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Abstract 23 

Particles determine the residence time of many dissolved elements in seawater. Although 24 

a substantial number of field studies were conducted in the framework of major 25 

oceanographic programs as GEOSECS and JGOFS, knowledge about particle dynamics 26 

is still scarce. Moreover, the particulate trace metal behavior remains largely unknown. 27 

The GEOSECS sampling strategy during the 1970’s focused on large sections across 28 

oceanic basins, where particles were collected by membrane filtration after Niskin bottle 29 

sampling, biasing the sampling towards the small particle pool. Late in this period, the 30 

first in situ pumps allowing large volume sampling were also developed.  During the 31 

1990’s, JGOFS focused on the quantification of the “exported carbon flux” and its 32 

seasonal variability in representative biogeochemical provinces of the ocean, mostly 33 

using sediment trap deployments. Although scarce and discrete in time and space, these 34 

pioneering studies allowed an understanding of the basic fate of marine particles. This 35 

understanding improved considerably, especially when the analysis of oceanic tracers 36 

such as natural radionuclides allowed the first quantification of processes such as 37 

dissolved-particle exchange and particle settling velocities. Because the GEOTRACES 38 
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program emphasizes the importance of collecting, characterizing and analyzing marine 39 

particles, this paper reflects our present understanding of the sources, fate and sinks of 40 

oceanic particles at the early stages of the program. 41 

 42 

Introduction 43 
 44 
The ocean contains 1.4 × 1018 cubic meters of water and holds approximately 1010 metric 45 

tons of solid material in the form of suspended particles that are present at an average 46 

concentration in the deep sea ranging from 5 to 20 µg per liter (Brewer et al., 1976; 47 

Bishop and Fleisher, 1987; Sherrell and Boyle, 1992). Although not abundant, particles 48 

act as an essential regulator of ocean chemistry because they determine the residence 49 

time of many dissolved elements in seawater (Lal, 1977; Turekian, 1977). Vertical and 50 

horizontal distributions of many trace elements and their isotopes (TEIs) are clearly 51 

influenced by particle formation, remineralization, and transport. Because of their 52 

importance, numerous studies during the past 50 years have focused on characterizing 53 

these marine particles. In the 1970’s, the Geochemical Ocean Sections study (GEOSECS; 54 

Craig and Turekian, 1976) allowed a first description of the particle distribution in the 55 

ocean, and mostly focused on suspended particles collected by filtration from Niskin-type 56 

bottles. During those times, only a few pioneering studies attempting to characterize and 57 

quantify particle fluxes were conducted (McCave, 1975; Honjo, 1976; Shanks and Trent, 58 

1980). Nevertheless, these first results were invaluable in that i) they were the first 59 

suggesting that vertical flux is dominated by rare large particles (McCave, 1975) and ii) 60 

they guided the strategy of the Joint Global Ocean Flux Study (JGOFS) program (Fowler 61 

and Knauer, 1986). However, laboratory and field technologies at that time were such 62 

that measurements of TEIs in these particles with a good precision and resolution (spatial 63 

as well as temporal) were difficult. 64 

In the 1990’s, the JGOFS program substantially increased our understanding of the 65 

standing stock, vertical flux and fate of marine particles, with the focus largely on carbon 66 

and associated nutrient cycles (Fasham et al., 2001). However, because of data scarcity 67 

and the large variability of particle fluxes in time and space, the full characterization of 68 

marine particle concentrations, flux, and composition was a difficult task, and remained 69 

far from being achieved. The JGOFS era also suffered from a lack of methodologies for 70 
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determining TEIs, which are extremely helpful for quantifying specific particle processes 71 

in the water column. Although the analytical protocols for assessing some TEIs were 72 

available and applied during some JGOFS research projects, they did not yet represent 73 

the major research target. As a consequence, the global distribution of dissolved and 74 

particulate TEIs is poorly known today. Because some TEIs are powerful tracers of 75 

particle origin and processes (e.g. settling velocity, rates of dissolution, precipitation, 76 

adsorption, and desorption) and some are essential micronutrients whose speciation in the 77 

solid and dissolved phases is of prime importance for their bioavailability, there is an 78 

urgent need to understand the global distribution of TEIs in the oceanic environment. 79 

Filling this gap by investigating the sources, behavior and sinks of these TEIs is the main 80 

goal of the GEOTRACES program (www.geotraces.org), which was developed following 81 

the model of its “parent” program GEOSECS but with more emphasis on the collection, 82 

observation, speciation and analysis of marine particles.  As we enter the early stages of 83 

the new GEOTRACES era, the present work reviews our understanding, informed by 84 

GEOSECS and JGOFS, of the distribution of suspended and sinking marine particles of 85 

both biogenic and abiogenic origin, as well as the role of these particles as regulators of 86 

the marine biogeochemical cycles of TEIs.  In addition to Anderson and Hayes’ 87 

introduction (this issue), this paper provides the historical context for this special issue 88 

that proposes to browse the state of the art of our present knowledge on optically 89 

characterizing (Boss et al., this issue), collecting (McDonnell et al., this issue), analyzing 90 

(Lam et al., this issue) and modelling (Dutay et al., this issue; Jackson and Burd, this 91 

issue) marine particles. The issue is concluded by Henderson and Marchal’s comments 92 

and perspectives. 93 

 94 

1- The origin of marine particles 95 
 96 

Marine particles have two main origins, as illustrated in Figure 1.  97 

Sources external to the marine system: By means of erosion, continents bring particles 98 

(natural or anthropogenic, mineral or organic) into the ocean. These are transported via 99 

the atmosphere (winds, rains), rivers (sedimentary discharge), or by lateral transport from 100 

continental margin sediments. Before extensive damming, the annual solid flux 101 

discharged by rivers to the oceans was of the order of 19 × 1015 g (Peucker-Ehrenbrink, 102 
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2009), which is 50 times the atmospheric flux (Jickells et al., 2005). Other particles are 103 

extraterrestrial, such as micrometeorites (10 to 100 µm in size) or cosmic dust that would 104 

represent a flux of between 7 to 14 X 109 g/y to the oceans (Johnson, 2001).  Nano-105 

metric-sized (and highly magnetic) particles were also detected in the Greenland and 106 

Antarctic ice caps and are identified as originating from atmospheric ablation of 107 

meteorites and micrometeorites at high (~100 km) altitude (Lanci et al., 2004; 2007). 108 

Finally, hydrothermal vents also are a significant “external” source of particles for the 109 

deep ocean. Particles from hydrothermal vents precipitate within the plume, forming fine 110 

grained sulfide and oxide minerals that may be distributed over large regions of the deep 111 

ocean (Mottl and McConachy, 1990; Feely et al., 1996; Sherrell et al., 2000; Tagliabue et 112 

al., 2010). 113 

Sources internal to the marine system: A huge quantity of marine particles is produced by 114 

biological activity.  Photoautotrophic plankton assimilates dissolved species (C, N, P, Si, 115 

trace metals) and uses solar energy to synthesize organic matter, and specific groups, 116 

including microheterotrophs, also secrete skeletal parts consisting of calcite, aragonite, 117 

opal, or celestite. The annual flux of material so produced represents ~ 60 × 1015 g/y of 118 

organic carbon  (Fasham et al., 2001). The magnitude of marine primary production is 119 

similar to terrestrial primary production, but the standing stock of fixed organic carbon is 120 

far less in the ocean than in terrestrial systems, resulting in much higher turnover rate of 121 

carbon in the ocean.  This high turnover rate has consequences for the cycling of TEIs 122 

associated with this biogenic material. Other autotrophic organisms, such as nitrifiers, use 123 

chemical energy, and are called chemolithotrophic (Griffith et al., 2012; Honjo et al., 124 

2012). These thrive throughout the oceanic water column and produce new biomass in-125 

situ. Autotrophic carbon fixation is the point of departure of the trophic chain whose life 126 

and death cycle generates particles throughout the water column. Among the 127 

heterotrophs, microzooplankton species, such as foraminifera, radiolarians, but also 128 

larger multi-cellullar organisms such as salps and pteropods, represent a significant 129 

portion of living biomass (Buitenhuis et al., 2013).  Although less abundant than 130 

phytoplanktonic organisms, they are important because of their role in packaging and 131 

remineralization and for their potential as recorders, once incorporated in ocean 132 

sediments, of past environmental conditions. In addition, diel vertical migration by 133 
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mesozooplankton may represent a significant pathway of particle redistribution in the 134 

mesopelagic zone, between water depths of about 100 m and 1000 m (Steinberg et al., 135 

2008).  Another source of particles in the upper water column is through spontaneous 136 

aggregation of Dissolved Organic Matter (DOM) into larger particles, from the molecular 137 

size up to a typical size of 4 µm, therefore becoming Particulate Organic Matter (POM). 138 

These particles have been termed microgels (Verdugo, 2012). Barium sulfate, and 139 

manganese and iron oxides and hydroxides are also known to precipitate within the water 140 

column, incorporating other elements in the process, or scavenging trace elements by 141 

adsorption or other particle surface phenomena (Krishnaswami et al., 1976a,b; Bishop 142 

and Fleisher, 1987; Dehairs et al., 1990; Sherrell and Boyle, 1992; Paytan et al., 1993; 143 

van Beek et al., 2007; van Beek et al., 2009). 144 

Marine particles are often divided in 2 different types: small (micron-size) and slowly 145 

sinking particles on one hand and large (> 50-100 micron-size) and rapidly sinking on the 146 

other hand. The cut off is both poorly defined and somewhat arbitrary. However, it 147 

corresponds to 2 modes of marine particle sampling: filtration on filters with (sub-) 148 

micron size porosity for the small particles and collection in sediment trap and/or 149 

filtration with large porosity for large particles. Hence, this operational definition is still 150 

used in the GEOTRACES program. 151 

 152 
2- Small suspended particles and TEI behavior 153 

 154 

2-1 Oceanic distribution of suspended particles 155 

 156 

Small particles (0.2-53 µm) constitute the bulk of the particle standing stock in the ocean. 157 

In the upper 1000 m, particles < 53 µm represent on average ~80% of total suspended 158 

particle mass (Bishop et al., 1977; Bishop et al., 1978; Bishop et al., 1980; Bishop et al., 159 

1985; Bishop et al., 1986; Lam and Bishop, 2007; Bishop and Wood, 2008). Their 160 

amount and their large surface areas propel them as active players in the solution-solid 161 

exchanges that impact TEI distribution (Krishnaswami et al., 1976; Anderson et al., 162 

1983a,b; Bishop and Fleisher, 1987; Sherrell and Boyle, 1992; Jeandel et al., 1995; Roy-163 

Barman et al., 1996). The vertical distribution of particles is characterized by a surface 164 
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maximum sustained by primary production, which decreases very quickly in the upper 165 

200 m and exponentially at greater depth (Figure 2). Some regions are also characterized 166 

by strong intermediate (e.g., Iberian margin) and/or bottom (e.g., western boundary of the 167 

Atlantic basin) nepheloid layers, resulting in profiles with surface and near-bottom 168 

maxima and a clear-water minimum in the 2000 - 3000 m depth range as illustrated in 169 

Figures 2 and 3 (Brewer et al., 1976; Biscaye and Eittreim, 1977).  170 

Particles in the upper 1000 m, especially in open ocean areas, are produced internally in 171 

the marine system and are composed primarily of biogenic materials:  particulate organic 172 

matter, CaCO3, and biogenic silica.  Particles in regions with high external inputs, such as 173 

the North Atlantic and the Mediterranean Sea with their high dust deposition and high 174 

sedimentary inputs, have a composition characterized by a higher fraction of lithogenic 175 

material –which could reach 70% of the total mass (Roy-Barman et al., 2009)- 176 

particularly at depths where biogenic matter is being remineralized (POM) or is 177 

dissolving (biogenic silica or CaCO3). A relatively high fraction of mineral particles is 178 

also found in benthic nepheloid layers, where surface sediment particles that are 179 

relatively poor in biogenic components are resuspended into bottom waters (Figure 3; 180 

Gardner et al., 1983).  181 

Before the advent of the GEOTRACES program, full water column profiles of trace 182 

metal and isotopic composition of suspended particles were measured in only a few 183 

locations. The trace element composition (including Al, Mn, Fe, Co, Ni, Cu, Zn, Cd and 184 

Pb) of suspended particles was measured at BATS in the Sargasso Sea (Sherrell and 185 

Boyle, 1992), in the North Pacific subtropical gyre (Bruland et al., 1994), and off Point 186 

Conception (CA) in the Northeast Pacific (Sherrell et al., 1998). The acetic acid leachable 187 

and refractory fractions of particulate iron, manganese, and aluminum have been 188 

measured in the North Pacific (Orians and Bruland, 1986; Landing and Bruland, 1987). 189 

During the GEOSECS Atlantic cruises in the seventies, full water column data for a 190 

whole suite of trace and minor elements were obtained by neutron activation of total 191 

suspended matter (Ba, Ti, Sr, Mn, Mg, Cu, V, Al, Ca, La, Au, Hg, Cr, Sb, Sc, Fe, Zn, Co; 192 

Peter Brewer, unpublished results). These data are currently being compared to those 193 

obtained as part of the early GEOTRACES cruises. Such quality controlled data will be 194 

further stored in the GEOTRACES Data Center, under the label “historical data”. 195 
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 196 

 2-2 Role of suspended particles in oceanic processes 197 

 198 

Once we understand what drives the dissolved/colloidal/particulate partitioning of a 199 

tracer, this information can then be used in turn to trace oceanic processes.  Non-200 

exhaustively, we can cite: 201 

- Dissolved and particulate 230Th and 231Pa activity distributions provide an efficient tool 202 

for estimating apparent particle settling velocities and therefore residence times in the 203 

water column (Krishnaswami et al., 1976; Bacon and Anderson, 1982; Bacon et al., 204 

1985; Roy-Barman et al., 1996).  The apparent settling velocity is the net effect of all 205 

processes that are described in Figure 4. We acknowledge that reducing the particle 206 

distribution in 2 categories only as represented in Figure 4 are simplified views of this 207 

distribution, driven partly by sampling and analytical logistics. However, a two particle 208 

class model captures two of the most important particle processes that are of interest here: 209 

scavenging and sinking (see also McDonnell et al., this issue). The particle residence 210 

times deduced from these radionuclide distributions can therefore be applied to other 211 

poorly soluble TEIs. 212 

- ∆14C, δ13C and δ15N distributions allow the identification of terrestrial versus marine 213 

origin of organic matter, episodes of re-suspension of shelf or slope organic matter, 214 

penetration of atmospheric nitrogen and carbon and/or oxidative processes (Williams et 215 

al., 1992; Mollenhauer et al., 2003; Mollenhauer et al., 2005)  216 

- Biologically driven barite precipitation in the surface or sub-surface waters provide a 217 

good tool for surface productivity reconstruction, in the modern as well as in the past 218 

ocean (Dehairs et al., 1991; Dehairs et al., 1992; Jeandel et al., 2000; Cardinal et al., 219 

2001; Jacquet et al., 2008; Sternberg et al., 2008; Paytan et al., 1993; van Beek and 220 

Reyss, 2001; van Beek et al., 2002). 221 

- Rare earth elements (REEs) and Nd isotopes trace the origin of suspended material as 222 

well as dissolved-particle exchanges in the water column (Jeandel et al., 1995; 223 

Tachikawa et al., 1999a; Kuss et al., 2001). 224 

- Manganese and iron are redox sensitive and less soluble when oxidized. In the surface 225 

waters, photochemistry can efficiently change the speciation of these tracers and 226 
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therefore their distributions. In the water column, co-precipitation and/or adsorption of 227 

TEIs on Mn and Fe oxyhydroxides result in removal of elements such as Co, Cu, Ni, Zn, 228 

Th but also REEs (Anderson et al., 1983a, b; Landing and Bruland, 1987; Sherrell and 229 

Boyle, 1992; Moffett and Ho, 1996; Cardinal et al., 2001; Roy-Barman et al., 2009; Kuss 230 

et al., 1999; Tachikawa et al., 1999b). 231 

- Particle formation above submarine hydrothermal vents plays an important role in 232 

modifying the gross flux from hydrothermal systems to the oceans.  Approximately 50% 233 

of the dissolved Fe released from a high-temperature vent is predicted to be precipitated 234 

in the form of polymetallic sulfides in buoyant hydrothermal plumes within minutes of 235 

emission from the seafloor (Rudnicki and Elderfield, 1993). The remaining Fe 236 

precipitates more slowly, in the form of Fe-oxyhydroxides (Sherrell et al., 2000) which 237 

can significantly impact the scavenging of trace elements and isotopes (oxyanions, Be, Y, 238 

REE, Th, Pa) from the water column (Michard et al., 1983; Lilley et al., 1993).  This 239 

hydrothermal scavenging can be so pronounced as to match the boundary scavenging 240 

effects seen at high productivity ocean margins (German et al., 1997).  Most prior works 241 

assumed that hydrothermal plume particle formation is an inorganic process, but recent 242 

studies have shown that significant concentrations of organic carbon are incorporated into 243 

hydrothermal particles (Bennett et al., 2011; Toner et al., 2009) and further that the 244 

formation of these particulate phases may be microbially mediated (Sylvan et al., 2012). 245 

 246 
3- The role of sinking particles in TEI cycling  247 

 248 

Large particles (> 53 µm, under typical methodological size fractionation) make up most 249 

of the vertical flux and therefore contribute to the sequestration of most elements in the 250 

deep ocean. The size criterion for separating suspended and sinking particles is more an 251 

operational definition than a biogeochemical one: small and dense particles (as fecal 252 

pellets for example) can sink faster than large fluffy aggregates (McCave, 1975). Indeed, 253 

in the ocean, particle distribution follows a continuous spectrum whose sinking rates do 254 

not necessarily increase monotonically with size (McDonnell and Buesseler, 2010; 255 

McDonnell et al, this issue).  256 
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There are two approaches to sampling sinking particles to study TEI cycling: 1) size-257 

fractionated filtration, which separates the particle pool into an operationally defined 258 

“suspended” size class (e.g. < 53 µm) and a “sinking” size class (e.g. > 53 µm), and 2) 259 

direct collection of sinking particles of various sizes in sediment traps (Honjo, 1978; 260 

McDonnell et al., this issue).  In the first approach, geochemists analyze the TEI contents 261 

of the different fractions, providing “state variables” of the systems to the modelers (Lam 262 

et al., this issue; Dutay et al., 2009; Dutay et al., this issue). Despite this crude and 263 

operational separation of the particle pool, thorium isotope distribution studies have 264 

nonetheless shown that small and large particles exchange with each other throughout the 265 

water column, as well as with the dissolved phases. This has yielded the conceptual 266 

model for particle dynamics first proposed by Bacon et al. (1985) and represented in 267 

Figure 4.  268 

In addition to thorium isotopes, measurements of the size-fractionated concentrations of 269 

other TEIs such as manganese, neodymium and barium have also yielded insights into 270 

particle aggregation and disaggregation processes (Bishop and Fleisher, 1987; Jeandel et 271 

al., 1995; Bishop and Wood, 2008).   272 

In the second approach, sinking particles collected from sediment traps are analyzed 273 

directly.  The majority of sediment trap studies have had as their goal a better 274 

understanding of the biological pump.  As such, sediment trap studies most frequently 275 

report measurements of particulate organic carbon (POC) and particle mass, and often 276 

also major particle phases such as CaCO3, biogenic silica, and lithogenic material, but 277 

TEI measurements are much more rare (Brewer et al., 1980).   278 

Compilations of the major phase composition (POM, CaCO3, biogenic Si, lithogenics) of 279 

sinking particles from bottom-tethered sediment traps during the JGOFS era have been 280 

published (Antia et al., 2001; Armstrong et al., 2002; François et al., 2002; Klaas and 281 

Archer, 2002; Lutz et al., 2007; Honjo et al., 2008; Honjo et al., 2010) and show a wide 282 

geographic range in the magnitude and efficiency of POC flux to depth. Analysis of a 283 

compilation of >53µm POC, CaCO3 and biogenic Si concentrations also show wide 284 

geographic and temporal range in the transfer of POC to depth (Lam et al., 2011).  285 

Several studies have noted correlations between the fluxes of POC and CaCO3 in deep 286 

sediment traps (> 1000 m) and have sparked numerous other studies as to the processes 287 
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behind this correlation.  In contrast, the fraction of net primary production that is 288 

exported from the euphotic zone is often correlated with the abundance of large 289 

phytoplankton taxa, especially diatoms (Buesseler, 1991; Buesseler et al., 2007a; Guidi et 290 

al., 2009; Honda and Watanabe, 2010), illustrating that controls on shallow export flux 291 

may be decoupled from controls on deep POC flux (François et al., 2002; Lomas et al., 292 

2010). Several time-series stations such as Bermuda Atlantic Time Series Study 293 

(http://bats.bios.edu), Hawaii Ocean Time series in the Pacific 294 

(http://hahana.soest.hawaii.edu/hot/hot‐dogs/interface.html), DYFAMED time series in 295 

the Mediterranean Sea (http://www.eurosites.info/dyfamed.php; Miquel et al., 2011) and 296 

ESTOC time series north of the Canary Islands (Neuer et al., 1997; Patsch et al., 2002), 297 

as well as dedicated programs such as EUMELI (Bory et al., 2001), VERTIGO 298 

(Buesseler et al., 2007a; Lamborg et al., 2008), and MedFlux (Lee et al., 2009) have also 299 

shown wide ranging temporal variability in particle flux and composition.  Even though 300 

there are relatively few studies that have measured TEIs directly on sinking particles 301 

(Huang and Conte, 2009), the wide geographic and temporal variability in particle 302 

sinking flux implies that the sinks of particle-reactive TEIs will experience similar 303 

variability (Antia et al., 2001; Scholten et al., 2001).  304 

At some of the sites listed above and elsewhere, TEIs were measured in the trapped 305 

material too.  Most of these works used U-Th series to reconstruct or calibrate POC 306 

fluxes (Cochran et al., 1993; Sarin et al., 2000; Roy-Barman et al., 2005; Stewart et al., 307 

2007; Trull et al., 2008; Cochran et al., 2009; Roy-Barman et al., 2009). Others used 308 

stable 13C and 15N or barite to differentiate biogeochemical cycles (Jeandel et al., 2000; 309 

Lourey et al., 2004; Casciotti et al., 2008), and a few have used REE and radiogenic 310 

isotope data to trace the origin of the particles (Jeandel et al., 1995; Tachikawa et al., 311 

1997; Chavagnac et al., 2008).  The pioneer VERTEX program allowed investigations of 312 

the major and trace element composition of sinking particles from the Pacific (Knauer et 313 

al., 1979; Fowler and Knauer, 1986) but the measurement of contamination-prone TEIs 314 

in sediment trap samples has only become more common recently (Kuss and Kremling, 315 

1999; Frew et al., 2006; Lamborg et al., 2008; Bowie et al., 2009; Ho et al., 2010; Ho et 316 

al., 2011). When studying fluxes of trace elements collected by sediment traps, one must 317 
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be aware of the tendency for TEIs to dissolve into supernatant solutions (Kumar et al., 318 

1996). 319 

 320 

4- Partition coefficients of trace elements: from the ocean to the models 321 

 322 

The chemical behavior of particle-reactive metals such as Th, Pa, Nd and other REE is 323 

often characterized by a partition coefficient Kd between seawater and marine particles 324 

defined as: 325 

Kd =  326 

 327 

To first order, Kd for a given element is expected to depend of the chemical bulk 328 

composition of the marine particles. Several approaches have been used to determine the 329 

relationship between Kd and particle composition.   330 

For elements having isotopes produced in situ such as Th and Pa, two methods have been 331 

used: 1) correlation of isotopes produced in situ with the main components of sinking 332 

marine particles collected by sediment traps, and 2) sorption experiments using natural or 333 

artificial seawater and particles.  Sediment trap analyses have shown correlations between 334 

radioisotopes and inorganic phases, but fortuitous correlations between components have 335 

produced conflicting interpretations (Chase et al., 2002; Luo and Ku, 2004; Roy-Barman 336 

et al., 2005; Roy-Barman et al., 2009).  Some of these fortuitous correlations could be 337 

avoided by directly studying small filtered particles, because they dominate the solid 338 

surface area per volume and thus are more likely to adsorb tracers from seawater. This 339 

would require that the total mass and the major components of filtered particles be 340 

determined (Lam et al., this issue). While focus has mainly been on the impact of major 341 

components on Kd (see references above), minor phases such as Mn oxides could play a 342 

significant role in the scavenging of Th (Roy-Barman et al., 2009) and Pa (Anderson et 343 

al., 1983a,b) in deep waters. Sorption experiments have shown a relatively low affinity of 344 

Th for inorganic phases and a high affinity for organic compounds (Santschi et al., 2006).  345 

These results are consistent with 234Th scavenging in shallow waters, but they fail to 346 
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explain the correlations between 230Th and inorganic phases (carbonate, lithogenic or Mn 347 

oxides, see previous paragraph) observed in sediment trap data. 348 

For elements derived from continental erosion, such as Neodymium (Nd) or Hafnium 349 

(Hf), with no in situ sources of isotopes, the authigenic fraction of the elements in 350 

particles can be determined by subtraction of the lithogenic fraction (Kuss et al., 2001, 351 

Garcia-Solsona et al., 2014), chemical leaching or isotopic balance (Tachikawa et al., 352 

1999b; Tachikawa et al., 2004). These methods do not necessarily give consistent results. 353 

In the case of leaching, the selective dissolution of authigenic phases, without 354 

contamination from other phases, remains to be demonstrated. More importantly, re-355 

adsorption of leached TEIs to refractory phases, and the incomplete removal of colloidal 356 

materials mobilized during leaching procedures, can confound the interpretation of the 357 

original carrier of TEIs (Lam et al., this issue). Consequently, an approach based on 358 

isotopic mass balance or on the statistical correlation among end member particulate 359 

phases is preferred.   360 

Recently, physical separations have brought new insights by partially isolating and 361 

enriching some carriers (Kretschmer et al., 2010; 2011). The development of the analysis 362 

of individual particles allows the unambiguous determination of some carriers (Roy-363 

Barman, pers. comm.).  Particle observation should be systematically coupled to particle 364 

analysis (Lam et al., this issue). Besides methodological aspects, fundamental aspects of 365 

the tracer’s behavior must be addressed:  366 

- Possible disequilibrium between particles and seawater (Coppola et al., 2006; 367 

Venchiarutti et al., 2011). 368 

- The role of the colloidal phase for both organic and inorganic compounds. 369 

- The impact of mineralization on the particle composition and Kd. 370 

The present uncertainties on the Kd of Pa, Th and Nd have direct impacts on our 371 

understanding of the distribution of these tracers in the ocean. For example, several 372 

models “successfully” represent the Nd concentration and isotopic composition in the 373 

ocean but in fact use different particle models (particle mineralization or boundary 374 

exchange) and Kd (equilibrium versus adsorption-desorption) that are adjusted to 375 

eventually match the data (synthesis in Rempfer et al., 2011, 2012; Arsouze et al., 2009). 376 
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More dissolved and particle data from representative oceanic regimes are required to 377 

constrain models, one of the main missions of GEOTRACES. 378 

 379 

 380 

5- Benthic and Intermediate Nepheloid Layers and their impacts on TEI 381 

distribution 382 

 383 

Benthic Nepheloid Layers (BNLs) occur wherever bottom currents interact with the 384 

(deep) sea floor (Biscaye and Eittreim, 1977, McCave et al., 2001). In the discussion of 385 

the effect of a BNL on the distribution of TEIs, we can distinguish the effects at two 386 

spatial scales: (i) the effects on a local scale, like those related to currents characterized 387 

by high level of eddy kinetic energy and to currents over seamounts (Turnewitsch et al., 388 

2008) and (ii) the effects on a larger scale related to large-scale abyssal circulation.  389 

  390 

5-1 Local re-suspension 391 

 392 

The generation of a BNL and the distribution and size spectra of particles have been 393 

described by McCave (1984, 1986, 2001). Vertical mixing in bottom layers was studied 394 

during GEOSECS with 222Rn (Sarmiento et al., 1976).  The vertical extent of BNLs is 395 

enhanced by the detachment of bottom mixed layers (Armi and D'Asaro, 1980). If surface 396 

sediments are in adsorption equilibrium with the bottom water, re-suspension need not 397 

change this equilibrium. However, there are cases in which interaction between re-398 

suspension and bioturbation can change the distribution of dissolved components in the 399 

BNL relative to the water layer just above the BNL: 1) if the tracer decays within the 400 

bioturbated zone, or 2) if Kd changes as a result of diagenetic changes (e.g. MnO2 401 

enrichment) or particle dynamics like aggregation-disaggregation (Rutgers van der Loeff 402 

and Boudreau, 1997). There is no indication that the particle concentration has an effect 403 

on the Kd in the BNL (Honeyman et al., 1988). 404 

For short-lived radionuclides like 234Th and 210Pb, condition (1) above is clearly met. 405 

Profiles of dissolved 234Th provide clear evidence for enhanced removal of dissolved 406 

TEIs from bottom waters in the presence of nepheloid layers (Bacon and Rutgers van der 407 
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Loeff, 1989).  Enhanced removal of particle-reactive TEIs near the sea bed has been 408 

evident since GEOSECS-era studies of 210Pb (Craig et al., 1973), and the concept of 409 

bottom scavenging has been reintroduced recently through the study of 230Th (Okubo et 410 

al., 2012).  However, developing a direct link between sediment re-suspension and 411 

enhanced removal of TEIs near the sea bed will require joint research on particles as well 412 

as on the distribution of dissolved TEIs.   413 

  414 

5-2 Long-range transport in the BNL 415 

 416 

Strong bottom currents occur along the western boundaries of the ocean basins (Warren, 417 

1981), and deep wind and buoyancy-driven currents such as the Antarctic Circumpolar 418 

Current can reach abyssal depths (e.g. in the Drake Passage; Renault et al., 2011). 419 

Through re-suspension or, rather, selective deposition, these currents can maintain high 420 

loads of suspended sediments. In the BNL, particles may be transported over large 421 

distances as shown for clay minerals (Griffin et al., 1968; Petschik et al., 1996; 422 

Diekmann et al., 2004). This means that particles are not only redistributed locally 423 

(winnowing and focusing) but also transported between areas with widely different local 424 

sediment compositions.  425 

 426 

5-3 TEI fractionation 427 

 428 

The composition of material suspended in the BNL is different from that in the clear 429 

water above it. Grain size fractionation has been described in detail by the studies of I. 430 

McCave (Mc Cave, 2001). The possible effect of grain size fractionation on the isotopic 431 

composition of deposited sediments was studied by Kretschmer et al. (2010; 2011) who 432 

found that : 433 

• 230Th, 231Pa and 10Be adsorb preferentially onto the smallest grain sizes 434 

• 231Pa/230Th and 10Be/230Th ratios are enhanced in a slowly settling pure opal 435 

fraction 436 

• Settling rate fractionation during sediment focusing causes an increase in the bulk 437 
230Th concentration and in the 231Pa/230Th ratio. 438 
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 439 

5-4 Intermediate Nepheloid Layers 440 

 441 

There are many examples of Intermediate Nepheloid Layers (INLs) caused by the 442 

detachment of a BNL at the shelf break and other breaks in slope where internal tidal 443 

energy is focused, followed by offshore advection (McCave et al., 2001). It would be 444 

important to study the link between the dispersal of particulate (INLs) and dissolved 445 

tracer signals from the shelf (e.g. Fe and Mn releases, 210Pb removal, Nd isotope 446 

exchange (Sherrell et al., 1998; Lacan and Jeandel, 2005; Lam and Bishop, 2008). The 447 

particulate signal disappears by sinking and aggregate formation (Clegg and Whitfield, 448 

1990, 1991; Karakas et al., 2006; 2009). The time scale of distribution of dissolved shelf 449 

inputs can be studied with short lived Ra isotopes and 228Th. 450 

 451 

6- “Historical” understanding of particle dynamics and perspectives 452 

 453 

Despite its fundamental role in controlling the chemical composition of the ocean 454 

(Goldberg, 1954; Turekian, 1977) and the different cruises conducted in the 70s and 80s, 455 

the “oceanic microcosm of particles”-as christened by Lal (1977) – is far from being 456 

understood yet. In addition, sampling strategies and scientific focus differed between the 457 

GEOSECS and JGOFS programs. GEOSECS carried out large sections across the 458 

oceanic basins, where particles were collected by membrane filtration after bottle 459 

sampling, biasing the sampling towards the small particle pool. Analyses mostly 460 

informed us about the distribution of particle concentrations (mass/L), their major 461 

element compositions, as well as a few tracers and selected morphological and qualitative 462 

composition descriptions, thanks to the first Scanning Electron Microscopy (SEM) 463 

analyses.  Subsequent box and one-dimensional (vertical) models described the different 464 

fluxes exchanged in and out the oceanic system as well as along the water column. These 465 

pioneering efforts led to the emergence of the fundamental notion of “reversible 466 

scavenging”  (Brewer et al., 1976; Krishnaswami et al., 1976; Lal, 1980; Nozaki et al., 467 

1981; Bacon and Anderson, 1982; Anderson et al., 1983a). They also highlighted the role 468 
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of "particle-rich" continental margins on the distribution of ocean tracers (Anderson and 469 

Henderson, 2003; Jeandel et al., 2011). 470 

JGOFS identified representative biogeochemical provinces of the ocean, where most of 471 

the work was dedicated to the quantification of the “exported carbon flux” and its 472 

seasonal variability  (Fasham et al., 2001). Except for rare studies just prior to JGOFS 473 

that conducted small particle sampling and deployed the first in situ pumps allowing 474 

large volume filtration (Krishnaswami et al., 1976; Bacon and Anderson, 1982; Bishop et 475 

al., 1985; Rutgers van der Loeff and Berger, 1993; Jeandel et al., 1995; Tachikawa et al., 476 

1999b), most of the field work conducted during JGOFS deployed moored and (or) 477 

drifting sediment traps.  TEIs were barely measured, except perhaps 234Th and 230Th 478 

isotopes, which were recognized as useful for POC flux calibration and quantification. 479 

Resulting models describe the exported carbon flux as it was related to the surface 480 

nutrient distribution using 1D and 3D models coupling physics and biology (Bopp et al., 481 

2002). Most of the particle models developed in the late 80s and in the 90s are 482 

mechanistic and abiotic (Dutay et al., this issue; Burd and Jackson, 2009; Jackson and 483 

Burd, this issue). Early models coupled particle dynamics to ocean circulation in an 484 

OGCM, although processes describing the particle behavior in such 3D dynamical 485 

models remained one-dimensional (Henderson and Maier-Reimer, 2002; Gehlen et al., 486 

2003; Gehlen et al., 2006; Arsouze et al., 2009; Dutay et al., 2009; Rempfer et al., 2011). 487 

 488 

Conclusion 489 

 490 

At the beginning of the GEOTRACES program, we have to admit that our collective 491 

understanding of the processes governing the solution-particle exchange has made little 492 

progress in the preceding two decades. Key questions remain: 493 

   i) What are the affinities of the various TEIs for the different particulate phases 494 

(Rutgers van der Loeff and Berger, 1993; Chase et al., 2002; Anderson and Henderson, 495 

2003; Geibert and Usbeck, 2004; Luo and Ku, 2004; Roy-Barman et al., 2005; Santschi 496 

et al., 2006; Roy-Barman et al., 2009)? 497 
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  ii) What is the role of remineralization in the mesopelagic zone (Dehairs et al., 1995; 498 

Dehairs et al., 1997; Frew et al., 2006; Boyd and Trull, 2007; Buesseler et al., 2007b; 499 

Dehairs et al., 2008)? 500 

  iii) What is the impact of sediment diagenesis on the composition of resuspended 501 

particles and on their ability to scavenge additional TEIs, despite having previously 502 

equilibrated with dissolved species in the water column (Kretschmer et al., 2010; 503 

Kretschmer et al., 2011)? 504 

  iv) What are the roles of the BNLs and INLs on the boundary scavenging and boundary 505 

exchange processes (Bacon et al., 1988; Roy-Barman et al., 2005; Roy-Barman et al., 506 

2009)? 507 

v) What is the importance of other surface processes like chemoautotrophy as a source of 508 

particles in the deep ocean (Honjo et al., 2012)?  509 

Answers to these questions can be provided by the GEOTRACES program with the 510 

implementation of a comprehensive sampling and analytical strategies (pumps, optics, 511 

observations and analysis of particles, see McDonnell et al., this issue; Boss et al., this 512 

issue, Lam et al., this issue...), designed to elucidate the role of particles as agents of 513 

supply and removal of TEIs in the ocean. There is an urgent need for re-focusing on 514 

discrete particle composition, speciation and morphologies.  515 
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Figure Captions 1100 

 1101 

Figure 1 1102 

Illustration of the different sources, internal cycling and sinks of oceanic particles. Reproduced 1103 

from Roy-Barman and Jeandel (2011). 1104 

 1105 

Figure 2 1106 

Profiles of particulate matter concentration (PMC) at the Northern Iberian Margin (43°N, June 1107 

1997) calculated from beam attenuation (solid line) and light scattering (dotted line) against 1108 

depth, together with the density structure (t) of the water column (dashed line). Reprinted from 1109 

“Hall, I. R., Schmidt, S., McCave, I. N., Reyss, J.-L., 2000. Deep Sea Research Part I: 1110 

Oceanographic Research Papers 47, 557-582. Copyright (2014), with permission from Elsevier” 1111 

 1112 

Figure 3 1113 

Longitudinal section of the dry weight of particulate matter along the western Atlantic Ocean 1114 

from the GEOSECS program.  Reprinted from “Brewer, P. G., Spencer, D. W., Biscaye, P. 1115 

E., Hanley, A., Sachs, P. L., Smith, C. L., Kadar, S.,  Fredericks, J., 1976. The 1116 

distribution of particulate matter in the Atlantic Ocean. Earth and Planetary Science 1117 

Letters 32, 393-402. Copyright (2014), with permission from Elsevier”  1118 

 1119 

Figure 4 1120 

Particle dynamics as depicted by thorium (Th) isotopes in the mid-80s. Th isotopes are produced 1121 

in solution by radioactive decay of the soluble U or Ra isotopes. Due to their very low solubility, 1122 

Th isotopes are rapidly adsorbed on small particles and colloids that represent most of the 1123 

available solid surface. Th isotopes then follow the dynamics of particles. Th isotopes differ by 1124 

their radioactive decay constants (lambda) and input functions. Combining the different isotopes 1125 

allows determining the other time constants: kads for adsorption, kdes for desorption, kaggr for 1126 

aggregation, kdis for disaggregation, as well as the sinking speeds of the different types of 1127 

particles. Remineralization of large particles was neglected due to the low solubility of thorium. 1128 

Colloids were not included either because their impact on Th isotopes was highlighted later 1129 

(Honeyman and Santschi, 1989). The main 1-D scheme is certainly dramatically oversimplified 1130 

compared to the ecosystem-driven real processes. Small particles are aggregated into large 1131 

particles either by zooplankton grazing (producing fecal pellets) or by abiotic aggregation of 1132 

organic and inorganic material in fluff, due to sticking exudates produced at the end of the bloom. 1133 
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Large particles can scavenge and drag small ones in a sort of "oceanic piggy-back” process (Lal, 1134 

1980). Large particles can also disaggregate into small particles when sinking. Indeed, the most 1135 

fragile large particles, such as marine snow, can be broken by the turbulence of the current. Fecal 1136 

pellets can also be destroyed by bacterial activity. The apparent settling velocity is the net effect 1137 

of all these processes. The deduced particle residence time can therefore be applied to other 1138 

poorly soluble TEIs. From Roy-Barman and Jeandel (2011) and redrawn from Bacon et al. 1139 

(1985).  1140 

1141 
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