Topic 1: Coupled modelling of regional Earth systems

Budget study of internal variability of ensemble simulations of HIRHAM5 for the Arctic

A. Sommerfeld (1), O. Nikiema (2), A. Rinke (1), K. Dethloff (1), R. Laprise (2)

(1) Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung in Potsdam
(2) Université du Québec à Montréal

Introduction

- Chaotic and nonlinear nature of atmospheric dynamics [1]
- Changes in initial conditions (IC) of climate models influence the evolution of simulations

Model Setup

- HIRHAM5 [4] is a hydrostatic regional climate model first applied on a circum-Arctic region by [5]
- Combination of HIRLAM [6] (dynamics) and ECMWF [7] (physical parametrization)
- Driven by ERA-Interim [8]

- Runs with a spatial resolution of 25 km covering 218x200 grid cells and 40 vertical levels up to 10 hPa over the Arctic region (Fig. 3)
- Runs without nudging
- 5 simulations covering May 2012 differ only in IC (starting times for each run shifts about 1 day)

Equations and Method

- **IV** is defined as the inter-member variance of each variable [2,3] $\sigma^2_\phi \approx \langle \varphi^2 \rangle$ (Eq. 1)
- Emanating from the first law of thermodynamics and the mass-continuity equation in vertical pressure coordinates for potential temperature using the Reynolds decomposition
- Results in a IV budget equation (Eq. 3) developed by O. Nikiema [2,3]

Results

- IV of the vertical- and domain-averaged potential temperature is smallest at the bottom, at 400 hPa and at the model top at 10 hPa (Fig. 4)
- Highest IV is simulated in the upper troposphere and smaller peak at the middle troposphere probably due to meridional wind speed maxima
- Largest contribution to growth of IV is provided by B_h (Fig. 5)
- B_v and E_h reduce the IV (Fig. 5)
- The terms A_h, A_v, E_v, and C have only a small contribution (Fig. 5)
- Stronger peaks during time evolution indicate synoptic events [2,3] (Fig. 5)

Outlook

- Development of the ensemble of simulations
 - Low ice years and high ice years
 - Calculations for 3-hourly output
 - At least 20-member simulations changing only in IC
- Detailed analysis of the time evolution, of vertical profiles including single levels and of the spatial distribution of the contributions to IV
- Budget study for absolute and relative vorticity and kinetic energy

References