Recent lidar measurements from AWIPEV

By Christoph Ritter

AWI Potsdam
Aerosol and BL measurements

Aims aerosol:
(remote sensing sun/star-photometer, Raman lidar)
Continue long-term measurements
Participate in aerosol closure experiments
... from aerosol to clouds

Aims BL:
Understand micrometeorol. influences on BL properties
Understand coupling between local and synoptic processes
... linkage aerosol to BL ...

Instruments at AWI:

• Continuous instruments during campaign:
 wind lidar (50m / 10min, from ± 150 – 1000m), 3-D wind
 BSRN station: T, p, rh, wind, short – long-wave up and
down
 radiometer (T: 50 -2000m, 20min, approx 100m resolution,
 humidity (same resolution, quality?)
 photometers at village & Zeppelin station (if sunny)
 Vaisala CL51 Ceilometer (910nm)

• Sporadic instruments:
 radiosonde (11UT each day)
 KARL lidar (clear sky)
Instruments at Rabben:

PI: Masataka Shiobara from NIPR (Tokyo)

Sky radiometer (photometer + 2 channels around 1.5µm) – many years starting in April

Depolar. resolved MPL lidar

(all sky camera) -All continuous

Yutaka Kondo: Univ Tokyo, BC since 2012
Status & aims:

- no major flaw in data
- detailed analysis to be done
- KARL: 30 March – April 6 most interesting
- air trajectories not easy

Ceilometer: backscatter up to 1000m

Master thesis → connection to Iwona

Wish:

- Paper on event and / or paper on season
- AWI: meteorology, remote sensing
Currently 3 lidars from AWI:

a) Koldewey aerosol Raman lidar (KARL), since 2001

b) a wind lidar (Leosphere) since Dec. 2012

c) different ceilometers (Vaisala), one each time, quasi continuously since 2001

Status of instruments
Recent data
Discuss abilities, shortcomings

Aim: invite you to develop strategy how to use these instruments for common, future projects, espec. for clouds!
a) Koldewey Aerosol Raman Lidar (KARL)

Measures:
Backscatter: 355nm, 532nm, 1064nm
Extinction: 355nm, 532nm (from N2 Rot-Raman)
Depolarisation: 355nm, 532nm
Water vapor: 407nm, 660nm (from H2O Rot-Raman)

Specs:
Nd:Yag laser with 10W / color
70cm recording telescope
Moveable aperture (diameter & position) for measurements in
tropo- and stratosphere
Starting at “Zeppelin altitude”

Used: aerosol in tropo & stratosphere, H2O in (lower) troposphere
optically detectable aerosol disappears from ground up during season

AOD from Rabben station shows max. in April
Annual cycle in Lidar ratio? Data from 2013

\[LR = \frac{\alpha_{aer}}{\beta_{aer}} \]
Intensive quantity: aerosol depolarisation (shape)

Particles more spherical outside haze season! (Mie better)
Intensive quantity: color ratio (size)

Size more uniform in Feb??

800m – 1500m
1500m – 2500m
2500m – 3500m
3500m – 5000m
5000m – 7000m
What does the aerosol lidar KARL deliver:

extensive quantities (dependent on aerosol number concentration):

backscatter (concentration, size, shape, refractive index)
extinction (concentration, size, shape, refractive index)!
(moreover specific humidity)

intensive quantities (not dependent on aerosol number concentration)

depolarisation \(\delta = \frac{\beta_1}{\beta_-} \) (shape) [dipole moment]

colour ratio \(\text{CR} = \frac{\beta_\lambda_1}{\beta_\lambda_2} \) (size) [\(\beta \sim \lambda \) \(-4 < \lambda < 0\)]

lidar ratio \(\text{LR}(\lambda) = \frac{\alpha^{aer}}{\beta^{aer}} \) (index of refraction, size, shape)

Knowledge of \(\delta, \text{CR}, \text{LR} \) allows a robust classification of aerosol type (dust, smoke, sea salt, cirrus…)

→ it’s about getting the intensive quantities!
Inverting lidar data:

Aim: estimate size distribution $n(r)$ (reff, σ, N_0) and refractive index m from lidar data

Assume spherical particles, Mie theory, efficiencies $Q_{\text{ext/\beta}}$ are known

→ set of Fredholm integral equations for extinction & backscatter

$$\alpha(\lambda) = \int_{R_{\text{min}}}^{R_{\text{max}}} Q_{\text{ext}}(\lambda, r, m) \pi r^2 n(r) \, dr$$

$$\beta(\lambda) = \int_{R_{\text{min}}}^{R_{\text{max}}} Q_{\pi}(\lambda, r, m) \pi r^2 n(r) \, dr$$

Retrieval of $n(r)$ from Q, α, β is an ill-posed Problem
At least 2 α, 3 β needed

But:
Lidar is able to retrieve aerosol in accumulation mode: $0.1 \mu < r < 1.2 \mu$
Shortcomings of lidar data:

Phase function missing: only info around $\Phi = 180^\circ$

Refractive index challenging: $m = m_{\text{real}} + i \cdot m_{\text{imag}}$

- $m_{\text{real}} \sim$ scattering
- $m_{\text{imag}} \sim$ absorption

but we only have β, α

Weak absorption $\rightarrow \omega$ insecure

Only trustful info for accumu. mode:
- Aitken: interaction too small
- giant mode: Mie efficiency becomes flat

$$\alpha = \frac{2 \pi r}{\lambda} \leftrightarrow r = \frac{\alpha \lambda}{2 \pi}$$

$$\alpha \in [1 \ldots 12], \ \lambda=0.5 \mu \rightarrow r \in \left[\frac{1}{4\pi} \ldots \frac{3}{\pi}\right] \mu$$

Conclusion: aerosol, cloud particles
Status KARL:

Ongoing long-term monitoring of aerosol

Strong interest in closure experiments

Interest in comparison with photometer(s): vertical vs. inclined column, local effects of aerosol, hygroscopic growth, role of summits
→ aerosol – cloud – interaction

KARL good for particles in accumulation range
- Not in thick clouds, below, before and after clouds

“Multiple field of view measurements”
In an ideal world the count rate in a lidar increases with its field of view because more multiple scattered light will be collected. A larger FOV should collect more light in and after a cloud. The aureole peak mainly results from large, crystal particles which cannot be analysed by Mie code inversions.
b) The wind lidar

A commercial instrument from Leosphere
Measures the 3-dim wind with 50m / 10 min resolution
from approx. 150m ...± 1200m
(backscatter at 1.5μm, Doppler effect → aerosol as tracer)

Master thesis S. Burgemeister:
U,V components reliable
Wind channeled along Fjord in lowest ±600m
Passages of fronts detectable
Several short living LLJ detected

Meanwhile:
Also W component (vertical)
But, particles still tracer?)
Reliability of the vertical wind (\
Case 5 July, 2014

Cloud cover from Ceilometer

Persistent clouds around 1km altitude
Vertical winds from -0.5 m/s (upward)
To +0.5 m/sec (downward)

Time 7:40 – 8:30 constant cloud height 925m
Error around 0.3 m/s max. in cloud: downward, above / below upward motion
Inclination? (green → red → cyan)
Method more reliable outside clouds?
Rogers & Yau (1989):
Drizzle fall speed v:
\[v = 1.19 \times 10^8 \, r^2 \, [m \, s^{-1}] \]
If \(v = 0.2 \, m \, s^{-1} \)
\(r = 41 \, \mu m \)
Summary wind lidar so far:

U, V wind are very reasonable

Vertical wind is evaluable, measurement precision (0.1 … 0.3 m/s)

We see updraft in /around clouds

Droplets > 10μm have sedimentation rates that produce noticeable different velocities compared to air
Disintegration of a cloud
8 Jul. 2014

Ceilometer sees a cloud at 860m that suddenly disappears at 3:41.
Part c: ceilometer

Always Vaisala
2000+ LD 25 LD 40
Since 2011 CL 51

Use for cloud occurrence and backscatter
(control overlapp for KARL)

\[\lambda = 910\text{nm} \]
\[\beta \text{ useful up to } 1\text{km} \]
cloudstatistics – Ny–Alesund

2001 – 2010
all seasons

lowest cloud layer
upper cloud layer
upper cloud layer scale 1
cloudstatistics – Ny–Alesund

Note:
This is change in relative occurrence frequency

[Graph showing cloud statistics over different altitudes and years]
Are low clouds and ice clouds “anti-correlated”?
Thin clouds follow distribution of lowest clouds → increase in cloud detection efficiency of 50% from LD40 to CL51 would explain the increase in low cloud cover in 2011 → technically reasonable
Hence: possible that relative importance of low clouds decrease more trustful …
Our knowledge so far:

Cloud statistics depend on the quality of instrument (optics and software)
Definition of “thin clouds” worst

CL 51 since 2011 much more powerful than precursor instrument

Can only consider years 2001 – 2010 easily
(By the way: the Christoph Ritter foundation donates a nice German sausage for suggestions to obtain a homogeneous data set)

Low clouds around 750m dominate, their importance might decrease

Low clouds and high clouds seem to be anti-correlated: high clouds seldom occur over low clouds (independent on instrument’s power!)

Does fraction of clear days decrease?
Slightly dependent on malfunction!
(number of valid measurements)
Ny–Alesund: winter clear sky

Fit?
40.46% in 2000
-1.92% / year
$R^2 = 0.52$
Ny–Alesund: clear sky in seasons

- winter
- spring
- summer
- autumn

Clear sky fraction vs. year 2000 + n
Conclusions & evident things

Comp MPL to Ceilo: homogeneity

MPL or Ceilo with Windlidar & BSRN define interesting moments for cloud radar

Have to use KARL lidar “around” clouds as much as possible, +cloud radar: prove usefulness of remote sensing for clouds

For Ny, satellite val. elsewhere: need homogeneous equipment, same calibration, evaluation

KARL + photometers (Rabben, AWI) local and seasonal variability of haze, contribution to closure studies

Clouds reduce range of understanding …