source of
509 particles in the deep ocean (Hoejoal, 2012)?

510 Answers to these questions can be provided by BE®TRACES program with the

511 implementation of a comprehensive sampling andyéinal strategies (pumps, optics,
512 observations and analysis of particles, see McDibenhel, this issue; Bosst al., this
513 issue, Lan®t al, this issue...), designed to elucidate the rblgaaticles as agents of
514 supply and removal of TEIs in the ocean. Theraisrgent need for re-focusing on
515 discrete particle composition, speciation and molggies.

516
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1100 Figure Captions

1101

1102 Figure 1

1103 lllustration of the different sources, internal liyg and sinks of oceanic particles. Reproduced
1104 from Roy-Barman and Jeandel (2011).

1105

1106 Figure 2

1107 Profiles of particulate matter concentration (PM€)he Northern Iberian Margin (43°N, June
1108 1997) calculated from beam attenuation (solid lar&) light scattering (dotted line) against
1109 depth, together with the density structurg) (of the water column (dashed linReprinted from
1110 “Hall, I. R., Schmidt, S., McCave, I. N., Reysd.,.J.2000. Deep Sea Research Part I:

1111 Oceanographic Research Papers 47, 557-582. Copyf&§ii4), with permission from Elsevier”
1112

1113 Figure 3

1114 Longitudinal section of the dry weight of particdidanatter along the western Atlantic Ocean
1115 from the GEOSECS prograniReprinted from “Brewer, P. G., Spencer, D. W., Biax; P.

1116 E., Hanley, A., Sachs, P. L., Smith, C. L., Ka&ay, Fredericks, J., 1976. The

1117 distribution of particulate matter in the Atlant@cean. Earth and Planetary Science

1118 Letters 32, 393-402. Copyright (2014), with permaissrom Elsevier”

1119

1120 Figure 4

1121 Particle dynamics as depicted by thorium (Th) ipetin the mid-80s. Th isotopes are produced
1122 in solution by radioactive decay of the solublefRa isotopes. Due to their very low solubility,
1123 Thisotopes are rapidly adsorbed on small part@tescolloids that represent most of the
1124 available solid surface. Th isotopes then follow tlynamics of particles. Th isotopes differ by
1125 their radioactive decay constants (lambda) andtifymetions. Combining the different isotopes
1126 allows determining the other time constantg: flor adsorption, ksfor desorption, kg for

1127 aggregation, § for disaggregation, as well as the sinking spedédse different types of

1128 particles. Remineralization of large particles waglected due to the low solubility of thorium.
1129 Colloids were not included either because theirdatn Th isotopes was highlighted later
1130 (Honeyman and Santschi, 1989). The main 1-D schewertainly dramatically oversimplified
1131 compared to the ecosystem-driven real processedl Santicles are aggregated into large
1132 particles either by zooplankton grazing (produdicgl pellets) or by abiotic aggregation of

1133 organic and inorganic material in fluff, due tackthg exudates produced at the end of the bloom.
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Large particles can scavenge and drag small oreesant of "oceanic piggy-back” process (Lal,
1980). Large particles can also disaggregate milgarticles when sinking. Indeed, the most
fragile large particles, such as marine snow, @hrbken by the turbulence of the current. Fecal
pellets can also be destroyed by bacterial actiVite apparent settling velocity is the net effect
of all these processes. The deduced particle mestdime can therefore be applied to other
poorly soluble TEls. From Roy-Barman and Jeand&l{2 and redrawn from Bacan al.

(1985).
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1148 Figure 2
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