The Importance of Microwave Remote Sensing for Operational Sea Ice **Services – And Challenges**

Wolfgang Dierking

January 2015

(1) Why is microwave remote sensing important (=useful) for sea ice mapping?

Problems When Using Optical and IR-Images

Clouds (and lack of daylight)

Problems When Using Optical and IR-Images

... clouds (and lack of daylight)

Radars (Microwaves) Look Through Dry Snow

Radar (at X to L-band) "looks through" the dry snow, volume and deformation structures are partly visible.

Fram Strait

Radar Doesn't Look Through Wet Snow

Radar Doesn't Look Through Wet Snow

(2) Ice chart production

Operational Approach: Using Sequences of C-Band SAR Imagery

...complemented by optical/IR images, aircraft reconnaissance, ship reports, weather data etc.

Outline of Visually Homogeneous Ice Conditions

Ice characteristics described by "egg-code"

7

Egg-Code

Sea Ice Chart Baltic Sea (FIMR, now FMI)

Sea Ice Chart Svalbard (Met. No.)

Automated Segmentation And Classification

"MAGIC" Clausi et al., CJRS, 2010

"ARKTOS" Gineris et al., CSE Conf, 2000

Recent Improvements: Use of Dual-Polarization...

HH-Polarization

HV-Polarization

e. g. MET Norway and CIS use Radarsat-2 ScanSAR Wide (resolution 50-100m, coverage 500 x 500km, HH+HV)

range

(3) Challenges

Starting Point: Radar Image...

1204 2011 R-IHH-VVI G-VV B-IHH+VVI

Moen et al., TC 2013

(if possible from a combination of different channels)

3

Moen et al., TC 2013

Various algorithms available, tested for special conditions

...Classification

WMO-"Stage of development scheme"

... WMO scheme suitable for radar classification?

Microwave Interaction With Small-Scale Features

What Influences the Radar Signal?

Sea Ice Parameters:

- small-scale surface roughness (mm-dm)
- volume structure (layers, brine inclusions, air bubbles)
- salinity, temperature (dielectric constant, penetration depth)
- snow cover (density, grain size, moisture)
- ice conditions: deformation (brash, ridges), leads, frost flowers

Radar Parameters:

- frequency, polarization, incidence angle
- spatial resolution

determine the appearance of sea ice in the radar image

Frost Flowers

...hiding the ice beneath

C-Band

L-Band

2003 L-Band 30°-45°

Testing the Potential of Other Frequencies

ERS-1 and JERS-1 Sea Ice Images Coast of East Greenland

L-Band for Detection of Ice Deformation

...works only at high spatial resolution!

Sea Ice Deformation And Roughness

Different Ice Deformation And Roughness Types

C-Band (Envisat ASAR WSM) L-Band (ALOS PALSAR ScanSAR)

...may cause classification ambiguities

Coarser Spatial Resolution: Ice Drift From Image Sequence

Image pair 16.09.2012. (a) HH-polarization, (b) HV-polarization Vectors – red: automatically derived; yellow: reference

Ice services use image sequences for mapping!

Ice Drift -> Ice Deformation

Image pair 16.09.2012. (left) divergence, (right) vorticity

Deformation zones formed earlier than start of drift analysis are not detected!

Effect of Spatial Resolution

ESAR (R-VH, G-VV, B-VV, 12:26UTC ...important details may be lost

Combine Different Spatial Resolutions

Equivalence of C- and X-Band

RS-2 QUAD 0306_154243, VV-Pol., 20m, 40.1-40.7°, ENL ≈ 20

TSX SM 0306_154858, VV-Pol., 20m, 41.1-42.1°, ENL > 50

...may be useful for "downscaling"

Equivalence C- and X-Band?

TSX SM 0306_154858, VV-Pol., 20m, 41.1-42.1°, ENL > 50

...not always 1:1 correspondence (especially thin ice)

Effect of Incidence Angle

ASAR HH-polarization 20. March 2007, 9:11 UTC Incidence angle 42 – 45° ASAR HH-polarization 21. March 2007, 10:20 UTC Incidence angle 19 – 22°

...hampers (automatic) segmentation/classification

Challenges (1)

Automatic segmentation and classification:

- Choice of optimal algorithm?
- Prior adjustment of acceptable percentage of wrong classification?
- How to assess reliability?
- Influence of small-scale ice properties?
- WMO versus "radar" classification?

Incidence angle correction prior to segmentation

- Prior "raw" separation of ice types?
- Consider small-scale roughness? (How?)

Challenges (2)

Identifying deformation areas using drift fields

- Link between ice kinematics and deformation features?
- Computational speed?
- Reliability check?

Combination of different frequencies and spatial resolutions:

- Where useful?
- Suitable for production workflow?

Thank you for your attention !