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Reliability measures for sea ice motion retrieval
from synthetic aperture radar images

Thomas Hollands, Stefanie Linow, and Wolfgang Dierking

Abstract—Sea ice motion is triggered by wind and ocean cur-
rents. Its magnitude and direction can be automatically retrieved
using pairs of satellite images acquired over the same area.
However, external reference data for validation of drift retrievals,
such as tracks from buoys, are sparse. Information about the
reliability of the retrieved ice drift field is crucial for applications
such as operational sea ice mapping or validation of computer
models for simulations of sea ice dynamics. In this paper we
introduce an intrinsic measure based on the properties of radar
image pairs to assess the reliability of the retrieved ice drift
vectors. The proposed method combines different parameters, e.
g. correlation coefficient and two textural quantities, to provide
information about the suitability of subimage regions for pattern
matching. In this way, we generate a quality parameter (called
confidence factor, CFA) for the calculated ice drift velocities. The
CFA is compared to results obtained by ’backmatching’. The
latter requires that the drift field is computed twice using the
image pair, first in sequential and then in reversed order. For
stable ice conditions, the results show that areas regarded as
unreliable by the CFA compare well with the areas revealing
larger differences from backmatching.

I. INTRODUCTION

H IGH resolution ice drift fields can be retrieved automat-
ically from time series of satellite radar imagery, for

example by using algorithms based on the method of pattern
matching, e. g. [1]. In practical applications, such as opera-
tional mapping of sea ice conditions, general process studies
[2] or validation of models for simulations of atmosphere –
sea ice – ocean interactions [3], [4], knowledge about the
accuracy of the retrieved ice drift fields is required. In [5], the
importance of uncertainty information for data assimilation is
emphasized. Although most drift retrieval algorithms are tested
against tracks from buoys and ice drift stations [1], [6] with
good results concerning the overall performance, a method
for evaluating the accuracy of each retrieved drift vector does
not exist. In this paper, we suggest an approach to provide
additional information on the reliability of each individual
drift vector, whereby ’reliable’ means that a certain level of
accuracy is maintained. For this, we introduce two methods for
an assessment of reliability. The first one, called backmatching,
is a robust indicator for the reliability of sea ice motion, but
doubles the computation time. Therefore we propose a second
method by calculating a ’confidence factor’ (CFA), which
quantitatively characterizes certain image properties important
for ice drift retrievals.

The automated retrieval of sea ice displacement vectors
from two subsequently acquired, overlapping satellite images
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can be described as a problem of pattern matching, as
mentioned above. In many cases, the algorithms employ a
correlation measure to quantify the similarity of regions in
two input images. Intuitively one might assume that high
correlation values indicate highly reliable displacement vec-
tors [7]. However, that is not necessarily the case since the
correlation coefficient is influenced by various factors and can
vary depending on the image texture characteristics [8]. We
discuss this item in more detail in the following sections.

The paper is organized as follows: in the next section
we describe our test data, the method used for calculation
of the ice drift vectors, and our approaches to assess their
reliability. In section III, we analyse and compare the results
of backmatching and CFA calculations. Finally, a discussion
and the conclusions are presented.

II. METHODS

In this section, we provide information about the used SAR
images and the algorithm we employ for ice drift retrievals.
We introduce the parameters that were selected to evaluate
the CFA and explain the principle of backmatching.

A. Calculation of ice drift

As a test case we calculated drift fields using Envisat ASAR
wide swath data acquired over the Ronne Polynia1 in 2008,
which are described in [3]. Image pairs are from the following
days: February 18/19, 19/20, 22/23, May 30/31, and May
31/June 1. Figure 1 shows the location of our test site. The
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Fig. 1. Location of the test site. The zoomed region contains the overlapping
area of the image pair recorded on the 22. / 23. February 2008. The dashed
line denotes the approximate position of the polynia.

retrieval algorithm determines the position change of a given
area element on the ice between the acquisitions of image 1

1A polynia is a region of open water in the pack ice. It forms when katabatic
winds or ocean currents push the sea ice away from the coastline, or when
warm water is upwelling near the coast. Due to the lack of the insulating
ice cover, polynias are regions of increased heat flux between ocean and
atmosphere.
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and 2. The displacement is then obtained as the connecting
line between those two positions. Since the ice may move
curvilinearly, the displacement represents only the shortest
possible distance between the two reference points in image
1 and image 2 but not necessarily the true path of motion.
The ice drift velocities are calculated from the ratio between
displacement and time interval between the image acquisitions.

For drift detection we apply a cascaded multi-scale multi-
resolution algorithm first described by [1] and modified by
[9]. This is an area-based pattern-matching algorithm which
employs a combination of phase correlation and normalised
cross-correlation which are calculated over search windows
(’templates’) to determine the displacement of sea ice between
the acquisition times of two satellite images. In order to
increase the robustness and reduce the computational efforts,
the drift algorithm is based on a resolution pyramid in which
the ice displacement is first calculated at a coarse resolution.
This information is then used to initialise the search for
corresponding patterns at a higher resolution level. In this
way, the displacement vector is refined at every level of the
resolution pyramid until the original resolution of the input
image is reached. The algorithm itself forms a cascade of
multiple runs through the resolution pyramid (in the following
denoted “CRP-scheme”2). In the cascade, the displacement
field is calculated repeatedly. With each cascade step, the
number of pixels (i. e. the size of the template) to be matched
for a single displacement vector is reduced, leading to an
increased spatial density of the displacement field. To compen-
sate for the reduced robustness of the match due to the reduced
number of pixels in the search template, the algorithm uses the
coarser displacement field from the previous cascade as initial
displacement information and refines it locally during each
pass of the resolution pyramid. The similarity measure of the
employed algorithm is a normalised cross-correlation (NCC)
with a preceding phase correlation for candidate selection
[1], [10]. The performance of phase correlation and NCC
in the presence of noise was analysed in [11]. The phase
correlation is more robust with respect to non-linear motion
and computationally more efficient, while the NCC is more
robust against noise [12], [13].

Due to the combination of both correlation measures, the
employed algorithm is relatively susceptible to high frequency
noise. However, there are other error sources which are directly
linked to properties of the image data:

• In homogeneous regions without any textural patterns,
the matching leads to spurious displacement vectors. This
effect can occur in areas of new ice which do not show
any distinct structures such as cracks, rafting zones or
ridges.

• Periodic variations of brightness in the images can also
lead to false matches. Such variations are observed, e.g.,
in polynias where often distinct belts of ice develop.

• Strong changes in ice structures between the acquisitions
of the two images, caused by advancing deformation,
rotation of ice floes, ice melt, or other processes are also
problematic due to the reduced similarity between the

2Cascade-Resolution-Pyramid-scheme

images.
• At the image borders, it may not be possible to match

patterns when corresponding ice structures have left the
monitored area or have just moved into it at the acquisi-
tion of the second image. The width of the zone where
patterns are lost depends on the ice drift velocity.

Other error sources are directly related to the layout of the
algorithm itself. Since results obtained at coarser spatial res-
olution are used to initialise calculations at higher resolution,
the retrieval may fail if the field of displacement vectors is
very heterogeneous in a given area. In this case, the initial
displacement may cause the algorithm to search in the wrong
direction. Another problem occurs when the overlap area
between consecutive satellite images is irregularly shaped. In
this case, it may not be possible to position a sufficiently large
window for correlation calculations close to the image border.
This can lead to a reduced number of iterations.

B. Concept of multiple reliability measures

In the following, we outline our approach to employ a
combination of different parameters, derived from the re-
spective image pair, for an assessment of the reliability of
the final ice displacement vectors. The motivation is the
observation that the correlation coefficient in itself is not an
appropriate measure of the error of automatically retrieved
displacements relative to reference data (in our case the latter
were determined manually). Figure 2, for example, does not
reveal a correlation between the error and the cross-correlation
coefficient obtained in the final step of the CRP-algorithm
described above. This is also valid for the phase correlation
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Fig. 2. Magnitude of error vs. cross-correlation coefficient for a selected
set of drift vectors obtained using an image pair from the Ronne Polynia,
Antarctica (22. / 23. 02. 2008)

[8]. We note that one in addition has to consider the error
sources related to the image properties discussed in section
A above. Therefore, we defined a ’confidence factor’ (CFA)
which combines the thresholds of different parameters to
separate ’reliable’ from ’unreliable’ retrievals of displacement
(the meaning of ’reliability’ is discussed below). The selected
parameters are useful for judging whether the properties of
each image of an image pair and the comparison of both
images fulfil the conditions for a successful pattern-matching.
For operational use of the algorithm, the computational speed
is important which means that the selected parameters must be



Post print version 

10.1109/JSTARS.2014.2340572 

(c) IEEE, 2015

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. XX, XXXX 3

relatively simple to evaluate. In the present form of the CFA,
we use the following quantities:

• Mean Intensity Gradient (MIG)
• Mean Gradient Slope (MGS)
• Variance-to-squared-mean-ratio (VMR)
• Intensity threshold (IT)
• Correlation Coefficient
• Confidence Interval of Correlation Coefficient

One major premise of the CRP-algorithm is that ice struc-
tures can be recognized in both images of the image pair,
i. e. parameters are needed that quantify the perceptibility
of local image structures. The former two (MIG and MGS)
are from the field of image texture analysis. SAR images are
characterized by the presence of speckle and strong casual
mirror reflections, which have also to be taken into account
in the selection of parameters for calculating the CFA. The
VMR is a measure for the effect of speckle on image intensity
variations. By applying the IT it is possible to reduce the effect
of mirror reflections (outliers of pixel brightness). These four
parameters characterize the properties of each individual image
but do not reflect any links between the two images forming a
pair. This is achieved by employing the correlation coefficient
and its confidence interval in the reliability assessment. Even
if the correlation coefficient on its own does not provide a
suitable measure for the reliability of a displacement vector, it
is indisputably an indicator for similarities between intensity
patterns in two different images. The single parameters are
described in more detail in sections II C and D below.

For each parameter, we define a threshold to separate
reliable from unreliable displacement vectors. Since the drift
detection algorithm is based on pattern matching at multiple
resolutions [9], it is necessary to consider the reliability at
all levels of the CRP-scheme. This can be achieved in two
ways: (1) One approach is to exclude individual displacement
vectors at any step of the CRP-scheme if they exceed or
fall below the threshold value of the CFA valid at this
step. (2) Another approach is to combine the results of the
different threshold checks and flag the individual displacement
vectors accordingly. We found that method (1) reduces the
reliability of the pattern matching if the total fraction of
vectors discarded anywhere in the CRP-scheme exceeds 5
- 10 percent. Therefore we employ method (2) in our drift
retrievals. Since the numerical values for the different param-
eters of which the CFA is comprised cover different ranges
of magnitude, we introduced a counter and increment it by
one for each threshold violation of any of the parameters at
any stage in the CRP-scheme. In this manner, a map showing
the number of threshold violations for each drift vector is
generated. Consequently, a drift vector with a high number of
threshold violations is less reliable than a vector with a lower
number. The CFA is the sum of registered threshold violations
normalised by the number of steps in CRP-scheme. Due to
the complexity of the drift algorithm, it is impracticable to
determine each threshold theoretically. Instead, we devised an
empirical method. Our test site contains homogeneous (texture-
free) areas on a stationary ice shelf (high intensity) as well as
areas of dark-appearing level sea ice (low intensity close to the

noise level). First drift calculations showed spurious vectors in
these regions. The thresholds were chosen in a way that drift
vectors in such regions are clearly marked as unreliable. To this
end, a combination of visual checks and histogram analyses for
the individual steps of the drift algorithm were performed. The
resulting empirical thresholds for each parameter contributing
to the CFA are shown in Table I.

TABLE I
OVERVIEW OF THE PARAMETERS CONTRIBUTING TO THE CFA

Parameter Threshold

Variance-to-squared-mean-ratio > 0.5
Mean intensity gradient < 1.7
Mean gradient slope < 0.35
Intensity threshold > -3dB
Correlation coefficient r < 0.3
Confidence interval for r < 0.1

Finally we note that the crossing of each single threshold
depends on the local image characteristics in each window
used for calculating the drift field. A homogeneous ice area,
for example, may reveal a certain amount of speckle, no indi-
cations of texture or strong reflections, but still a certain degree
of correlation with a sufficiently low uncertainty. In such case,
only MIG and MGS and possibly the VMR contribute to the
CFA. In heavily ridged areas, the image texture is large and
the relative contribution of speckle low, but stochastic mirror
reflections from tilted ice fragments may bias the correlation
(see below). This means that only IT will indicate a problem.
However, if the texture patterns have changed in the time
interval between the image data acquisitions, the correlation
may be as well below the threshold. These examples demon-
strate that the use of one single parameter is not sufficient for
an adequate assessment of all possible ice conditions for a
successful retrieval of the ice displacement. It does hence not
make sense to quantify the individual effectiveness of each
single parameter. The chosen combination of parameters is
balanced to handle a large variety of ice conditions.

C. Parameters for single images (Texture Measures)

Textural parameters can be computed for regions in single
images to quantify structure characteristics of image intensity
patterns (e.g. high or low frequency grey-tone variations).
Methods for describing the properties of image patterns can
be divided into statistical, structural, and spectral approaches
[14]. In our study we focus on statistical methods.

For the calculation of the mean intensity gradient (MIG)
[15] we use the Sobel filter. If there are strong brightness
differences, the mean intensity gradient is large, while it is
close to zero for homogeneous regions. The mean gradient
slope (MGS) is the second derivative of the intensity image,
and hence, the slope of the gradient. The MGS as used here
has been adapted from [16]. It is calculated by employing
a Laplacian filter on the image. The MGS shows spatial
changes of the gradient which can be an additional hint for the
presence of structures. The benefit of its use is clear looking
at the following example: In the case of a constant monotonic



Post print version 

10.1109/JSTARS.2014.2340572 

(c) IEEE, 2015

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. XX, XXXX 4

increase of the image intensity inside a given window, the MIG
reveals higher values, whereas the MGS is zero. The MGS is
more closely related to higher-frequency intensity variation in
the image.

The variance-to-squared mean ratio (VMR) is calculated for
a given window of intensity values (as are MIG and MSG). It
can be used to estimate the contribution of the SAR-specific
granular multiplicative noise (speckle) to the image intensity
variation if the number of looks of the SAR image is known
[17]. Speckle results from the interference of signals from
several randomly distributed scatters in on radar resolution cell.
Since speckle is reduced by averaging neighbouring pixels,
its contribution at the coarse-resolution levels of the drift
retrieval can be neglected. However, it may be effective at
higher spatial resolutions. Additionally, the VMR includes the
contribution of real intensity variations (textural component).
For sea ice motion tracking with SAR images, [6] employed
the VMR to assess whether variations of the image brightness
(radar intensity) in a given window are larger than the value
expected due to speckle. We set the threshold of the VMR
empirically in order to not only account for speckle but also
for spatially dense brightness variation at the high resolution
levels of the CRP-scheme which are not related to any ice
structures. Its magnitude is large enough to exclude intensity
variations caused by speckle at any resolution level.

The brightness threshold limits the maximum intensity
within a given window. It takes into account that high intensity
values within a pattern have a stronger influence on the
resulting cross-correlation result than low intensity values. A
single high-intensity peak as it is caused by a mirror (spec-
ular) reflection of the radar signal from the ice surface may
dominate the resulting cross-correlation. Specular reflections
occur, e.g., if larger fragments of ice (size of multiples of
the radar wavelength) are oriented such that one side directly
faces the radar. Hence, the occurrence of specular reflections
is very sensitive to the imaging geometry, i.e. incidence and
look angle of the radar, and orientation and shape of the
reflecting ice structure. Mirror reflections observed in two
consecutive images will hence occur from different locations.
As a consequence, the correlation might link two randomly
occurring specular events instead of estimating the correct
underlying displacement of the sea ice. This limitation of
the correlation approach has already been discussed in the
context of Particle Image Velocimetry (PIV) [15] and stereo
matching [18], [19]. The effect of peaks in radar intensity
is reduced using the phase correlation for pre-selection of
possible candidates for the pattern matching. However, in
order to account for a possible effect of such peaks on the
drift estimation we chose a threshold for the local backscatter
intensity peak which is not exceeded in the absence of mirror
reflections.

D. Parameters for image pairs (Cross-Correlation)

The cross-correlation can be used to assess the similarity
of two given windows of an image pair. Its absolute value
ranges from 0 to 1. It is 1 if the respective windows are
identical and zero if they have nothing in common. Even

if one single image contains detectable ice structures, the
characteristics of corresponding intensity patterns can vary
between two consecutive images, which reduces the chance
of successful pattern matching. Therefore it is important to
take not only into account the texture of the individual given
window but also the correlation between both corresponding
windows.

The statistical uncertainty of the correlation coefficient
depends on the window size over which it is calculated. Hence,
in the CFA we additionally include the confidence interval for
the correlation coefficient as a function of the window size. For
a small number of samples N in the window (i.e. the window
is too small), the correlation coefficient r becomes unreliable.
We assume a standardised normal distribution f(z) for the
error of the correlation coefficient and estimate the confidence
interval ∆r at a significance level of α = 99%:

∆r =
z(α) · (1− r2)√

N − 1
(1)

For sea ice motion tracking, the usefulness of this parameter
for an assessment of the statistical uncertainty of the correla-
tion coefficient was already discussed in [20].

E. Backmatching

The concept of backmatching originates from the field of
photogrammetry and is described by e.g. [21]. For the back-
matching, we calculate the respective field of displacements
twice, the first one by matching image 1 with image 2 and
the second one by reversing the image order. For a direct
comparison of both displacement fields, the result obtained
from image pair 2-1 needs to be inverted and re-sampled to
the grid used to calculate the displacement vectors for image
pair 1-2. We emphasize the fact that the potential error sources
discussed on page 2 that might inhibit a successful pattern
matching apply in the same way for image pairs 1-2 and 2-1.
In the ideal case, the resulting displacements are identical in
magnitude and direction, and the Euclidean distance between
both fields (referred to as backmatching distance) is zero.
Under realistic conditions, this distance is larger than zero.
It assumes low values for regions where the pattern matching
works and larger values for regions where it fails. Contrary
to the CFA, this procedure assesses the overall consistency
of the retrieved displacements independently of the texture
characteristics of the images.

Calculated displacement values are very different, ranging
from 0 to tens of kilometres. Therefore it is more descriptive
to normalise the backmatching distance with the absolute
displacement values. For the drift velocity, the normalised
back matching difference ∥∆v⃗∥ is calculated from the velocity
components uf , vf of the forward and ub, vb of the backward
run:

∥∆v⃗∥ =
(ub − uf )

2 + (vb − vf )
2√

u2
b + v2b ·

√
u2
f + v2f

(2)

III. RESULTS

For calculating the accuracy of the retrieved ice drift, data
of buoys or drift stations are rarely available, and they provide
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only very few paths of motion for a given region. In most cases,
one needs to determine spatially dense reference drift fields
by visually tracking ice structures that can be identified in
both images [9]. We did this to assess the performance of our
algorithm. We found systematic errors (mean error) between
-100 and 240 m/d, and random errors (standard deviations)
between 13 and 430 m/d (Table II).

The reference drift velocities have magnitudes on the order
of 9-30 km per day. For the automatically retrieved drift
velocities, this translates to relative mean errors below 2% and
standard deviations below 8%. An exception is the image pair
from February 18/19. For this pair, a relative mean error of
11% and a standard deviation of 21% were determined. If

TABLE II
DRIFT FIELD STATISTICS FOR DIFFERENT SATELLITE IMAGE PAIRS FROM

COMPARISON OF AUTOMATICALLY RETRIEVED AND REFERENCE DATA.
ALL UNITS ARE (M/D).

Date
18./19.02.

2008
19./20.02.

2008
22./23.02.

2008
30./31.05.

2008

31.05./
01.06.
2008

Zonal mean
error 96 -135 3 26 25

Zonal
standard
deviation 314 367 139 242 223

Zonal mean
velocity 8925 6225 1575 6750 -7800

Meridional
mean error 215 311 -27 -96 -162

Meridional
standard
deviation 597 530 159 228 371

Meridional
mean velocity -2025 23494 24675 28875 12750

we take into account that the spatial resolution of the images
is 150×150 m, the mean errors correspond to displacements
smaller than 2 pixels. For the standard deviations, we found
corresponding displacements of ±0-3 pixels. The calculated
error values are affected by the quality of the automatic
drift retrieval and by the quality of the respective manually
measured reference data. We estimate the uncertainty in the
visual determination of the reference displacement field to
be on the order of ±1-2 pixels (±150-300 m/d). Figure 3
shows the zonal and meridional components of the drift field
for the forward (+) and backward (⋄) run during the back-
matching, compared to the respective vector components of
the corresponding reference for the image pair 22./23.2.2008.
The mean errors for x- and y-components are 0.003 and -
0.027 km/d, the corresponding standard deviations 0.139 and
0.159 km/d, respectively. These numbers are valid in forward
direction. In backward direction, we obtained -0.486 and -
0.002 km/d for the mean error, and 0.542 and 0.408 km/d
for the standard deviation, respectively. Since both images
were acquired with a time difference of 23.5 hours, it is
straightforward to convert the velocity components given in
the figure to displacements. Both runs of the backmatching
agree well with the reference data in most cases. Larger

deviations indicate that the algorithm did not succeed in
finding corresponding ice structure, but in a few cases it was
also difficult to identify matches visually. Nevertheless we kept
those cases in the reference data since they represent situations
in which the retrieval algorithm works less well because of the
lack of clearly defined ice structures. In the interpretation of
Figure 3 one has also to consider that the positions of the
grid points used for the drift retrieval differ between the runs
image 1 → image 2 and image 2 → image 1. For a direct
comparison of the two results, the drift field of the second run
is interpolated onto the grid of the first run.

Depicted in Figure 4 is an example of an automatically
retrieved drift field together with reference vectors plotted
on image 1 of the pair (22./23.2.2008) for visual reference.
The output of the drift algorithm is represented by red arrows,
and the manually collected reference vectors by yellow arrows.
Both drift fields agree quite well. Figure 5 shows the respective
relative backmatching difference ∥∆v⃗∥ based on a forward
and backward run of the algorithm. One can clearly identify
regions in which the drift fields of image pairs 1-2 and 2-
1 compare well, and regions where the search in pair 2-
1 provides completely different results. Figure 6 shows the
corresponding CFA. It takes high values on the ice shelf and
at the margins of the image. Due to this increased number of
mean threshold violations compared to the central part of the
scene, these areas are potentially less reliable than areas with
a low CFA value.

We find a strong consistency between Figure 5 and Figure
6 except for the area of the polynia. Here, the CFA reveals
only a weak contrast relative to the adjacent pack ice, whereas
the contrast of the normalized backmatching difference is
significant. The ice cover in a polynia often reveals identifiable
structures that have a strong impact on the CFA. However, ice
conditions may change fast, dependent on wind conditions,
and hence the algorithm might fail due to a lack of pattern
matches even if the texture features of each separate input
image are promising for a reliable match.

It is now necessary to define a threshold for the back-
matching as well as for the CFA to separate regions where
the algorithm works reliably from regions where it might
fail. To this end, we analysed 2D histograms which relate
the backmatching distances to the CFA for each image pair.
An example of such a histogram is shown in Figure 7. This
example is typical for all cases we analysed.

The histogram shows three main clusters which we can
use to identify reliability thresholds. The CFA represents the
mean number of threshold violations for the individual texture
parameters over the entire CRP scheme and hence is a measure
for the mean reliability of each drift vector. Based on a detailed
analysis of the histograms for our time series, we define a
vector to be reliable if the CFA value is less than 2. This
corresponds to less than 33% threshold violations of all texture
and correlation parameters included in the CFA over the entire
CRP scheme. If the CFA value for a drift vector exceeds 2 we
regard the corresponding drift vector as potentially unreliable.
This threshold is supported by the observation that most of the
manually collected reference vectors, acquired in regions with
a sufficient amount of texture, can generally be linked to CFA



Post print version 

10.1109/JSTARS.2014.2340572 

(c) IEEE, 2015

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. XX, XXXX 6

-5 0 5 10 15
reference x velocity component (km/day)

-5

0

5

10

15
ca

lc
ul

at
ed

 x
 v

el
oc

ity
 c

om
po

ne
nt

 (
km

/d
ay

)

(a) zonal component

-20 -15 -10 -5 0 5
reference y velocity component (km/day)

-20

-15

-10

-5

0

5

ca
lc

ul
at

ed
 y

 v
el

oc
ity

 c
om

po
ne

nt
 (

km
/d

ay
)

(b) meridional component

Fig. 3. Forward and backward calculation of the displacement field vs. manually measured displacements as reference for Image pair 22./23.2.2008 with +
representing the velocity component calculated in forward direction and ⋄ representing the velocity component calculated in backward direction

 

Fig. 4. Envisat WS SAR image taken on the 22.02.2008. The red arrows
show the output of the sea ice drift algorithm, the yellow arrows are reference
drift vectors. The approximate area of the polynia is indicated in Fig. 1.

values below 2. In the case of the normalised backmatching
distance we chose a value of 3. The analysed image pairs
are very suitable for this kind of analysis since they contain a
number of characteristic patterns: the ice shelf with only small
amount of texture, the polynia with a high amount of texture
but low pattern stability and the pack ice region with many
relatively stable textural features.

The chosen thresholds subdivide the histogram into four
sectors:

1) CFA values lower than 2 and backmatching differences
below 3 indicate that the region contains a distinct image
texture that is sufficiently stable for reliable pattern
matching. One example for such a region is pack ice,
which usually appears highly structured in SAR images.

2) low CFA scores of less than 2 and large backmatching
differences of more than 3 are linked with areas which
reveal a sufficient texture for correlation but where the
algorithm fails because of pattern instability or pattern

 

0.00 1.50 3.00 4.50 6.00

Fig. 5. Normalized backmatching difference according to Eq. 2. The
approximate area of the polynia is indicated in Fig. 1.

loss at image borders. One example for such conditions
is thin ice located in a polynia, which is easily deformed
and therefore reveals fast-changing ice structures.

3) higher CFA values ( > 2) and large backmatching
differences indicate the lack of texture combined with
a relatively high backmatching difference. This cluster
occurs mainly on the ice shelf and at the edges of the
overlap area between the two images where the ice drifts
into or out of the scene.

4) For CFA-values larger than 2 and backmatching differ-
ences below 3 we did not find a distinct cluster in the
histogram depicted in Figure 7. However, the margins
of clusters 1 and 3 extend into this zone. This class is
mainly found at the edges where the ice drifts into or
out of the overlap area, but also in the pack ice and and
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Fig. 6. Confidence factor CFA for the result shown in Figure 4. Larger values
of the CFA indicate that drift vectors are less reliable. The approximate area
of the polynia is indicated in Fig. 1.
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Fig. 7. 2D histogram showing the number of samples for the CFA values
plotted over the corresponding normalised backmatching distances for image
pair 22./23.2.2013.

on the ice shelf.
To study whether these four zones correspond to certain

regions in the image, we employed the thresholds for the
normalised backmatching distance and CFA indicated in Fig-
ure 7 and mapped them to the corresponding vector position
in the SAR image. The result of this approach is visualised
in Figure 8. It reveals that three main regions in the image
pair correspond to one of the three local maxima and their
neighbourhood that can be recognized in Figure 7. Those
regions are the pack ice (1: orange), the polynia (2: white)
and the ice shelf (3: violet). The fourth group (blue) is linked
with a low amount of texture but a small relative backmatching
distance. Visual analysis shows that the dark blue (cluster 4)
patch in the middle of the orange area (cluster 1) in Figure 8,
highlighted by a red circle, is related to a large homogeneous

1

2

3

4

Fig. 8. Map of regions with similar reliability for image pair 22./23.02.2008
based on the separation indicated in Fig. 6 and outlined in the text: • cluster
1 ◦ cluster 2 • cluster 3 • cluster 4

ice floe. Since it drifts together with the surrounding sea
ice, it is consistent in the forward and backward run of the
backmatching. This is a consequence of the cascaded pyramid
approach: the coarse resolution drift constraints the drift at
higher resolution. The CFA suggests low reliability for this
floe since it reveals no suitable pattern for tracking. At the
borders of the image overlap, where patterns enter or leave
the overlapping area, we find a mixture of the four different
classes due to the lack of actual correspondence in this area.

How can ’reliability’ now be linked to accuracy? In our
example, areas with normalized backmatching differences
smaller than 3 (Figure 5) correspond to the pack ice area
which dominates the calculation of the drift field accuracy
(in Figure 4 the zone covered by the arrows). Hence in this
case ’reliable’ means that the expected uncertainty is between
±0.14 and ±0.54 km/d (corresponding to the standard devi-
ation obtained in the sequential and reversed run of the drift
retrieval algorithm). Except the bight-shaped area of large
backmatching differences in the polynia (Figure 5), this is
valid for a CFA < 2.0 (Figure 6). If computation time needs
to be as short as possible, the CFA can be used as stand-alone
without additional backmatching runs. In this case, however,
it is difficult to separate strongly textured but unstable sea ice
regions such as polynias or the transition from pack ice to the
open ocean from stable structures, since such areas might be
classified as weakly reliable (compare Figure 6 and Figure 5).

IV. DISCUSSION

The assessment of the retrieved drift fields as compared to
manually retrieved drift vectors shows the good performance
of the drift algorithm, also for difficult regions like polynias,
where existing patterns change extremely fast. It has to be
kept in mind, however, that reference vectors can be deter-
mined visually only in image regions with well-recognisable
structures. The calculated error values listed in Table II are
therefore based mainly on those regions where one expects a
good performance of the algorithm anyway. Hence one can
expect that the overall error over the entire image is larger.
Nevertheless, the visually determined reference data are very
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useful to prove the applicability of the presented methods. We
found that the cross-correlation value itself is not sufficient
to judge the reliability of a drift vector (see Fig. 2). One
reason is that the result is affected by filtering and interpolation
operations in the tracking algorithm. Another point to consider,
e. g., is the casual occurrence of mirror reflections (i. e. high
intensity peaks) which dominate the correlation (section II C).

The two methods for estimating ice drift reliability (back-
matching and CFA) introduced here are fundamentally differ-
ent but both are independent of external reference data. In
general the reliability check by backmatching is more robust
than with the CFA. An example are the already mentioned
potentially erroneous drift vectors in the polynia area which
are marked as reliable by the CFA-method. If the ice reveals
fast-changing visible structures, the drift retrieval scheme can
generate high “pseudo-”correlations between different areas.
Such structural changes of thin ice areas and the ice in
polynias may take place within hours. By taking into account
information about wind and ice conditions, polynias and thin
ice zones can be marked as unreliable, if the time interval
between image acquisition is too large. The drawback of the
backmatching technique is a significant increase in algorithm
runtime. In operational mapping of sea ice conditions the
temporal performance of the ice drift retrieval algorithm is
crucial. Hence the CFA, which can be determined “on the fly”
may be preferable to backmatching in some cases (section III).

In the study presented here, thresholds for the CFA were
derived using Envisat WS data. In additional tests, it was found
that they are valid for RADARSAT-2 imagery as well. Since
the choice of parameters that comprise the CFA is largely
independent of sensor characteristics, they are expected to
work also for the upcoming Sentinel-1 mission [22]. Note that
all these SAR missions are operated at C-band. We assume
that images acquired at another radar frequency (e. g. L-
band) require different thresholds, since the appearance of ice
structures varies between frequency bands.

Another major issue in this context is the noise level of
the image product used for the drift retrieval that might
influence some of the employed texture measures (at least
at the highest resolution level). The CFA suggested in this
work may therefore be extended by introducing additional
parameters to increase the contribution of similarity measures
to the CFA. One option could e.g. to take into account
some of the parameters suggested by [8], that characterize
the peaks calculated by phase correlation and assess their
appropriateness for a reliable pattern matching.

The major challenge of ice drift tracking algorithms is the
difficulty to provide uncertainty values for every retrieved
drift field. Alternatively to the methods for reliability checks
proposed here, it might be suitable to implement some bundle
adjustment techniques from the field of photogrammetry and
surveying or approaches described by [23] and [24] which deal
with the estimation of uncertainty in SSD (sum of squared
differences) based feature tracking and Estimation-Theoretic
frameworks for image flow computation. However, to adapt
such methods to the cascaded multi-resolution approach is a
challenging task.

V. CONCLUSION

In this paper we deal with the automated retrieval of sea
ice drift vectors from a pair of SAR images. We found
that it is possible to assess the reliability of the drift field
from the input image pair. Here, ’reliable’ means that the
accuracy remains within a certain interval. One possibility to
classify drift vectors as reliable is to run the retrieval using
the two images of the input pair in sequential and reversed
order (backmatching). This approach, however, doubles the
computation time. In this article, we propose a ’Confidence
Factor’ (CFA) for the a-priori analysis of SAR images in order
to test whether automatically retrieved drift vectors are reliable.
The CFA combines different measures, namely four texture
parameters and the correlation coefficient and its confidence
interval, into a single score which provides a quantitative
number for an assessment of the expected accuracy of the
derived drift field. The advantage is that the extra time needed
for computation is negligible. A disadvantage of the CFA
compared to the backmatching approach is that it may fail
to identify areas of fast changing ice conditions (e. g. in
polynias and thin ice areas) if the temporal gap between
image acquisitions is too large. In such cases, ice structures
often exist that are easily detected by the textural analysis.
Since those ice structure are temporally unstable, correlations
between them may be erroneous. Such areas can be masked
by using additional information (e. g. spatial distribution of
ice types, wind conditions). We provide thresholds both for
CFA and the normalized backmatching difference that separate
reliable and unreliable areas. These thresholds are valid for C-
band SAR images. Since, e. g. ice deformation structures can
be more easily identified at lower radar frequencies, and the
radar intensity contrast between old and young ice is larger at
higher frequencies, we expect that the thresholds depend on
the SAR system used for image acquisition.
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