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Abstract
In numerical weather prediction models, parameterisations are used as an alternative to spectral modelling.
One type of parameterisations are the so-called methods of moments. In the present study, two different
methods of moments, a presumed-number-density-function method with finite upper integration limit and
a quadrature method, are applied to a one-dimensional test case (‘rainshaft’) for drop sedimentation. The
results are compared with those of a reference spectral model. An error norm is introduced, which is based on
several characteristic properties of the drop ensemble relevant to the cloud microphysics context. This error
norm makes it possible to carry out a quantitative comparison between the two methods. It turns out that
the two moment methods presented constitute an improvement regarding two-moment presumed-number-
density-function methods from literature for a variety of initial conditions. However, they are excelled by
a traditional three-moment presumed-number-density-function method which requires less computational
effort. Comparisons of error scores and moment profiles reveal that error scores alone should not be taken for
a comparison of parameterisations, since moment profile characteristics can be lost in the integral value of
the error norm.

Keywords: cloud microphysics, sedimentation, moment methods, quadrature, gamma distribution, error
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1 Introduction
A key part of numerical weather forecast or climate
models are simulations of clouds and precipitation.
From a detailed physical point of view, clouds and pre-
cipitation can be considered as ensembles of liquid or
frozen water particles (hydrometeors), which can be
characterised by their size distribution functions (spec-
tra).

The spatio-temporal evolution of clouds and precipi-
tation is described in great detail by a balance equation
for the spectra (also called population balance equation
(PBE) in other disciplines), which includes the cloud mi-
crophysical processes sedimentation, condensation, col-
lection and phase change processes. In general, the spec-
tral balance equation has no analytical solution. A nu-
merical solution can be achieved by discretising the size
spectrum into a great number of bins and then solving
the balance equation for each of the bins. This so-called
spectral model, however, is too costly for a climate sim-
ulation or a timely weather forecast. The problem is
circumvented by the parameterisation of cloud micro-
physics, where only a few moments of the size distri-
bution are predicted (instead of the distribution itself).
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The balance equations for these moments (also called
moment transport equations (MTE)) follow by integra-
tion of the spectral balance equation. This method is fre-
quently called method of moments (MOM). In the bal-
ance equations for the moments (MTE), some terms can
only be expressed as functions of moments other than
the predicted ones. This means that the system of equa-
tions for prediction of the moments is not closed. Two
methods for the solution of the closure problem shall be
presented in the following.

In the application field of cloud microphysics, tradi-
tionally the presumed-number-density-function method
of moments (PMOM) is used. This method assumes that
the predicted moments are calculated from a distribu-
tion function that has a self-preserving form in a few
parameters. Then the moments can be given as a func-
tion of those parameters and vice versa, which allows
for the calculation of other moments and terms involv-
ing the distribution function. Usually, two moments of
the distribution function, particle number density and
mass content, are predicted (Murakami, 1990; Fer-
rier, 1994; Cohard and Pinty, 2000; Seifert and
Beheng, 2006). A standard two-moment (PMOM2)
scheme, however, overestimates the ratio of the mean
fall speeds of the two moments as compared to a spec-
tral model (Milbrandt and Yau, 2005). Consequently,
in a 1D sedimentation setup (as will be considered in
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this article), the mean mass of the ensemble can be much
larger than in the detailed spectral model and also much
larger than the cloud physical application would suggest.
In order to avoid this drawback, different kinds of mod-
ifications have been proposed, which alter the moments
or the parameters during the simulation (Cohard and
Pinty, 2000; Seifert and Beheng, 2006; Milbrandt
and Yau, 2005; Milbrandt and McTaggart-Cowan,
2010). Recently, in Ziemer and Wacker (2012), another
route has been taken: the PMOM2 scheme is used with-
out any modifications during the simulations, but the
moments are calculated over a finite range of particle
sizes (instead of taking a range of diameters from zero
to infinity). This also reduces the ratio of the mean fall
speeds.

Though PMOM is also used in engineering science
(Dems et al., 2012), in this discipline a different kind
of moment method is employed as well: the quadrature
method of moments (QMOM), see for example Upad-
hyay and Ezekoye (2006); Laurent et al. (2010);
Acher et al. (2013). In this method, the predicted mo-
ments are approximated with the help of a quadrature
formula, so they can be given as a function of abscis-
sas and weights. These parameters then can be used to
calculate all other terms in the MTE and the system of
balance equations for the moments is closed. This pa-
rameterisation has been used in a cloud physics context
for the first time by Mukhopadhyay et al. (2012).

In this article, the two MOMs proposed in Ziemer
and Wacker (2012) and Mukhopadhyay et al. (2012)
are used in a 1D sedimentation setup for raindrops
(called a ‘rainshaft’). The moments obtained with these
parameterisations are compared with the solution of
a spectral reference model. The performance of the
parameterisations of Ziemer and Wacker (2012) and
Mukhopadhyay et al. (2012) is quantitatively com-
pared with that of some other PMOMs from literature
(various two-moment and a three-moment scheme) by
using an error measure. The error measure is in prin-
ciple similar to that of Milbrandt and McTaggart–
Cowan (2010), but uses squared differences instead of
absolute ones (in order to emphasize large differences)
and concentrates on a few physically important parame-
ters rather than comparing moments in a wide range of
orders.

The one-dimensional setting provides an excellent
opportunity to study the sedimentation process in de-
tail. To facilitate the comparison of the different pa-
rameterisations, collection processes are omitted. This
is supported by a previous study with several PMOMs
(Ziemer, 2013), which showed that the performance of
the MOMs relative to each other as measured with a sim-
ilar error norm was not altered when including collec-
tion processes in the model. The restriction on ensem-
bles of raindrops is for convenience only. In principle,
the methods and analyses can also be transferred to other
hydrometeor types (snow, ice crystals, hail etc.).

This paper is organised as follows. Section 2 briefly
introduces the relevant equations, the MOMs by Ziemer

and Wacker (2012) and Mukhopadhyay et al. (2012),
and the error measure. Section 3 presents the results of
the 1D rainshaft experiment as profiles of the moments,
as the rain rate at ground, and as values of the error
measure. The discussion and the conclusions are given
in sections 4 and 5, respectively. In appendix A, the para-
meterisations taken from literature are presented, and
appendix B gives the numerical setup of the experiment.

2 Overview of the spectral method,
QMOM, and PMOM-Dmax

The time rate of change of an ensemble of raindrops can
be described by a population balance equation (PBE)
for the particle (i.e. rain drop) size number distribution
(PSD) fref (see for example Hu and Srivastava (1995)).
It is also called spectral balance equation. In the 1D pure
sedimentation context, the PBE reduces to

∂ fref(D,z, t)
∂ t

− ∂ [VT (D,z) fref(D,z, t)]
∂ z

= 0. (2.1)

Here D is the drop diameter, z the height, t the time
and VT the terminal fall velocity of the rain drop. The
minus sign in the equation is due to the vertical Carte-
sian unit vector which is pointing upwards. Several ap-
proaches for the terminal fall velocity can be found in lit-
erature. These include the classical power-law approach
of Kessler (1969)

VT (D,z) =VT (D) = α(D/Dv)
β (2.2)

with α = 1300cm s−1, β = 0.5, Dv = 1cm, as well as
exponential-type relations (Best, 1950; Rogers et al.,
1993; Ferrier, 1994; Kogan and Shapiro, 1996) and
the polynomial-approach of Beard (1976), which all
can be adjusted to different ambient conditions.

In general, for the numerical solution of the spectral
population balance equation, the diameter range is di-
vided into many intervals, for each of which the equa-
tion (2.1) is solved. Several hundreds of bins are of-
ten required to guarantee independence of discretisation.
Since equation (2.1) has to be solved at each grid point
of the computational domain, the computational costs
for this method (for example in numerical weather pre-
diction models) can be very high. Only in very special
cases, a cheap analytical solution is possible.

In order to circumvent this problem, another ap-
proach called method of moments (MOM) has been fa-
vored in applications. For this class of methods, instead
of considering the PSD itself, some of its first statistical
moments Mk (k being a non-negative number) are taken
into account. In this way, the evolution of the particle
population is represented approximately by the evolu-
tion of these moments. From a mathematical point of
view, one expects that the results of the MOM model
are closer to the solution of the spectral PBE (refer-
ence solution), the more moments are used. For prac-
ticality, a trade-off has to be made, so two moments (for
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PMOM, see e.g. Seifert and Beheng (2006)) or six
moments (for QMOM, see Marchisio et al. (2003)) are
normally used. The moments of lower order can be re-
lated to physical values, which justifies the interest in
this type of methods. For example, the zeroth moment
gives the number of drops per unit volume N (= M0),
the third one is proportional to the liquid water content L
(= ρwπM3/6, with ρw: bulk density of liquid water) and
the sixth one to the radar reflectivity Z (= M6) with the
scattering process described in Rayleigh-approximation.
Furthermore, other physical quantities can be calculated,
for example the liquid water flux R (mass flux of the liq-
uid water) or the mean drop mass x̄ = L/N.

The equations needed to predict the moments are
derived from the PBE (2.1) by multiplication with Dk

and integration over the entire diameter range [0,∞),
following the standard procedure to calculate a moment.
This yields

∂Mk(z, t)
∂ t

− ∂Fk(z, t)
∂ z

= 0, (2.3)

with

Mk(z, t) =
∫ ∞

0
Dk fref(D,z, t)dD, (2.4)

and

Fk(z, t) =
∫ ∞

0
VT (D)Dk fref(D,z, t)dD, (2.5)

the so-called moment flux. In the following, equa-
tion (2.3) will be solved for a number of moments in
parallel, so we will also speak of the system of equa-
tions (2.3).

With the velocity relation of Kessler (1969), the
moment flux can be expressed as a moment of order
k+β

Fk =
α

Dv
β Mk+β (z, t), (2.6)

and consequently equation (2.3) is given in terms of bulk
quantities only, with no direct dependence on the size
distribution.

In this context, the mass flux of liquid water is

R =
ρwπ

6
α

Dβ
v

M3+β (z, t). (2.7)

The equation for Fk, (2.6), shows that solving the
MTE for the k-th moment requires information about
the moment of order k + β , which we do not have at
hand a priori: thus a closure problem exists. The issue is
likewise important when additional processes are con-
sidered, so that other terms, consisting of moments of
different order, have to be integrated into the MTE. To
resolve the closure problem, the other moments (diag-
nostic moments) have to be calculated from the set of
moments for which we solve the MTE (prognostic mo-
ments). This can only be done by introducing extra mod-

elling assumptions. In the next sections, we will present
two approaches to close the system of equations (2.3).

2.1 QMOM

The first closure approach presented is the so-called
Quadrature Method of Moments (QMOM). As intro-
duced by McGraw (1997), it is based on the Nq-point
Gaussian quadrature (Nq being an integer), which allows
for approximating the integral of a function ϕ weighted
with a function g by a weighted sum of evaluations of
this function ϕ at given discrete points ξi:

∫ ∞

0
ϕ(D)g(D)dD �

Nq

∑
i=1

ϕ(ξi)wi. (2.8)

ξi are the so-called abscissas, whereas wi are the
weights. This quadrature is exact for polynomial func-
tions of degree 2Nq −1 or less. Applying the quadrature
to the moments given in (2.4) – that is, the weighting
function g is the PSD fref, while ϕ(D) is Dk – we can
thus write:

Mk =
Nq

∑
i=1

ξi
kwi. (2.9)

Note that with the velocity approach of Kessler (1969),
eq. (2.2), the moment flux can now be expressed as:

Fk =
α

Dv
β

Nq

∑
i=1

ξi
k+β wi. (2.10)

In order to find the abscissas and the weights from these
moments, several techniques exist. The most common
one is the so-called Product Difference Algorithm (Gor-
don, 1968). This algorithm builds a symmetric matrix
whose eigenvalues are the abscissas. The weights can be
found by taking the first component of each of the eigen-
vectors. Having the abscissas and weights, one is able to
reconstruct all diagnostic terms and consequently close
the system of equations (2.3). It can be shown (Marchi-
sio et al., 2003) that choosing Nq = 3 offers a good com-
promise between number of moments transported and
accuracy, so six moments (from M0 to M5) will be trans-
ported using equations (2.3).

2.2 PMOM-Dmax

The second closure approach presented here is the
PMOM parameterisation. In this case, it is assumed that
the moments are calculated from a distribution function
in a fixed analytical form with a few parameters. In the
following, we will call this assumed distribution f . Dif-
ferent PMOMs can be distinguished by their choice of
different f s. The number of free parameters must be
equal to the number of prognostic moments, because
only then the moments and parameters can be uniquely



414 C. Ziemer et al.: Comparison of PMOM and QMOM for drop sedimentation Meteorol. Z., 23, 2014

calculated from each other. In cloud microphysics, the
gamma distribution

f (D) = n0Dμe−λD (2.11)

is widely used (Seifert and Beheng, 2006; Wacker
and Lüpkes, 2009; Milbrandt and McTaggart–
Cowan, 2010, among others). The parameters of the
distribution function are n0, μ , and λ – standing for the
intercept, the shape, and the slope of the distribution,
respectively. One-Moment (PMOM1) to three-moment
(PMOM3) schemes are therefore possible. In the fol-
lowing, we will be interested in two-moment methods
(PMOM2). There, one of the three parameters in (2.11)
has to be prescribed. Often, the prescribed parameter is
μ (Seifert and Beheng, 2006; Wacker and Lüpkes,
2009; Milbrandt and Yau, 2005, for example). From
an observational point of view, Marshall and Palmer
(1948) found that an inverse exponential function de-
scribes well the average rain drop number density dis-
tribution of a rain event. This can be formulated by set-
ting μ to zero. In this form, (2.11) is one of the most
frequently used distribution functions.

Having a look at the definition of moments, (2.4),
we see that also drops of infinite diameter are taken
into account for the calculation of the moments. Only
by doing so, simple expressions for the moments fol-
low. However, to be more realistic, in the parameteri-
sation introduced by Ziemer and Wacker (2012), the
integration domain is restricted from [0,∞) to [0,Dmax].
If one chooses the maximum drop diameter Dmax below
1 cm, then the moments are calculated over a physically
reasonable range of diameters (see for example Prup-
pacher and Klett, 1997). This parameterisation also
uses μ = 0. The resulting PMOM2 scheme will be called
PMOM2-Dmax for short.

In PMOM2-Dmax, a moment of k-th order of the
distribution function f is defined as

Mk =

∫ Dmax

0
n0Dke−λDdD. (2.12)

For an analytical expression of Mk in terms of the pa-
rameters, we have to distinguish the cases of λ > 0 and
λ < 0. Moreover, in the first case the parameters of the
distribution function can be obtained by straightforward
analytical inversion, while in the second case, the pa-
rameters can only be obtained iteratively (see Ziemer
and Wacker (2012) for details and the exact formulae).

For the prediction of number density N and liquid
water content L with sedimentation as the only process,
the equations are

∂tN −∂zF0 = 0, (2.13a)

∂tL− ρwπ
6

∂zF3 = 0, (2.13b)

where F0 and F3 are the sedimentation fluxes of the ze-
roth and third moment, respectively. Using the velocity

approach of Kessler (1969), equation (2.2), the sedi-
mentation flux of the k-th moment (k = 0, 3) is

Fk(M0,M3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α γ(D,k+1+β )
(

M0

γ(D,1)

) 3−k−β
3

·
(

M3

γ(D,4)

) k+β
3

, λ > 0,

α n0 e−D
∞

∑
n=0

(−1)n
(

k+β
n

)
Dk+β+n

max

·γ(−D,n+1)
(−λ )n+1 , λ < 0,

(2.14)

where D = λDmax and γ is the incomplete gamma func-
tion

γ(y,a) =
y∫

0

ta−1e−tdt, y > 0, a >−1. (2.15)

The parameters n0 and λ needed for the calculation of
the fluxes are obtained by inversion of equation (2.12)
for k = 0 and k = 3 simultaneously.

2.3 Error quantification

To assess the performance of a MOM scheme, usually
the output of a spectral model is taken as a reference.
In our case, we use equation (2.1) as a reference model,
with 0<D≤ 0.75cm and VT following Kessler (1969),
eq. (2.2). From its solution, we can calculate the mo-
ments via numerical integration. We will now say that
the PMOM and QMOM schemes perform well if their
results (i.e. the moments calculated from equations (2.3)
or (2.13)) are close to the moments from the reference
model. This goodness can either be assessed by inspec-
tion of the vertical profiles of the moments or by intro-
ducing an error norm, as it is done here.

We define the total error norm as a weighted mean of
the errors (deviations of the results) of a few ensemble
quantities. For the error contributions, first the squared
relative differences are summed up over all grid points,
then the temporal mean of their root is taken:

EM =
1

N kmax

N
∑
n=1

(
kmax

∑
k=1

(
MMOM(tn,zk)−Mref(tn,zk)

max(Mref(t1, ·))

)2
)1/2

,

(2.16)
where N = 21 is the total number of output times
tn = (n− 1)× 37.5s, the z1, . . . ,zkmax are the heights of
the vertical grid points (see appendix B) and MMOM
and Mref are the values of quantity M, with M ∈
{N, L, R, Z, x̄}, from the PMOM/QMOM or the refer-
ence model, respectively. The difference of MMOM and
Mref is normalised by the maximum value of Mref at
initial time. The weighted mean of the contributions is
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calculated as

E =
∑MWMEM

∑MWM

=
EN +EL +ER+0.01EZ +0.0001Ex̄

3.0101
.

(2.17)

The weights WM have been chosen such that each con-
tribution has roughly the same magnitude.

3 Results in a 1D rainshaft model

We will now present results of QMOM and PMOM2-
Dmax in a 1D sedimentation experiment. First, in sec-
tion 3.1, we will shortly describe the moments and re-
lated quantities themselves (a more detailed description
can be found in the respective publications, Ziemer and
Wacker (2012) and Mukhopadhyay et al. (2012)). Af-
terwards, in section 3.2, we will quantify their error with
respect to the reference solution by means of the er-
ror norm as defined in equations (2.16) and (2.17). Fur-
thermore, we will compare the error of PMOM2-Dmax
and QMOM to that of popular parameterisations as pre-
sented in Wacker and Lüpkes (2009); Milbrandt and
Yau (2005) or Milbrandt and McTaggart-Cowan
(2010). A compilation of these parameterisations can be
found in appendix A.

3.1 Moment profiles and rain rates

The test configuration is given by a 1D sedimenta-
tion setup, which is described in detail in Appendix B.
Starting conditions are a homogeneous cloud (as in
Wacker and Seifert (2001); Wacker and Lüpkes
(2009); Milbrandt and Yau (2005); Milbrandt and
McTaggart-Cowan (2010)), confined between the
heights 8250 m and 9750 m. Outside this range, the at-
mosphere is assumed free of drops. The bulk values in-
side the cloud correspond to a rain drop number den-
sity Ninit = 3× 10−3 cm−3 and a water content Linit =
5×10−7 g cm−3.

In Fig. 1, we present the spatio-temporal evolution of
the vertical profiles of four quantities of interest, namely
the number density N, the liquid water content L, the
radar reflectivity Z and the mean drop mass x̄. Their
vertical profiles are given for starting conditions, af-
ter 300 s and after 600 s (distinguished by different line
styles) with their values indicated on the x-axis. The
comparisons are done: in the left column for PMOM2-
Dmax with a maximum diameter of 0.25 cm and the so-
lution from the spectral reference model, in the middle
column for QMOM and the reference solution and in
the right column without the reference solution but for
same PMOM2-Dmax and QMOM. Dmax = 0.25cm has
been chosen for PMOM2-Dmax because this value gives
the lowest error E for these initial conditions (see sec-
tion 3.2).

We see that the results of both MOMs agree reason-
ably well with the reference solution, in particular for the

transported moments (N and L). The global behaviour is
well captured and the results of both MOMs are compa-
rable. Still, some discrepancies can be seen for Z and x̄,
since they are not predicted in the model, but calculated
from the results. The radar reflectivity Z is proportional
to the sixth moment, and has to be calculated (diag-
nosed) from the prognostic moments. With PMOM2-
Dmax, the initial value of Z is only about half the one
from the spectral model. This underestimation is coun-
teracted by the increase of the moment signal beyond the
initial value, something which only occurs in diagnosed
moments (a systematic survey of this effect was done
in Wacker and Lüpkes (2009)). With QMOM, the ini-
tial value is well met and no increase beyond the initial
value occurs. The mean mass from the PMOM2-Dmax
and the QMOM model is too small by about a factor
ten. This may seem as a disadvantage of the new meth-
ods, but in relation to the mean mass from traditional
PMOM2 methods like PMOM2-μ-0 and PMOM2-μ-3
(defined in appendix A), which overestimate mean mass
by a factor of 100 and more (Wacker and Lüpkes, 2009,
and others; Milbrandt and Yau, 2005, and others), this
is an improvement. The QMOM results show the forma-
tion of some ‘step’ patterns, which amplify as time goes
on. These patterns are inherent in the transport of the
moments with QMOM and are specifically discussed in
Jasor et al. (2014).

Figure 2 presents the evolution of the rain rate RRzref

(liquid water flux R at a given height zref) at three alti-
tudes (zref = 4500 m, 5750 m, 7000 m) as a function of
model time. These altitudes correspond to physically re-
alistic rain drop fall distances of 3750 m, 2500 m, and
1250 m,respectively. Similarly to the previous figure,
PMOM2-Dmax and QMOM are compared to the refer-
ence solution.

The transit of the drop population through a given
height zref is reflected in the increase and subsequent de-
crease of RRzref . The starting times of the rain event are
met accurately with QMOM. In PMOM2-Dmax, how-
ever, there exists a delay in starting time which increases
with increasing distance of fall (decreasing zref). With
respect to the agreement with the reference solution
from the spectral model, we find that the rain rate is
met better if the sedimentation time is shorter (i.e. zref
is higher). For longer sedimentation times, the rain rate
computed with PMOM2-Dmax shows maximum values
which are 20–50 % too high relative to the reference so-
lution (error increasing with distance of fall). Due to
conservation of mass, this leads to a shorter rain event
at zref for PMOM2-Dmax than for the reference solu-
tion. This seems to be a general problem with PMOM2-
schemes and not specific to PMOM2-Dmax, see for ex-
ample Shipway and Hill (2012). The rain rate com-
puted with QMOM shows a bimodal form, which gets
more pronounced for a longer sedimentation time and
leads to a reduced agreement with the reference solu-
tion. This bimodal form can be traced back to the step
pattern exhibited by the prognostic moments.
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Figure 1: Vertical profiles of different moments N, L, Z and of mean mass x̄ (rows from top to bottom) for PMOM2-Dmax and QMOM, at
simulation times 0, 300, 600 s (indicated by line types). In blue: PMOM2-Dmax. In green: QMOM. In black: spectral reference.

3.2 Parameterisation error

Figure 3 shows the total error E of different param-
eterisations as compared to the reference model and
the individual contributions EN , EL, ER, EZ , and Ex̄

(see section 2.3). The different parameterisations are
the already presented PMOM2-Dmax, QMOM, and those
adapted from literature: PMOM2-μ-0 and PMOM2-
μ-3 (Wacker and Lüpkes, 2009, for example) and
PMOM2-μ-diag (Milbrandt and Yau, 2005). Ad-
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Figure 2: Rain rate RRzref as a function of time at specific altitudes (zref) in comparison with the solution of spectral reference model (black).
Left: PMOM2-Dmax (blue). Right: QMOM (green). Different line types indicate the different altitudes zref where the rain rate was recorded.

ditionally, PMOM3-N,L,Z (Milbrandt and McTag-
gart-Cowan, 2010) is used to examine the influence of
the number of prognostic moments in PMOM schemes.
All parameterisations use the gamma distribution (2.11)
with different μ . They are compiled in appendix A. For
comparison, a display of the moments’ profiles similar
to Fig. 1 can be found in Fig. 4.

In the Fig. 3, the errors of the individual MOMs are
given in different colours and positions on the x-axis. To
study the impact of Dmax on the results of PMOM-Dmax,
runs are made for a range of values (0.125, 0.1875, 0.25,
0.3125, 0.375, 0.5, 0.625, 0.75, 0.875, and 1.0 cm). Se-
lected corresponding profiles can be seen in Ziemer and
Wacker (2012). The errors for the PMOM2-Dmax with
different maximum drop diameter can be distinguished
by their position relative to the scale on the x-axis,
which indicates the corresponding Dmax. The dark blue
symbols indicate the results of PMOM-Dmaxopt (that is
the PMOM2-Dmax-parameterisation with the Dmax that
gives the smallest total error E).

We do not only show error results from the model
run presented in section 3.1 (which is characterised by
initial conditions of Ninit = 3 × 10−3 cm−3 and Linit =
5 × 10−7 g cm−3), but also for four other runs where
the initial number density is changed (multiplied with
factors 0.25, 0.5, 2, 4) while the liquid water content
is kept constant. These cases are termed IC0.25, IC0.5,
IC2, and IC4, the case from section 3.1 is termed IC1
(see Table 1). The mean mass of the drop ensemble
in the initial state is thereby varied over a wide range.
In the figure, the error scores from runs with different
initial mean mass are distinguished by different symbol
types (see caption). For example, the errors for the IC1
run from section 3.1 are indicated by a large bullet in
different colours depending on the parameterisation.

We first present each of the error contributions be-
fore turning to the total error. The error EN is highest

for the PMOMs with a high shape parameter, i.e. a nar-
row assumed spectrum, as in the case of PMOM2-μ-3
and PMOM2-μ-diag. EN is lowest for PMOM3-N,L,Z
and QMOM. With PMOM2-Dmax, the errors are nearly
independent of Dmax, because the vertical profiles of
the moments are almost identical (see also Ziemer and
Wacker (2012)). Only for high x̄init (symbols ◦ and ∗)
and a low Dmax of 0.125 and 0.1875 cm, the profiles be-
come different and the error changes significantly. For L,
the ranking of the parameterisations is the same as for
N, but the error of QMOM and PMOM3-N,L,Z is much
lower in relation to the others. The error for the rain rate,
ER, is quite similar to that of L, because L and R only
differ by half a moment order. The ER for PMOM2-μ-0
and PMOM2-Dmax is higher than EL.

The radar reflectivity Z is the diagnostic moment
with the highest order which is considered here. The
errors of the individual parameterisations differ by sev-
eral orders of magnitude and are much higher than those
for the lower order (prognostic and diagnostic) mo-
ments. PMOM2-μ-0 has the highest error. The error of
PMOM2-Dmax has a large spread due to the many dif-
ferent Dmax which are used. The errors of the other pa-
rameterisations lie in this range. The situation is similar
for Ex̄, although the mean mass is a derived quantity and
not proportional to a moment of the distribution func-
tion. Only the error spread is larger for x̄ than for Z and
the errors are higher by a factor of 100.

We can see by means of the error (and also in the
results presented by Ziemer and Wacker (2012)), that
for Dmax going to infinity the results of PMOM2-Dmax
approach those of PMOM2-μ-0, so the concept of trun-
cating the integration domain in PMOM2-Dmax is con-
sistent with PMOM2-μ-0.

The ranking of parameterisations in the total er-
ror E is: PMOM3-N,L,Z, QMOM, PMOM2-Dmaxopt,
PMOM2-μ-3, PMOM2-μ-diag, and PMOM2-μ-0 (from
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Figure 4: As Fig. 1, but for the MOMs taken from literature. In red: PMOM2-μ-0. In gray: PMOM2-μ-3. In yellow: PMOM2-μ-diag.
In pink: PMOM3-N,L,Z (from left to right). In black: spectral reference. For Z and x̄ from PMOM2-μ-0 and PMOM2-μ-3, the maximum
values exceed the maximum values of the abscissa by several orders of magnitude, cf. Wacker and Lüpkes (2009).
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Table 1: Different initial conditions ICaN (aN = 0.25,0.5,1,2,4) used in section 3.2. The initial conditions used in section 3.1 correspond
to IC1.

IC4 IC2 IC1 IC0.5 IC0.25

Ninit [cm−3] 1.2×10−2 6×10−3 3×10−3 1.5×10−3 7.5×10−4

Linit [g cm−3] 5×10−7 5×10−7 5×10−7 5×10−7 5×10−7

x̄init [g] 4.1667×10−5 8.3333×10−5 1.6667×10−4 3.3333×10−4 6.6667×10−4

aN = Ninit/(3×10−3) 4 2 1 0.5 0.25

Table 2: Total Error E, see equation (2.17), for different initial conditions, see Table 1, corresponding to Fig. 3.

Parameterisation IC4 IC2 IC1 IC0.5 IC0.25

PMOM3-N,L,Z 2.190×10−3 2.265×10−3 2.223×10−3 2.249×10−3 2.315×10−3

QMOM 2.708×10−3 2.856×10−3 2.870×10−3 2.968×10−3 3.217×10−3

PMOM2-Dmaxopt 3.700×10−3 3.702×10−3 3.773×10−3 3.593×10−3 3.700×10−3

PMOM2-μ-diag 6.824×10−3 7.354×10−3 7.768×10−3 8.262×10−3 8.888×10−3

PMOM2-μ-3 1.423×10−1 1.006×10−1 7.127×10−2 5.087×10−2 3.640×10−2

PMOM2-μ-0 9.481×100 5.457×100 3.116×100 1.773×100 1.007×100

lowest to highest) – so the new parameterisations are
only outperformed by PMOM3-N,L,Z. The maximum
drop diameter Dmax which gives the lowest error in
PMOM2-Dmax (i.e. the one which defines PMOM2-
Dmaxopt) increases with x̄init (0.125, 0.1875, 0.25, 0.25,
0.3125 cm). The values of the total errors are given in
Table 2.

Note that it is also possible to calculate the er-
ror norm over parts of the simulation time or model
area (this can be achieved by adjusting the summations
over n and k in equation (2.16)). Additional calcula-
tions have shown that the ranking of the parameterisa-
tions is not altered when using height ranges of 5–10 km
and 7.5–10 km, or a time span of 0–375 s, respectively.
When prolonging the time span, however, the moment
signal from QMOM becomes bimodal (see also Fig. 2
and Jasor et al. (2014)) and the error of QMOM is ex-
pected to increase considerably.

4 Discussion

For any comparison of QMOM and PMOM schemes,
we have to bear in mind that they are based on differ-
ent concepts. While the PMOM schemes model the pre-
dicted moments via a spectrum covering the whole di-
ameter range, QMOM schemes use only a few points
in the same range (the abscissas). In the special case of
pure sedimentation and up to a time span of approxi-
mately twelve minutes, the modelling technique gives
an advantage to QMOM, since in the solution of the
spectral reference model, the drop distribution at a given
height only consists of drops from a part of the initial
spectrum (Wacker and Seifert, 2001). This cannot be
represented by PMOMs. We have seen, however, that the
results of QMOM show step patterns, which deteriorate
the solution in the course of the simulation time. They
can be traced back to the low number of abscissas, cf.
Jasor et al. (2014).

We will now compare the PMOM2 schemes. The
errors for N, L and RR are of similar order of magni-
tude for all PMOM2 schemes, with best performance of
PMOM2-Dmaxopt. Matters are different for the diagnos-
tic moment Z. It is striking that PMOM2-μ-0 has a very
high EZ , while this error is lower by several orders of
magnitude for parameterisations with a high shape pa-
rameter (PMOM2-μ-3 and PMOM2-μ-diag). The rep-
resentation of the diagnostic moments is controlled not
only by the prognostic moments N and L, but also by the
shape parameter μ (which determines the calculation of
the diagnostic moments from the prognostic ones). As-
suming that the same N and L are given, the slope pa-
rameter λ is smaller for PMOM2-μ-0 than for PMOM2-
μ-3 or PMOM2-μ-diag. A shape parameter μ = 0 and
a small λ mean a weak exponential decay of the dis-
tribution function. In this case, for the calculation of
Z (= M6) the few drops of large diameter give a large
contribution. Especially because in these parameterisa-
tions Dmax = ∞, these drops may be of diameters greater
than 0.75 cm and hence do not occur in the calculation
of moments in the spectral reference model (see the be-
ginning of section 2.3). This results in a diagnosed re-
flectivity which is much higher than the reference value
of Z. In a parameterisation with a higher μ , the spectrum
is narrower and the resulting λ is accordingly higher, so
that the exponential decay of the distribution function is
stronger. The drop sizes giving a dominant contribution
to Z are smaller in this case and the reference solution is
reproduced better.

For PMOM2-Dmax, we see that for all error contri-
butions there exists a Dmax where the error is minimal
(for the total error, we referred to this Dmax as Dmaxopt).
With decreasing Dmax in the parameterisation, the error
of the results increases. This is due to cutting off the dis-
tribution function (when calculating the moments’ inte-
grals) at drop sizes that are still relevant for the reference
solution from the spectral model. This finding is sup-
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ported by the fact that the increase in error for Dmax go-
ing to zero starts at larger Dmax (i.e. Dmaxopt increases),
when either x̄init or the prognostic moment order are in-
creased (so the maximum of the assumed spectrum is
shifted to larger drop sizes). For Dmax going to infin-
ity, on the other hand, we see that the individual errors
approach that of PMOM2-μ-0. Together with the evo-
lution of the moments’ profiles with Dmax, as seen in
Ziemer and Wacker (2012), this proves the consistency
of PMOM2-Dmax with PMOM2-μ-0. Also in Ćurić and
Janc (2010), who calculate collection rates under the as-
sumption of a size spectrum bounded by a finite Dmax,
it is found that the change in results with Dmax is depen-
dent on both Dmax and x̄. Furthermore, the authors argue
that truncated spectra should be included into models
due to their greater physical relevance.

The Quadrature Method of Moments predicts six
moments simultaneously and so more information about
the ensemble is contained in the model. Hence, it is not
surprising that it has a lower error than the PMOMs
using two moments. Having a look at the error score
of PMOM3-N,L,Z, however, we see that a low error
similar to that of QMOM can also be achieved by a
PMOM model with just one moment more than the other
PMOMs (which is half of the number of moments used
in QMOM). Keeping in mind the unphysical ‘step pat-
tern’ exhibited by the QMOM profiles, it shows that one
has to be careful when preferring one type of parameteri-
sation over another (for example QMOM over PMOM2-
Dmax) just by looking at the error norm, since these inte-
gral values cannot account for characteristics of moment
profiles.

The computational effort needed in the implementa-
tion of the moment methods can be grouped into three
classes: number of budget equations to be solved simul-
taneously; calculation of the distribution parameters or
weights and abscissas, respectively, from the moments;
calculation of the sedimentation fluxes. PMOM2-Dmax
has only two budget equations, but a relatively high
effort for the distribution parameters (iterative calcula-
tion) and the fluxes (infinite sums, see equation (2.14)).
QMOM requires a high effort in the calculation of the
abscissas/weights due to the product difference algo-
rithm and the high number of budget equations, but only
moderate effort to calculate the fluxes. For the current
configuration of PMOM3-N,L,Z (prediction of N, L, Z),
the parameters can be obtained from an explicit formula
with low computational effort. Summing up, the com-
putational effort for the newly introduced QMOM and
PMOM2-Dmax is comparable and higher than for the
other tested PMOMs, but it certainly can be reduced by
an economical implementation. PMOM3-N,L,Z has the
lowest error with also a lower computational effort.

Milbrandt and McTaggart-Cowan (2010) like-
wise compare different PMOMs with an error norm.
Their norm, however, uses absolute differences, which
do not put as big a penalty on outliers as the squared dif-
ferences used in (2.16). Furthermore, they use a different
combination of moments and weights: the contributions

to the norm are M4 to M7 (single weight), M0 to M3 (dou-
ble weight) plus an extra weight for the prognostic mo-
ments. The authors compare PMOM3-N,L,Z, PMOM2-
μ-diag, PMOM2-μ-0 and PMOM2-μ-3 (among others),
and find that the ranking is PMOM3-N,L,Z, PMOM2-
μ-diag, PMOM2-μ-3, PMOM2-μ-0 (from lowest to
highest error). With our norm, however, PMOM2-μ-3
performs better than PMOM2-μ-diag. Milbrandt and
McTaggart-Cowan (2010) do not give the errors for
the individual contributions, but the the high value of
EZ for PMOM2-μ-diag found here, which is due to the
squared spatial differences penalising outliers, may con-
tribute to our different ranking.

5 Conclusions

In this article we have compared the performance of two
moment methods, PMOM2-Dmax (Ziemer and Wacker,
2012) and QMOM (Mukhopadhyay et al., 2012), in a
1D sedimentation test case, i.e. a rainshaft model. To
this end, an error norm was introduced, which measures
the deviation of the results obtained with the moment
methods from the results obtained with a detailed spec-
tral model. In contrast to the common approach based
on qualitative visual judgment, the error norm provides
a objective comparative tool to express the parameter-
isation performance quantitatively and allows to deter-
mine an optimal Dmax in PMOM2-Dmax. We see that the
two MOMs introduced in this work, PMOM2-Dmax and
QMOM, can model well the 1D sedimentation test cases
relevant for cloud physics applications, as they show
good agreement with reference results from a spectral
model. This is said in comparison with the results of
other moment methods (PMOM2-μ-0, PMOM2-μ-3,
PMOM2-μ-diag, PMOM3-N,L,Z).

When comparing the newly introduced moment
methods PMOM2-Dmax and QMOM according to the er-
ror norm, we find that PMOM2-Dmax with its truncated
drop size spectrum constitutes an improvement of tra-
ditional PMOMs with two prognostic moments. How-
ever, this improvement comes along with a considerable
computational effort. QMOM has a comparable com-
putational effort, but its results according to the error
norm appear better. QMOM is only excelled by a tra-
ditional PMOM3-N,L,Z scheme, which gives better re-
sults at lower computational costs.
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A Other parameterisations

This section compiles the parameterisations used in this
study that are taken from other sources. They all use
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Figure 5: Representation of the initial state (Ninit = 3 × 10−3 cm−3 and Linit = 5 × 10−7 g cm−3) in the different MOMs. Left: size
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the different units of the y-axes. For clarity, only the first part of the diameter range is shown. The distribution functions from PMOM2-μ-0,
PMOM2-Dmaxopt (0.3125 cm), PMOM2-Dmax (0.75 cm) and PMOM3-N,L,Z are identical within drawing accuracy.

the gamma distribution (2.11) and an integration range
of [0,∞), but differ in the shape parameter μ they are
using. The prognostic moments are N and L (PMOM2)
or N, L, and Z (PMOM3). For each parameterisation, we
will present the shape parameter and the sedimentation
flux (calculated with the velocity approach of Kessler
(1969) – for the values of α and β see equation (2.2)).
An overview of the representation of the initial state can
be seen in Fig. 5.

PMOM2-μ-0. This parameterisation as presented
in Wacker and Lüpkes (2009) can be considered as
PMOM2 in its most basic form.

μ = 0, (A.1a)

Fk = αn0
Γ(k+1+β )

λ k+1+β . (A.1b)

It is related to PMOM2-Dmax by there letting Dmax go to
infinity.

PMOM2-μ-3. This is a modification of PMOM2-
μ-0 using a higher shape parameter. This parameterisa-
tion can be found in Wacker and Lüpkes (2009).

μ = 3, (A.2a)

Fk = αn0
Γ(k+4+β )

λ k+4+β . (A.2b)

PMOM2-μ-diag. This parameterisation uses the shape
parameter as defined in Milbrandt and Yau (2005):

μdiag = 19tanh(6(M3/N)1/3 −0.18)+17, (A.3a)

Fk = αn0
Γ(k+μdiag +1+β )

λ k+μdiag+1+β . (A.3b)

For Ninit = 3× 10−3 cm−3 and Linit = 5× 10−7 g cm−3,
the corresponding μdiag is 5.8813.

PMOM3-N,L,Z. This parameterisation is presented
for example in Milbrandt and McTaggart-Cowan
(2010). The parameter μ can be obtained by analytical
inversion, since equation (A.4a) is a cubic polynomial
in μ :

NZ(μ +3)(μ +2)(μ +1) =

(μ +6)(μ +5) · (μ +4)

(
6

ρwπ
L

)2 , (A.4a)

Fk = αn0
Γ(k+μ +1+β )

λ k+μ+1+β . (A.4b)

B Numerical setup

The computational domain consists of a 1D represen-
tation of the atmosphere, for altitudes between 0 m and
10000 m. The height is uniformly discretized with grid-
points z1, . . . ,zkmax with kmax = 401, corresponding to a
Δz of 25 m.

For solving the transport equation (2.3), for QMOM
and PMOM3 a straightforward upwind Euler numeri-
cal scheme is used, while for the PMOM2s, the Mono-
tone Upwind-Centered Scheme for Conservation Laws
(MUSCL-Hancock, Toro (1999)) is chosen. The inte-
gration time step is 0.125 s. The reference solution of
the spectral model is calculated analytically, following
Wacker and Seifert (2001) or Milbrandt and Mc-
Taggart-Cowan (2010).

The boundary conditions are non-transmissive at the
top (as no further drops shall enter the domain), while
transmissive boundary conditions are used at the bottom
(meaning the population of drops passes ‘through’ the
ground).

The starting conditions are determined by describing
a spectrum according to the gamma distribution (2.11),
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with μ = 0, for the spectral reference model for
8250m ≤ z ≤ 9250m

fref(D,z,0) = n0e−λD (B.1a)

with n0 = 0.08 cm−4 and λ = 26.6134 cm−1 constant
over height (corresponding to the ‘widespread rain’ of
Waldvogel (1974), as cited in Pruppacher and Klett
(1997), their table 2.1). The initial values for the mo-
ments and fluxes are obtained by integration:

Mk(z,0) = n0
Γ(k+1)

λ k+1 (B.1b)

Fk(z,0) = n0
α

Dv
β

Γ(k+1+β )
λ k+1+β (B.1c)

These conditions are valid for the case IC1, whose re-
sults are depicted in section 3.1. To obtain the differ-
ent initial conditions ICaN (listed in Table 1), n0 has to

be multiplied with a4/3
N and λ has to be multiplied with

a1/3
N . For the points outside the cloud, a very small min-

imal value has to be chosen for the moments, otherwise
no closure method could be applied.

References

Acher, T., P. Dems, S. Lenz, C. Gobert, W. Polifke, 2013:
Validation of a quadrature method of moments for polydis-
perse flow in bubble columns including poly-celerity, breakup
and coalescence. – In: 8th Int. Conf. on Multiphase Flows,
ICMF 2013, Jeju, Korea.

Beard, K.V., 1976: Terminal velocity and shape of cloud and
precipitation drops aloft. – J. Atmos. Sci. 33, 851–864.

Best, A., 1950: Empirical formulae for terminal velocity of
water drops falling through the atmosphere. – Quart. J. Roy.
Meteor. Soc. 76, 302–311.

Cohard, J.-M., J.-P. Pinty, 2000: A comprehensive two-
moment warm microphysical bulk scheme. I: Description and
tests. – Quart. J. Roy. Meteor. Soc. 126, 1815–1842.
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