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Abstract. A preferred orientation of the anisotropic ice crys-

tals influences the viscosity of the ice bulk and the dynamic

behaviour of glaciers and ice sheets. Knowledge about the

distribution of crystal anisotropy is mainly provided by crys-

tal orientation fabric (COF) data from ice cores. However,

the developed anisotropic fabric influences not only the flow

behaviour of ice but also the propagation of seismic waves.

Two effects are important: (i) sudden changes in COF lead to

englacial reflections, and (ii) the anisotropic fabric induces

an angle dependency on the seismic velocities and, thus,

recorded travel times. A framework is presented here to con-

nect COF data from ice cores with the elasticity tensor to de-

termine seismic velocities and reflection coefficients for cone

and girdle fabrics. We connect the microscopic anisotropy of

the crystals with the macroscopic anisotropy of the ice mass,

observable with seismic methods. Elasticity tensors for dif-

ferent fabrics are calculated and used to investigate the influ-

ence of the anisotropic ice fabric on seismic velocities and

reflection coefficients, englacially as well as for the ice–bed

contact. Hence, it is possible to remotely determine the bulk

ice anisotropy.

1 Introduction

Understanding the dynamic properties of glaciers and ice

sheets is one important step to determine past and future be-

haviour of ice masses. One essential part is to increase our

knowledge of the flow of the ice itself. When the ice mass is

frozen to the base, its flow is primarily determined by internal

deformation. The degree thereof is governed by the viscosity

(or the inverse of softness) of ice. The viscosity depends on

different factors, such as temperature, impurity content and

the orientation of the anisotropic ice crystals (Cuffey and Pa-

terson, 2010).

Ice is a hexagonal crystal (ice Ih) under natural conditions

on earth. These ice crystals can align in specific directions

in response to the stresses within an ice mass. A preferred

orientation of the ice crystals causes the complete fabric to

be anisotropic, in contrast to a random distribution of the ice

crystals where the ice is isotropic on the macroscopic scale.

This fabric anisotropy influences the viscosity of the ice. The

shear strength is several orders of magnitude smaller perpen-

dicular to the ice crystal’s c axis than parallel to it, as shown

in laboratory studies (Ashby and Duval, 1985; Cuffey and

Paterson, 2010).

The influence of anisotropic ice fabric on the flow be-

haviour of ice can directly be observed in radar profiles from

ice domes. At ice domes and divides a prominent feature of

flow conditions is a Raymond bump (Raymond, 1983; Martín

et al., 2009b). As ice is a non-Newtonian fluid, it is softer and

deforms more easily on the flanks of the ice dome or divide

due to the higher deviatoric stress there compared to the cen-

tre of the dome. Thus, the vertical flow is slower at the dome

itself than on the flanks. This leads to an apparent upwarping

of the isochronous layers. The development and influence of

anisotropic fabric on the flow of ice at divides and the effects

on the development of Raymond bumps were investigated
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by, for instance, Pettit et al. (2007) and Martín et al. (2009a).

At ice divides features like double bumps and synclines are

observed (Drews et al., 2013), next to single bumps. Martín

et al. (2009a) were able to reproduce these double bumps and

synclines by including anisotropic rheology in a full-Stokes

model. Hence, they are presently considered to be direct evi-

dence of the existence of developed anisotropic fabric.

A second prominent feature in radar data is the basal layer.

Before the advent of multi-static, phase-sensitive radar sys-

tems, the basal layer had usually been observed only as an

echo-free zone (EFZ). The onset of it was connected to the

appearance of folds in ice cores on a centimetre scale (Drews

et al., 2009). Considerable progress in radar imaging over

the last decade make it now possible to image the very bot-

tom layer of ice sheets (Bell et al., 2011; NEEM commu-

nity members, 2013). The radar data show an often fuzzy

basal layer, with a rough upper surface and considerably dis-

turbed coherency of radar return power. The presence of the

basal layer turns out to be widespread, especially in Antarc-

tica (CReSIS, P. Gogineni, personal communication, 2014).

As the basal ice near the bed is subject to higher stresses

and elevated temperatures than the ice above, it is the region

where ice physical properties on the microscale change most

rapidly (Faria et al., 2014b). These include changes in crystal

orientation fabric (COF) properties and distribution.

With increasing computational power the incorporation of

anisotropy into ice flow models becomes feasible in three di-

mensions as well as on regional scales. However, to include

anisotropy in ice-flow modelling, we need to understand the

development and the distribution of the anisotropic fabric;

i.e. we have to observe the variation in the COF distribution

over depth, as well as the lateral extent. To extend our ability

to determine the influence of these properties on ice flow and

map them laterally beyond the 10 cm scale of ice cores, we

have to advance our knowledge of the connection between

microscale properties and macroscale features on the scale of

tenths of a metre to hundreds of metres observed with geo-

physical methods like radar and seismics.

The standard method of measuring the COF distribution

is to analyse thin sections from ice cores under polarised

light. The anisotropy is then normally given in the form of

the sample-averaging eigenvalues of the orientation tensor

(Woodcock, 1977) in discrete depth intervals. From this we

gain information about the local anisotropic conditions at the

ice-core location. Radar data have also been used to analyse

the changing COF over depth (Matsuoka et al., 2003; Fujita

et al., 2006; Eisen et al., 2007; Matsuoka et al., 2009). The

challenge in analysing radar data is to distinguish the COF-

induced reflections from the numerous conductivity-induced

reflections. This distinction is important as conductivity-

induced layers are isochrones; by following conductivity-

induced reflections in radar data, layers of equal age can

be followed over large distances. Currently, identifying and

tracing undisturbed layering is one of the main methods be-

ing used to identify the location of a site for a potentially

1.5 My old ice core in East Antarctica (Fischer et al., 2013).

Further, the anisotropic fabric has an influence on the wave

propagation of seismic waves. Hence, by analysing COF-

induced reflections and travel times the anisotropic fabric

on the macroscale can be determined. Not only the longi-

tudinal (P) pressure waves but also the transverse waves,

i.e. the horizontal (SH) and vertical (SV) shear waves, can

be analysed here for the anisotropic fabric. One of the first

studies of seismic anisotropy in the context of ice crystal

anisotropy was the PhD thesis of Bennett (1968), who de-

rived equations for the calculation of seismic velocities for

solid cone and surface cone fabrics. He fitted curves to the

slowness surface (inverse of the phase velocity) calculated

from an elasticity tensor measured by means of ultrasonic

sounding. This was applied to data from Dome C, Antarc-

tica, by Blankenship and Bentley (1987). Bentley (1972) in-

vestigated the anisotropic ice fabric at Byrd Station, Antarc-

tica, for which he used ultrasonic logging. To determine the

anisotropic seismic velocities for different cone fabrics, he

calculated an average from the single crystal velocity for the

encountered directions. This approach was used later by Gus-

meroli et al. (2012) for analysing the crystal anisotropy from

borehole sonic logging at Dome C, Antarctica.

These methods have one shortcoming. They limit the

analysis of anisotropy of seismic waves to the analysis of

the travel times, i.e. seismic velocities. The influence of

anisotropy has not only been observed in seismic velocities.

Englacial reflections were also observed in seismic data from

Antarctica (Horgan et al., 2011; Hofstede et al., 2013) and

Greenland (Horgan et al., 2008). These reflections were inter-

preted as arising from an abrupt change in fabric orientation.

However, to analyse the reflection signature and determine

the actual change in COF, we first need an understanding of

the reflection coefficient for changing incoming angles for

the transition between different anisotropic fabrics.

One way to improve the analysis of seismic data is to

apply full waveform inversion algorithms, i.e. the analysis

of the complete observed wave field and not only quantifi-

able characteristics such as reflection strength or travel times,

which is gaining more and more importance in applied geo-

physics in general. If we want to be able to investigate and

understand the influence of the anisotropic ice fabric on the

seismic wave field and develop ways to derive information

from travel times and reflection signatures about different

anisotropic ice fabrics from seismic data, we need to be able

to derive the elasticity tensor for different COF distributions.

In this paper we extend the analysis of seismic veloc-

ities beyond cone fabrics and derive the elasticity tensor,

which is necessary to describe the seismic wave field in

anisotropic media. The description of seismic wave propaga-

tion in anisotropic materials is based on the elasticity tensor,

a 4th-order tensor with 21 unknowns in the general case of

anisotropy. If the elasticity tensor is known, seismic veloc-

ities, reflection coefficients or reflection angles can be cal-
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culated. From ice core analysis one normally gains the COF

eigenvalues describing the distribution of the crystal orien-

tations. Hence, we first need a connection between the COF

eigenvalues and the elasticity tensor.

We present a framework here to derive the elasticity tensor

from the COF eigenvalues for cone as well as different girdle

fabrics. We derive opening angles for the enveloping of the

c axis distribution from the COF eigenvalues. We then inte-

grate using a monocrystal elasticity tensor for these derived

distributions to obtain the elasticity tensor for the different

anisotropic fabrics (Sect. 3). Based on these derived elastic-

ity tensors, we calculate seismic velocities and reflection co-

efficients for different c axis distributions. As examples, we

investigate the compressional wave velocity variations with

increasing angle for different fabrics and the reflection coef-

ficients for a change from isotropic to girdle fabric for com-

pressional and shear waves. Further, we analyse the influence

of anisotropy on the reflection signature of the ice–bed inter-

face and discuss these results in Sect. 4. This is the first part

of two companion papers. The calculations introduced here

will be applied to ice-core and seismic data from Kohnen

Station, Antarctica, in Part II, Diez et al. (2015).

2 Ice crystal anisotropy

The ice crystal is an anisotropic, hexagonal crystal with the

basal plane perpendicular to the ice crystal’s c axis. Due

to the existing stresses within glaciers and ice sheets, these

anisotropic ice crystals can be forced to align in one or sev-

eral specific directions. In such cases the crystal’s c axis is

oriented perpendicular to the main direction of stress (Cuffey

and Paterson, 2010). Depending on the stress regime, differ-

ent COF distributions develop. Common stress regimes in

glaciers are simple shear and uniaxial stress (Table 1). At ice

domes simple shear can be observed, such that the ice crys-

tals orient towards the vertical; i.e cone distributions can be

found, also called cluster distributions in mineralogy. At ice

divides, with a main direction of extension and compression

perpendicular to that, ice crystals tend to orient in one plane,

i.e. in girdle distributions.

Different fabric distributions were discussed by Wall-

brecher (1986), who classifies eight different fabric groups.

Of these we will use the three most common fabrics observed

in glacier ice in the following analysis of the influence of

ice crystal anisotropy on seismic wave propagation: (i) the

cluster (or cone) distribution, (ii) the thick girdle distribution

and (iii) the partial girdle distribution. These distributions are

shown in Table 1. The sketches (first row) show the envelop-

ing of the specific c axes’ distribution for the different fab-

rics. We will use the term cone fabric instead of cluster fabric

hereinafter, as it is the more commonly used term in glaciol-

ogy. The most extreme forms of anisotropy we can expect

in ice are the isotopic fabric, with a uniform distribution of

ice crystals, and the vertical single maximum (VSM) fabric,

Figure 1. Wavefront of a P wave travelling in isotropic ice fabric

(dashed line) and in a vertical single maximum (VSM) fabric (red

line), i.e. a vertical transversely isotropic (VTI) medium. The solid

arrow shows the group velocity with group angle θ , the dashed ar-

row the phase velocity with phase angle ϑ for the anisotropic case.

where all ice crystals are oriented vertically. Note that the

term “lattice-preferred orientation (LPO)” is used as well in

the literature to refer to the orientation of the crystals (Faria

et al., 2014a), in addition to COF.

2.1 Crystal orientation fabric measurements

The standard method of measuring COF distributions is by

analysing thin sections from ice cores under polarised light

using an automatic fabric analyser (Wilson et al., 2003; Pe-

ternell et al., 2010). The c axis orientation of each single

crystal is determined and can be given as a unit vector (c).

These orientations can be presented in Schmidt plots, an

equal-area projection of a sphere onto a plane, or as eigen-

values λ1,λ2,λ3 of the weighted orientation tensor:

Aij =W

n∑
l=1

(cicj )l, with i,j = 1,2,3. (1)

The number of grains is given by n, and W is a weighting

function, with weighting e.g. by grain number (W = 1/n)

or by area. The three eigenvalues, with λ1 ≤ λ2 ≤ λ3 and∑
λi = 1, determine the extension of a rotation ellipsoid.

The corresponding eigenvectors cannot be given when the

orientation of the ice core within the borehole is not mea-

sured in geolocated directions. Hence, the direction to which

these eigenvalues apply is often unknown.

Another possibility to describe the anisotropic fabric is to

calculate the spherical aperture from the orientation tensor.

Hence, the c axis distribution is given in the form of one

opening angle for the enveloping cone (Wallbrecher, 1986).

However, this limits the analysis of anisotropy to cone fabrics

(Table 1).

2.2 Seismic anisotropy

The propagation of seismic waves is influenced by the

anisotropic material, affecting seismic velocities, reflection

coefficients and reflection angles, among other properties.
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Table 1. The different ice crystal distributions as used for the calculation of seismic velocities and reflection coefficients. Given are the

sketches for the enveloping of the c axis distribution, the glaciological terms, the common stress regime and the corresponding eigenvalue

range. In the second part the seismic term for the anisotropic regime is given together with the opening angles derived from the COF

eigenvalues to calculate the elasticity tensor.

Fabrics Glaciological context Seismic context

Envelope Term Stress regime Eigenvalues Term Opening angle

Table 1. The different ice crystal distributions as used for the calculation of seismic velocities and reflection

coefficients. Given are the sketches for the enveloping of the c-axis distribution, the glaciological terms, the

common stress regime and the corresponding eigenvalue range. In the second part the seismic term for the

anisotropic regime is given together with the opening angles derived from the COF eigenvalues to calculate the

elasticity tensor.

fabrics glaciological context seismic context

envelope term stress regime eigenvalues term opening angle

isotropic uniform
λ1 = λ2 =

λ3 = 1/3
isotropic ϕ= χ= 90◦

cone

(cluster in

mineralogy)

simple shear
λ1 = λ2

λ3 ≥ λ1,λ2

vertical

transversely

isotropic

(VTI)

ϕ= χ

0◦ ≤ ϕ≤ 90◦

vertical single

maximum

(VSM)

simple shear
λ1 = λ2 = 0

λ3 = 1

vertical

transversely

isotropic

(VTI)

ϕ= χ= 0◦

thick girdle

uniaxial

compression,

extension

λ2 = λ3

λ1 = 1− 2λ2

horizontal

transversely

isotropic

(HTI)

ϕ= 90◦

0◦ ≤ χ≤ 90◦

partial girdle

axial

compression,

extension

λ1 = 0

0≤ λ2 ≤ 0.5

λ3 = 1−λ2

orthorhombic
χ= 0◦

0◦ ≤ ϕ≤ 90◦

32

Isotropic Uniform λ1 = λ2 = λ3 = 1/3 Isotropic ϕ = χ = 90◦

Table 1. The different ice crystal distributions as used for the calculation of seismic velocities and reflection

coefficients. Given are the sketches for the enveloping of the c-axis distribution, the glaciological terms, the

common stress regime and the corresponding eigenvalue range. In the second part the seismic term for the

anisotropic regime is given together with the opening angles derived from the COF eigenvalues to calculate the

elasticity tensor.

fabrics glaciological context seismic context

envelope term stress regime eigenvalues term opening angle

isotropic uniform
λ1 = λ2 =

λ3 = 1/3
isotropic ϕ= χ= 90◦

cone

(cluster in

mineralogy)

simple shear
λ1 = λ2

λ3 ≥ λ1,λ2

vertical

transversely

isotropic

(VTI)

ϕ= χ

0◦ ≤ ϕ≤ 90◦

vertical single

maximum

(VSM)

simple shear
λ1 = λ2 = 0

λ3 = 1

vertical

transversely

isotropic

(VTI)

ϕ= χ= 0◦

thick girdle

uniaxial

compression,

extension

λ2 = λ3

λ1 = 1− 2λ2

horizontal

transversely

isotropic

(HTI)

ϕ= 90◦

0◦ ≤ χ≤ 90◦

partial girdle

axial

compression,

extension

λ1 = 0

0≤ λ2 ≤ 0.5

λ3 = 1−λ2

orthorhombic
χ= 0◦

0◦ ≤ ϕ≤ 90◦

32

Cone (cluster in

mineralogy)

Simple shear λ1 = λ2

λ3 ≥ λ1,λ2

Vertical trans-

versely isotropic

(VTI)

ϕ=χ

0◦ ≤ ϕ ≤ 90◦

Table 1. The different ice crystal distributions as used for the calculation of seismic velocities and reflection

coefficients. Given are the sketches for the enveloping of the c-axis distribution, the glaciological terms, the

common stress regime and the corresponding eigenvalue range. In the second part the seismic term for the

anisotropic regime is given together with the opening angles derived from the COF eigenvalues to calculate the

elasticity tensor.

fabrics glaciological context seismic context

envelope term stress regime eigenvalues term opening angle

isotropic uniform
λ1 = λ2 =

λ3 = 1/3
isotropic ϕ= χ= 90◦

cone

(cluster in

mineralogy)

simple shear
λ1 = λ2

λ3 ≥ λ1,λ2

vertical

transversely

isotropic

(VTI)

ϕ= χ

0◦ ≤ ϕ≤ 90◦

vertical single

maximum

(VSM)

simple shear
λ1 = λ2 = 0

λ3 = 1

vertical

transversely

isotropic

(VTI)

ϕ= χ= 0◦

thick girdle

uniaxial

compression,

extension

λ2 = λ3

λ1 = 1− 2λ2

horizontal

transversely

isotropic

(HTI)

ϕ= 90◦

0◦ ≤ χ≤ 90◦

partial girdle

axial

compression,

extension

λ1 = 0

0≤ λ2 ≤ 0.5

λ3 = 1−λ2

orthorhombic
χ= 0◦

0◦ ≤ ϕ≤ 90◦

32

Vertical single

maximum (VSM)

Simple shear λ1 = λ2 = 0

λ3 = 1

Vertical trans-

versely isotropic

(VTI)

ϕ=χ = 0◦

Table 1. The different ice crystal distributions as used for the calculation of seismic velocities and reflection

coefficients. Given are the sketches for the enveloping of the c-axis distribution, the glaciological terms, the

common stress regime and the corresponding eigenvalue range. In the second part the seismic term for the

anisotropic regime is given together with the opening angles derived from the COF eigenvalues to calculate the

elasticity tensor.

fabrics glaciological context seismic context

envelope term stress regime eigenvalues term opening angle

isotropic uniform
λ1 = λ2 =

λ3 = 1/3
isotropic ϕ= χ= 90◦

cone

(cluster in

mineralogy)

simple shear
λ1 = λ2

λ3 ≥ λ1,λ2

vertical

transversely

isotropic

(VTI)

ϕ= χ

0◦ ≤ ϕ≤ 90◦

vertical single

maximum

(VSM)

simple shear
λ1 = λ2 = 0

λ3 = 1

vertical

transversely

isotropic

(VTI)

ϕ= χ= 0◦

thick girdle

uniaxial

compression,

extension

λ2 = λ3

λ1 = 1− 2λ2

horizontal

transversely

isotropic

(HTI)

ϕ= 90◦

0◦ ≤ χ≤ 90◦

partial girdle

axial

compression,

extension

λ1 = 0

0≤ λ2 ≤ 0.5

λ3 = 1−λ2

orthorhombic
χ= 0◦

0◦ ≤ ϕ≤ 90◦

32

Thick girdle Uniaxial compression,

extension

λ2 = λ3

λ1 = 1− 2λ2

Horizontal trans-

versely isotropic

(HTI)

ϕ= 90◦

0◦ ≤ χ ≤ 90◦

Table 1. The different ice crystal distributions as used for the calculation of seismic velocities and reflection

coefficients. Given are the sketches for the enveloping of the c-axis distribution, the glaciological terms, the

common stress regime and the corresponding eigenvalue range. In the second part the seismic term for the

anisotropic regime is given together with the opening angles derived from the COF eigenvalues to calculate the

elasticity tensor.

fabrics glaciological context seismic context

envelope term stress regime eigenvalues term opening angle

isotropic uniform
λ1 = λ2 =

λ3 = 1/3
isotropic ϕ= χ= 90◦

cone

(cluster in

mineralogy)

simple shear
λ1 = λ2

λ3 ≥ λ1,λ2

vertical

transversely

isotropic

(VTI)

ϕ= χ

0◦ ≤ ϕ≤ 90◦

vertical single

maximum

(VSM)

simple shear
λ1 = λ2 = 0

λ3 = 1

vertical

transversely

isotropic

(VTI)

ϕ= χ= 0◦

thick girdle

uniaxial

compression,

extension

λ2 = λ3

λ1 = 1− 2λ2

horizontal

transversely

isotropic

(HTI)

ϕ= 90◦

0◦ ≤ χ≤ 90◦

partial girdle

axial

compression,

extension

λ1 = 0

0≤ λ2 ≤ 0.5

λ3 = 1−λ2

orthorhombic
χ= 0◦

0◦ ≤ ϕ≤ 90◦

32

Partial girdle Axial compression,

extension

λ1 = 0

0≤ λ2 ≤ 0.5

λ3 = 1− λ2

Orthorhombic χ = 0◦

0◦ ≤ ϕ ≤ 90◦
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The propagation of wavefronts in the anisotropic case is

no longer spherical. Figure 1 shows the anisotropic wave-

front for a P wave travelling in a VSM fabric (red line) and

the spherical wavefront for a P wave in isotropic ice fabric

(dashed black line). For the anisotropic case, group and phase

velocity, as well as group angle θ and phase angle ϑ , are no

longer the same. The group velocity determines the travel

time. The phase velocity vector is normal to the wavefront.

Thus, the phase velocity and phase angle ϑ are needed for

the calculation of reflection and transmission angles as well

as reflection coefficients in anisotropic media.

For an anisotropic medium the linear relationship between

tensors of stress σmn and strain τop is described by Hooke’s

law:

σmn = cmnopτop, (2)

with the elasticity tensor cmnop andm,n,o,p = 1,2,3. In the

isotropic case these 81 components of the elasticity tensor

can be reduced to the two well-known Lamé parameters. In

the general anisotropic case, symmetry considerations of the

strain and stress tensors apply, as do thermodynamic con-

siderations (Aki and Richards, 2002). Hence, the general

anisotropic elasticity tensor consists of 21 independent com-

ponents and is referred to as triclinic.

To determine seismic velocities in anisotropic media, a so-

lution for the wave equation needs to be found. Given here

is the wave equation for homogeneous, linear elastic media,

without external forces and with triclinic anisotropy:

ρ
∂2um

∂t2
− cmnop

∂2uo

∂xn∂xp
= 0, (3)

with ρ the density of the material, t time, the components

um and uo of the displacement vector u and the different

spatial directions xn, xp. Solving this equation leads to an

eigenvalue problem, the Christoffel equation. For a detailed

derivation see, e.g. Tsvankin (2001).

Finally, three non-trivial solutions exist for this eigenvalue

problem, giving the three phase velocities and vectors for the

quasi compressional (qP), the quasi vertical (qSV) and the

quasi horizontal shear (qSH) wave. The phase vectors are or-

thogonal to each other. However, qP and qSV waves are cou-

pled, so the waves are not necessarily purely longitudinal or

shear waves outside of the symmetry planes. Therefore, they

are additionally denoted as “quasi” waves, i.e. qP, qSV and

qSH waves. As the following analyses are mostly within the

symmetry planes, the waves will from now on be denoted as

P, SV and SH waves. Nevertheless, outside of the symmetry

planes this term is not strictly correct.

To be able to find analytical solutions to the Christoffel

matrix, the anisotropic materials are distinguished by their

different symmetries. Additionally, to simplify calculations

with the elasticity tensor, we will use the compressed Voigt

notation (Voigt, 1910) for the elasticity tensor cmnop→ Cij .

Therefore, the index combinations of mn and op are re-

placed by indices between 1 and 6 (11≡ 1, 22≡ 2, 33≡ 3,

23≡ 4, 13≡ 5, 12≡ 6). Considering only certain symmetries

reduces the unknowns of the elasticity tensor Cij further. For

the analysis of anisotropic ice we consider cone, thick gridle

and partial girdle fabric. The connection between the differ-

ent fabric types and symmetry classes, i.e. seismic terminol-

ogy for this fabric, can be found in Table 1. Partial girdle

fabric is the fabric with the lowest symmetry, corresponding

to an orthorhombic medium, with nine unknowns:

Cij =


C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

 . (4)

In the case of orthorhombic media three symmetry planes,

i.e. orthogonal planes of mirror symmetry, exist. The num-

ber of unknowns can be reduced further to five unknowns if

transversely isotropic media exist, resulting in an anisotropy

with a single axis of rotation symmetry. This is normally dis-

tinguished in vertical transversely isotropic (VTI) and hori-

zontal transversely isotropic (HTI) media, with a vertical and

horizontal axis of rotation symmetry, respectively. A verti-

cal cone fabric, including VSM fabric, would be classified

as VTI medium, while a thick girdle fabric as given in Ta-

ble 1 would be classified as HTI medium. This distinction

is important for the calculation of seismic velocities and re-

flection coefficients as the calculation simplifies for wave

propagation within symmetry planes of the anisotropic fabric

(Sect. 4)

3 Calculation of elasticity tensor from COF eigenvalues

From the analysis of ice cores we determine the COF eigen-

values which describe the crystal anisotropy over depth. The

propagation of seismic waves in anisotropic media can be

calculated from the elasticity tensor. Hence, a relationship

between the COF eigenvalues and the elasticity tensor is

needed.

For the following derivation of the elasticity tensor we will

use two opening angles for the description of the fabric that

envelopes the c axis distribution. Thus, we are able to take

into account cone as well as girdle fabric distributions. We

distinguish between an opening angle χ in x1 direction and

an opening angle ϕ in x2 direction in a coordinate system

where the x3 axis is pointing downwards (Table 1). These

opening angles will be calculated from the COF eigenvalues.

The two opening angles determine the kind of fabric (Ta-

ble 1). If the angles ϕ and χ are equal, the c axis distribution

is a cone distribution with the cone opening angle ϕ = χ ;

i.e. it is a VTI medium. The two extrema of this distribution

are the uniform distributions, i.e. the isotropic case, and the

VSM fabric. All c axes are oriented vertically in the case of

a VSM fabric. The eigenvalues are λ1 = λ2 = 0 and λ3 = 1,
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and the cone opening angle is 0◦. The ice crystals are ran-

domly oriented in the case of isotropic fabric. The eigenval-

ues are then λ1 = λ2 = λ3 = 1/3, and the cone opening an-

gle is 90◦. The thick girdle fabric is an HTI media: the c axes

are distributed between two planes with a certain distance,

so that the opening angle ϕ in x2 direction is 90◦ and χ in

x1 direction gives the thickness of the girdle. The partial gir-

dle fabric, an orthorhombic medium, is a distribution where

all ice crystal c axes are in one plane, but only within a slice

of this plane, so that the opening angle χ in x1 direction is

0◦ and ϕ in x2 direction gives the size of the slice within the

plane. A girdle fabric with χ = 0◦ and ϕ= 90◦ would corre-

spond to the eigenvalues λ1= 0 and λ2= λ3= 0.5.

We will use a measured monocrystal elasticity tensor

here to calculate the elasticity tensor for the different ob-

served anisotropic fabrics in ice from the COF eigenval-

ues. For monocrystalline ice the components of the elas-

ticity tensor have been previously measured by a num-

ber of authors with different methods. For the follow-

ing calculations we use the elasticity tensor of Gam-

mon et al. (1983) (C11 = 13.93± 0.04 GNm−2; C33 =

15.01± 0.05 GNm−2; C55 = 3.01± 0.01 GNm−2; C12 =

7.08±0.04 GNm−2; C13 = 5.77±0.02 GNm−2). The c axis

of this ice crystal is oriented vertically here, parallel to the

x3 direction (Table 1).

3.1 From COF eigenvalues to opening angles

When the COF eigenvalues are derived, the information on

the fabric distribution is significantly reduced, especially

as the corresponding eigenvectors are normally unknown.

Hence, it is not possible to determine the elasticity ten-

sor with at least five unknowns directly from the three

COF eigenvalues. Therefore, we first subdivide the observed

anisotropies into different fabric groups (cone, thick girdle

and partial girdle fabric) by means of the eigenvalues. After-

wards, we determine their opening angles (Sect. 2.1).

To differentiate between cone and girdle fabric Woodcock

(1977) suggests a logarithmic representation of the eigenval-

ues and classification by a slope

m=
ln(λ3/λ2)

ln(λ2/λ1)
. (5)

The fabric is a cone fabric with m> 1 and a girdle fabric

with m< 1. However, we want to put a stronger tendency

towards a classification of the fabric as cone fabric. In the

seismic sense a cone fabric is a VTI medium. It is easier to

calculate velocities and reflection coefficients for VTI media

compared to girdle fabric, i.e. HTI media. Hence, we use a

threshold value to distinguish between cone and girdle fab-

ric. If λ1 ≤ 0.1 and λ2 ≥ 0.2, the fabric is classified as girdle

fabric; everything else is classified as cone fabric. Addition-

ally, we set a threshold to distinguish within the girdle fabric

between partial and thick girdle fabric. If λ1 ≤ 0.05, the fab-

ric is classified as partial girdle, and otherwise as thick girdle

Figure 2. Girdle fabrics classified as HTI media are within the

[x2, x3] plane. When the girdle is rotated around the x3 axis, the

rotation is given by the azimuth ψ .

fabric. By distinguishing between these fabrics we know that

ϕ = χ for the cone fabric, ϕ= 90◦ for the thick girdle fabric

and χ = 0◦ for the partial girdle fabric (Table 1).

In the next step the remaining, unknown opening angle for

the different fabrics needs to be calculated from the eigen-

values, i.e. ϕ for the cone fabric, χ for the thick girdle fabric

and ϕ for the partial girdle fabric. Wallbrecher (1986) for in-

stance connects the opening angle ϕ of a cone fabric with the

eigenvalue λ3 by λ3 = 1− 2/3sin2ϕ. To verify this calcula-

tion we determined the eigenvalues for cone angles between

0 and 90◦. In total 10 000 randomly distributed vectors were

created, giving a random distribution of c axes. For each cone

angle the vectors within this cone angle were selected. The

eigenvalues for this cone angle were then calculated from

these vectors. The process was repeated 100 times for each

cone angle ϕ. The calculated λ3(ϕ) values from the equation

given by Wallbrecher (1986) differ by up to 15◦ for ϕ. For a

more precise connection of λ3 and ϕ than available from the

literature, a 4th-order polynomial was fitted to the λ3–ϕ val-

ues (Appendix A1). The same was done for the calculation

of χ from λ1 for thick girdle fabrics, as well as for the calcu-

lation of ϕ from λ3 for partial girdle fabrics (Appendix A1).

The orientation of the girdle is normally not known. Thus, the

azimuth ψ (Fig. 2) of the girdle fabric cannot be determined

from the eigenvalues. This is only possible if the eigenvector

belonging to the eigenvalue λ1, the normal to the plane of the

girdle, is known in geolocated directions. Hence, in the fol-

lowing we normally assume girdle fabrics to be orientated as

HTI medium with the azimuth ψ = 0◦ for the calculation of

the elasticity tensor.

3.2 From opening angles to the elasticity tensor

The elasticity tensor of the polycrystal can now be derived

using the measured elasticity tensor for a single ice crys-

tal and the derived angles χ and ϕ. For the calculation of

the polycrystal elasticity tensor Cij we follow the idea of

Nanthikesan and Sunder (1994). They use the concept of the

Voigt (1910) and Reuss (1929) bounds. This concept was de-
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veloped to calculate the elasticity tensor of isotropic poly-

crystals, containing different crystals. This concept is gen-

eralised by Nanthikesan and Sunder (1994) to calculate the

elasticity tensor for anisotropic fabrics.

Voigt (1910) assumed that the strain on the polycrystal in-

troduces the same uniform strain in all monocrystals. How-

ever, Reuss (1929) assumed that the stress on the polycrys-

tal introduces the same uniform stress in all monocrystals.

To calculate the elasticity tensor of the polycrystal with the

Voigt (1910) assumption, one has to average over the elas-

ticity tensor Cm
ij of the monocrystal (superscript m). In the

case of the Reuss (1929) assumption, the compliance tensor

of the polycrystal is calculated by averaging over the compli-

ance tensor Sm
ij of the single crystals. The compliance tensor

of a crystal is the inverse of the elasticity tensor, here given

in terms of Hooke’s law (Eq. 2):

τmn = smnopσop. (6)

For the inversion of elasticity to compliance tensor and vice

versa see e.g. Bower (2010). The method of Voigt (1910)

and Reuss (1929) is an approximation of the elasticity ten-

sor due to violation of local equilibrium and compatibility

conditions across grain boundaries, respectively. Hill (1952)

showed that the concepts of Voigt (1910) and of Reuss (1929)

give the upper and lower limit for the elastic moduli of the

polycrystal Cij , referred to as Voigt–Reuss bounds,

CR
ij ≤ Cij ≤ C

V
ij , (7)

where the superscripts R and V denote the Reuss (1929) and

Voigt (1910) calculation, respectively.

To obtain the elasticity tensor of the anisotropic polycrys-

tal Cij from the elasticity tensor of the monocrystal Cm
ij with

different orientations, one has to integrate the elasticity ten-

sor C̃m
ij (φ) with a probability density function F(φ) for the

different c axes’ orientations, where φ gives the minimum

(φ1) and maximum (φ2) extent of the c axes in the plane. This

plane is perpendicular to the corresponding rotation axis,

so that the elasticity tensor C̃m
ij (φ) is determined from the

monocrystal elasticity tensor Cm
ij using the rotation matrix

RC
ij :

C̃m
ij (φ)= (R

C
ij )

TCm
ijR

C
ij . (8)

The rotation matrices RC
ij for the different directions in space

are given in Appendix A2; (RC
ij )

T is the transpose ofRC
ij . The

same applies for the calculation of the monocrystal compli-

ance tensor depending on φ:

S̃m
ij (φ)= (R

S
ij )

TSm
ijR

SRij , (9)

with the rotation matrix RS
ij for the compliance tensor (Ap-

pendix A2) and its transpose (RS
ij )

T. For a uniform distribu-

tion of the c axis orientations the probability density function

Table 2. Steps for calculation of elasticity tensor (Eq. 13) or com-

pliance tensor (Eq. 13) for different fabrics (Table 1).

Step Rotation axis Angle

Cone
1 x1 ϕ = χ

2 x3 90◦

Partial girdle 1 x1 ϕ

Thick girdle
1 x1 90◦

2 x2 χ

can be given by

F(φ)=
1

φ2−φ1

for φ1 ≤ φ ≤ φ2, (10)

= 0 for φ2 ≤ φ ≤ π;−π ≤ φ ≤ φ1, (11)

which is symmetric around the main orientation, so that φ1 =

−φ0 and φ2 =+φ0. The elasticity tensor of the anisotropic

polycrystal is then calculated by

Cij =
1

2φ0

+φ0∫
−φ0

C̃m
ij (φ)dφ, (12)

and the compliance tensor is calculated by

Sij =
1

2φ0

+φ0∫
−φ0

S̃m
ij (φ)dφ. (13)

After considering the orthorhombic symmetry and some re-

arranging of the results of Eqs. (12) and (13), the components

of the elasticity tensor and compliance tensor of a polycrystal

can be expressed in compact form. The results are different

for c axes’ distributions in the different spatial directions x1,

x2 and x3. As an example, the equations for the elasticity and

compliance tensor for a rotation around the x1 direction are

given in Appendix A3. This would correspond to a c axis

distribution in the [x2, x3] plane. The equations for rotation

around the x2 axis and the x3 axis can equally be derived

from Eqs. (12) and (13).

The different rotation directions to calculate the polycrys-

tal elasticity tensor Cij from a vertically oriented monocrys-

tal elasticity tensor Cm
ij for cone, thick girdle and partial gir-

dle fabric are listed in Table 2. They are also valid for the

compliance tensor. For the calculation of the elasticity ten-

sor of a partial girdle (Table 1) the elasticity tensor of the

monocrystal Cm
ij is rotated around the x1 axis with the open-

ing angle of the partial girdle in x2 direction (ϕ). The elas-

ticity tensor is then calculated using Eq. (A12) with φ0 = ϕ.

For a thick girdle, ϕ= 90◦ in order to gain a full girdle in the

[x2, x3] plane in the first step. In a second step this elastic-

ity tensor obtained for a full girdle is then rotated around the
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x2 axis with φ0 = χ . For cone fabrics with different opening

angles the elasticity tensor of a monocrystal is rotated around

the x1 axis (Eq. A12) in a first step using the cone opening

angle (φ0 = ϕ = χ ); afterwards, the obtained elasticity ten-

sor is rotated around the x3 axis with φ0= 90◦.

3.3 Limitations of the method

Nanthikesan and Sunder (1994) developed the approach to

calculate the polycrystal elasticity tensor from the monocrys-

tal elasticity tensors for what they call S1 (vertical single

maximum), S2 (horizontal girdle) and S3 (horizontal par-

tial girdle) ice for given opening angles. They found that

the Voigt–Reuss bounds for these fabrics are within 4.2 % of

each other, and concluded from this that either calculation, by

means of the elasticity tensor (Eq. 12), or compliance tensor

(Eq. 13) can be used to calculate the elasticity tensor of the

polycrystal. We use the approach of Nanthikesan and Sunder

(1994) not only for the calculation of partial girdle fabrics

but also for the calculation of the polycrystal elasticity tensor

of thick girdle and cone fabrics.

By comparing the individual components of the elasticity

tensor derived following Voigt (1910) (Eq. 12) with those of

the elasticity tensor derived following Reuss (1929) (Eq. 13

and taking the inverse of the compliance tensor), the largest

difference of 4.2 % for all the investigated fabrics can be

found for the components C44 (S44) of a partial girdle with

an opening angle of 50 and 90◦. Thus, for all fabrics in this

study, the Voigt–Reuss bounds are within 4.2 % of each other

and we follow Nanthikesan and Sunder (1994) in their argu-

mentation that either calculation can be used. However, when

using the Voigt (1910) calculation, no extra step in the calcu-

lation is needed to invert the compliance tensor. Therefore,

for all further calculations the approach by Voigt (1910) is

used (Eq. 12).

To be able to calculate the opening angels from the COF

eigenvalues, the fabrics are classified into the different fabric

groups based on their eigenvalues: cone, thick girdle and par-

tial girdle fabric (Table 1). This classification introduces ar-

tificial discontinuities in the velocity profile over depth, cal-

culated from an ice core. These discontinuities only reflect

the calculation method, not sudden changes in the prevailing

fabric (Part II, Diez et al., 2015). This limitation, introduced

by the classification of the different fabric groups, could be

overcome by calculating the opening angels directly from the

derived c axis vectors. Another possibility would be to cal-

culate the elasticity tensor using the orientation distribution

function (ODF), e.g. using the open-source software METX

(Mainprice et al., 2011). The calculation of the elasticity ten-

sor in this software is likewise based on Voigt–Reuss bounds,

as is done in this study. However, in glaciology the fabric

distribution is normally presented in the compact form of the

COF eigenvalues. With the here-presented framework the in-

formation of the eigenvalues can directly be used for the cal-

culation of the elasticity tensor, without further information.

To enable direct applicability of our method to existing ice-

core data sets, we except the limitations of our approach for

the sake of ease of use.

For the calculation of the anisotropic polycrystal from the

monocrystal neither grain size nor grain boundaries are con-

sidered. Elvin (1996) modelled the number of grains that are

necessary to homogenise the elastic properties of polycrys-

talline ice and found that at least 230 grains are needed for

girdle fabric (S2 ice). This number of ice crystals should be

reached with seismic waves in ice of around 300 Hz, i.e. a

wavelength of more than 10 m and ice crystals with ≤ 0.1 m

diameter on average. Additionally, Elvin (1996) computed

two cases, with and without grain boundary sliding, and

found a difference of up to 25 % in Young’s modulus and

the Poisson ratio. In the absence of grain-boundary sliding

the anisotropy mainly defines the elastic behaviour. Other-

wise, grain shape and grain-boundary sliding become impor-

tant as well. A certain mistake is, thus, made for the calcu-

lation of the polycrystal by only considering the influence of

the anisotropy of the monocrystal.

The resultant polycrystal elasticity tensors depend of

course on the choice of the monocrystal elasticity tensor.

Different authors have measured (Jona and Scherrer, 1952;

Green and Mackinnen, 1956; Bass et al., 1957; Brockamp

and Querfurth, 1964; Bennett, 1968; Dantl, 1968; Gammon

et al., 1983) and calculated (Penny, 1948) the monocrystal

elasticity tensor. A comparison of the different elasticity ten-

sors used can be found in Part II (Diez et al., 2015). There

we investigate results of a vertical seismic profiling survey

in comparison to quantities from measured COF eigenval-

ues. We find the best agreement between measured and cal-

culated velocities using the monocrystal elasticity tensor of

Gammon et al. (1983) for the derivation of the polycrystal

elasticity tensor.

4 Seismic velocities and reflection coefficients in

anisotropic ice

From the derived elasticity tensor we can now calculate ve-

locities and reflection coefficients. Many approximations as

well as exact solutions exist for the calculation of velocities

and reflection coefficients for different anisotropic fabrics.

They are mostly limited to certain symmetries.

In the case of velocities, most studies have been performed

on VTI media (e.g. Daley and Heron, 1977). These solutions

are still valid within the symmetry planes of HTI media. To

be able to calculate seismic velocities for the different fabrics

in ice, we will use a calculation of velocities for orthorhom-

bic media derived by Daley and Krebes (2004) (Sect. 4.1).

We compare our calculated velocities, based on the derived

elasticity tensor, with the well-known velocities for a solid

cone that were derived by Bennett (1968) (Sect. 4.2).

For the calculation of the reflection coefficient we use ex-

act (Graebner, 1992) as well as approximate (Rüger, 1997;
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Zillmer et al., 1998) calculations (Sect. 4.3). We show the

reflection coefficients for an abrupt change from isotropic to

partial girdle fabric here as an example (Sect. 4.4). Addition-

ally, we investigate the influence on the reflection signature

of an anisotropic ice mass above the base (Sect. 4.5).

4.1 Velocities in orthorhombic media

For the special case of wave propagation in ice with a devel-

oped cone fabric anisotropy, Bennett (1968) derived equa-

tions of the slowness surface for P, SV and SH waves. The

phase velocities are given by the inverse of the slowness sur-

face. To calculate the slowness surface over different angles,

Bennett (1968) first derived the elasticity tensor from single

natural ice crystals by measurements of ultrasonic pulses of

600 kHz. With the derived equations, velocities for different

incoming angles ϑ dependent upon the cone opening angle

ϕ can be calculated. It is not possible to calculate velocities

for girdle fabrics with this approach.

Using the derived elasticity tensor, we are now able to cal-

culate velocities for different COF distributions. We use the

equations derived by Daley and Krebes (2004) for the calcu-

lation of phase velocities vph (vp, vsv, vsh) as a function of

the phase angle ϑ for orthorhombic media as given in Ap-

pendix B1 (Eqs. B1–B3).

From these phase velocities we have to calculate the group

velocities for the calculation of travel times. The calculation

of the group velocity vector vg can be found, e.g., in Rom-

mel and Tsvankin (2000) and Tsvankin (2001). If the propa-

gation of the seismic wave is within symmetry planes of the

anisotropic fabric, the group velocity and group angle can be

given in compact form. The group velocity vg is then calcu-

lated from the phase velocity vph by

vg = vph

√
1+

(
1

vph

∂vph

∂ϑ

)2

, (14)

with the group angle θ in the symmetry plane defined by

tanθ =
tanϑ + 1

vph

∂vph

∂ϑ

1− 1
vph

∂vph

∂ϑ
tanϑ

. (15)

Outside the symmetry planes of, e.g., HTI media, all compo-

nents of the group velocity vector vg have to be considered

(Appendix B1).

Figure 3 shows the phase (dashed curves) and group veloc-

ities (solid curves) as a function of the corresponding phase

ϑ and group angle θ of P (red), SV (light blue) and SH

wave (blue) for a VSM fabric. The largest difference between

phase and group velocity can be observed for the SV wave

(light blue curves), with a triplication in the group velocity

for group angles of 43–47◦. Here three different velocities

are given for each angle. Due to the small spread of these

velocities, we do not expect that this triplication is of rele-

vance for applications given the current day accuracy of mea-

surements. The SV-velocity is largest for 45◦ incoming angle

Figure 3. Phase (dashed lines) and group velocities (solid lines)

over the corresponding phase ϑ and group angle θ for P (red

curves), SH (blue curves) and SV waves (light blue curves) of a

VSM fabric. The SV-wave group velocity shows a triplication for

group angles θ between 43 and 47◦.

(phase as well as group angle) with 2180 m s−1, decreasing

for 0 and 90◦ to 1810 m s−1. Variations for the SH wave are

rather small, with velocities increasing between 0 and 90◦

from 1810 to 1930 m s−1, i.e. 6 %. The P-wave velocity has a

minimum at ∼ 51◦ incoming angle: 3770 m s−1. The highest

wave speed is observed for waves parallel to the c axis of an

ice crystal (0◦ incoming angle) at 4040 m s−1, and 150 m s−1

(4 %) slower perpendicular to it.

4.2 Velocities for anisotropic ice

By deriving the elasticity tensor for different fabrics, the

group and phase velocities of the P, SH and SV wave for

these fabrics can now be calculated. Figure 4 show the P-

wave phase velocity for different cone and girdle fabrics cal-

culated with the equations given in Daley and Krebes (2004)

and the equations derived by Bennett (1968) for a solid cone.

The phase velocity for the SH and SV wave as well as the

corresponding group velocities can be displayed accordingly

(Diez, 2013). Here, we will limit our analysis to P waves.

However, with the derived elasticity tensor, SH- and SV-wave

velocities can just as well be investigated, and the effect of S-

wave splitting can be analysed.

Figure 4d shows the velocities calculated from the equa-

tions derived by Bennett (1968) for a solid cone from the

elasticity tensor he measured at −10 ◦C. These velocities

were corrected to −16 ◦C (Kohnen, 1974; Gammon et al.,

1983) for better comparison with the other results, where we

use the elasticity tensor of Gammon et al. (1983) measured at

−16 ◦C. The other subfigures are phase velocities calculated

with Eq. (12) from an elasticity tensor derived following the

steps in Table 2 with the elasticity tensor measured by Gam-

mon et al. (1983). The top row (Fig. 4) shows velocities for

cone fabric (subfigure a: VTI) as well as partial girdle fabric
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Figure 4. P-wave phase velocities over phase angle ϑ for different fabrics. P-wave velocity for (a) different cone opening angles (ϕ = χ ),

(b) partial girdle fabric (χ = 0◦) and (c) thick girdle fabric (ϕ= 90◦) within the [x2, x3] plane, (e) partial girdle fabric (χ = 0◦) and (f)

thick girdle fabric (ϕ = 90◦) within the [x1, x3] plane calculated with Eq. (B1) given by Daley and Krebes (2004). (d) shows the P-wave

velocity for different cone opening angles (ϕ = χ ) calculated with the equation given by Bennett (1968). The contour lines give the velocity

differences in percent, in relation to the maximum velocity of the respective fabric group.

(b: HTI) and thick girdle fabric (c: HTI) in the [x2, x3] plane,

while the bottom row shows velocities for cone fabric cal-

culated following Bennett (1968) (d: VTI) as well as partial

girdle fabric (f: ψ = 90◦) and thick girdle fabric (e: ψ = 90◦)

in the [x1, x3] plane.

The partial girdle (χ = 0◦, Fig. 4, b, e) with ϕ= 90◦ dis-

plays the same fabric as the thick girdle (ϕ= 90◦, Fig. 4, c,

f) with χ = 0◦. The same applies to the cone fabric with an

opening angle of 90◦ (Fig. 4, a, d) as well as the thick gir-

dle fabric (ϕ= 90◦) with χ = 90◦ (Fig. 4c, f), both showing

isotropic c axes’ distribution. Apart from Bennett’s veloci-

ties, these velocities for the isotropic state (Fig. 4a, c, f) are

obviously not isotropic. Slight variations still exist for these

velocities with increasing incoming angle. This is due to arte-

facts that seem to appear from the derivation of the elasticity

tensor for the isotropic state using the single crystal elasticity

tensor.

It should also be noted that for a thick girdle with

ϕ=χ = 90◦ the variations over the incoming angle are just

reversed to those of the cone fabric with opening angle

ϕ=χ = 90◦. This reflects the difference in the calculation of

the elasticity tensor from cone fabric and girdle fabric. While

a girdle with ϕ= 90◦ (χ = 0◦) is calculated in the first step

for both fabrics (Table 2) by integration with rotation around

the x1 axis, the second step is an integration with rotation

around the x3 axis for the cone fabric and around the x2 axis

for the thick girdle fabric.

The higher velocities calculated with the equations of Ben-

nett (1968) (Fig. 4, d) are due to the difference in the elastic-

ity tensor, as the elasticity tensor derived by Gammon et al.

(1983) was used for the calculation in all of the other subfig-

ures (Fig. 4a–c, e, f). The Bennett (1968) calculation exhibits

an isotropic state for ϕ=χ = 90◦. However, this is only pos-

sible as Bennett (1968) used fitted curves for the derivation

of the slowness surface.

4.3 Reflection coefficients

The calculation of reflection coefficients for different in-

coming angles is already rather complicated for layered

isotropic media given by the Zoeppritz equations (e.g. Aki

and Richards, 2002). In the case of anisotropic media most

of the studies have been done for VTI media (Keith and

Crampin, 1977; Daley and Heron, 1977) and in terms of

Thomsen parameters (Thomsen, 1993). A comprehensive

overview of the different calculations of reflection coeffi-

cients for VTI and HTI media is given by Rüger (2002).

In the following, we use equations derived by Zillmer et al.

(1997) by means of perturbation theory for the calculation

of englacial reflection horizons. These equations for general

anisotropy were simplified by Zillmer et al. (1998) for weak

contrast interfaces. They are, thus, especially practical for the

reflection coefficients in ice. For the isotropic reference val-

ues the elasticity tensor for isotropic ice can be used and no
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average needs to be taken over different materials. The re-

flection coefficients for the anisotropic material are then cal-

culated as perturbations of the isotropic ice fabric. Thus, re-

flection coefficients for P, SV and SH waves are obtained.

The equations for the calculation of reflection coefficients

are given in Appendix B2. The Rshsh and Rsvsv reflection co-

efficients are restricted to a symmetry plane of the layered

medium. The indices give the polarisation of the incoming

and reflected wave; e.g. Rpp is the reflection coefficient for

an incoming P wave, reflected as P wave, equivalent forRshsh

and Rsvsv.

To calculate the P-wave reflection coefficient for the bed

reflector with an overlaying cone fabric, i.e. VTI media, we

use the equations given by Thomsen (1993), which were fur-

ther developed by Rüger (1997). Exact solutions for VTI me-

dia are, for example, given by Keith and Crampin (1977) and

Graebner (1992).

4.4 Reflection coefficients for anisotropic ice

With the equations given in Appendix B2 (Zillmer et al.,

1998) reflection coefficients can be calculated for interfaces

between different fabrics. Figure 5 shows as an example the

Rpp, Rshsh and Rsvsv reflection coefficient for the transition

at a layer interface from an isotropic fabric to a partial girdle

fabric, both for HTI media (ψ = 0◦) and with an azimuth of

ψ = 90◦.

The reflection coefficients are given for angles of inci-

dence between 0 and 60◦. This has two reasons. Firstly, most

seismic surveys do not exceed an incoming angle of 60◦ as

this already corresponds to a large offset compared to the

probed depth. Secondly and more important, the calculation

of the reflection coefficients using Eqs. (B12)–(B13) is not

exact. Instead, the error increases with increasing incoming

angle.

The largest magnitude of reflection coefficients can be ob-

served for the SVSV reflection (Fig. 5). However, the reflec-

tion coefficients are ≤ 0.1 for all fabric combinations shown

here. Most significantly, for the PP reflection the reflection

coefficients between different anisotropic fabrics are small.

The PP reflection between, for example, isotropic and VSM-

fabric ice for normal incidence is < 0.02. For comparison

the reflection coefficient between isotropic and lithified sed-

iments (Fig. 6) is ∼ 0.4. Hence, reflection coefficients at

the ice–bed interface are an order of magnitude larger than

reflection coefficients for the transition between different

anisotropic fabrics. To be able to observe englacial seismic

reflections, abrupt changes (i.e. within a wavelength) with

significant variations in the orientation of the ice crystals

are needed. Such englacial reflections have been observed

in data from Greenland (Horgan et al., 2008) and Antarctica

(Horgan et al., 2011; Hofstede et al., 2013), and also in the

Swiss/Italian Alps (Polom et al., 2014; Diez et al., 2013).

These reflections can indicate a change in the fabric. How-

ever, the investigation of reflection signatures (amplitude ver-

Table 3. P-wave velocity, S-wave velocity and density for different

bed scenarios and isotropic ice as given in Peters et al. (2008). These

values are used for the calculation of reflection coefficients given in

Fig. 6.

Material vp in m s−1 vs in m s−1 ρ in kg cm−3

Ice 3810 1860 920

Basement 5200 2800 2700

Lithfied sediment 3750 2450 2450

Dilatant sediment 1700 200 1800

Water 1498 0 1000

sus offset, AVO) of englacial reflectors is difficult due to the

small reflection coefficients, and the small range they cover

with changing incoming angle.

For englacial reflections caused by changing COF, the

variations in the reflection coefficient with offset are very

small: the PP-reflection coefficient for the transition from

isotropic to VSM fabric (ϕ= 0◦, Fig. 5) from 0 to 60◦ is be-

tween 0.019 and 0.036. To put these values in perspective, we

consider error bars for reflection coefficients as determined

for ice–bed interfaces. It cannot be expected that the error

bars for measuring the reflection coefficient of englacial re-

flections would be smaller than those given for the bed re-

flection coefficients. Peters et al. (2008) analysed the reflec-

tion amplitude for the ice–bed interface from a survey near

the South Pole. For the reflection coefficients they derive

from the seismic data, they give error bars of ±0.04, with

increasing error bars for decreasing incoming angles, limited

by ±0.2. The change in the reflection coefficient with offset

for englacial reflection that we calculate is smaller than the

given error bars. Thus, it is not possible to derive information

about the anisotropic fabric from englacial reflections using

AVO analysis, at the moment. To be able to derive fabric in-

formation from AVO analysis the error in determining the

reflection coefficient from seismic data needs to be reduced,

e.g. better shooting techniques to reduce the signal-to-noise

ratio (SNR) in the data or a better understanding of the source

amplitude as well as the damping of seismic waves in ice.

4.5 Reflection coefficients for ice–bed interface

Of special interest is the determination of the properties of

the ice–bed interface from seismic data. It is possible to

determine the bed properties below an ice sheet or glacier

by analysing the normal incident reflection coefficient (e.g.

Smith, 2007) or by AVO analysis (Anandakrishnan, 2003;

Peters et al., 2008). Figure 6 shows reflection coefficients for

the transition from isotropic and anisotropic (VSM fabric)

ice to different possible bed properties (Table 3). The values

for density, P-wave and S-wave velocity, for the different bed

scenarios and the isotropic ice, are taken from Peters et al.

(2008). For the anisotropic VSM fabric the elasticity tensor

of Gammon et al. (1983) is used.
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Figure 5. Reflection coefficients for the boundary between an isotropic (upper) layer and a partial girdle fabric (lower) layer with different

opening angles ϕ (χ = 0◦) of the girdle. The reflection coefficients are calculated with equations given in Sect. 4.3 for different incoming

phase angles ϑ . The subfigures (a), (b) and (c) show the reflection coefficients for a girdle orientation (lower layer) perpendicular to the travel

path of the wave (HTI media) for PP, SHSH and SVSV reflection, respectively. The subfigures (d), (e) and (f) show the reflection coefficients

for a girdle orientation parallel to the travel path of the wave (azimuth ψ = 90◦) for PP, SHSH and SVSV reflection, respectively.

Figure 6. P-wave reflection coefficients for ice–bed interface with different bed properties as a function of phase angle of incidence ϑ :

basement (black), lithified sediments (red), dilatant sediments (gray) and water (blue). The solid and dotted lines are the reflection coefficients

for an isotropic ice overburden, the dashed and dashed-dotted lines for the anisotropic (VSM) overburden. The solid and dashed lines are the

reflection coefficients calculated with exact equations for VTI media given by Graebner (1992) and Rüger (2002). The dotted and dashed-

dotted lines are approximate calculations following the approach by Aki and Richards (2002) for the isotropic case and that of Rüger (1997)

for the anisotropic case, respectively. Property values for the bed and isotropic ice are taken from Peters et al. (2008). For the anisotropic ice

the elasticity tensor given by Gammon et al. (1983) is used.
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Exact solutions are calculated using the equations given

by Graebner (1992), with corrections by Rüger (2002). Their

equations were used to calculate the exact reflection coeffi-

cients for the isotropic ice above the bed (solid lines) and

for the anisotropic ice above the bed (dashed lines) shown

in Fig. 6. The approximate reflection coefficients for the

isotropic ice above the bed (dotted lines) are calculated using

equations given in Aki and Richards (2002). The approxi-

mate reflection coefficients for the VSM fabric above the bed

(dashed-dotted lines) are calculated using equations given in

Rüger (1997).

The differences between the isotropic (solid lines) and

anisotropic reflection coefficients (dashed lines) are small

(≤ 0.04) for the exact solutions. The approximate calcula-

tions fit well to the exact solutions up to a group angle of

about 30◦, with differences of the same order as isotropic

to anisotropic variations. However, differences between ex-

act and approximate reflection coefficients become large for

increasing phase angle (≥ 30◦). Thus, errors introduced by

using approximate calculations for the reflection coefficients

are larger than the effect of anisotropic ice fabric above the

bed.

The observable differences of reflection coefficients for

an isotropic and a VSM-fabric overburden are ≤ 0.04,

i.e. smaller then the smallest error bars given by Peters

et al. (2008) (Sect. 4.4). The VSM fabric is the strongest

anisotropy to be expected in ice. If an anisotropic layer ex-

ists above the bed, it yields a different reflection coefficient

compared to the case of the isotropic ice overburden. How-

ever, the difference between the isotropic overburden reflec-

tion coefficient and the anisotropic overburden reflection co-

efficient is within the range of the error bars given by Pe-

ters et al. (2008). Thus, the anisotropic fabric will not have a

measurable influence on the analysis of the bed properties by

means of the AVO method, given the current degree of data

accuracy and SNR.

5 Conclusions

We presented an approach to derive the ice elasticity tensor,

required for the calculation of seismic wave propagation in

anisotropic material, from the COF eigenvalues derived from

ice-core measurements. From the elasticity tensors we de-

rived seismic phase and group velocities of P, SH and SV

waves for cone, partial girdle and thick girdle structures,

i.e. orthorhombic media. Velocities we derived for different

cone fabrics agree well with velocities derived for cone fab-

ric using the already-established method of Bennett (1968).

However, with our method it is now also possible to calculate

velocities for girdle fabrics. Further, we can use the derived

elasticity tensors to investigate the reflections coefficients in

anisotropic ice.

We used the elasticity tensor to derive the reflection sig-

nature for englacial fabric changes and investigated the in-

fluence of anisotropic fabric on the reflection coefficients for

basal reflectors. We found that the reflection coefficients and

the variations of the reflection coefficients with increasing

offset are weak for the transition between different COF dis-

tributions: they are at least an order of magnitude smaller

than reflections from the ice–bed interface. Thus, either sig-

nificant changes in the COF distribution or extremely sensi-

tive measurement techniques are needed to observe englacial

seismic reflections. The influence of anisotropic ice fabric

compared to the isotropic case for the reflection at the ice–

bed interface is so small that it is within the measurement

inaccuracy of currently employed seismic AVO analysis. An

important result is that the difference between exact and ap-

proximate calculations of reflection coefficients for the ice–

bed interface is larger than the influence of an anisotropic ice

fabric above the bed. This implies that exact calculations are

necessary if the fabric above the bed is in the focus of AVO

analysis.

Better results in the calculation of the elasticity tensor

could probably be gained by calculation of the opening an-

gles directly from the c axes’ vectors. This would avoid our

classification into cone, partial girdle and thick girdle fabric.

Nevertheless, the approach presented here offers the oppor-

tunity to use the readily available COF data from ice cores

and go towards an investigation of the seismic wave field in

ice without the limitation to velocities only. The inclusion

of further properties influencing the propagation of seismic

waves in ice, like density and temperature, will offer the op-

portunity to model the complete wave field. Hence, we are

confident that it will become feasible in the future to derive

physical properties of the ice from analyses of the complete

observed wave field by full waveform inversions.
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Appendix A: From COF eigenvalues to elasticity tensor

for seismics

A1 Connection of eigenvalues to opening angles

The following equations give the connection between the

eigenvalues λ1,λ2 and λ3 and the two opening angles ϕ and

χ .

For a cone fabric the angle ϕ = χ is calculated by

ϕ = χ = b1 sin(c1λ3+ d1)+ b2 sin(c2λ3+ d2)

+ b3 sin(c3λ3+ d3)+ b4 sin(c4λ3+ d4), (A1)

with

b1 = 141.9,c1 = 6.251,d1 = 2.157,

b2 = 139,c2 = 10.33,d2 =−1.809,

b3 = 90.44,c3 = 14.68,d3 = 4.685,

b4 = 36.61,c4 = 16.9,d4 = 12.63.

For a thick girdle fabric the angle χ is calculated by

χ =p1λ
7
1+p2λ

6
1+p3λ

5
1+p4λ

4
1+p5λ

3
1+p6λ

2
1

+p7λ1+p8, (A2)

ϕ =90◦, (A3)

with

p1 = 2.957× 107,p2 =−3.009× 107,p3 = 1.233× 107,

p4 =−2.599× 106,

p5 = 3.023× 105,p6 =−1.965× 104,p7 = 877.6,

p8 = 2.614.

For a partial girdle fabric the angle ϕ is calculated by

ϕ = a1 sin(b1λ3+ c1)+ a2 sin(b2λ3+ c2)

+ a3 sin(b3λ3+ c3)+ a4 sin(b4λ3+ c4), (A4)

χ = 0◦, (A5)

with

a1 = 118.7,b1 = 7.415,c1 =−3.517,

a2 = 97.47,b2 = 13.68,c2 = 1.161,

a3 = 46.57,b3 = 18.58,c3 = 6.935,

a4 = 7.455,b4 = 25.18,c4 = 11.47.

A2 Rotation matrices for elasticity and compliance

tensor

Here the rotation matrix for the elasticity tensor and compli-

ance tensor following Sunder and Wu (1994) are given. For

the calculation of the elasticity tensor for different fabrics the

monocrystal elasticity tensor needs to be rotated (Sect. 3.2).

The rotation matrix for the elasticity tensor is

RC
=


l21 m2

1 n2
1 2m1nl1 2n1 l1 2l1m1

l22 m2
2 n2

2 2m2nl2 2n2 l2 2l2m2

l312 m2
3 n2

3 2m3nl3 2n3 l3 2l3m3

l2 l3 m2m3 n2n3 m2n3 −m3n2 n2 l3 − n3 l2 l2m3 − l3m2

l3 l1 m3m1 n3n1 m3n1 −m1n3 n3 l1 − n1 l3 l3m1 − l1m3

l1 l2 m1m2 n1n2 m1n2 −m2n1 n1 l2 − n2 l1 l1m2 − l2m1

 , (A6)

and the compliance tensor

RS
=


l21 m2

1 n2
1 m1nl1 n1 l1 l1m1

l22 m2
2 n2

2 m2nl2 n2 l2 l2m2

l312 m2
3 n2

3 m3nl3 n3 l3 l3m3

2l2 l3 2m2m3 2n2n3 m2n3 −m3n2 n2 l3 − n3 l2 l2m3 − l3m2

2l3 l1 2m3m1 2n3n1 m3n1 −m1n3 n3 l1 − n1 l3 l3m1 − l1m3

2l1 l2 2m1m2 2n1n2 m1n2 −m2n1 n1 l2 − n2 l1 l1m2 − l2m1,

 (A7)

with the direction cosines

 l1 l2 l3
m1 m2 m3

n1 n2 n3

 (A8)

for rotation around the x1 axis,

 1 0 0

cosφ −sinφ 0

sinφ cosφ 0

 ; (A9)

for rotation around the x2 axis,

cosφ 0 −sinφ

0 1 0

sinφ 0 cosφ

 ; (A10)

and for rotation around the x3 axis,

cosφ −sinφ 0

sinφ cosφ 0

0 0 1

 . (A11)

A3 Components of elasticity and compliance tensor for

polycrystal

The components of the polycrystal elasticity tensor as de-

rived from Eq. (12) with c axes’ distribution around the
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x1 axis, i.e. within the [x2, x3] plane, are calculated by

C
p

11 =C
m
11,

C
p

22 =
1

2φ0

[
b1C

m
22+ b2C

m
33+ 2b3(C

m
23+ 2Cm

44)
]
,

C
p

33 =
1

2φ0

[
b1C

m
33+ b2C

m
22+ 2b3(C

m
23+ 2Cm

44)
]
,

C
p

44 =
1

2φ0

[
(b1+ b2)C

m
44+ b3(C

m
22− 2Cm

23+C
m
33− 2Cm

44)
]
,

C
p

55 =
1

2φ0

[
Cm

55(φ0+α)+C
m
66(φ0−α)

]
,

C
p

66 =
1

2φ0

[
Cm

66(φ0+α)+C
m
55(φ0−α)

]
,

C
p

12 =
1

2φ0

[
Cm

12(φ0+α)+C
m
13(φ0−α)

]
,

C
p

13 =
1

2φ0

[
Cm

13(φ0+α)+C
m
12(φ0−α)

]
,

C
p

23 =
1

2φ0

[
(b1+ b2)C

m
23+ b3(C

m
22− 4Cm

44+C
m
33)
]
. (A12)

The components of the polycrystal compliance tensor as

derived from Eq. (13) with c axes’ distribution around the

x1 axis, i.e. within the [x2, x3] plane, are calculated by

S
p

11 =S
m
11,

S
p

22 =
1

2φ0

[
b1S

m
22+ b2S

m
33+ b3(2S

m
23+ S

m
44)
]
,

S
p

33 =
1

2φ0

[
b1S

m
33+ b2S

m
22+ b3(2S

m
23+ S

m
44)
]
,

S
p

44 =
1

2φ0

[
(b1+ b2)S

m
44+ 4b3(S

m
22− 2Sm

23+ S
m
33−

1

2
Sm

44)

]
,

S
p

55 =
1

2φ0

[
Sm

55(φ0+α)+ S
m
66(φ0−α)

]
,

S
p

66 =
1

2φ0

[
Sm

66(φ0+α)+ S
m
55(φ0−α)

]
,

S
p

12 =
1

2φ0

[
Sm

12(φ0+α)+ S
m
13(φ0−α)

]
,

S
p

13 =
1

2φ0

[
Sm

13(φ0+α)+ S
m
12(φ0−α)

]
,

S
p

23 =
1

2φ0

[
(b1+ b2)S

m
23+ b3(S

m
22− S

m
44+ S

m
33)
]
. (A13)

These variables apply for the equations for the calculation

of the elasticity and compliance tensor of the polycrystal:

b1 =
3

4
φ0+α+β,

b2 =
3

4
φ0−α+β,

b3 =
1

4
φ0−β,

α =
1

2
sin2φ0,

β =
1

16
sin4φ0. (A14)

Appendix B: Equations for calculation of velocities and

reflection coefficients

B1 Velocities in anisotropic media

To be able to calculate velocities for partial girdle fabric,

the calculation of phase velocity for orthorhombic media de-

rived by Daley and Krebes (2004) is used. They rearrange

linearised equations to obtain the velocity from an ellipsoidal

part an anellipsoidal correction term:

vp(n)=√
1/ρ(C11n

2
1
+C22n

2
2
+C33n

2
3
+ 2B12n

2
1
n2

2
+ 2B13n

2
1
n2

3
+ 2B23n

2
2
n2

3
), (B1)

vsv(n)=√
1/ρ(C44sin2ψ +C55cos2ψ + 2B12n

2
1
n2

3
sin2ψ − 2B13n

2
2
n2

3
− 2B23n

2
1
n2

3
), (B2)

vsh(n)=√
1/ρ(C44n

2
3

cos2ψ +C55n
2
3

sin2ψ +C66sin2ϑ − 2B12n
2
1

sin2ψ), (B3)

with

B12 =(C13+ 2C66)− (C11+C22)/2, (B4)

B13 =(C12+ 2C55)− (C11+C33)/2, (B5)

B23 =(C23+ 2C44)− (C22+C33)/2, (B6)

and the unit phase normal vector

n= (n1,n2,n3)= (sinϑ cosψ,sinϑ sinψ,cosϑ), (B7)

with the phase angle ϑ and the azimuth ψ , here the azimuth

for the orientation of a girdle fabric (Fig. 2).

The components of the group velocity vector are given by

(Tsvankin, 2001)

vg,x1
= v sinϑ +

∂vph

∂ϑ

∣∣∣∣
ψ=const

cosϑ, (B8)

vg,x2
=

1

sinϑ

∂vph

∂ψ

∣∣∣∣
ϑ=const

, (B9)

vg,x3
= vph cosϑ +

∂vph

∂ϑ

∣∣∣∣
ψ=const

sinϑ. (B10)
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Within the symmetry planes the group velocity can be calcu-

lated using vg,x1
and vg,x2

only (Eq. 14).

Outside the symmetry planes of the HTI media the com-

ponent vg,x2
cannot be neglected as the derivation ∂v

∂ψ
is no

longer 0. In this case vg is the norm of the group velocity

vector vg considering all three components: vg,x1
, vg,x2

and

vg,x3
. Here, a second group angle (next to the one in the plane

(Eq. 15)) exists for the direction outside the plane with

tanθout =
vg,x2√

v2
g,x1
+ v2

g,x3

. (B11)

B2 Reflection coefficients (Zillmer)

The reflection coefficients as derived by Zillmer et al. (1997,

1998) are given by

Rpp =
1

4

(
1C33

C
(0)
44 + 2C

(0)
12

+
1ρ

ρ(0)

)
−

1

4

1ρ

ρ(0)
tan2(ϑ)

+
1

4

21C13−C33− 41C55

C
(0)
44 + 2C

(0)
12

sin2ϑ

+
1

4

1C11

C
(0)
44 + 2C

(0)
12

sin2ϑ tan2ϑ, (B12)

Rsvsv =−
1

4

(
1C55

C
(0)
12

+
1ρ

ρ(0)

)
−

1

4

1ρ

ρ(0)
tan2(ϑ)

+
1

4

1C11− 21C13+C33− 31C55

C
(0)
12

sin2ϑ

−
1

4

1C55

C
(0)
12

sin2ϑ tan2ϑ, (B13)

Rshsh =−
1

4

(
1C44

C
(0)
12

+
1ρ

ρ(0)

)
+

1

4

(
1C66

C
(0)
12

+
1ρ

ρ(0)

)
tan2ϑ, (B14)

where 1 denotes the difference between the upper layer 1

and the lower layer 2, for example 1C33 = C
(2)
33 −C

(1)
33 . The

superscript (0) gives the isotropic reference values. When re-

flection coefficients are calculated for different anisotropic

ice fabrics, the density is constant; i.e. the 1ρ terms can be

neglected (ρ(2)− ρ(1) = 0).
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